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ABSTRACT OF THE THESIS 

 

Analysis of the Multidimensional Effects in Biofilms 

 

by 

 

Michael Benjamin Hauser 

 

Master of Science, Graduate Program in Mechanical Engineering 
University of California, Riverside, June 2012 

Dr. Kamibz Vafai, Chairperson 
 

A general multidimensional, multispecies, heterogeneous biofilm model is developed using 

the balance equations.  Multidimensional effects are studied by taking limiting scenarios 

towards lower dimensional analogues, as well as studying the effects of changing biofilm 

surface geometries.  Error-maps are developed suggesting when single-dimensional models 

give an accurate representation of biofilm growth, and when multidimensional effects are 

substantial.  A porous media model is studied, where the bacteria Pseudomonas aeruginosa 

is modeled to grow in a packed porous bed of spheres.  It is found that under most 

circumstances, single-dimensional models predict very similar growth rates as compared to 

their multidimensional analogues.  However, under some conditions, the 

multidimensionality can have a significant effect in the model’s predictions.  To the authors' 

best knowledge, this is the first work which develops error maps detailing 

multidimensional effects of biofilm growth.  
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CHAPTER 1 

Introduction  

1.1 Definition and Formation of Biofilm  

Biofilms are communities of bacterial cells that are adherent to surfaces and are 

protected by a self-created extracellular polymeric substance (EPS).  Free floating, 

planktonic bacteria can exhibit very different traits when compared to the same species of 

bacteria inhabiting a biofilm. 

Biofilm research has far reaching implications and applications.  Biofilm research 

has proven valuable in fields as diverse as medicine, where it has been used in the 

development of antibiotic medication [1], as well as the study of biofilm growth on 

implanted devices after surgery [2], or to wastewater management [3], in which biofilms 

are introduced into the system to digest and remove harmful organic or inorganic 

compounds from wastewater. 

In order for a biofilm to develop, a bacterial cell must adhere to a surface.  From this 

point, other planktonic cells may attach to this initial cell, or instead they may also attach to 

the substratum.  The attached bacteria then grow and divide, increasing the communal 

population of the biofilm.  The bacteria also produce their protective EPS at stoichiometric 

rates, which help increase the livelihood of the entire biofilm community.  The bacteria will 

die if there is a lack of available nutrients in their environment.  Through the use of quorum 

sensing, the bacteria can communicate their population and coordinate activation of various 

traits [4]. 
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1.2 Biofilm modeling 

It is common for different species of bacteria to live together and compete for 

nutrients and space, thus multispecies and multisubstrate effects are important attributes 

to include in the development of comprehensive biofilm models.   There exists a diverse set 

of methods used to model these interactions, with the most popular being to model the 

biofilm using continuum mechanics [5] [6] [7] [8] [9], individual-based models [10] [11] 

[12], cellular automaton [13] [14], and combinations there-of [15] [16]. 

Biofilm models developed from continuum mechanics assume the biofilm to vary 

continuously in space and time.  These models are based on principle results of continuum 

mechanics such as Reynold’s Transport Theorem and Fick’s Law, with biofilm growth and 

death behaving as sources and sinks in a velocity field of biofilm expansion and 

compression.  This is an attractive framework for biofilm modeling because it is based on 

nearly 200 years of well-established theory, and this is the model form that this research 

uses. 

Individual-based models are rather different in that they model the dynamics of the 

individual bacteria composing the biofilm.  An individual bacterial cell is usually 

represented as a simple geometric object such as a sphere, which gets larger as nutrients 

are consumed.  Eventually the cell grows large enough such that at a certain critical radius 

the sphere splits into two spheres, which is analogous to cell division.  When spheres 

overlap, rules exist which suggest how they should push each other apart, which on a 

macroscopic level results in biofilm expansion.  The strength of this framework is that it 

provides a means to model individual cellular interactions. 
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Biofilm models based on cellular-automata are interesting because, by construction 

they have the ability to model bacterial interactions which occur on a local level in a natural 

way.  They do this through sets of rules for nutrient consumption, growth, expansion, and 

properties of neighboring cells, which ultimately results in a global picture of biofilm 

dynamics.  The framework of cellular automaton is particularly well suited for modeling 

bacteria on a local level because through basic, well-formed sets of rules one is able to 

represent a wide array of complex interactions, which can be difficult to formulate using 

differential equations. 

Earlier work in biofilm modeling led to fairly simple yet powerful one dimensional 

continuum models, with one dimensional growth occurring orthogonal to the substratum 

[5] [17] [18].  One dimensional continuum models can have the ability to capture important 

effects, such as species competition for space and nutrients, which leads to a globally 

heterogenous biofilm structure [5].  Biofilm heterogeneity is a result of different species 

having different nutrient uptake rates, different growth rates and different EPS production 

rates.  Heterogeneity in nutrient concentration is also captured in these one dimensional 

models, in part since different nutrients have different diffusion rates as well as different 

consumption rates.  These are very important effects, which can be captured in one 

dimension. 

Drawbacks to one dimensional models are that, for some cases which constitute a 

smaller subset of available scenarios, spatial heterogeneities do not necessarily occur only 

in the direction orthogonal to the substratum, but instead growth and diffusion processes 

can also occur parallel to that plane.  If a spatial gradient exists in the nutrient concentration 

in the horizontal direction, then one would have a horizontal component of the nutrient 
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flux.  This would also result in bacterial species growing along this gradient, leading to a 

heterogeneous distribution of bacterial species in the horizontal direction within the 

biofilm.  The impact of these types of growths needs to be assessed. 

For example, in nutrient limited regimes and under conditions with sufficiently 

large mass transfer boundary layers biofilm fingering formation can occur [6] [7], which is a 

multidimensional effect.  This complex surface geometry affects nutrient diffusion 

processes, which itself affects species growth rates.  By using one-dimensional models one 

is ignoring the effects of the surface geometry. 

A second example of a multidimensional system is seen in a partially mixed 

multispecies system.  One would expect to see spatial heterogeneities of bacterial species in 

the vertical as well as horizontal directions, and considering different bacterial species have 

different growth and consumption properties, these heterogeneities can lead to 

multidimensional species competition [6] [10]. 

1.3 Structure of Thesis 

It is the purpose of this work to study these multidimensional characteristics, their 

absolute influences on net growth rate, and finally to develop error mappings which can be 

used to suggest when multidimensional characteristics are necessary for accurate 

prediction of biofilm growth.  In Chapter 2, the general biofilm model based on continuum 

mechanics is developed.  Chapter 3 is devoted to explaining the techniques used to 

numerically solve these sets of equations.  Chapter 4 gives the 2 specific biofilm models 

which are studied in this research, the first being a 3-species toy model composed of 

heterotrophic bacteria, autotrophic bacteria, and EPS, and the second being a 2-species 
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model composed of Pseudomonas aeruginosa and EPS.  Chapter 5 develops error mappings 

between the 1, 2 and 3 dimensional 3-species models by taking limiting scenarios of higher 

dimensional models towards lower dimensional analogues.  At the end of Chapter 5 

comparisons are made between 1, 2 and 3 dimensional biofilm growth of the 2-species 

model, and applies these models to a porous bed modeled as a heterogeneous packed bed of 

spheres. 
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CHAPTER 2 

General Biofilm Model  

 As already stated, the analysis is performed using a multidimensional, 

multispecies, multisubstrate, heterogeneous biofilm model based on 

constitutive equations from continuum mechanics.  

Nomenclature    
    
Dependent Variables  Constants  

 , , ,s s x y z t   Density of species s *

s  Density of species s 

 , , ,s sv v x y z t  Volume fraction of species s 
nD

 

Constant scalar diffusion 
coefficient for nutrient n 

 , , ,n nC C x y z t  Concentration of nutrient n   Biomass detachment 
coefficient 

  , , , ,S x y Z x y t  Parametric form of surface 
s  Growth rate of species s 

 , , ,u u x y z t  Biofilm expansion velocity 
n

sK

 

Monod saturation constant 
for species s and nutrient n 

 , , ,x y z t   Biofilm expansion potential 
sb  Endogenous rate constant for 

species s 
  

sk  Inactivation rate constant for 
species s 

Reaction Rates  
sY  Biomass yield for species s 

 , , ,s sg g x y z t  Growth rate for species s 
s  Conversion factor for species 

s 

 , , ,n nr r x y z t  Reaction rate for nutrient n 
nBC

 

Bulk fluid concentration for 
nutrient n 

  i  Stoichiometric factor - 
EPS/Pa 

  k  Stoichiometric factor - Gl/O2 

Scaling Factors  Dimensionless variables  

xL  Domain width in x-
direction 

'x  Dimensionless x-variable 

yL  Domain width in y-
direction 

'y  Dimensionless y-variable 

 , ,Z Z x y t  Functional form of surface 'z  Dimensionless z-variable 

  Characteristic time scale 't  Dimensionless time-variable 

Figure 1-Nomenclature 
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2.1 Derivation of Governing Equations  

The derivations of the governing equations have been influenced by previous work 

[5] [6] [8].  The biofilm is assumed to live in three spatial dimensions and one temporal 

dimension, i.e. 
3  .    

The biofilm is assumed to have continuous properties and growth will follow the 

continuity equation.  Biofilm expansion is convection dominated, so for bacterial species s: 

 s
s su g

t





 

          (1)
 

The dependent variables are defined such that s is the density of species s, sg  is 

the growth rate of species s, and u is the biofilm expansion velocity.  If it is assumed that the 

density of species s across the biofilm domain is constant *

s  , then *

s s sv  , where sv

is the dependent function for volume fraction of species s in the biofilm.  The biofilm growth 

equation becomes: 

  *

s s
s

s

v g
uv

t 


 


         (2)

 

Using the fact that 1s

s

v  , one finds: 

 
*

s

s s

g
u


  .          (3) 

The growth equations can then be simplified to: 
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* *

s s i
s s

is i

v g g
u v v

t  


   




        (4)

 

Nutrient concentration for nutrient n within the biofilm is diffusion dominated and 

can be presented as: 

2n
n n n

C
D C r

t


  

          (5)
 

where the dependent variables are defined such that nC is the nutrient concentration for 

nutrient n and nr is the reaction rate.  
        

 
Because diffusion processes occur much faster than biofilm growth processes, and 

we are interested in biofilm growth processes, one may assume that the nutrient 

concentration has reached steady state over biofilm growth process time scales [19]. 

2 0n n nD C r  
         (6)

 

An order of magnitude argument can be made to justify this approximation.  

Diffusion coefficients of nutrients within biofilm are of order 
6 2~100 10 m / daysD   while 

lengths scales of biofilm are of order
3~10 ml 

, which imply that nutrient diffusion 

velocities within biofilm are of order 1~ / ~ 10 m / daysDv D l  .  Furthermore, biofilm grow 

to length scales of order 
3~10 ml 

 in ~10dayst , which implies that biofilm growth 

velocities are of order 4~ / ~10 m / daysGv l t  .  Thus diffusion velocities are 3 orders of 

magnitude greater than growth velocities, implying that the steady state approximation of 

nutrient diffusion is valid. 
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The parametric form of the biofilm surface     , , , , , ,S x y t x y Z x y t is related to 

the expansion velocity as follows: 

|z Z

S
u

t





           (7) 

The integral form of this differential equation is: 

0

t

oS S udt             (8) 

One way in which shearing forces can be incorporated into the model is by 

modifying the differential equation for the biofilm surface [5]: 

2 ˆ|z Z

S
u Z z

t



 

          (9) 

where   is a constant specifying the relative strength of shearing forces. 

2.2 Governing Equations in Potential Formulation  

The governing equations can be simplified by assuming irrotational growth [6] [7].  

The expansion velocity may then be taken as the negative gradient of a scalar potential

u   .  The governing equations in the final, coordinate-free form can be presented as: 

* *

s s i
s s

is i

v g g
v v

t  


  




       (10)

 

2 0n n nD C r  
         (11) 
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2

*

i

i i

g

r
   

          (12)

 

0

t

oS S dt            (13) 

For all of the equations, the boundary conditions are assumed to be periodic in the 

horizontal directions and no-flux at the substratum.  For the nutrient equations, a constant 

bulk fluid nutrient concentration is taken at the surface of the biofilm.  For the potential 

equation, because of the gauge freedom associated with defining a potential, we define the 

potential at the biofilm surface to be zero. 
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CHAPTER 3 

Analysis and Solution Methodology 

3.1 Numerical Difficulties Associated with Biofilm Modeling  

One of the major difficulties associated with multidimensional biofilm modeling is 

tracking the moving boundary and defining a boundary condition on this dynamically 

changing boundary.  The method used here is to solve the sets of equations in a specifically 

chosen curvilinear coordinate space, chosen such that the generally varying biofilm surface 

boundary will be constant in the new coordinate space.  Thus some of the difficulties 

associated with defining a boundary condition on the oddly shaped, dynamically moving 

biofilm surface will not pose problematic.  A second method often employed for tracking the 

moving boundary is by solving the equations within a level-set framework [6] [7] [20]. 

A significant advantage to defining the boundary conditions in this new coordinate 

space is that one is able to study biofilm growth over large changes in length scales.  This is 

clearly appropriate to biofilm modeling because biofilm start as individual bacteria, which 

have length scales on the order of micrometers, and they can grow to become entire biofilm 

communities, which have length scales on the order of millimeters, which is a change of 

three orders of magnitude.  A disadvantage of using this solution method is that since one is 

working in a curvilinear coordinate system, three-dimensional simulations can take much 

longer to finish.   After the calculations are done in the curvilinear space, one must then 

convert back to Euclidean space to make physical sense of the results. The derivation of the 

coordinate transformation is presented in three spatial dimensions, however the two 

dimensional derivation is completely analogous. 
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3.2 Derivation of Coordinate Mapping 

If xL  and 
yL  are the widths of the domain,  , ,Z x y t  the biofilm surface, and   the 

characteristic time scale, then define the coordinate mapping as follows: 

'
x

x
x

L


          (14) 

'
y

y
y

L


          (15) 

 
'

, ,

z
z

Z x y t


          (16) 

 

'
t

t



           (17)

 

Finding the new derivative operators requires knowledge of the Jacobian matrix

,  , 1,2,3,4
'

b

aa b
J a b

x x

 
 

  .  
Einstein summation notation is used, where a repeated 

index implies summation and aax


 


is written for brevity.  The new derivative operators 

are: 

'1 '

' '

x

x x

Zz

x L x L Z z

  
 

  
        (18)

 

'1 '

' '

y

y y

Zz

y L y L Z z

  
 

  
        (19)
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1

'z Z z

 


            (20)
 

'1 '

' '

t Zz

t t Z z 

  
 

           (21) 

In the new coordinate space, the Laplacian operator becomes: 

22 2

'2 '1 ' 1 ' 1

' ' ' ' '

yx

x x y y

ZZz z

L x L Z z L y L Z z Z z

       
                       

           (22)

 

This expands to the following: 

       

22
2 2 2 2

'2 ' '

2 2 2 2 2 2 2

22 2 22
' ' ' ''

2 2 2 2

1 1 1 '
1 ' 2

' ' ' ' '

2 2' '
2

' ' '

yx x

x y x y x

x x y yy

y x y

ZZ Zz
z

L x L y Z L L z L Z x z

Z Z Z Z Z ZZz z

L Z y z Z L L z

                               

           
   
   (23) 

3.3 Formulation of Governing Equations in the new Coordinate Space  

With the derivative operators defining the new vector space, the initial and 

boundary conditions may be set.  Note that for brevity the Neumann conditions are defined 

in terms of the Euclidean derivative operators instead of the derivative operators found to 

describe the new space. 
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   

   

   

 

* *

0I.C.  ', ', ',0 ', ', '

B.C.  0, ', ', ' 1, ', ', ' ,  

         ',0, ', ' ',1, ', ' ,  

         ', ',0, 0

s s i
s s

is i

s s

s s

s s

s

v g g
v v

t

v x y z v x y z

v y z t v y z t

v x z t v x z t

v
x y t

z

 


  
















       (24)

 

       

       

   

2 0

B.C.  0, ', ', ' 1, ', ', ' ,  0, ', ', ' 1, ', ', '

          ',0, ', ' ',1, ', ' ,  ',0, ', ' ',1, ', '

          ', ',1, ' ,  ', ',0, ' 0

n n n

n n
n n

n n
n n

n
n nB

D C r

C C
C y z t C y z t y z t y z t

x x

C C
C x z t C x z t x z t x z t

y y

C
C x y t C x y t

z

  

 
 

 

 
 

 


 

   (25)

 

       

       

   

2

*

B.C.  0, ', ', ' 1, ', ', ' ,  0, ', ', ' 1, ', ', '

          ',0, ', ' ',1, ', ' ,  ',0, ', ' ',1, ', '

          ', ',1, ' 0,  ', ',0, ' 0
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  
0

0I.C.  , , , , ,0

t

oS S dt

S x y Z x y z

  





        (27)

 

3.4 Numerical Solution Methods 

The covariant transformation maps the irregularly shaped biofilm domain onto a 

square domain in a curvilinear coordinate space. Fourth order accurate finite differencing 
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approximations were applied to these sets of equations on a uniform fixed grid and 

programmed in Mathematica.  By using 20 nodes in each direction, an error term of less 

than 0.01% is attained.  Derivations of the specific finite difference equations used are given 

in Appendix A.  The first step of the computational scheme was to initialize the surface of 

the biofilm and volume fractions of the biofilm species.  Subsequent steps were to 

iteratively calculate in time the changing surface, volume fractions, nutrient concentrations 

and potential.  The surface and volume fraction equations were solved explicitly, while the 

nutrient and potential equations were solved implicitly.  A schematic of the computational 

scheme is provided in Fig. 2.  Simulations were run on a PC with an Intel Core i7 processor.  

Two dimensional simulations took up to 5 minutes to finish, while three dimensional 

simulations took up to 40 hours to finish.

  

 

Figure 2-Computational Scheme
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CHAPTER 4 

Biofilm Model  

4.1 Three species Biofilm model 

Solutions were found for a representative biofilm model composed of Heterotrophic 

bacteria, Autotrophic bacteria and EPS [5] [6].  Heterotrophic and Autotrophic species 

consume Glucose and Ammonium, respectively, and they both consume Oxygen.  The 

biofilm growth kinetics are described by monod expressions.  For brevity, Heterotrophic, 

Autotrophic and inert species are denoted by 1, 2 and 3, respectively, and Glucose, 

Ammonium and Oxygen, are denoted by 1, 2 and 3, respectively.  Parameter constants can 

be found in Wanner-Gujer [5]. 

* * *3 31
1 1 1 1 1 1 1 1 1 11 1 1

1 1 3 3 3 3

C CC
g v b v k v

K C K C K C
     

  
    (28)

 

* * *3 32
2 2 2 2 2 2 2 2 2 22 2 2

2 2 3 3 3 3

C CC
g v b v k v

K C K C K C
     

  
    (29)

 

* *

3 1 1 1 2 2 2g k v k v  
         (30)

 

Nutrient consumption by the biofilm directly affects the nutrient concentration: 

* 3 1
1 1 1 1 1 1

1 3 3 1 1

1 C C
r v

Y K C K C
  

 
       (31)

 

* 3 2
2 2 2 2 2 2

2 3 3 2 2

1 C C
r v

Y K C K C
  

 
       (32)
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* *3 31 1 1
3 1 1 1 1 1 11 1 1

1 3 3 2 1 3 3

* *3 32 2 2
2 2 2 2 2 22 2 2

2 3 3 2 2 3 3

      

C CY C
r v b v

Y K C K C K C

C CY C
v b v

Y K C K C K C


  


  


  

  


 

  
    (33)

 

4.2 Two speciesBiofilm model 

A multidimensional continuum biofilm model is used to study changing 

permeability of a packed porous bed of spheres.  The biofilm is assumed to be composed of 

the bacterial species Pseudomonas aeruginosa and EPS.  Growth and diffusion kinetics are 

described by monod expressions for Glucose and Oxygen, stoichiometric ratios of Pa to EPS 

and Glucose to Oxygen, and yield coefficients.  Parameter constants can be found in 

Wanner-Cunningham-Lundman [21]. 

2

2 2

* OGl
Pa Pa Pa

Gl Gl O O

CC
g v

K C K C
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 
       (34)

 

2

2 2

* OGl
EPS Pa Pa Pa

Gl Gl O O
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g kg k v
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 
      (35)

 

Nutrient consumption by the biofilm directly effects the nutrient concentration: 
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CHAPTER 5 

Results  and Discussion 

Multidimensional effects are studied by taking limiting scenarios towards lower 

dimensional analogues.  This is done by increasing the size of the domain until it is 

effectively independent of the dimension.  An objective of this work is to establish the 

limiting conditions which will show when lower dimensional models provide a good 

approximation to higher dimensional ones.  Periodic boundary conditions are used to model 

part of a large system far from the edges, thus when one increases the size of the 

computational domain one is essentially decreasing the resolution of the heterogeneities 

associated with multidimensional effects.  When the size of the computational domain 

increases, the effects of the multidimensional heterogeneities decreases tending towards a 

one dimensional model.   

5.1 Comparison of One Dimensional and Two Dimensional Models 

Figure 3 shows that the one dimensional model predicts higher growth rates than 

the analogous two dimensional model, and that the two dimensional model converges to the 

one dimensional model for large domain widths.  One would expect the larger domain to 

yield higher growth rates since in a larger domain the potential would increase more 

uniformly from top to bottom.   In a smaller domain where multidimensional effects play a 

more important role, the potential should change relatively more in the horizontal 

direction, thus horizontal gradients become more relevant.  It is expected that parts of these 

horizontal gradients to interfere with each other, leading to an overall decrease in the 

biofilm expansion velocity. 
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The relative differences between the one dimensional and two dimensional models 

are shown to increase as the size of the domain decreases, as seen in Fig. 4.  Interpolating 

over the relative differences gives a continuous error map over variable domain sizes from 

10mm to 50mm, as shown in Fig. 5. 

 

Figure 3-Comparison between 1D and 2D Biofilm Growth with Variable Domain 
Sizes 
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Figure 4-Relative Differences between 1D and 2D Simulations 

 

Figure 5-Interpolation of Relative Differences between 1D and 2D Simulations 
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A change in initial surface geometry results in a change in nutrient diffusion 

behavior within the biofilm domain which results in a change in biofilm growth.  Figure 6 

shows the result of changing the relative ratio of surface structure perturbation amplitude 

to mean initial height, where the perturbation is taken to be a sinusoid on the biofilm 

surface. 

 

Figure 6-2D Biofilm Growth with Variable Initial Surface Perturbation Amplitude 

Upon averaging the biofilm height over the domain, it can be seen that the initial 

surface geometry plays a minimal role in predicting net biofilm growth, with the net effect 

averaging out to be similar to a flat surface, as seen in Fig. 7.  The case with greater initial 

surface variations results in slightly slower growth rates, due to the presence of more 

variations in the horizontal direction at the expense of vertical variations.
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Figure 7-Averaging of 2D Biofilm Growth with Variable Initial Surface Perturbation 
Amplitude 

5.2 Comparison of Two Dimensional and Three Dimensional Models 

Figure 8 shows the method used to compare the two dimensional and three 

dimensional models.  Limiting scenarios on the domain were taken such that the domain 

was shrunk in one direction and held constant in the other, so the shape of the domain is 

rectangular with a variable aspect ratio.  Comparisons were made between the 2D and 3D 

model predictions.  The 2D model effectively matches the 3D model when one domain 

length is extended beyond a certain limit.  Figures 9 and 10 show the effects of changing the 

size and aspect ratios of the three dimensional domain, and how the three dimensional 

models converge to their two dimensional analogues at larger domain sizes. 
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Figure 8-Illustration of 2D and 3D Domain Sizes and Aspect Ratios 

The domain in Figure 9a is such that it is held at 50mm in the y-direction while 

made smaller in the x-direction.  As was shown in the two dimensional case, a 50mm 

domain width provides an excellent approximation of the limiting scenario.  Thus the three 

and two dimensional models predict similar values when one domain width direction is 

held at 50mm.  When the domain is reduced in one direction in Figures 9b, 9c and 9d, due to 

small widths multidimensional effects become more important in that direction and the 

two-dimensional model deviates more significantly from the three dimensional growth rate 

predictions. 

As was the case between the 1D and 2D comparisons, the three dimensional biofilm 

grows more slowly than it does in the equivalent two dimensional case.  Again, this is 

because the potential in the three dimensional case varies more in the horizontal directions 

than it can in the two dimensional case.  Thus the gradient of this potential, which is the 

biofilm expansion vector, has a larger horizontal component which does not contribute to 

its vertical growth.  Figure 11 displays the error maps establishing the range of validity of 

2D model predictions compared to the 3D model.  Figure 12 displays the error maps when 

both the x and y direction lengths are changed at different times. 
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Figure 9-Comparison between 2D and 3D Biofilm Growth with Variable Domain 
Sizes and Aspect Ratios; a) Ly=50mm, b) Ly=30mm, c) Ly=20mm, d) Ly=15mm
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Figure 10-Relative Differences between 2D and 3D Simulations with Variable 
Domain Sizes and Aspect Ratios; a) Ly=50mm, b) Ly=30mm, c) Ly=20mm, d) 

Ly=15mm 
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Figure 11-Interpolation of Relative Differences between 2D and 3D Simulations 
with Variable Domain Sizes; a)Ly=50mm, b) Ly=30mm, c) Ly=20mm, d) Ly=15mm  
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Figure 12-Spatial Error Maps Displaying the Discrepancy in going from 3D to 2D 
Simulations; a)t=4days, b) t=6days, c) t=8days, d) t=10days  



28 

 

5.3 Comparison of One Dimensional and Three Dimensional Models 

Figures 13 and 14 display the growth rate predictions between the 1D and 3D 

models.  Those figures show the effects of changing the size of a square domain for 3D 

biofilm growth, as well as their relative differences with the 1D model.  Figure 15 shows the 

error map when both the x and y direction lengths are changed at different times. 

 

Figure 13-Comparison between 1D and 3D Biofilm Growth with Variable Domain 
Sizes 
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Figure 14-Relative Differences between 1D and 3D Simulations with Variable 
Domain Sizes 

The error maps show that the one dimensional and three dimensional predictions 

begin to diverge significantly at domain widths of around 20mm.  For domain widths 

greater than 20mm, the one dimensional model predictions provide relatively similar 

predictions as the three dimensional models. 
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Figure 15-Spatial Error Maps Displaying the Discrepancy in going from 3D to 1D 
Simulations; a)t=4days, b)t=6days, c)t=8days, d)t=10days  
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5.4 Comparison of One, Two and Three Dimensional Models applied to 
the Changing Permeability of a Packed Porous Bed 

Using the two species biofilm model composed of bacterial species Pseudomonas 

aeruginosa and EPS, the multidimensional models are applied to investigate the changing 

permeability of a porous medium composed of a heterogeneously packed bed of spheres 

[22].  Details of the porous media model, and its various geometrical attributes, are given in 

Shafahi-Vafai [8]. 

 

Figure 16-Multidimensional Effect on the Mean Thickness of 2-Species Biofilm with 
Shearing

 

The results for the biofilm growth and permeability ratio reduction are given in Figs. 

16 and 17.  As noted before, the three species model has a slower growth rate in higher 

dimensional models.  This is also the case when a two species model is considered.  This 

leads to a slightly lower rate of decrease of the permeability of the porous bed for higher 
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dimensional models.  It is established that the one dimensional model is in very good 

agreement with its two and three dimensional analogues. 

 

Figure 17-Multidimensional Effect on the Permeability of a Porous Bed  
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CHAPTER 6 

Conclusions 

A general multidimensional, multispecies, heterogeneous continuum biofilm model 

was developed.  Two general case studies were analyzed for multidimensional effects, the 

first being a 3-species system composed of heterotrophic bacteria, autotrophic bacteria and 

EPS, and the second being a 2-species system composed of the bacteria Pseudomonas 

aeruginosa and EPS.  For the 3-species system, error maps were developed giving the 

relative differences of the one, two and three dimensional model predictions.  For the 2-

species system, the biofilm model was applied to a porous media model defined by a packed 

bed of spheres, and the changes in permeability were predicted and analyzed.  In general, 

the range and validity of the one dimensional models was established and was found to 

cover a wide range of applications. 
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APPENDIX A 

 

Using differential operators (18)-(21), (23), fourth-order accurate finite differencing 

approximations will be applied to the governing equations (24)-(27).  The derivations of the 

finite difference equations are shown here. 

A.1 Surface tracking equation:  

The surface tracking equation is written in the compact form: 

0
0

t

S S dt            (38) 

This can be written explicitly as: 

0
0

, , , ,                                                                           
t

S x y Z dt
x y z

  
 

   (39)

 

In the new coordinate space, (39) becomes (note that z’=1 at the surface): 
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Apply finite differencing to this equation: 
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 (41) 

A.2 Growth equation: 

The growth equation is written in the compact form: 

* *

s s i
s s

is i

v g g
v v

t  


  




       (42) 

This expands to the following:

 
* *

s s s s s i
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     (43) 

Apply the new differential operators:
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Simplify: 
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           (45) 

Apply finite differencing approximations by discretizing the differential equation: 
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From this equation, one can explicitly solve for the advanced time step volume fraction: 

 
 

 

  

 
 

 

1

, , , , * *

1, , 1, ,

1, , 1, , 2 2

1, , 1, , , , 1 , , 1

, 1, , 1,

, 1, , 1, 2 2

'

'
2 '

2 '

2 '

n n s i
i j k i j k s

is i

n n

i j k i j k
n n

i j k i j k
n n n n

x i j k i j k i j k i j k

n n

i j k i j k
n n

i j k i j k

y

g g
v v t v

t
v v z

x L Z Z
z Z

t
v v

y L


 







 

 

   

 

 

 
    

 

  
  

   
     

  

 


 
 



  

 

 

 

  

 

, 1, , 1, , , 1 , , 1

1 1

, , , ,

1, , 1, , 1, , 1, ,

22 2

1, , 1, , , , 1

, , 1 , , 1

'

2 '

'

2 '

1 '
'

2 '
' 2 '

2 '

n n n n

i j k i j k i j k i j k

n n

i j k i j k

n n n n

i j k i j k i j k i j k

n n n
x i j k i j k i j k

n n

i j k i j k

z
Z Z

z Z

z
Z Z

t Z

Z Z
z

zZx L Z Z
t z Z

v v
z





   

 

   

  

 

 
 
 

   
  




  


    

 
 



 

 

  

   

 

, , 1

, 1, , 1, , 1, , 1,

22 2

, 1, , 1, , , 1 , , 1

, , 1 , , 12

1 '
'

2 '
2 '

1

2 '

n

i j k

n n n n

i j k i j k i j k i j k

n n n n
y i j k i j k i j k i j k

n n

i j k i j k

Z Z
z

zZy L Z Z
z Z

z Z



   

   

 

 
 
 

  
  
  
   

 
    
             

 
    
    

           (47)



41 

 

A.3 Poisson’s equation: 

 Both the nutrient equation and the potential equation are of the form of Poisson’s equation: 

2 f g 
          (48)

 

In the new coordinate space, this may be written as: 
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Re-write: 
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For brevity, define the following: 
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Substitute (51) into (50) 
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Apply finite differencing approximations to (51): 
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           (53) 

Apply finite differencing approximation to (52):  
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Factor (54) for function f: 
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          (55) 

This defines the matrix inversion problem for unknown function f.
 




