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Abstract

Introduction: Management of patients in the acute care setting requires
accurate diagnosis and rapid initiation of validated treatments; therefore,
this setting is likely to be an environment in which cognitive augmenta-
tion of the clinician’s provision of care with technology rooted in artificial
intelligence, such as machine learning (ML), is likely to eventuate.

Sources of data: PubMed and Google Scholar with search terms that
included ML, intensive/critical care unit, electronic health records (EHR),
anesthesia information management systems and clinical decision support
were the primary sources for this report.

Areas of agreement: Different categories of learning of large clinical
datasets, often contained in EHRs, are used for training in ML. Supervised
learning uses algorithm-based models, including support vector machines,
to pair patients’ attributes with an expected outcome. Unsupervised learning
uses clustering algorithms to define to which disease grouping a patient’s
attributes most closely approximates. Reinforcement learning algorithms
use ongoing environmental feedback to deterministically pursue likely
patient outcome.
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Areas of controversy: Application of ML can result in undesirable outcomes
over concerns related to fairness, transparency, privacy and accountability.
Whether these ML technologies irrevocably change the healthcare workforce

remains unresolved.

Growing points: Well-resourced Learning Health Systems are likely to
exploit ML technology to gain the fullest benefits for their patients. How
these clinical advantages can be extended to patients in health systems
that are neither well-endowed, nor have the necessary data gathering
technologies, needs to be urgently addressed to avoid further disparities in

healthcare.

Key words: acute care, machine learning, algorithms

Introduction

Ever since the Industrial Revolution, which intro-
duced steam- and water-power, societies have
largely embraced automation because of the benefits
provided by removal of the drudgery of repetitive
tasks, enhancement of efficiencies to reduce scarcities
of products and services and improvements in
the overall well-being of its inhabitants. As with
subsequent technological revolutions involving
electricity and computing, the Intelligence Revo-
lution, exemplified by artificial intelligence (AlI) is
being heralded as a panacea for the well-being of
the individual accruing from the additional time
available for non-vocational pursuits and from
the equitable distribution of financial rewards that
automation can provide.'

At the personal level, benefit that results from
improvement in one’s health is a lofty goal that can
be achieved through appropriately applied AL This
optimistic outlook is predicated by several factors
including the voluminous and heterogeneous medi-
cal data that is available at high speeds of access and
analysis and generated through disparate sources
such as claims data, intensive care surveillance, elec-
tronic healthcare documentation and medical device
sensing and surveillance.> Because of the charac-
teristics of these data the promise of personalized
medical care is within reach through the blending
of Al with research-generated population-level clin-
ical evidence and the specific characteristics of the

individual patient.* In this article, we describe how
Al can be implemented into decision-making for
acute care with the goals of reducing medical error
(e.g. by reducing fatigue from attention-requiring
tasks) and improving outcomes in a rapidly evolving
and dynamic clinical setting.

As with each successive revolution in automa-
tion, safeguards are needed to curtail unwanted
consequences that can disrupt the workplace. In its
influential report on human-centric Al, the European
Union (EU) stressed that the technology is not an
end itself but a tool that has to serve the people
by preserving the universal values of fairness, trans-
parency, privacy and accountability; humaneness in
the medical applications of Al has been stressed by
others.’ In addition to these necessary safeguards,
another requirement for implementing successful
and equitable applications of Al into the acute care
setting will be the development of a sustainable
economic model; this will also be considered in this
report.

As this report is focused at the level of individual
patients in acute care settings, we will not address
the application and consequences of Al-based
automation in non-clinical aspects of healthcare such
as administration (e.g. scheduling appointments),
finance (e.g. billing and collections) and operations
(e.g. inventory and supply chain management).
Because we chose to concentrate on the use of Al
for a medical decision support system (MDSS) in
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the acute care setting, this report does not address
other important Al applications such as image
interpretation and remote monitoring, which may
also enhance personalized care.

Sources of data for this review

PubMed and Google Scholar were the primary
sources for this report; for searches of these
databases, the terms used included: machine learning
(ML), telemedicine, intensive care unit, randomized
clinical trials, clinical decision support, anesthesia
information management systems, database struc-
ture, electronic health records, causal inference
reinforcement learning, acute kidney injury, ML
versus physician and cardiac anesthesia.

Definitions

In this review, numerous terms are used, which
require further definition. Although essential for
the inexperienced practitioner, it is also necessary
for those with expertise in this field because these
ubiquitous terms may have different interpretations.

Artificial intelligence (Al)—a term first coined
during a Dartmouth College summer conference in
1956—is a technique by which machines replicate
the behavior and nature of humans.® The ‘Turing
Test’ states that if a computer can convince a human
that it is human, then the machine can ‘think’ and
therefore has AL’ Al optimizes processes to operate
autonomously and can result in complex outcomes
that may extend beyond what was explicitly pro-
grammed. Currently, our understanding of true Al
has evolved into a question of whether machines can
achieve ‘general intelligence’. In the medical setting,
we will discuss the example of computers that ‘learn’
from real-world data that resides within electronic
health records (EHR); ML, is the outstanding exam-
ple of Al in the medical setting and is defined below.

Machine learning (ML)—a term first coined by
Arthur Samuel®*—is a form of Al in which a com-
puter learns from historic data generating algorithms
to apply rules to new data. As the robustness of
ML depends on the volume of data, the abundance

of accessible data has made it possible for these
programs to be exceptionally powerful.

Neural network is a form of ML using a
structure that mimicks the human brain and its
networks of neurones; conceptually, the individual
neurones within the input and output layers are
assigned parameters that determine the level of effect
propagated to the next neurone in the network. In
the learning process, the output layer feedbacks on
prior layers further refining the model, by modifying
individual neuronal parameters, through a process
known as backpropagation.’

Deep learning is a type of neural network that
contains several layers between the input and output
layers; these multiple, hidden, layers provide a ‘deep’
infrastructure improving the model’s ability to learn
complex patterns and abstractions that is best exem-
plified by image processing.'® Deep learning has been
criticized as ‘black box’ modeling that precludes
interpretability because of the difficulty to under-
stand and/or see the inner workings of the model."
Although tools have since been designed to aid with
interpretability of deep learning models, these mod-
els cannot be equated to ‘deep understanding’.

Medical decision support systems (MDSS) use
computer tools, which do not necessarily require any
level of ML or complex analytics, to help clinicians
provide better care to patients. MDSS can include
reminders to give antibiotics at a particular time in
a surgical case and/or to document certain pieces of
information in the chart, which in turn may remind
the clinician to perform an additional exam or nudge
a physician’s thought process potentially leading to
a more complete diagnosis of the patient’s condition.

Personalized carelprecision medicine uses MDSS
and often ML and other Al techniques to provide
treatment options tailored to a specific patient’s
condition or ‘clinical signature’ e.g. their unique
set of diagnoses, medications, demographics and
genetics, among other factors. It is within the
realm of precision medical care that Al is likely
to generate the biggest advances in the practice of
medicine.

Expert systems were an early form of ML in
which a series of multi-layered ‘if-then’ statements
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Pattern Recognition

Artificial Intelligence

Neural networks

Medical Decision Support Systems

Fig. 1 In this Venn diagram the relationship of different forms of patient care digital technologies is displayed (modified

from Vrana and Singh®).

determine the optimal course of action depending
on a particular situation.”? These systems rely on a
set of Boolean and deterministic rules that are often
directly programmed by experts in the field. This is
no longer considered a form of intelligence because
it neither infers meaning nor context.

The relationship of these terms to one another is
depicted in Figure 1.

Logistics for development
and implementation of ML

For the following section, the term ‘algorithm’ is a set
of instructions that a computer follows to complete a
task and a ‘model’ is the application of algorithms to
data. Data scientists, model developers and clinical
end-users, of the output of the model need to col-
laborate to successfully pair a validated prediction
with an effective action. Foremost among the issues
that determines the type of model to be developed is
patient safety that include knowledge of the adverse
risks to the patient if the model performs inaccu-
rately. Decisions regarding the acceptable degree of
accuracy will skew the model towards whether it

is more desirable to have false positives or false
negatives in the prediction of the association between
the patient’s attributes and the anticipated outcome.
Another important decision to be taken is whether
the model is based upon defining association or
causality.”® As the full set of causal relationships is
rarely known in acute care settings, most of the
models that have been developed are association-
based.

The family of algorithms that we call ML can
be categorized depending on how they learn infer-
ence from data, namely, by supervised, unsupervised
(Fig. 2) or reinforcement learning models.

Supervised learning—in its most general sense—is
concerned with predicting outcomes for new pieces
of data. Each piece of data upon which supervised
learning algorithms are trained, or ‘learned’ from,
consists of a list of attributes, or features, and an
outcome that is referred to as a target or label. When
this algorithm is trained on a multitude of these
features and their corresponding labels, the model
learns which features most closely correspond to
each label via various mathematical algorithms and
statistical models, generally, with a basis in linear
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Fig. 2 A supervised learning model versus an unsupervised learning model with the same dataset of 30 patients: (A)
Supervised Learning Model: This model uses a Support Vector Machine (SVM) that has a decision boundary to predict
whether Acute Kidney Injury (AKI) will develop in any given patient with known features. In this theoretical example, a
pair of features, namely, urine output and serum creatinine from 30 patients with a binary outcome (yellow for those
that developed and blue for those that did not develop AKI) was used to train the SVM. From this training set, the SVM
calculates the decision boundary for the development of AKI from the midpoint of the support vectors. In this situation,
we have calculated the decision boundary to be the vector, which we refer to as 6. The trained SVM determines whether
a new patient with a known pair of features (which we refer to as vector A) will develop AKI by calculating the dot
product, 6 - Ayielding a binary outcome depending on its sign (positive sign corresponding to a positive prediction, and
vice versa). The complexity of the calculations that a SVM makes can be better appreciated when considering that the
typical training set usually comprises many more than 30 patients (often in the thousands) with many paired features
(likely hundreds rather than the two offered here), with the same result: a hyperplane separating vectors that will predict
positive from those that will predict negative. (B) Unsupervised Learning Model: This model uses algorithms, and K-
means, that implement pattern recognition. In this theoretical example the same paired features of urine output and
serum creatinine from the 30 patients are separated into clusters using a clustering algorithm (the 3-means algorithm
is offered here, with each ‘mean’, denoted in the graph by an ‘X’, representing the center of a cluster [‘centroid’]). In
lieu of considering the outcome for each of the features as is done with supervised learning in the Supervised Learning
Model, this clustering algorithm determines which patients are most like one another. Whereas the SVM provides a
sharp prediction derived from features of a new patient (without considering how ‘close’ it is to predicting the opposite),
clustering achieves a nuanced view of a patient’s profile. Again, the model’s complexity increases exponentially with the
number of paired features.

algebra and probability theory. After this model has
been trained, the user can then apply a novel set
of data with known attributes, but an unknown
outcome, into the supervised learning model, from
which the outcome for each piece of data is pre-
dicted; possible deviations from the outcome or tar-
get may be quantified by an error function where fea-
sible. Although these supervised learning processes
may approximate a provider’s skills, the computer
can uncover novel relationships not readily apparent
to physicians.

For the purposes of developing the algorithm for
supervised learning we will use an example that
predicts an outcome; in acute care settings the out-
come can be a patient’s diagnosis that will then

engender a response such as initiating a known
treatment for that diagnosis. If we wish to know for
male patient ‘X’, whether certain of his attributes
will hasten the development of acute kidney injury
(AKI), we can train a supervised learning algorithm
on past patients with these attributes and whether
they developed AKI. After training, we can input
patient X’s attributes into the model, and it will
predict whether patient X will develop AKI based
on trends from all previous patients. Depending on
which supervised model we use, it may determine
which attributes most strongly correspond to devel-
oping AKI using a supervised learning algorithm.
Here, we use an example of a seminal supervised
learning algorithm, referred to as the support vector
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machine (SVM), which builds a relatively accurate
classification or regression model.

The SVM algorithm constructs an optimal hyper-
plane to maximally separate two classes."* Certain
features or attributes have been selected from the
training data which, for the purposes of this example,
we have narrowed to five (A-E; e.g. serum creati-
nine, blood pressure, fluid intake, urine output and
exposure to nephrotoxins) for the outcome of devel-
opment of AKI; for parameter fitting, the algorithm
envisions these sets of attributes as mathematical
vectors in a vector space with defined boundaries
also referred to as ‘separating hyperplanes’.’ The
goal of the algorithm is to learn a parameter hyper-
plane, 8, which separates the vectors that developed
AKI from those that did not. In the case of a Linear
SVM, when we are interested at making a prediction
for a new patient, with attributes A=[A’, B, C', D/,
E'], we simply take the product A dot 6. If this dot
product is positive, A projects to the positive side of
0, so we predict the likelihood for the development
of AKI. Likewise, the most positive elements of 6

correspond to the features being most likely to
develop AKI, as these will affect the result of the
dot product most egregiously. An example of a two-
feature SVM is depicted (Fig. 2). For some datasets,
this linear approach may not be sufficient; in that
case the SVM can adopt a non-linear approach in
which case kernel functions are used to map the
data to a higher dimensional space, where instead of
taking a dot product, the model uses kernel algebra
to determine where the input vector lies in relation
to the separating hyperplane.® An SVM utilizing a
non-linear kernel can lead to higher accuracy met-
rics; however, this occurs at the expense of losing
interpretability, due to a higher level of abstraction.

After developing a model with minimal training-
error, the generalisability of the model must be estab-
lished by determining its predictive performance on a
comprehensive set of informative features from pre-
viously unseen individuals to confirm low test-error.
Many methods exist for such affirmation, notably
cross-validation, which ‘folds’ the known data into
test data and training data, so we can test the model
on existing data efficiently. Among the reasons why

the performance of a model deteriorates between
training and testing include ‘overfitting’ in which
a small set of training data has selected a very
large number of attributes that ‘memorises’ rather
than identifies the features and structures (including
the noise) of the training set; as memorisation of
noise within the training set is not generalisable it
performs worse on the unseen test data. Although
cross-validation is effective in identifying such errors,
there are mathematical toolkits available to ensure
regularisation in which the number of selected fea-
tures and its vector space are curtailed resulting in
less variance between the test and training sets, often
at the expense of increasing training error. There is
no perfect solution to this dilemma; ML is best when
training is performed on a very large set of informa-
tive features, a circumstance that may be lacking for
the complex tasks of clinical predictions based upon
accessible data. Because of this constraint it is quite
useful to have domain-specific clinician expertise to
‘guide’ the learning process.

The performance of these binary classification
supervised learning models can be assessed by well-
defined metrics mostly describing either sensitivity or
specificity. Sensitivity (also referred to as true posi-
tive rate, probability of detection or recall) reflects
the ability to identify the true positive cases; a highly
sensitive model can reliably rule out a disease when
its result is negative. Specificity (also known as the
true negative rate) quantifies the portion of actual
negatives that are correctly identified as such. The
trade-off between sensitivity and specificity can be
visualized by the receiver operating characteristic
(ROC) curve, which is often summarized as the area
under the ROC although this single parameter may
not expose subtleties introduced by events such as
imbalanced datasets where the negative and positive
outcomes are not equally distributed."”

Unsupervised learning algorithms, on the other
hand, do not serve as prediction tools (i.e. whether
an outcome or label will be achieved), but rather they
serve to identify correlations and internal structure
(‘clusters’) in training data, which is often heteroge-
neous as is the case with most diseases. For unsu-
pervised learning a clustering algorithm, such as the
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K-Means Clustering algorithm, the model is trained
solely on the attributes of each piece of data (i.e.
features), and not the corresponding outcomes (i.e.
labels).’® During training, this type of algorithm iden-
tifies structures and patterns within the data; when
new data are inputted into the model, it identifies
the previous data to which the features are most
similar. The model that is generated represents the
training attributes in vectors, exactly like the SVM,
but, instead of learning a boundary vector, it learns
vectors that serve as the center (‘centroid’), or mean,
of each cluster with the number of clusters denoted
as ‘k’. Each of the training samples is assigned to
one of the clusters according to a predefined distance
metric from the center of the cluster. K-Means Clus-
tering can be optimised by reducing the number of
dimensions in which the data are visualized using
techniques such as Principal Component Analysis. In
the context of medical decision-making, if one were
to input a patient’s data into a clustering algorithm,
the model would find the mean vector to which
the patient’s attributes are closest. This identifies
to which previous patients our current patient is
holistically most similar, so medical decisions can be
determined more accurately based on the data of past
patients in the same cluster. When K-Means Cluster-
ing was used on >11 000 intensive care admissions,
membership of a cluster accurately predicted mortal-
ity, length of stay, requirement for mechanical venti-
lation and the use of inotropes.”” An example of clus-
tering on the basis of a pair of clinical features is pro-
vided (Fig. 2B). Unsupervised learning can also be
used to identify dependencies between different data
attributes. These models, most notably Bayesian Net-
works, are probabilistic models that learn how one
particular attribute causes or affects other attributes.
For example, it can learn what the contributing
factors are to developing a particular attribute, or
possibly once that attribute occurs, which effects are
likely to follow. A Bayesian network simply learns a
directed graph, with each feature as a node, where
dependencies can be identified by the graph’s edges
and its direction. Bayesian processes are frequently
used in medicine, most notably diagnosis of dis-
ease. ML networks are an augmentation of those

practices, as it offers a comprehensive view of which
features of a patient’s profile are most likely to have
an impact on others.

As indicated earlier, a blend of unsupervised and
supervised learning may be required. A good exam-
ple would be first to use unsupervised learning to
select robust features that is then incorporated into
the risk-prediction performed by supervised learn-
ing. In this form of Deep Learning for complex acute
care, the blending may reclassify patients into more
homogeneous groups in which the pathophysiology,
and response to therapy, may be shared.

Reinforcement learning is more akin to human
learning than either supervised or unsupervised
learning, as the model interacts with the environment
and continues to train itself during implementation
and prediction. As it receives feedback from the
environment there are a large number of possible
actions that the model can make at each instance;
in some cases, the training space is virtually infinite
as actions that it takes can change the environment.
In other cases, when reinforcement learning starts,
every action is random and hence exploratory, as
it registers the feedback from the system; when
sufficient feedback has been gathered the actions
change from random to deterministic, which is
referred to as exploitation. In this particular format
of reinforcement learning there is constant trade-
off between exploration and exploitation; although
exploitation accrues short-term rewards, it precludes
greater long-term rewards that are currently not
known. These models have shown impressive results
in the realm of recommending optimal treatments for
sepsis in the intensive care unit (ICU).?* Within acute
care settings, reinforcement learning comes to the
fore, enabled by the short latency between treatment
and response to treatment that facilitates iterative
processing. For example, vasopressor dosing is
constantly revised to reach an appropriate infusion
rate for a particular patient. The optimal dosing
can initially be estimated based on weight, cardiac
function, age, volume status and other factors, but
cannot be known until a dose is attempted and
the blood pressure and heart rate response are
observed. Although a rudimentary example of this is
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target-controlled infusions, reinforcement learning
allows for more comprehensive control that can
considers optimal dosing of many infusions in the
context of an individual patient’s medications and
past medical history.

We imagine that reinforcement learning will play
a large role in the future integration of Al into the
practice of medicine as these models will allow the
model to interact with the medical team and to
learn tendencies of clinical providers, as well as new
patient cases, as they are used. These models can
also recommend specific treatments or combinations
of treatments and may provide creative treatment
strategies not otherwise considered.

Why precision medicine facilitated by
IMIL is desirable in acute care

In this section, we posit that through the application
of in silico biological intelligence tools, medical
professionals can provide personalised/precision
care with a reduction in medical errors.

Acute care lends itself to improvement through
ML because of its rapidly and constantly growing
volume of data which, for the most part, captures a
large component of the decision-making information
used by physicians. Data streams from intensive
care monitors provide the best example of a data
source that reflects the continuous measurement of
a patient’s health, albeit for a short duration. For
these reasons, telemedicine has flourished within
acute care settings with providers able to analyse
the digitised data remotely.?! As the quantity of data
increases, ML improves its ability to make fast accu-
rate decisions through a network of computations
that iteratively train the models. The model can
consider the data of the individual patient being
cared for and compare that patient’s condition with
all similar patients with analogous clinical courses
(meaning they have similar pathology, past medical
history and treatments) to make precise and accu-
rate predictions and treatment recommendations."
An excellent example of the utility of ML for risk
prediction has been the early identification of ICU

patients that are likely to develop sepsis including
the use of physiomarkers in the pediatric setting.”
A meta-analysis demonstrated that ML-based tools
are superior to other methods of scoring risk for
developing sepsis®*; however, between-study hetero-
geneity may thwart the potential advantage? A
non-comprehensive set of examples of successful
ML-based application in the acute care setting is
tabulated (Table 1).2-%

These ML tools, when visualized in an easy-to-
understand manner, can provide value to critical
care physicians who are often inundated with an
overwhelming quantity of data from each patient.
It is anticipated that in a similar manner to the
airline industry, computers will improve safety in this
clinical setting.*®

As there have been instances where ML has per-
formed better than clinicians (AKI in the ICU*’; AKI
prediction after cardiac surgery*’), we can anticipate
situations for which ML can provide predictions of
outcomes and recommended treatments to reduce
medical errors and to also increase the capabilities of
modern healthcare to improve likelihood of recovery
from acute illness. In fact, there have been clinical
studies showing that ML-based early-warning sys-
tems in the operating room can reduce total number
of minutes of hypotension during anesthesia.® As
these technologies develop, we will be able to predict
which patients will deteriorate earlier and be able
to provide more specific and tailored treatments for
those patients. We will also be able to provide more
complex rules that allow for more nuanced treat-
ment guidelines and circumstances, which allow us
to capture more subpopulations of patients and more
‘edge cases’ for whom specific treatments might be
harmful or beneficial. As the technologies become
better at explaining why predictions and recommen-
dations were made, physician experts and Al will
more effectively complement one another to provide
better treatment than either could provide alone. In
a recent study performed in the ICU setting, per-
sonalised medical care was provided through expert-
augmented ML in which, iteratively, Al learns from
the input and the tendencies of clinicians to effi-
ciently improve patient care.*!
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Table 1 Examples of Machine Learning in Acute Care

Author Year Study type (1) Aim Conclusion

Wijnberge 2020 RCT of ML-based EWS vs Limiting intra-op hypotension Reduction in

et al® standard care (68) hypotension

Xue et al.? 2021 Retrospective analysis (111 888)  Predicting postop delirium Predictive

Rehm et al.?’ 2018 Prospective observational (35) Predicting patient-ventilator Predictive
asynchrony

Zhang et al.? 2021 Prospective observational (459) Predicting agitation on ventilator Predictive

Hsieh et al? 2018 Retrospective analysis (3602) Predicting successful extubation Predictive
from MV

Hur et al.3° 2021 Retrospective analysis (12 409) Predicting ICU delirium Predictive

Le et al.3! 2020 Retrospective analysis (9919) Predicting development of ARDS Predictive

Sinha et al.*? 2020 Secondary analysis of RCT Diagnosing ARDS phenotype Diagnostic of 2

patients (2767) phenotypes
Le et al.® 2019 Retrospective analysis (101) Predicting pediatric sepsis Predictive
Nema et al.** 2018 Retrospective analysis (69 000) Predicting adult sepsis Predictive

Seymour et al.®> 2019
Zhang et al 3 2019 Retrospective analysis (6682)

Lee et al.’” 2018 Retrospective analysis (2010)

Retrospective analysis (20 189)

Diagnosing sepsis phenotype Diagnostic of 4

phenotypes
Predicting UO in response to fluid  Predictive
bolus
Predicting postop acute kidney Predictive

injury

ARDS = Acute Respiratory Distress Syndrome; ICU = Intensive Care Unit; MV = mechanical ventilation; UO = Urine Output

A theoretical application of ML in the acute care
environment is provided (Fig. 3); this example is
notable for its dependency on the EHR. However, the
difficulty with the EHR as the source of information
is that it stores a mixture of structured and unstruc-
tured data, often inconsistently formatted, full of
variables with varying quantities of missing data
and at times does not actually reflect what occurred
clinically. A clinical AI system would likely need to
learn from more than just the findings within the
EHR to care for patients.

A roadmap for the development, implementation
and assessment of an ML-based solution to manage-
ment of patients in clinical settings, including acute
care, has been formulated.** Beginning with elucida-
tion of a clinical problem for which an improved
outcome is sought, the process involves early engage-
ment of stakeholders, and a clear message how adop-
tion of the technology will improve workflow and
patient outcomes. Most importantly, the plan needs
to define the milestones, metrics and outcomes that

determine whether an implementation is successful
using, amongst others, the framework provided by
the International Medical Device Regulators Forum.
The Al tools that are developed for an acute care
setting are high risk requiring a premium on their
assessment of safety and effectiveness.

Finally, as with all deployments in a Learning
Health System, an after-action assessment will be
instrumental to inform further implementations.

Obstacles to implementing ML in acute
care settings

Safety/Accountability/Liability

Building precision care systems and integrating them
into clinical care are not the same problem although
they have often been discussed as such. The abil-
ity of a ML model to predict in new situations is
assessed by that model’s ability to accurately predict
on a ‘test’ dataset. To ensure that ML models can
predict well in real-world settings, the test set must
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Fig. 3 Overview of a possible dataflow structure for a ML-based MDSS. The dataflow here is outlined in three phases:
patient selection, data extraction and visualization, and ML and clinical prediction. Models are initially trained after
extraction from the EHR and data cleaning as necessary. Model parameters are uploaded to the software infrastructure
that integrates with the EHR and allows for real-time data updates for patients currently being cared for in an acute
setting. A patient is specified by the user and the appropriate model is selected depending on the prediction required.
Once data have been passed to the client, the user has the opportunity to visualize the prediction and reasons for the

prediction on the dashboard.

accurately represent the real-world cases to which
the model will be applied (see Fig. 1 in Cosgriff
et al?), which is a fundamental reason why a model
can seem to perform well in development, but then
provide inferior accuracy when actually deployed.
This raises a serious safety problem that models need
to be well-tested in restricted clinical settings before
deployed to many more patients.

Typically, a medical error by a provider may
result in injury to a single patient; a software
problem in a ML-based MDSS can cast a much
wider net and injure many more patients, in the
same way that an inaccurate test or biomarker can
incorrectly guide treatment. Furthermore, patients
are likely to be more forgiving of a medical error
produced by a human provider than through a
software error. However, in litigious settings, even
though a software error caused the problem to
the patient, the provider should have relied on

their own professional knowledge and judgment
akin to the development of self-driving motor
vehicles in which the human driver still has some
control during its early evolution (e.g. see Fig.
5 in Topol*). Therefore, clinical implementation
of an effective MDSS based upon an ML-derived
algorithm may be resisted by a healthcare system
because of the potential for unsustainable litigation
costs caused by the false-positive and false negative
cases or the incorrect estimations and predictions
developed by fully-automated systems (vide infra
‘AutoML’). To prevent this negative outcome,
every effort needs to be expended to demonstrate
the robustness of the ML-based models through
rigourous training and testing under real-world
conditions in the same settings in which it is to be
clinically used. There are likely to be exceptions
to following a decision promoted by the predictive
analytics; under these circumstances the consultant
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physician needs to ‘play their traditional role of
patient advocate within the constraints set by
society’ and not to abrogate their responsibility to
software.** Although the goal of the model may be to
establish clinical endpoints (such as the likelihood of
developing postoperative acute kidney failure), it is
also important to understand the model’s effects on
patient-centered outcomes as well as the work-flow
issues for practitioners.

It is certainly the case that overriding alerts may
prove damaging in a litigious setting.” A provider
may possibly be considered liable for clinical negli-
gence if she/he rejected the output of the MDSS and
there was subsequent harm to the patient. Contem-
poraneously, recording the reasons for the inaction,
in conjunction with the patient’s awareness of the
situation (where applicable), may be the prudent
route forward.

Interpreting ML findings to patients

When considering interpretability, it is well to
remember that patients may be neither computer-
nor biologically-literate. Therefore, it is necessary to
explain, in layman’s terms, the multi-level models
that provide the foundation for the mathematical
algorithm, the functional forms of the input data and
the expected outcome or output. Furthermore, trust
of the patient in the provider that uses opaque algo-
rithms constructed from big datasets may be eroded
when there are intellectual property issues involved
in which privacy-justified secrecy is required.* In
these circumstances, the performance characteristics
of the models need to be continually evaluated
including its sensitivity, its positive and negative
predictive values and its ability to distinguish
between positive and negative outcomes.*
Practitioners who use a ML-based MDSS must be
able to interpret how they reached specific decisions
(e.g. why the model predicts the likely development
of acute kidney failure that requires an intervention
to thwart this predicted outcome) and must be able
to explain those decisions to any patient affected
by them; a system for doing this can involve back-
propagation (see Fig. 1 in Lauritsen et al.).*’ Failure

to provide understandable explanations, places the
practitioner in the unenviable position of having to
personally vouch for the trustworthiness of an ML-
based MDSS; this becomes particularly problematic
when the recommendation provided by the MDSS
conflicts with guidelines of medical practice. Such
a scenario can be avoided if current guidelines are
entered as ‘prior knowledge’ into the model. Accord-
ing to the EU’s General Data Protection Regulation,
the patient has a right to explanation of all deci-
sions made by ‘automated or artificially intelligent
algorithmic systems;’ the ‘data controller’ is legally
bound to provide requesting patients with ‘meaning-
ful information about the logic involved, as well as
the significance and the envisaged consequences of

such data-processing for the subject.’.*

Privacy/Anonymity

We live in an age of Big Data; sites visited on the
internet, places travelled and purchases made are
documented in a vast database creating a network
of comprehensive personal profiles. The application
of Big Data for societal benefit is at a crossroads
occasioned by high profile nefarious practices such
as that used by Cambridge Analytica in which it
sold to political campaigns psychological profiles of
American voters acquired from Facebook data from
millions of unknowing users.*

Data collection may be deemed equitable when
viewed as a risk/benefit continuum in which the
provision of health data, while infringing on privacy,
results in advances in healthcare that improve the
patient’s life. Concerns related to privacy breaches
can be considered as consequentialist, if the patient
has come to some harm (from personal data being
‘out there’) or deontological, if there has been wrong
doing (i.e. accessing data without explicit consent)
without the patient suffering direct harm®’; the latter
is an example of loss of control over one’s own data
that has become an ethical flashpoint of late.

The lawful access to medical data differs remark-
ably between the US and the EU. In the US, the
Heath Insurance Portability and Accountability Act
(HIPAA) was enacted by Congress in 1996 at a time
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when most patients’ health data were contained in
analogue health records and it focused on preventing
lapses by healthcare providers and health systems,
the so-called ‘custodians’ of protected health infor-
mation (PHI); importantly, under the Common Rule
governing research, the regulations do permit the
sharing of de-identified PHI in which 18 specific
identifiers are removed. Now, HIPAA appears out-
dated’! as the health data ecosystem has increased
to include not only data on healthcare but data
on health that is collected by many products and
devices®?; consider for example data from Google
searches about a particular symptom or insurance
coverage for serious diseases. Furthermore, with tri-
angulation of other publically-available documents it
may be possible to ‘re-identify’ the specific patient.
Future governance arrangements for the steward-
ship of health/healthcare data are being considered
and can extend from an externally mandated or
‘broad consent’ along the lines that are used in
the establishment of biobanks (see Fig. 4 in Mayer-
Schonberger et al.*?) to one that maximizes patient
autonomy and essentially requires the patient to
approve the use of each and any data.** It is expected
that these governance arrangements will be unfeasi-
ble for either patients (through ‘underprotection’) or
the big data community (through ‘overprotection’)
and that middle ground, along the lines of the
Independent Review Panels established for handling
requests to share clinical trial data, may suffice.”

Ethics/Fairness/Equity

The basic biomedical ethical principles of respect
for patient autonomy, non-maleficence, beneficence
and justice/equitability should obtain for ML-based
MDSS. These tenets are especially important to
sustain because the various stakeholders may have
conflicting priorities including reputation/reim-
bursement (health care institutions), workflow/in-
come (providers) and functional abilities/quality of
life (patients).

Patient autonomy should allow the patient to
‘opt-out’ as is the case in the informed consent
processes for a clinical research setting. However,

it can be argued that when a clinical decision is
arrived at from a model-based algorithm it is in the
domain of quality improvement, an activity that does
not typically require the patient’s consent a priori.
Nevertheless, to build trust and transparency in new
technology serious consideration should be given to
whether consent is required.*

To be generalisable, models must be built on data
that is representative of the whole population; gover-
nance structures for the collection of the data should
include representation by groups that have been
particularly disadvantaged by disparities in health-
care. Diversity in terms of gender, racial or ethnic
origin, religion or belief, disability and age, should
be ensured at every stage of data acquisition and
model development. As a corollary, those whose data
contributed to the model should proportionately
enjoy its benefits as a matter of fairness. How this
fairness doctrine would work in practice is difficult
to envisage; it is conceivable that datasets used to
build the model may have been obtained from Public
Health and Veterans Administration Hospitals but
the private vendors may price its models to make
them unaffordable to these underfunded care facili-
ties. Furthermore, the computational power required
may be prohibitively expensive to use especially for
models using kernel algebra for the SVM as a higher
dimensional kernel greatly increases the number of
computations required. If there are no mechanisms
to resource the use of highly successful applications
in hospitals that disproportionately treat patients
from underserved communities, health disparities
will widen.

Training data that have been acquired from
sources biased by a particular gender, race, age
or sexual orientation run the risk of inaccurately
generalising to non-representative populations. This
form of bias has plagued the application of Al to
activities such as criminal justice sentencing and
hiring.”” Inequities of this type can be prevented
by having diversity in the Al teams as well as in the
end-users.

Regarding non-maleficence, any unintended
harm should be avoided. It is conceivable that
institutions may use the models off-label; e.g. the
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analysis may be used to ‘identify high-risk, high-cost
patients in order to exclude them from its health care
system’.’®

Data access and availability for ML and its
generalisability

The quality of data depends on its accuracy, valid-
ity, completeness and availability; in developing Al
solutions, choosing high quality is more important
than which learning models to use.’® Health data in
the EHR is fragmented and exists in multiple systems
and formats that may not all be accessible to the
tools of Al The difficulty with the EHR as the source
of information is that it stores a mixture of struc-
tured and unstructured data, often inconsistently
formatted, full of variables with varying quantities
of missing data and at times does not actually reflect
what occurred clinically. A clinical Al system would
likely need to learn from more than just the findings
within the EHR. Lessons need to be learned from
the well-intentioned introduction of EHR which, at
times, converted providers into data-entry clerks and
was associated both with physician burnout and
patient dissatisfaction.”” The workforce, which had
difficulty adapting to the introduction of EHR, may
be sceptical about the subsequent integration of Al
into EHRs.®

Solving the accessibility conundrum to healthcare
data will increase the cost of collecting the necessary
data and precludes all but the best resourced from
developing effective health care Al. The ML com-
munities have already worked on producing decen-
tralised analytical solutions to bypass this bottleneck
including the use of Common Data Models in which
data from many sources are aggregated.®’

Also, of importance is the lack of generalisability
of many of these models. Although a model might
perform well in one environment or hospital, mov-
ing to a new hospital might provide very different
variable inputs and/or practice tendencies, referred
to as dataset shifts, that can affect performance of
the model and the safety of clinical decisions.”* A
well-designed model should consider many of these
potential variations and ideally be trained on data

from each of the places where it will be deployed, but
this is not always possible. Furthermore, there are
other potential issues with workflow integration that
might occur in areas of new deployment, and some
have argued that true generalisability is unachievable
and that we nearly always need to retest ‘off the shelf’

models in new settings.®

Regulatory approval

ML-based software designed for the purposes of
aiding diagnosis and treatment decisions are defined
as medical devices and in the US and the EU these
require formal approval from the regulatory agen-
cies; to date, more devices have been approved by
the EU than the US.** It is hoped that a common
transatlantic regulatory net will be applied to this
consequential emerging technology along the lines
of harmonisation of drug approval by the Food
and Drug Administration (FDA) and the European
Medicines Agency (EMA).

Economic considerations

A robust business model is needed to establish
who controls the device and/or software and how
others can access it. Building the device/software
requires considerable resources including hardware,
software engineers, data scientists, together with
clinical data and the manner whereby the developers
capture return on its investment is receiving
careful scrutiny following the adverse consumer
experience with other digital assistants (vide supra
Privacy/Anonymity). Economists have commented
that ‘unless the markets for innovation are fully
contestable, the surplus earned by innovators will
exceed the costs of innovation’.”

As it seems unlikely that clinical providers will
have the expertise in ML sufficient to build, imple-
ment and integrate the ML device within the clini-
cal workflow, it may require the institution to buy
and/or rent off-the-shelf devices. However, bought
or rented devices will require customization and cal-
ibration with local datasets and workflows, which
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Simulated response of patient vitals for

Possible Treatments
recommended
By Model

Elevated
Blood Pressure
During Anesthesia

Model believes the cause
Is nociception

mim

each potential intervention

nmm

Response of patient shown

Model learns in real-time from actual decision made
By physician as well as the actual response of the
Patient and continues to improve

Fig. 4 Remedying a model to provide appropriate treatment for the potential diagnosis. The model identifies a situation
that requires remediation, provides possible diagnoses for the problem, suggests possible treatments for each diagnosis,
recommends the optimal treatment and foresees the expected patient response to the treatment chosen. ‘Smart’ trial
design will be necessary for implementation of such future research in order to introduce the software in safe and

constantly monitored ways.

will be costly and time-consuming.”® It is possi-
ble that the vendor will request access to the local
datasets to facilitate the customisation, which can
introduce concerns about Privacy/Anonymity.
Another economically challenging aspect is the
change in the workforce that may be provoked by
ML-derived automation. As Al approximates human
general intelligence, human labor may become obso-
lete. The Brookings Institute predicts that a third
of all the tasks performed by healthcare practition-
ers may be automated. We anticipate that ML will
develop intelligence-assisting (‘IA’) tools that sup-
port, but not necessarily replace, critical-thinking
skills; as such we do not envisage wholesale reduc-
tion of the healthcare workforce in acute care set-
tings in the guise of improving efficiency. Rather, we
expect that the automation that ensues from Al may
enable the workforce to do more good for more peo-
ple especially in regions that have deficient access to

¢ Nevertheless, the changes in

specialty clinical care.
the workforce could be profound including how staff
work in a hospital or health system, the new skills
and competencies required in the digital workplace,
new Al positions, deployment of existing employees
into other realms within the organization and how
the overall workplace culture embraces innovation
and technology (See Fig. 1B in Cosgriff et al.?). What
was envisaged by an Institute of Medicine report
on a ‘Learning Health System’ was a collaboration
between the ML and acute healthcare communi-
ties in the pursuit of methods, protocols, guidelines
and data analysis pipelines that explicitly take into
consideration societal issues.®”

Solving the accessibility conundrum to these data
will increase the cost of collecting the necessary
data and precludes all but the best resourced from
developing effective health care Al Solutions should
be sought to lower the cost of Al technologies in
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order that disparities in the care delivered does not
occur in resource-constrained environments, which
are especially likely to exist in rural areas.

A roadmap for future research

As physicians discharge their social responsibility to
seek better ways to improve the care of their patients,
they need to exploit the opportunity provided by Al
An example of future research is illustrated (Fig. 4).
However, more is required to achieve the goal of
methodically and safely integrating Al into acute
care to provide patients with more creative treatment
strategies while avoiding adverse events. The clinical
and cost effectiveness of an Al solution for acute
care settings will require measurements of its utility,
feasibility, implementation costs, clinical uptake and
its maintenance of functionality over time.

Causality modeling

As mentioned earlier, models tend to be based upon
associations as the causal relationships for most
acute care conditions are not yet known. In the
setting of considering more in-depth representations
of the connection between inputs and outcomes (e.g.
physiological mechanisms) we can imagine that with
sufficient ‘background knowledge’ and additional
explanations of the underlying connections between
inputs, the model could build diagrams that rep-
resent the causal relationships between the vari-
ables considered. In the future, it will be desirable
to develop models that can actually describe the
causal mechanisms why a particular treatment will
be appropriate for a particular patient with specific
disease processes. As a corollary to such develop-
ments, it is conceivable that causality models could
even be used to discover novel mechanisms and drugs
for disease treatment.

AutoML: As the name implies, it is a system in
which ML problems are solved through automation;
in its ultimate rendition AutoML seeks to both
build an entire ML pipeline and to optimise
it automatically within the hardware resources
available. As efficient as this promises to be, AutoML

introduces further complexity when interpreting ML
findings for patients. It seems unlikely that acute
care providers will abrogate their accountability
to AutoML; rather, these clinicians, will use ML
solutions as cognitive augmentation in much the
same way that they currently consult with other
medical experts to redress their uncertainties

concerning the patient’s condition.*®

Conclusions

In the dynamic and time-constrained setting of acute
care, decisions are arrived at, and actions taken,
before the extent of the patient’s condition can be
fully understood. It is in this setting that ML-based
MDSS are likely to come to fore throughout the clin-
ical care process including prevention, early detec-
tion, risk/benefit identification, diagnosis, prognosis
and personalised treatment; however, the potential
for beneficence may not be realised unless the poten-
tial obstacles are considered and mitigated. It is
hoped that technological breakthroughs will be suc-
cessfully combined with bioethical considerations so
that patient safety and outcomes can be improved in
the acute care settings. With the interaction of acute
care clinicians and their patients with bioethicists,
data scientists and lawyers, the collaboration can put
in place governance structures that not only preclude
new inequities but address ones that currently exist

in acute care.
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