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RESEARCH ARTICLE
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conservation planning: Pumas as a case study
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1 Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, United

States of America, 2 Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of
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of Wyoming, Laramie, Wyoming, United States of America
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Abstract

The importance of examining multiple hierarchical levels when modeling resource use for

wildlife has been acknowledged for decades. Multi-level resource selection functions have

recently been promoted as a method to synthesize resource use across nested organiza-

tional levels into a single predictive surface. Analyzing multiple scales of selection within

each hierarchical level further strengthens multi-level resource selection functions. We

extend this multi-level, multi-scale framework to modeling resistance for wildlife by combin-

ing multi-scale resistance surfaces from two data types, genetic and movement. Resistance

estimation has typically been conducted with one of these data types, or compared between

the two. However, we contend it is not an either/or issue and that resistance may be better-

modeled using a combination of resistance surfaces that represent processes at different

hierarchical levels. Resistance surfaces estimated from genetic data characterize tempo-

rally broad-scale dispersal and successful breeding over generations, whereas resistance

surfaces estimated from movement data represent fine-scale travel and contextualized

movement decisions. We used telemetry and genetic data from a long-term study on pumas

(Puma concolor) in a highly developed landscape in southern California to develop a multi-

level, multi-scale resource selection function and a multi-level, multi-scale resistance sur-

face. We used these multi-level, multi-scale surfaces to identify resource use patches and

resistant kernel corridors. Across levels, we found puma avoided urban, agricultural areas,

and roads and preferred riparian areas and more rugged terrain. For other landscape fea-

tures, selection differed among levels, as did the scales of selection for each feature. With

these results, we developed a conservation plan for one of the most isolated puma popula-

tions in the U.S. Our approach captured a wide spectrum of ecological relationships for a

population, resulted in effective conservation planning, and can be readily applied to other

wildlife species.
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Introduction

Almost 40 years ago, Johnson [1] established a hierarchical framework for examining wildlife habi-

tat use. He proposed ordering habitat selection from Level I (i.e. selection of the geographical

range of a species) to Level IV (i.e. selection of feeding sites) and argued that, “This hierarchy of

selection has a unifying nature. Habitat usage studies and investigations of feeding are no longer

qualitatively distinct; they are simply of different orders”. Johnson’s hierarchical framework set the

stage for much of the recent research, thinking, and understanding of how wildlife use habitat [2].

Examining selection at these different hierarchical levels encourages wildlife habitat use to

be understood as a cascading process conditional upon higher levels of selection. For example,

avoidance of human development may be weak at one level of selection but strong at another

[3–5]. Instead of using the outputs from each hierarchical level independently, DeCesare et al.

[4] proposed integrating the predictive surfaces from resource selection functions (RSFs; [6]),

across levels of selection. DeCesare et al. [4] referred to these integrated predictive surfaces as

Scale Integrated RSFs. Following the nomenclature of McGarigal et al. [2] we will hereafter

refer to these as Multi-level RSFs (ML-RSFs). These ML-RSFs provide the relative probability

of habitat use at a lower level, for example Level III, conditional upon the relative probability

of habitat use at a higher level, for example Level II.

In addition to being conceptually appealing, ML-RSFs offer a number of advantages. First,

they may reveal differences in selection at different hierarchical levels, which is useful for con-

servation and management of wildlife. Second, they provide a single surface that synthesizes

habitat use across different levels, making it easier for managers to digest and use [4]. Third,

they are relatively simple to derive since the hierarchical conditional probabilities collapse into

a simple equation that is the product of the two relative probability surfaces. Studies that are

unable to use the same data for each hierarchical level, but produce RSFs for different levels of

selection and obtain their product, are not truly conditionally nested, but are conceptually sim-

ilar and approximate hierarchically nested levels (e.g. [5–7]).

We expand the concept of ML-RSFs to resistance surfaces. Resistance surfaces quantify

how environmental parameters affect wildlife movement and are the basis for most connec-

tivity and corridor models [8]. Resistance surfaces are conceptualized as the union of three

processes, (1) the willingness of an organism to cross a particular landscape feature, (2) the

physiological cost of moving across a landscape feature, and (3) the reduction in survival due

to crossing a landscape feature [8, 9]. However, in practice, it is difficult to estimate resistance

for these three processes simultaneously. Typically, one of two data types are promoted as the

gold standards for estimating resistance for wildlife: movement data or genetic data [10–13].

Movement data have been promoted as an effective way to estimate resistance at fine scales,

both temporally and spatially, through context-dependent analyses of animal pathways [10, 13,

14]. Resistance surfaces from movement data approximate the first resistance concept, the

willingness of an individual to cross a feature. Genetic data, as used in landscape genetic analy-

ses, estimate resistance by correlating environmental variables with estimates of gene flow.

Through this process, variables that minimize fitness costs, increase survival, and result in suc-

cessful dispersal and breeding are identified [12]. Thus, resistance surfaces derived from

genetic data approximate the second two resistance processes, physiological and survival costs.

Previous studies have attempted to determine if movement data can be used to predict

genetic connectivity, and vice versa [10, 15]. To date, the results have been equivocal. Cushman

and Lewis [10] found many similarities between the resistance surfaces derived from these two

data types for black bears in Idaho. Resistance surfaces between genetic data and an early sea-

son movement model had a correlation coefficient of ~0.4 and shared the same variables with

the same relationship to movement. However, correlation between the genetic resistance
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surface and the resistance surface derived from the late season movement model was much

lower at ~0.1. In other analyses on roe deer in France, Coulon et al. [15, 16] found an avoid-

ance of woodland with movement data and a preference for woodland with genetic data.

Instead of trying to compare resistance surfaces derived from these two data types, we

argue their best use may be by combing them into a multi-level resistance surface (ML-RS),

akin to the ML-RSFs described above. Genetic data reflect movement, dispersal and breeding

over generations which is analogous to a higher organizational level that represents broader

scales and longer temporal windows. Pathway data, on the other hand, represents movement

over much shorter temporal periods and reflect real-time movement decisions by individuals,

which is analogous to a lower organizational level. Just as it is difficult to discern Level III habi-

tat selection by using a home range selection function, so too is it difficult to discern fine-

scaled movement patterns with a landscape genetic analysis. Conversely, it is difficult to iden-

tify variables that result in successful dispersal and breeding using only movement data. By

integrating these surfaces, all three resistance processes can be estimated.

Analyzing species habitat use and movement across hierarchical levels and integrating the

results captures selection and behavioral processes at different extents and results in stronger

inference and predictive abilities than using a single level alone [2, 4, 6, 17]. Multi-level selection

and movement models can be improved upon conducting multi-scale analyses within each

hierarchical level. Not only do individuals select for environmental variables at different scales

within a hierarchical level [18–21], individuals may also select different scales for the same envi-

ronmental variable among hierarchical levels [5, 7]. These scales of selection are most often rep-

resented by summarizing each variable of interest with ecological neighborhoods of varying

sizes [22]. The scale that produces the highest model performance for each variable is often

referred to as the ‘characteristic scale’ of selection [23]. For example, in our previous work, we

have shown that in Level III selection, pumas respond to human development variables at

coarse scales and to natural features at finer scales [21]. Bauder et al. [5] found different scales of

selection for multiple environmental variables for eastern indigo snakes across Levels II and III

selection. Developing multi-level, multi-scale models captures a wide spectrum of ecological

relationships for a population resulting in more meaningful conservation plans.

As a case study for developing a multi-level, multi-scale conservation plan, we use data

from a long-term study on pumas (Puma concolor) in a highly developed region of southern

California. Over 20 years ago, Beier [24, 25] concluded that the coastal Santa Ana Mountains

puma population was becoming isolated due to increased urbanization and long-term popula-

tion viability was dependent on maintaining permeability to the eastern Peninsular Ranges.

More recent genetic analyses have shown that the Santa Ana Mountains population not only

has the lowest genetic diversity of any population in California, but also shows signs of

inbreeding [26], indicating a heightened need for connectivity. This is complicated by low

adult survival rates in the Santa Ana Mountains population (55.8%), with humans (mostly via

vehicle strikes) causing the majority of puma deaths [27]. A detailed puma conservation plan

accounting for connectivity between the Santa Ana Mountains and the eastern Peninsular

Ranges is needed and will directly inform conservation preserve design in northern San Diego

County. We present a multi-level, multi-scale approach to conservation planning for pumas in

northern San Diego and southern Riverside and Orange Counties.

Materials and methods

Study area and GPS collar data

The study area was located across much of the Peninsular Mountain Range in southern Cali-

fornia spanning from southern Los Angeles and San Bernardino Counties in the north to the
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U.S.–Mexico border in the south (Fig 1). Interstate 10 and the Salton Sea approximately

defined the eastern boundary and the Pacific Ocean was the western boundary. The region is

defined by a Mediterranean climate with hot dry summers and mild, wetter winters. Elevations

range from sea level to 3200 m. Outside of urban areas vegetation is primarily composed of

chaparral, coastal scrub, grasslands, and oak woodlands.

Between 2005–2015, pumas throughout the study area were captured and fit with GPS

collars under California Fish and Wildlife Scientific Collecting Permit number 9875 and Uni-

versity of California Davis Institutional Care Use Committee authorization number 17233.

Please see Vickers et al. [27] for capture details and protocols. Collar acquisition interval varied

from five minutes to six hours. To avoid the use of data that may have large spatial errors, we

removed two-dimensional fixes with a Position Dilution of Precision > 5 [28].

GIS data and predictor variables

We used predictor variables that have been shown to influence puma habitat use and move-

ment. These included: elevation, percent slope, terrain ruggedness (calculated as total curva-

ture in DEM Surface Tools; [29]), roads, urban areas, and land cover types aggregated for the

study area [13, 30–32]. Variable details are provided in Table 1. All variables were represented

with a 30 m spatial resolution.

Level II resource selection: Home range selection function

Because our study area is well within the geographic range of pumas [33], we assumed that

probability of use was 100% for Level I selection. Therefore, we focused only on Levels II and

III for our resource selection analyses.

Fig 1. Southern California study area and conservation network sub-area with puma GPS telemetry

and genetic sample locations used in the analysis.

https://doi.org/10.1371/journal.pone.0179570.g001
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All data analysis was conducted in the R software environment [34]. Home Range Selection

Functions (HRSFs) were conducted in the same ‘used’ and ‘available’ framework typical of

RSFs [35], where points distributed within empirical home ranges are the ‘used’ data and

points distributed within a buffer around the empirical home ranges are the ‘available’ data.

To estimate puma home ranges, we used pumas with at least five months of data. Based on

prior analyses by Grigione et al. [36] and our observations of pumas in the study area, there is

little variation in home range size among seasons, therefore we are confident five months is a

sufficient amount of time to capture the full home range utilization of individuals. Data were

visually examined to determine if individuals moved from their original home ranges to new

home range areas during the study period. If home range shifts were identified, we excluded

these individuals from the analysis. This resulted in a total of 31 pumas for the HRSFs (Males =

12, Females = 19) with collar duration ranging from five months to 32 months (mean = 10.87

months).

We followed the recommendations of Borger et al. [37], Bauder et al. [38], and Fieberg [39]

to estimate puma home ranges and standardized our sampling regime among individuals by

using only points from the longest collar fix interval (six hours) to reduce home range estima-

tion bias. This subsetting resulted in a total of 24,911 locations with a per-individual mean of

811 points (range = 284–1535).

We used the ks package in R [40] to estimate kernel density home ranges using the refer-

ence bandwidth and an unconstrained bandwidth matrix. The unconstrained bandwidth

matrix has been shown to produce a single volume contour, to encompass most of the input

points, and to be less sensitive to fix rate and sampling duration than other home range estima-

tors [38]. We identified our final home range boundaries as 90% of the entire utilization distri-

bution for each individual.

Table 1. Predictor variables used in the puma resource selection, movement selection, and land-

scape genetic analyses.

Variable Source/Derivation Year

Topographic features

Elevation USGS National Elevation Dataset 2009

Percent Slope Derived from National Elevation Dataset -

Terrain Ruggedness Total curvature derived from National Elevation Dataset

with DEM Surface Tools [29]

-

Land cover type

Agriculture Aggregated agricultural classes from CalVeg 2014

Chaparral Aggregated chaparral classes from CalVeg 2014

Coastal Scrub Aggregated scrub-type classes from CalVeg 2014

Coastal Oak Woodland Aggregated woodland classes from CalVeg 2014

Grassland Aggregated grassland classes from CalVeg 2014

Barren/Open Water Aggregated barren and water classes from CalVeg 2014

Desert Aggregated desert classes from CalVeg 2014

Riparian Aggregated riparian classes from CalVeg 2014

Human development

Urban National Land Cover Data 2011

Roads; Classified as Primary,

Secondary, and Tertiary

U.S. Census Bureau TIGER 2014

Roads; Classified as Primary, and

Secondary

U.S. Census Bureau TIGER 2014

Roads; Classified as Primary U.S. Census Bureau TIGER 2014

https://doi.org/10.1371/journal.pone.0179570.t001
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For our used data, we randomly distributed points throughout the each puma home range.

The number of points selected equaled the number of points used to estimate the home- range

kernels. For our available data, we first calculated the maximum distance between points for

each home range and identified the 95th quantile of this distribution. We then buffered all used

home range points by this distance (43 km), which constituted our available area. Unique

available points were randomly distributed throughout this available area in a 1:1 ratio with

the used points.

We developed multi-scale HRSFs using a two-stage, pseudo-optimized approach [2]. We

calculated our used and available data within 10 ecological neighborhoods of varying sizes (50

m, 100 m, 200 m, 500 m, 1000 m, 2000 m, 4000 m, 6000 m, 8000 m, 10000 m). These neighbor-

hoods were weighted by a Gaussian kernel using the ‘kernel2dsmooth’ function from the

smoothie package in R [41]. In the first stage, we ran univariate logistic regression models to

identify the characteristic scale of selection for each landscape variable as indicated by the low-

est Akaike Information Criterion value corrected for small sample size (AICc; [42]). In the sec-

ond stage, we combined the optimal scales for each landscape variable into a multiple logistic

regression model (omitting the lesser performing variable of any pair that had a correlation

greater than 0.6). Because we thought all the variables would have some influence on puma

habitat use, we then used the ‘dredge’ function in package MuMIn [43] to run all variable sub-

sets and identify the best model.

Level III resource selection: Point selection function

We used the same individuals and GPS point locations in the Point Selection Function (PSF)

as we used to estimate puma home ranges. We estimated the used data as the proportion (for

categorical data) or mean (for continuous data) of each predictor variable within a 30 m uni-

form buffer around each GPS location. We estimated the available data within a larger ecologi-

cal neighborhood around each used point weighted by a Pareto kernel. The Pareto kernel was

derived from our empirical movement data (see Zeller et al. [21] for details). The used and

available data were analyzed in a paired, or conditional, logistic regression framework [44].

Therefore, each used point was paired with a biologically relevant available area. This

approach, also referred to as a context-dependent PSF, estimates habitat selection at each loca-

tion across the study area based on its location and surrounding environment and allows us to

model Level III habitat use [5, 21].

We examined multiple scales by varying the size of the Pareto kernel for estimating avail-

able. Nineteen different sizes of the Pareto kernel were determined by using the 5-min data to

create empirical movement distributions. Specifically, we used the 5-min GPS data to calculate

movement distances over a 5-min time period and fit a Pareto distribution to this empirical

distribution using the gPdtest package [45]. We then subsetted the data at progressively longer

time periods up to 6-hr and re-fit the Pareto to each of these empirical distributions of move-

ment distances. This resulted in 19 Pareto kernels with the following distances representing

95% of the distribution: 241 m, 408 m, 681 m, 915 m, 1123 m, 1317 m, 1602 m, 1850 m, 2049

m, 2298 m, 2312 m, 2797 m, 3044 m, 3104 m, 3479 m, 3819 m, 3994 m, 4099 m, and 4461 m.

The available data were calculated as the proportion (for categorical data) or mean (for con-

tinuous data) of each predictor variable around each used point weighted by each Pareto ker-

nel. Movement time periods and estimated Pareto distribution parameters are provided in

S1 Table.

We developed our multi-scale models using the same two-stage approach as described for

the HRSFs. We ran the paired logistic regression models with the ‘coxph’ function in the Sur-
vival package [46]. We had attempted to run these models in a mixed-effects framework to
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account for individual variability, but had model convergence issues. To compensate for the

lack of an individual level mixed-effect, we used robust standard errors, which are calculated

by combining data into clusters such that the clusters are not autocorrelated [47–49]. Robust

errors are often used to control for the individual level effects in paired regression models [47,

50]. We ranked the models using AICc and arrived at our final model by averaging any models

that had a ΔAICc� 2 from the best model. We used the robust standard errors when calculat-

ing confidence intervals for the model-averaged coefficients.

Estimating resistance from movement data

We performed Path Selection Functions (PathSFs) to estimate the relative probability of move-

ment for pumas across the study area. Our previous work has shown that PathSFs are sensitive

to fix interval and that, for pumas, biases are introduced with fix intervals of 1-hour and

greater [13]. Therefore, for this analysis we used data from individuals with either a 5-min or

15-min fix interval for at least a 2-week duration. We created paths for each individual by con-

necting consecutive points for each 24-hour time period. This resulted in a total of 39 pumas

(Males = 20, Females = 19) and 1,076 daily paths for the PathSF analysis (mean per individ-

ual = 30 days, median = 22 days, range = 14–106).

We used the same resource selection approach as for the PSFs above, but instead of points

as our unit of inference, we used daily paths. The previously described scales and two-stage

approach were used to develop multi-scale PathSFs.

Estimating resistance from genetic data

Between 2001–2016, blood or tissue samples were collected from 146 captured or deceased

pumas across the greater study area. Nuclear DNA was extracted and characterized at 44

microsatellite loci, which met the assumptions of Hardy-Weinberg proportions and linkage

equilibria as described in Gustafson et al. [51]. Of the 146 individuals, 139 were located in the

study area and used for this analysis (Fig 1).

Landscape genetic approaches aim to correlate observed genetic distances among individu-

als or populations with geographic distances. These geographic distances are calculated as the

least-cost distance or resistance distance among individuals across resistance surfaces defined

a priori. We explored a number of different resistance hypotheses for each of our predictor var-

iables. Specifically, we represented each variable with four ecological neighborhoods (100 m,

500 m, 2000 m, and 6000 m) weighted by a Gaussian kernel. Computational capacity limited

us from testing a wider range of scales; therefore, we selected an array of scales we thought was

biologically appropriate for this analysis. We then applied each of seven functions to transform

the scaled variable into a resistance value of 1–100 (Fig 2). Positive or negative transformation

functions were used to represent increasing or decreasing resistance with increasing values of

that variable, respectively. We also used the inverse Ricker transformation to account for vari-

ables that might have a low resistance at moderate values. Therefore, for each variable we

tested a suite of 28 a priori resistance surfaces.

With the adegenet package [52], we calculated pairwise genetic distances among all 139

individuals using Nei’s genetic distance [53]. We calculated pairwise geographic distance by

calculating the least cost path distance between all sample locations across each a priori resis-

tance surface with the gdistance package [54]. We then compared all the a priori resistance sur-

faces for a variable by running univariate linear mixed effects models that accounted for the

pairwise structure of the distance matrices following the maximum likelihood population-

effects (MLPE) method [55, 56]. This method has recently been shown to outperform other
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correlational methods in landscape genetics such as Mantel tests or multiple regression with

distance matrices [57].

We used AICc to identify the most appropriate resistance surface for each variable. We

assessed correlations among variables and removed variables from correlated pairs with higher

AICc values. We then ran multiple regression models with all uncorrelated variables and fit all

possible subsets of the variables. We ranked the multiple regression models using AICc and

identified our top model.

Multi-level resource selection function and resistance surfaces

We predicted the relative probability of use across our study area from the HRSF by using the fol-

lowing formula ŵ ðxÞ ¼ expðb1x1 þ b2x2 þ b3x3 þ . . .þ bpxpÞ as recommended by Johnson

et al. [35]. We predicted the relative probability of use from the PSFs and PathSFs in the paired

framework described by Zeller et al. [13]. This approach requires ‘used’ and ‘available’ to be calcu-

lated for every pixel in the study area. We first calculated the proportion or mean of each variable

within a 30 m fixed-width buffer at each pixel in our study area. We then calculated the proportion

or mean of each variable at each pixel weighted by the Pareto kernel at the appropriate scale for

that variable. This is akin to the ‘used’ and ‘available’ in the paired regression models and allows

for a unique relative probability of movement to be identified for each pixel in the study area.

We converted the relative probabilities of the PathSF surface to resistance by subtracting

the relative probabilities of movement from one and multiplying by 100. For the landscape

genetics analysis, we derived our resistance surface by summing the resistance surfaces for the

variables in the final model and rescaling from 1–100.

We multiplied the predictive surfaces from the Level II HRSF and the Level III PSF and

rescaled the surface from 0–1 to obtain a single multi-scale ML-RSF. We quantile re-scaled the

landscape genetics and PathSF resistance surfaces, multiplied them, and rescaled the surface

from 1–100 to obtain a single multi-scale ML-RS.

Resource use patches and corridors

The greater Northern San Diego County area (including parts of southern Orange and River-

side Counties) was the focal landscape for our conservation plan. All further analyses were

conducted on this subset of our original study area (Fig 1; Conservation Network Boundary).

Fig 2. Functions used to transform the environmental variables to resistance, with a range of 1–100,

for use in the landscape genetic analysis.

https://doi.org/10.1371/journal.pone.0179570.g002
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To identify resource use patches, we first smoothed the ML-RSF surface using a Gaussian

kernel with a bandwidth of 500 m. We then identified patches on this surface that had at least

a 60% probability of resource use and were at least as large as the minimum observed female

home range size.

To model corridors, we first probabilistically distributed 2000 source points on the ML-

RSF surface within the resource-use patches. We then used UNICOR software [58] to identify

resistant kernel corridors [9] across our ML-RS surface from the source points. Resistant ker-

nels allow the identification of a maximum dispersal distance, which we set to 100 km for

puma [27]. We identified landscape corridors by taking the top 75% of the resistant kernel

surface.

We calculated the percent overlap between our conservation network (resource use patches

and corridors) and the current and proposed protected area network to highlight gaps in pro-

tection for pumas and identify areas for future conservation attention. Current protected areas

were identified from the California Protected Areas Database [59]. We considered Department

of Defense, Native American Reservation, and large Water and Irrigation District lands as par-

tially protected and included these as a separate category in our calculations. Proposed pro-

tected areas were lands designated as Pre-Approved Mitigation Areas by Orange, Riverside,

and San Diego Counties.

Results

Level II resource selection: Home range selection function

Home range sizes varied from 41–497 km2 (Mean = 231 km2; Female mean = 188 km2; Male

mean = 316 km2). Characteristic scales differed across predictor variables (Table 2), but pumas

generally selected for coarser scales when establishing home ranges. Due to convergence

errors, we were unable to fit the models for primary roads. We identified a single best model

for puma home range selection (Table 3). This model indicates pumas select for home ranges

with more rugged terrain, naturally barren areas, chaparral, coastal scrub, and grassland than

the surrounding landscape and fewer areas of agriculture, desert, woodland, and urban.

Level III resource selection: Point selection function

Univariate model results indicate pumas had a mostly bi-modal response to landscape features

at the third order of habitat selection (Table 2). Pumas responded to elevation, percent slope,

chaparral, and coastal scrub at fine scales and responded to the other variables at coarse scales.

Due to convergence errors, we were unable to fit the models for desert and primary roads.

After removing correlated variables, the global model was identified as the top model.

Pumas preferred slightly more rugged terrain, riparian areas and woodland while avoiding

high elevation, high slopes, agriculture, barren, chaparral, coastal scrub, grassland, urban, and

primary, secondary, and tertiary roads (Table 4).

Estimating resistance from movement data

Pumas selected for more landscape variables at finer scales during movement than during

resource selection (Table 2). After removing correlated variables, four top models were identi-

fied and beta coefficients were averaged. Pumas also showed more tolerance of landscape

variables during movement than during resource-use events. Pumas avoided steep slopes, agri-

cultural areas, urban areas, and roads during movement, but showed a preference for all other

landscape variables in the final model, especially riparian and woodland areas (Table 5).
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Estimating resistance from genetic data

The linear mixed effect models resulted in identifying the characteristic scale and transforma-

tion for each variable in relation to the genetic distances among individuals (Table 2). Vari-

ables whose resistance increased with increasing values were agriculture, grassland, urban, and

roads. Variables whose resistance decreased with increasing values were chaparral, percent

slope, riparian, coastal scrub, and coastal oak woodland. Resistance for elevation and rugged-

ness were represented by an Inverse Ricker transformation, which decreases until middle val-

ues are reached, and then increases for the remaining values, indicating dispersal is facilitated

at mid-elevation and mid-ruggedness values.

Table 2. Characteristic scales of selection for each predictor variable from the Level II and Level III selection functions, the Path selection func-

tions, and landscape genetic analysis. Plus or minus indicates preference or avoidance of that variable for resource use or movement. The selected resis-

tance transformation for the landscape genetic analysis are indicated by IR = inverse Ricker, NL = negative linear, NMCc = negative monomolecular concave,

NMCv = negative monomolecular convex, PL = positive linear, PMCc = positive monomolecular concave, PMCv = positive monomolecular convex. Blank

cells indicate model convergence failures.

Variable Level II selection

function

Level III selection

function

Landscape genetics analysis Path selection

function

Scale (m) Sign Scale (m) Sign Scale (m) Trans-formation/ Sign Scale (m) Sign

Topographic features

Elevation 2000 + 241 - 6000 IR 241 +

Percent slope 8000 + 241 - 100 NMCc + 2797 -

Terrain ruggedness 10000 + 4461 + 500 IR 681 +

Land cover type

Agriculture 6000 - 4461 - 6000 PL - 3819 -

Chaparral 4000 + 241 - 6000 NMCc + 3104 -

Coastal Scrub 500 + 681 - 500 NMCv + 241 -

Coastal oak woodland 10000 + 4461 + 2000 NMCv + 241 +

Grassland 10000 + 4461 - 500 PMCv - 2797 -

Barren/Open water 4000 + 3994 - 100 NL + 3104 -

Desert 8000 - 6000 PMCc -

Riparian 10000 + 3497 + 500 NMCv + 1317 +

Human development

Urban 2000 - 4461 - 500 PMCv - 241 -

Roads; Classified as Primary, Secondary, and Tertiary 10000 - 4461 - 500 PMCv - 3819 -

Roads; Classified as Primary, and Secondary 6000 - 4461 - 2000 PL - 4461 -

Roads; Primary only 500 PMCv -

https://doi.org/10.1371/journal.pone.0179570.t002

Table 3. Standardized beta estimates, robust standard errors, and 95% robust confidence intervals for the multivariate Level II Home Range Selec-

tion Function model variables.

Variable Beta estimate Standard Error 95% Confidence Interval

Terrain ruggedness 0.95 0.01 0.94–0.96

Agriculture -0.04 0.01 -0.05 –-0.03

Barren 0.19 0.01 0.18–0.20

Chaparral 0.17 0.02 0.15–0.18

Coastal oak woodland -0.05 0.01 -0.06 –-0.05

Coastal scrub 0.15 0.02 0.14–0.16

Desert -1.26 0.04 -1.28 –-1.23

Grassland 0.11 0.02 0.1–0.12

Urban -0.68 0.03 -0.70 –-0.66

https://doi.org/10.1371/journal.pone.0179570.t003
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After accounting for correlations, the following variables were included in the multiple

regression model: elevation, percent slope, agriculture, chaparral, coastal scrub, coastal oak

woodland, grassland, riparian, urban, and primary roads. The global model was selected as the

best performing model. To determine whether the variables explained the genetic distance

among individuals more than Euclidean distance alone, we also ran a regression model with a

simple Euclidean distance matrix among sample locations. This resulted in a ΔAICc of 278,

which was much higher than any other model, indicating the environmental variables ex-

plained the genetic distance among individuals better than Euclidean distance alone. To deter-

mine whether long-term genetic processes were driven largely by fine scale movement data,

we also calculated geographic distances among sample locations across our PathSF resistance

surface and obtained low model support (ΔAICc = 247), indicating different drivers for long-

term genetic connectivity.

Multi-level resource selection function and resistance surfaces, resource

use patches, and corridors

Fig 3 presents the predicted relative probability of use surfaces for the HRSF, the PSF, and the

combined ML-RSF. Home range centers tended to be located further from urban areas and in

more mountainous terrain. The Level III selection surface also tended to select for non-urban

Table 4. Standardized beta estimates, robust standard errors, and 95% robust confidence intervals for the multivariate Level III Point Selection

Function model variables.

Variable Beta estimate Standard Error 95% Confidence Interval

Elevation -21.61 0.60 -21.99 –-21.23

Percent Slope -1.1 0.03 -1.12 –-1.08

Terrain Ruggedness 0.09 0.01 0.08–0.09

Agriculture -0.25 0.02 -0.23 –-0.26

Barren -0.06 0.02 -0.05 –-0.07

Chaparral -0.17 0.06 -0.21 –-0.13

Coastal Scrub -0.29 0.03 -0.03 –-0.27

Grassland -0.38 0.02 -0.40 –-0.37

Riparian 0.38 0.04 0.35–0.40

Woodland 0.23 0.02 0.22–0.24

Urban -2.18 0.16 -2.28 –-2.08

Roads: Primary, Secondary, Tertiary -0.06 0.02 -0.07 –-0.05

https://doi.org/10.1371/journal.pone.0179570.t004

Table 5. Standardized beta estimates, robust standard errors, and 95% robust confidence intervals weights for the multivariate Path Selection

Function model variables.

Variable Beta estimate Standard Error 95% Confidence Interval

Elevation 9.22 1.00 8.51–9.94

Percent Slope -1.35 0.21 -1.50 –-1.20

Agriculture -0.02 0.09 -0.08–0.05

Chaparral 1.44 0.30 1.37–1.51

Grassland -0.02 0.28 -0.22–0.18

Barren/Open Water -0.02 0.07 -0.07–0.04

Riparian 5.92 1.90 4.56–7.27

Woodland 2.87 0.36 2.61–3.13

Urban -7.53 2.03 -8.98 –-6.08

Roads: Primary, Secondary, Tertiary -0.78 0.24 -0.95 –-0.62

https://doi.org/10.1371/journal.pone.0179570.t005
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areas, but this surface was more heterogeneous than the Level II surface, demonstrating finer-

scale selection. The ML-RSF surface identified areas of Level III habitat selection conditional

upon the higher Level II order of selection.

Fig 4 displays the resistance surfaces derived from the landscape genetics analysis, the

PathSF, and the ML-RS. Similar to the probability of use surfaces at the higher order, the land-

scape genetic analysis resulted in developed areas having a high resistance for pumas and

undeveloped, mountainous areas having a lower resistance. Though the coarse-scale patterns

were similar for the resistance surface derived from the PathSF, this surface was more hetero-

geneous and reflected finer-scaled patterns of resistance to movement. The Spearman correla-

tion coefficient between the landscape genetics and the PathSF resistance surfaces was 0.31.

The ML-RS can be interpreted as resistance to movement at finer scales weighted by coarser-

scale spatial and temporal processes.

Resource-use patches in the study area measured 2,577 km2. Resistant kernel corridors con-

necting these resource-use patches measured 777 km2 (Fig 5A). The current protected area

network encompassed 35% of the puma resource-use patches in the study area and 47% of

the landscape corridors outside of the resource use patches (Fig 5C). Adding the partially

protected Department of Defense, Native American Reservation, and Water and Irrigation

District lands increased current protection of resource-use patches to 61% and landscape cor-

ridors to 60% (Fig 5C). If 75% of the lands that are currently pre-approved for mitigation pro-

tection by Orange, Riverside, and San Diego Counties become protected (the 75% level is the

target amount), then 88% of the puma resource-use patches will be fully or partially protected

and 82% of the landscape corridors will be fully or partially protected (Fig 5D).

Fig 3. Predicted relative probability of use surfaces from the multi-scale Level II Home Range

Selection Function, the multi-scale Level III Point Selection Function and the combined Multi-Level

Resource Selection Function.

https://doi.org/10.1371/journal.pone.0179570.g003
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Discussion

Multi-level, multi-scale resource selection functions and resistance surfaces capture a wide

spectrum of selection, movement and survival process. Multi-level, multi-scale resource selec-

tion models have been shown to outperform single-scale, single-level models, result in stronger

inference and predictive capabilities [6, 7, 17, 21], and are the most appropriate for use in con-

servation planning [60]. However, to our knowledge, the multi-level, multi-scale framework

had not been applied to resistance surfaces. Herein, we introduce a multi-level, multi-scale

approach for developing resistance surfaces. Our ML-RS quantifies resistance in terms of all

three previously sought-after processes: (1) willingness to cross, (2) physiological costs of

crossing, and (3) direct survival impacts while crossing. When establishing landscape-level

wildlife corridors, the ultimate objectives are to provide safe passage for migrants to access,

establish residence, and successfully reproduce in new suitable habitats. Resistance surfaces

that reflect real-time movement and decision-making of individuals, as well as the chances

of surviving and reproducing, are conceptually more powerful than resistance surfaces that

reflect only one of these three processes.

Our results showed similar coarse-scale patterns between the resistance surfaces derived

from the genetic and movement data; however, details were present in the genetic surface that

were not present in the movement surface, and vice versa. For pumas in our study, the resis-

tance surface derived from the movement models consistently showed primary roads and

urban areas as less-resistant features than the resistance surface derived from genetic data.

These results reflect the ability and occasional willingness of pumas to travel through highly

developed areas. Conversely, the movement data highlighted the importance of riparian areas

Fig 4. Resistance surfaces derived from the landscape genetics analysis, the PathSF, and the

combined Multi-Level Resistance Surface.

https://doi.org/10.1371/journal.pone.0179570.g004
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and canyons for puma movement, assigning consistently lower resistance values to these fea-

tures than the resistance surface derived from genetic data. Combining these surfaces resulted

in constraining fine-scaled movement (potential resistance) within areas more amenable to

coarse-scale, generational success in dispersal and breeding (realized resistance).

We can further illustrate the advantages of a ML-RS through our collective knowledge of

the Santa Ana Mountains puma population. This population inhabits what has been described

as a large habitat fragment, isolated on all sides by roads, human development, and the Pacific

Ocean [25]. The Palomar Linkage (Fig 1.; [61]) just south of the city of Temecula has been

identified as the only potentially viable linkage between the Santa Ana Mountain puma popu-

lation and those to the east. The Palomar Linkage connects natural areas on both sides of I-15,

yet I-15 itself is a significant obstacle to puma movement. Genetic population assignment tests

have shown that only seven males successfully crossed I-15 over the last 15 years; three immi-

grated into the Santa Ana Mountains from the Eastern Peninsular Range and four traveled

from the Santa Ana Mountains to the Eastern Peninsular Range [51]. Of these seven, five are

known to be deceased and the status of the remaining two is unknown. Offspring were only

detected from one of the seven immigrants, M86, who migrated into the Santa Ana Moun-

tains. M86 successfully bred and passed genetic material to 11 offspring before being hit by a

car and killed. Of the 11 offspring, only two are confirmed to have survived to breeding age,

yet the success of this one male was shown to significantly improve the genetic diversity of the

Santa Ana Mountains population [51]. The seven males that crossed I-15 offer evidence of the

occasional ability and willingness of pumas to travel through urbanized areas and across pri-

mary roads. The behavior of these individuals is therefore better represented with the move-

ment resistance surface. In contrast, the physiological and survival costs of these movements,

Fig 5. Puma resource use patches, landscape corridors, and the current and proposed protected area

network.

https://doi.org/10.1371/journal.pone.0179570.g005
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exemplified by the low survival and breeding success of these seven pumas, are better reflected

with the genetic resistance surface. The combination of these surfaces into a single ML-RS

integrates all three of these processes and is a more appropriate representation of resistance for

identifying landscape-level connectivity.

Consistent with other studies that conducted resource selection functions at multiple hier-

archical levels, we found differences among levels in terms of variable importance and habitat

preference for pumas [2, 4, 5, 7]. Of the variables present in both the Level II and Level III

models, habitat use relationships differed for chaparral, coastal scrub, coastal oak woodland,

and grassland. Chaparral, scrub, and grassland types were preferred for home range establish-

ment, but were avoided while using resources within the home range. Our results for wood-

land were unexpected. Pumas are traditionally associated with woodland, but our Level II

model showed an avoidance of woodland. We suspect this is the result of a relatively low

occurrence of woodland in the Santa Ana and Palomar Mountain ranges compared with a

higher amount of woodland in the greater extent used for the HRSF analysis. Therefore, this

finding is likely an anomaly of study area extent and does not indicate a true avoidance [62].

As expected, woodland was preferred in our Level III model. Variables that were included in

the final Level III model that were not present in the Level II model include primary, second-

ary, and tertiary roads, elevation, slope, and riparian areas. With the exception of woodland at

the second order of selection, our results generally agree with other puma resource-use studies.

We found topographic variables to be important at both hierarchical levels with a strong pref-

erence for rugged areas and an avoidance of areas with steep slopes [25, 30, 32]. We also found

a strong avoidance of human development in the form of agricultural areas, urban areas, and

roads [21, 30–32]. Home range sizes were also consistent with other studies of pumas in Medi-

terranean climates [63].

Similar to our findings across hierarchical levels of selection, we found some differences

between the resistance models derived from the movement and genetic data. The genetic

model included coastal scrub whereas the movement model did not and instead included the

barren cover type. The genetic model only included primary roads whereas the movement

model included the roads layer with all three road types: primary, secondary, and tertiary. For

some variables, the models differed in their relationship with resistance. For example, the

genetic model reflected decreasing resistance with increasing values of slope, and the move-

ment model reflecting increasing resistance with increasing values of slope. For elevation,

comparison is more difficult. The genetic resistance model selected the Inverse Ricker trans-

formation, indicating lower resistance at moderate elevations and higher resistance for very

low and high elevation areas. Given the paired nature of our PathSF model, we were unable to

explore quadratic relationships and the resistance surface from the movement data reflected

decreasing resistance with increasing elevation. Cushman and Lewis [10] compared black bear

genetic models with early season movement models and found both to have the same variables

with the same relationship to resistance, but observed different variables and different rela-

tionships when comparing genetic models with late season movement models. Coulon et al.

[15,16] found roe deer exhibited different relationships to woodland areas with genetic and

movement data. These differences are to be expected because, as argued above, resistance esti-

mated from genetic data and resistance estimated from movement data represent different

processes. This is further supported by our landscape genetic model performance results. We

found the final resistance surface derived from the landscape genetic analysis to greatly outper-

form that derived from the PathSF analysis in predicting genetic distance, indicating poten-

tially different drivers for long-term genetic connectivity.

Another possible advantage of combining the resistance surfaces from movement and

genetic data lies in the difficulty of obtaining dispersal data. It is often argued that dispersal
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data are more appropriate than data from within home-range movements for estimating resis-

tance; however, dispersal data are much more difficult to obtain and often suffer from very

small sample sizes. By using genetic data as a proxy for dispersal, and combining this resistance

surface with one derived from within home-range movement, these surfaces may more closely

approximate those obtained with empirical dispersal data, though more research is needed to

support this hypothesis. We acknowledge the ML-RS may not be the most appropriate resis-

tance surface to use for every application and recommend its use for landscape-level corridors

only. For other applications, like pinpointing discrete road crossing locations or applications

that reflect fine-scaled travel and real-time movement decisions, we argue that it is more

appropriate to use a resistance surface estimated directly from movement data [11].

Our conservation network for pumas in the study area incorporated multiple scales of selec-

tion at two different hierarchical levels for both habitat use and resistance. In this heavily

developed landscape, we found resource use and connectivity to be mostly confined to natural

areas with only corridors extending into more developed areas. At present, only 35% of

resource-use patches and 47% of corridors identified in this study are fully protected. Some

additional lands offer partial protection, bringing the fully and partially protected lands to

about 60% of the resource-use patches and corridors. Given the low adult survival rate (56%;

[27]), low levels of heterozygosity and high incidence of inbreeding for pumas in this region

[26], increasing protection of individuals and habitat is essential to their long-term survival

[64]. The proposed protected areas identified by the three counties in the study area would

greatly increase the amount of protection. However, many of these proposed protected areas

are currently on private land and depend upon them being used as mitigation for development

elsewhere. Road mitigation efforts are also needed given the low level of successful dispersal

and breeding among pumas in the study area and the finding in Vickers et al. [27] that the

most frequent cause of death for GPS-collared pumas was by vehicle collisions.

Our analysis was specific to pumas in southern California, yet the general approach may be

applied to wildlife species worldwide. Many previous conservation networks have used a single

organizational level, thereby omitting important behavioral and biological processes at other

levels, and may result in incorrect inference and only partially effective conservation plans [2,

5, 7, 65]. By incorporating selection and movement at multiple hierarchical levels, correct

inference may be made at each level. Furthermore, integrating results across levels will result

in much stronger predictive surfaces for conservation. Modeling multi-scale relationships

within each hierarchical level further strengthens these surfaces. Our thresholds for identifying

the resource-use patches and landscape corridors were somewhat arbitrary, but are based on

previously recommended thresholds [66] and provide a reasonable result for pumas in our

study area. Echoing DeCesare et al. [4], additional research is needed to determine more bio-

logically-based thresholds for creating binary conservation surfaces from continuously distrib-

uted ML-RSFs and connectivity surfaces derived from ML-RSs. Despite the strong conceptual

and inferential advantages of multi-level, multi-scale approaches, a recent review of 173 multi-

scale habitat selection studies found that only 8 (5%) used a combined multi-level, multi-scale

approach, indicating this approach for research and conservation planning has been underuti-

lized [2]. We offer the addition of multi-level, multi-scale resistance surfaces to this body of lit-

erature and recommend that multi-level, multi-scale approaches be used for identifying areas

of resource use and landscape connectivity and for developing species conservation networks.

Supporting information

S1 Table. Time-intervals and associated radii of Pareto kernels used to define available

habitat for point and path selection functions. We fit a Pareto distribution to the empirical
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distribution of displacement distances at each time-period and defined the maximum radii of

the Pareto distribution by either using the 95th quantile of the distribution, or the maximum

observed displacement distance, whichever was smaller.
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