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With the advancement of technology and the prevalence of Internet of Things (IoT), wearable

devices have been gaining huge momentum as consumer devices over the past few years. The

wide adoption and multiple sensor modalities in those wearable devices have enabled them to

be used for designing different digital health solutions for continuous and remote monitoring.

The continuous use of wearable devices results in a myriad volume of physiological data

being collected from multiple sensors. Transferring this collected data from wearable devices

(edge) to server (cloud) introduces three major challenges - increased energy consumption,

increased latency, and vulnerability to breach of privacy. To tackle these challenges, on-

device computing solutions have been adopted for different wearable healthcare systems.

However, the small form factor of wearable devices imposes three constraints on the on-device

solutions. The solutions should be energy-efficient, memory-efficient, and provide maximum

performance within the previous two constraints. Moreover, getting the ground truth label

of the collected data from the user to update the classification models is a challenging task

without user involvement. Furthermore, fusing data from multiple heterogeneous sensors

may often introduce new challenges in terms of achieving maximum performance regardless

of computing architecture.

To address these challenges, this thesis presents some efficient methodologies for different
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wearable healthcare applications like - Myocardial Infarction Detection, Human Activity

Recognition, Stress Detection, and Eating Activity Recognition. The first part of the the-

sis explores the Myocardial Infarction Detection application where we propose a Template

Matching based Early Exit architecture that achieves energy and memory efficiency while

outperforming state-of-the-art work. The second part proposes an adaptive convolutional

neural network for Human Activity Recognition application. Our proposed solution outper-

forms state-of-the-art works while achieving energy and memory efficiency. In the third part

of the thesis, we explore the Eating Activity Recognition application where we propose an

online learning methodology to adapt to changing eating habits of the user. Our proposed

online learned neural network outperforms other competitive offline methods while being

energy-efficient. The fourth and final part of the thesis explores Stress Detection application

using multiple heterogeneous sensor modalities. We propose a selective fusion approach us-

ing context-aware sensor selection from wearable devices which achieves better performance

compared to state-of-the-art works.
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Chapter 1

Introduction

1.1 Moore’s Law and Internet of Things

“The number of transistors in a dense integrated circuit (IC) doubles about every two years.”

– Gordon Moore (1965) [1]

The infamous Moore’s Law states that since the number of transistors on a silicon chip

roughly doubles every two years, the performance and capabilities of computers will continue

to increase. Although Gordon Moore made this statement based on empirical observations

in 1965, this has been considered as law over the years due to its correlation with the ad-

vancements in technology. With the increasing number of transistors, the devices become

more powerful with smaller size at lower cost [2]. Additionally, the advancements of commu-

nication technology has led to the development of LTE, 4G, 5G networks [3, 4]. This enabled

the devices to be connected leading to the revolution of Internet of Things (IoT) [5–7].

It is expected that by 2025 there will be approximately 27 billion connected IoT devices [8].

And the global IoT market is expected to be USD 650.5 billion by 2026 from USD 300.3

billion in 2021 at Compound Annual Growth Rate (CAGR) of 16.7% [9].
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1.2 Wearable Devices in the Internet of Things Era

With the advancement of technology and prevalence of IoT technology, the wearable devices

have been gaining huge momentum as consumer devices over the past few years [10, 11].

The small form factor of the devices coupled with their user friendly design have made the

wide adoption of wearable devices possible among consumers [12, 13]. Starting from wrist

watch, smart ring, earbud to wearable glass there has been significant effort going on to build

and design wearable devices by the industry leaders like Apple, Google and Samsung. In

general the wearable devices can be broadly classified into Wrist-wear, Eye-wear, Head-wear,

Foot-wear, Neck-wear, and Body-wear [14]. According to a market research [15], the global

wearable technology market had a valuation of USD 61.30 billion in 2022 which expected to

grow at CAGR of 14.6% from 2023 to 2030.

1.3 Future of Digital Health using Wearable Devices

The wide adoption of smart wearable devices is driving the industry growth. This results in

introducing wearable devices with more features and sensing capabilities [16]. Currently, the

wearable devices are equipped with various sensors like – Accelerometer, Photoplethosmog-

raphy, Electrocardiography, Electromyography, Electrodermal activity, Temperature sensors.

These sensors aid in monitoring blood volume pulse, heart rate, movement, muscle contrac-

tion, oxygen saturation level, skin temperature and so forth [17]. These multiple sensor

modalities of the wearable devices have enabled them to be used for designing digital health

solutions for continuous and remote monitoring for different healthcare applications in real-

time [18, 19]. The global digital health market size was valued at USD 211.0 billion in 2022

and is projected to grow at a CAGR of 18.6% from 2023 to 2030 [20].

2



1.4 Major Challenges and Thesis Contribution

The continuous use of these sensor rich wearable devices generate myriad volume of sensor

data from multiple modalities. Usually, the collected data from wearable devices are sent

over Bluetooth to a mobile phone (fog) or remote server (cloud) where all the processing

takes. This form of computing is called fog [21, 22] or cloud computing [23] architecture.

However, transferring this large amount of data results in increased energy consumption

reducing the battery life of wearable devices [24]. Additionally, it also introduces latency,

which is unsuitable for real-time monitoring [24, 25]. Moreover, passing the raw data to fog

or cloud may make the users’ data vulnerable to privacy breaches [26, 27]. To overcome

those issues, researchers shifted to an alternative architecture to overcome these limitations,

which is called ‘edge computing’ [28, 29], where it performs on device processing. Therefore,

it reduces the energy consumption, latency, and vulnerability of privacy breaches [30–32].

However, the small form factor of wearable devices introduces three constraints for edge

computing architecture for digital health solutions. The solutions should be energy-efficient,

memory-efficient, and provide maximum performance within the previous two constraints

[31, 32].

Moreover, to process and compute the collected data from users, different machine learning

models are trained offline and used to make predictions on the run time. However, for

many healthcare applications the user behavior may change overtime due to which may

cause data drift or concept drift in the collected data [33, 34]. Due to this data drift the

offline trained machine learning models may significantly suffer resulting in poor performance

[35, 36]. Therefore, the models need to be updated online with new data from time to time

to reflect the change in user behavior and become more personalized overtime. This requires

to implement online learning for the machine learning models [37]. However, one of the key

challenges of online learning is to generate the ground truth labels of the new data to update

the machine learning model without much user involvement.
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Furthermore, another notable challenge in using data from from multiple heterogeneous

wearable sensors is that the data may be susceptible to substantial amounts of sensor noise

due to various factors like motion or muscle contraction [38]. Fusing such noisy measurements

can subsequently degrade the performance of the machine learning models [38, 39].

In summary, this thesis addresses the following challenges of designing digital health solutions

using wearable devices:

• Designing an energy-efficient and memory-efficient solution for edge computing archi-

tecture while maintaining performance.

• Generating ground truth labels of collected data to update classification models online

without much user involvement.

• Fusing noisy data from multiple heterogeneous sensors may degrade the machine learn-

ing models’ performance.

To tackle the aforementioned challenges, this thesis makes the following contributions:

1. Propose various energy-efficient and memory-efficient solutions for edge computing

architecture while maintaining performance.

2. Propose an online learning methodology to generate approximate ground truth labels

without much user involvement.

3. Propose a selective fusion approach using context-aware sensor selection from wearable

devices which achieves better performance compared to state-of-the-art works.
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1.5 Thesis Structure

This thesis is structured as follows:

• Chapter 2 explores the Myocardial Infarction Detection application where we propose

a Template Matching based Early Exit architecture achieves energy and memory effi-

ciency while outperforming state-of-the-art work.

• Chapter 3 proposes an adaptive convolutional neural network for Human Activity

Recognition application that outperforms state-of-the-art works while achieving en-

ergy and memory efficiency.

• Chapter 4 explores the Eating Activity Recognition application where we propose an

online learning methodology to adapt to changing eating habits of the user that gen-

erates approximate ground truth labels without much involvement from the user.

• Chapter 5 explores Stress Detection application where we propose a selective fusion

approach using context-aware sensor selection from wearable devices which achieves

better performance compared to state-of-the-art works.

• Chapter 6 concludes the dissertation with some remarks on the contributions and

discussion on future directions.

Figure 1.1 maps the thesis contributions to the corresponding chapters.

Figure 1.1: Mapping of thesis contributions to chapters
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Chapter 2

Energy-efficient Myocardial Infarction

Detection on Low-power Wearable

Devices

2.1 Abstract

Myocardial Infarction (MI), also known as heart attack, is a life-threatening form of heart

disease that is a leading cause of death worldwide. Its recurrent and silent nature emphasizes

the need for continuous monitoring through wearable devices. The wearable device solutions

should provide adequate performance while being resource-constrained in terms of power

and memory. This chapter proposes an MI detection methodology using a Convolutional

Neural Network (CNN) that outperforms the state-of-the-art works on wearable devices for

two datasets – PTB and PTB-XL, while being energy and memory-efficient. Moreover, we

also propose a novel Template Matching based Early Exit (TMEX) CNN architecture that

further increases the energy efficiency compared to baseline architecture while maintaining
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similar performance. Our baseline and TMEX architecture achieve 99.33% and 99.24%

accuracy on PTB dataset, whereas on PTB-XL dataset they achieve 84.36% and 84.24%

accuracy, respectively. Both architectures are suitable for wearable devices requiring only

20 KB of RAM. Evaluation of real hardware shows that our baseline architecture is 0.6×

to 53× more energy-efficient than the state-of-the-art works on wearable devices. Moreover,

our TMEX architecture further improves the energy efficiency by 8.12% (PTB) and 6.36%

(PTB-XL) while maintaining similar performance as the baseline architecture. The findings

in this chapter have been published in [40].

2.2 Introduction

Myocardial Infarction (MI) is one of the most fatal forms of heart disease being the leading

cause of death worldwide. MI occurs when one of the coronary arteries responsible for

supplying oxygenated blood to the heart muscle gets blocked. This blockage happens due

to the deposition of plaques on the inner wall of the coronary arteries. Eventually, the heart

muscle suffers from the shortage of oxygen and essential nutrients leading to a heart attack.

About 805,000 people in the USA suffer from it every year. About 75% of them encounter

a heart attack for the first time and the rest 25% experience recurrent heart attacks [41]

which has a 6 times higher mortality rate than the first ones [42]. The higher risk associated

with recurrent heart attacks requires continuous monitoring of those patients. Moreover,

1 out of 5 heart attacks is silent where victims are unaware of the damage [41]. And the

mortality rate significantly increases by 41-62% if the treatment is delayed for more than 2

hours from MI initiation [43]. The aforementioned facts necessitate the real-time monitoring

and detection of MI. Currently, most of the monitoring takes place in a clinical environment

with bulky medical equipment which lacks portability. Therefore, wearable devices represent

a more convenient solution for continuous monitoring on a daily basis.
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Besides, a real-time monitoring solution using wearable devices enables physicians to keep

track of their patients’ health remotely. Currently, wearable device solutions for mobile

health follow a cloud computing architecture where the raw data from wearable devices is

offloaded to fog (mobile phones) or cloud (remote servers) where all the processing takes

place [44]. This offloading consumes a huge amount of communication energy which reduces

the battery life of wearable devices, as well as mobile phones [45]. In addition to that, it

also introduces latency which hinders the real-time monitoring and detection in healthcare

applications [46]. Moreover, offloading the raw data to a mobile phone or cloud makes the

users’ data vulnerable to privacy breaches. To overcome these aforementioned limitations,

the ‘Edge Computing’ [47] paradigm has gained momentum in recent years where all the

processing is done on the wearable devices and only the analyzed results are sent to the

cloud for remote monitoring. Thus, it addresses the aforementioned issues related to energy

consumption, latency, and vulnerability of privacy breaches.

The designed algorithms for wearable devices should be energy-efficient, memory-efficient,

and provide acceptable performance within the previous two constraints. State-of-the-art

works on MI detection are not wearable device compatible as they prioritize performance

and do not consider the other two constraints. They use complex machine learning [48–50]

and deep learning algorithms [51–55] to achieve high performance. Machine learning algo-

rithms perform classification based on the extracted features from the data. However, the

feature extraction processes are often time-consuming and require a huge amount of energy.

Deep learning algorithms like Convolutional Neural Networks (CNN) do not require manual

feature engineering and extraction as they automatically extract features through convolu-

tion. Moreover, the layered architecture of CNN provides flexibility to design a network by

adding or removing layers as necessary in the training phase. Later, this architecture may

be used to classify data during the inference phase. However, the full architecture from the

training phase may not be needed at the inference phase as many of the data can be cor-

rectly classified using only the first few layers of the architecture. This early exit capability
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of CNN should help to avoid redundant operations during the inference phase leading to

energy efficiency for wearable device solutions while maintaining the performance.

2.2.1 Motivational Example

We conducted a small experiment to demonstrate the advantage of the early exit CNN

architecture. We have created a multi-output CNN architecture with 2 convolution blocks

and 2 output blocks. One output block is used after each of the convolution blocks to

allow the early exit after any convolution block at the inference phase. Each convolution

block consists of one convolution layer, one pooling layer, and one batch normalization

layer. The details of the multi-output CNN architecture are provided in Section 3.4.2.

Throughout the rest of the chapter, the first output block (FOB) is used to represent the

CNN architecture that exits after the first convolution block. The second output block is

considered as the baseline architecture that exits after the second convolution block. 5-fold

cross-validation of the multi-output CNN architecture is performed with 62306 heartbeat

segments extracted from 200 patients of the PTB diagnostic ECG database [56]. Figure

3.3 shows the blockwise statistics of the first and second output block. As demonstrated in

Figure 3.3, the FLOP counts, execution time, and energy increases as performance increases

from the first to second output block. We choose the second output block as the baseline

architecture as it shows better performance of the two. Figure 3.3a shows that around 94%

of the segments can be correctly classified by the FOB. Therefore, further convolution of

those segments would be redundant. If we can avoid the redundant convolution operations,

we can easily save some inference time and energy for the wearable devices. Table 3.1

shows the theoretical breakdown of the performance, FLOP counts, execution time, and

energy of the early exit architecture to classify 62306 segments. Table 3.1 demonstrates that

using early exit architecture, it is possible to save a total of 1143.41x106 FLOPs, 2544.74

seconds of execution time, and 132.86 J of energy for 62306 segments. On average for each
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Figure 2.1: Blockwise Statistics of Multi-output CNN Architecture

Table 2.1: Difference between Baseline and Early Exit Architecture

Architecture Output % of Total # of Total Total FLOP Total Exec. Total
Used Block Used Segments Segments Count Time (S) Energy (J)

Baseline Second 100 62306 2709.62x106 9393.87 439.16

Early Exit
First 94 58567 1403.61x106 6285.41 279.95

Second 6 3739 162.60x106 563.72 26.35
Overall 100 62306 1566.21x106 6849.13 306.30

Theoretical Saving due to Early Exit 1143.41x106 2544.74 132.86
Average Saving per Segment due to Early Exit 18351.52 40.84 (ms) 2132.37 (µJ)

segment, we can save 18351.52 FLOPs, 40.84 ms of execution time, and 2132.37 µJ of energy

using an early exit architecture compared to the baseline one. In summary, such early exit

architecture would provide a much more energy-efficient solution than a baseline architecture

while providing better or similar performance that is suitable for low-power wearable devices.

2.2.2 Problem Statement

Many state-of-the-art works [53, 57–60] have explored this early exit strategy for various

applications. Usually, an extra output layer is added after each convolutional layer and a

decision function is used to make the exit decisions for such early exit architectures. Some

works [53, 57–59] use a simple decision function based on classification confidence. If the

classification confidence at the output layer is above a certain threshold, the decision function

makes the exit decision. Generally, this kind of decision function is extremely lightweight,
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energy-efficient, and suitable for wearable devices. However, a substantial number of misclas-

sified segments can cause a significant performance degradation compared to the baseline,

given how the classification confidence at the earlier layers can be misleading, as will be

demonstrated later in Section 2.6.2. Authors in [60] proposed to overcome this problem by

using another machine learning model as the decision function. The use of the machine

learning models as the decision function is suitable for deep architectures (with tens to

hundreds of layers) for the projected computational gains. However, it is not suitable for

wearable devices as the decision function’s computational overhead may be comparable to

the compact baseline classifier of the wearable devices. Moreover, state-of-the-art early exit

strategies follow a brute force approach in which the decision function is invoked for every

potential exit point that succeeds each convolution layer. Such needless invocations may

lead to extra computational overheads if the majority of the input data segments eventu-

ally require to be processed by the baseline model. The aforementioned limitations prevent

the state-of-the-art early exit strategies to be adopted for wearable device solutions for MI

detection. Therefore, in this chapter, we introduce an output block selector (OBS) as our

decision function to address these limitations, where it performs template matching using

the simple Pearson correlation of a heartbeat segment against a template heartbeat. The

template matching coefficient is used to select the output block, thus avoiding the brute

force approach. Additionally, the same template matching coefficient is used for the exit

decision-making criteria alongside the classification confidence to minimize the performance

loss. What’s more, the OBS is also lightweight enough to be adopted for wearable devices. To

the best of our knowledge, we are the first to consider such a template matching based early

exit (TMEX) architecture for MI detection that provides energy efficiency while ensuring

similar performance as the baseline.
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2.2.3 Novel Contributions

The novel contributions of this chapter are as follows:

• We propose an MI detection methodology to implement a baseline CNN architecture

that outperforms the state-of-the-art works while being energy and memory-efficient.

• We introduce a novel Template Matching based Early Exit (TMEX) CNN architecture

that further increases the energy efficiency of the baseline architecture while maintain-

ing similar performance.

• Evaluation of our methodology on two well known datasets - PTB [56] and PTB-XL

[61] from PhysioNet [62]. It shows that both the baseline and TMEX architectures

outperform related works for both datasets.

• Evaluations on real hardware show that our baseline architecture achieves from 0.6× to

53× energy efficiency compared to the state-of-the-art work on wearable devices. More-

over, our TMEX architecture further improves the energy efficiency over the baseline

by 8.12% (PTB) and 6.36% (PTB-XL) while maintaining similar performance.

• Hardware evaluations also demonstrate that our baseline and TMEX architectures are

compatible with the low-memory requirement of wearable devices requiring only 20

KB of RAM.
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2.3 Related Works

2.3.1 MI Detection Using Single Lead ECG

As our proposed solution is targeted for wearable devices using only one lead ECG data,

we will discuss and compare against the works that used only one lead for MI detection.

Authors in [48–50] used machine learning algorithms K-Nearest Neighbor (k-NN), Support

Vector Machine (SVM), Random Forest (RF) for MI detection. All of these works applied

4-level Discrete Wavelet Transform (DWT) using Daubechies 6 (db6) basis function on the

heartbeat segments which results in four detail and four approximation coefficients. Then for

each of those 8 coefficients, they extracted normalized energy, Higuchi’s fractal dimension,

along with the following entropies: approximate, fuzzy, permutation, wavelet, Shannon,

Renyi, and Tsalis which results in a total of 72 features. Then they applied an infinite latent

feature selection algorithm [63] to sort those 72 features based on their relevance. Authors

in [48] used first 47 of those features and achieved a very high performance (Accuracy =

98.80%, Sensitivity = 99.45%, Specificity = 96.27%) using k-NN. However, their work is

intended for a clinical setup. Moreover, k-NN is not suitable for wearable device solutions

as it requires all the training data to be stored locally. Authors in [49] used an event-driven

2-level SVM classifier to achieve energy efficiency on wearable devices. For the first level

SVM, they only used the first 5 of those 72 features and for the second (full) level they used

the first 47 features similar to [48]. Their event-driven 2-level SVM and full SVM achieved

an accuracy of 90% and 95%, respectively. Authors in [50] also proposed an event-driven

technique using a 5-level RF classifier where the first, second, third, and fourth levels use

the first 5, 10, 15, and 20 features out of those 72 features, respectively. And the fifth/full

level uses all of those 72 features. Their event-driven technique achieved relatively poor

performance (accuracy = 80.32%, sensitivity = 81.02%, specificity = 79.63%) whereas the

full RF achieved a slightly better performance (accuracy = 83.26%, sensitivity = 87.95%,
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specificity = 78.82%).

The works in [49, 50] applied an event-driven technique to reduce the classifier complexity

for energy efficiency. However, they along with [48], used extensive feature engineering to

find optimal features for their classifiers which is a very difficult [64] task. Moreover, the fea-

ture extraction process is very expensive in terms of time and energy, making these methods

unsuitable for real-time MI detection on wearable devices. In this scenario, deep learning

algorithms like Convolutional Neural Networks (CNNs) [65] are a better alternative as they

perform classification by automatically extracting features through convolution. Authors in

[51] used 1-D deep CNN architecture with 4 convolutional layers, 4 max-pooling layers, and

3 fully connected layers. As their solution is intended for clinical setup, they only focused

on performance without any resource constraints. Their method achieved an accuracy of

95.22%, a sensitivity of 95.49%, and specificity of 94.19%. Such a network is not suitable for

wearable devices as it does not consider the energy and memory constraints. On the other

hand, the authors in [52] developed a wearable device solution prioritizing energy and mem-

ory efficiency while sacrificing performance. Hence, they used a Binary Convolutional Neural

Network (BCNN) with only 3 layers which achieved an accuracy of 90.29%, the sensitivity

of 90.41%, and specificity of 90.16%. Another work in [53] used a CNN with an early exit

strategy to develop a wearable device solution for MI detection. They applied neural archi-

tecture search to find an optimal network suitable for the wearable device while considering

performance, energy efficiency, and memory efficiency as design objectives. Their baseline

architecture achieved better performance (accuracy = 98.03%, sensitivity = 97.26%, speci-

ficity = 98.82%) than other wearable device solutions. Interestingly, their architecture with

early exit strategy achieved a slightly better performance (accuracy = 98.54%, sensitivity =

97.66%, specificity = 99.44%) than the baseline, which may be attributed to the fact that

the earlier exit’s accuracy had a similar performance to the baseline one. Unfortunately, the

details of their implemented architectures are not mentioned. However, their exit decision-

making is based on the classification confidence only, potentially leading to a deterioration
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in the overall performance when there is a considerable performance mismatch between the

earlier layer’s exit and the baseline’s one, as will be detailed later in Section 2.6.1. In an-

other work, the authors in [55] applied a deep LSTM architecture to detect MI using single

lead (II) ECG data from the recently introduced PTB-XL dataset [61]. They achieved an

accuracy, sensitivity and specificity of 84.17% ,78.37%, and 87.55%, respectively. However,

their sizable architecture is not suitable for resource constrained wearable devices. In this

chapter, we consider three metrics (performance, energy, memory) when designing a solution

for wearable devices, and accordingly, we propose a methodology for implementing a CNN

architecture that is energy- and memory-efficient while providing the maximum performance

possible.

2.3.2 Energy-efficient CNN Design Approaches

Originally designed for computer vision applications, CNN has been widely adopted in other

applications such as natural language processing, biomedical applications. Sometimes the

deep learning nature of CNN allows the architecture size to grow extremely large having 100s

of convolutional, pooling, and fully connected layers. However, such an architecture is very

computationally expensive and not suitable for energy and memory constraint applications

of mobile health such as wearable devices. Therefore, many researchers have been working on

different approaches to reduce the architecture size to make it energy and memory-efficient

while maintaining similar or competitive performance. Such approaches can be broadly

classified into two categories - 1) Software-based approach, 2) Hardware-based approach.

Software-based approaches mainly focus on minimizing the network size or developing tech-

niques to satisfy the energy or memory constraints while maintaining performance. The

software-based approaches can be further classified into 2 phases - 1) Offline or training

phase, 2) Online or inference phase. The software-based approaches in the training phase
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can be broadly divided into 3 types - a) Neural Architecture Search (NAS), b) Network

Pruning, c) Model Compression. NAS involves automatically finding the optimum network

parameters from a search space using reinforcement learning [66, 67] or gradient-based meth-

ods [68] or multi-objective bayesian optimization [69, 70]. Network pruning involves random

pruning of a portion of the big network, retraining/fine-tuning it, and repeat the process

until it achieves the desired performance [71–73]. Finally, model compression involves bina-

rization [74] or quantization [75, 76] of network weights to reduce the model size to make it

memory-efficient. Whatever the methods are applied, the final model is considered as the

baseline classifier to be used in the inference phase.

The software-based approach in the inference phase includes dynamic network pruning [77],

slimmable neural network [78], dynamic quantization [79], and early exit strategies [57–60].

The dynamic network pruning [77] approach prunes the baseline network (weights/neurons)

during the inference phase. Unlike pruning during the training phase, dynamic pruning

does not perform retraining/fine-tuning after the pruning step and the network may suffer

from performance loss. The slimmable neural network [78] on the other hand uses the same

network but with a reduced number of filter kernels or active channels during the infer-

ence phase. This is similar to the dynamic pruning of neurons. In practice, Both dynamic

pruning and slimmable neural network are suitable for large network architectures with

redundant weights/neurons that can be pruned without a substantial performance degra-

dation. However, due to energy and memory constraints, such large architectures (with

redundant weights/neurons) are not suitable for wearable devices in the first place, that

is, wearable devices require efficient and compact architectures with minimal/no redundant

weights/neurons to whom the application of dynamic pruning or slimming may degrade per-

formance considerably. This could have been tackled by fine-tuning/ retraining the network

in the inference phase, however, this will incur significant computation overhead for the

wearable device which may overshadow the benefits achieved from it. On the other hand,

dynamic quantization [79] involves the quantization of the network (weights and activations)
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in the inference phase. Similarly, the weights are not retrained after quantization, poten-

tially exacerbating performance losses due to quantization errors. The early exit strategies

[57–60] leverage the layered architecture of the neural network and introduce multiple exit

(output) layers in the network. However, as mentioned in Section 2.2.2, the state-of-the-art

early exit strategies have inherent limitations which prevent them from being adopted for

wearable device solutions. Our work addresses those limitations by introducing template

matching based early exit (TMEX) architecture. It implements an output block selector as

the decision function that addresses the limitations of state-of-the-art early exit strategies

by using simple and yet effective template matching by Pearson correlation coefficient.

It is to note that, the software-based approaches for the inference phase are independent

of each other and may also be applied together. For example, a model can be dynamically

quantized and pruned and then an early exit strategy can be adopted at the same time. As

our proposed baseline architecture is designed for wearable devices and already compact,

further pruning and quantization during inference phase leads to performance loss as will

be shown later in 2.6.3. Therefore, in this chapter we implement our TMEX architecture

directly on the baseline architecture.

On the other hand, hardware-based approaches focus on the design of custom hardware

such as accelerators which are specifically designed for CNNs [80, 81]. These accelerators

facilitate speeding up the inference process and thereby making it more energy-efficient.

Both Software-based and Hardware-based approaches are independent of each other and can

be either applied separately or combined in a HW/SW co-design-based approach. How-

ever, Software-based approaches are more commonly adopted as they can be applied to all

commercially available computing platforms (CPUs, GPUs, MCUs) and do not require any

customized hardware.
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Figure 2.2: Overview of Our Proposed Methodology. Baseline CNN architecture refers to
the full architecture with no dynamic model compression or early exit techniques applied to
it.

2.4 Proposed Methodology

The following sections provide the details of our proposed methodology. The overview of our

proposed methodology is demonstrated in Figure A.15.
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2.4.1 Pre-processing Steps

Filtering

As shown in Figure A.15, the pre-processing step starts with the denoising of raw ECG

data using a tenth-order Butterworth bandpass filter with cut-off frequencies f1=1Hz and

f2=45Hz.

R-peak Detection

Once denoised, Pan-Tompkin’s algorithm [82] is used to detect the R-peaks from the filtered

ECG data.

Segmentation

Given a frequency value f , we take f/5 samples before and 2f/5 samples after the R-peak.

Thus, PTB dataset (f=1KHz) each segment consists of 600 samples and for PTB-XL dataset

(f=500Hz) each segment consists of 300 samples representing a heartbeat.

Resampling

This step contributes a lot to the energy efficiency of our solution by reducing the number

of samples to be processed by the CNN architecture for each segment. Therefore, it is

important to carefully determine how much reduction is possible without compromising the

performance. We determine the important frequencies from the power spectrum of the

heartbeat segment. As shown in Figure 2.3, all the necessary frequency components are

present within 125 Hz of the signal which means a sampling frequency of 250 Hz is good

enough based on Nyquist theorem [83]. This is one-fourth of the sampling frequency used in
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the PTB dataset (1 kHz) and half of the sampling frequency used in the PTB-XL dataset

(500 Hz). Therefore, we can resample each PTB heartbeat segments by one-fourth and PTB-

XL segments by half. Thus, the resampled segments contain 150 samples. The resampling

is done by applying an anti-aliasing low pass filter to each segment using Kaiser window

method. Then the segments are downsampled by 4 times. We use the resample function

available in MATLAB to perform this operation.

Figure 2.3: The Power Spectrum of Filtered ECG Signal

2.4.2 TMEX CNN Architecture

As shown in Figure A.15, our TMEX CNN architecture consists of three parts - 1) Multi-

output CNN architecture that classifies the heartbeat segments, 2) Output block selector

that decides which output block to start with based on the correlation of each heartbeat

segment against the template beat, 3) TMEX algorithm that uses the correlation coefficient

from the output block selector as an additional exit condition along with the classification

confidence of the FOB.
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Table 2.2: Multi-output CNN Architecture Details

Layer Kernel Stride Activation Output # of
Name Size Size Function Shape Param.

Input - - - 150x1 0
Conv 1 31 1 ReLU 120x3 96
Pooling 1 2 2 - 60x3 0

Batch Norm. - - - 60x3 12
Flatten 1 - - - 180 0
Dense 1 - - Sigmoid 1 181
Conv 2 7 1 ReLU 54x8 176
Pooling 2 2 2 - 27x8 0

Batch Norm - - - 27x8 32
Flatten 2 - - - 216 0
Dense 2 - - Sigmoid 1 217

Total Number of Parameters after First Output Block 289
Total Number of Parameters after Second Output Block 533

Multi-output CNN Architecture

The multi-output CNN architecture is designed considering the resource constraints of the

wearable devices. It consists of 2 convolution blocks and 2 output blocks where each con-

volution block is followed by one output block. Figure A.15 shows the architecture layout

of our multi-output CNN architecture. Each convolution block consists of one convolution

layer which is passed through ReLU activation, one max-pooling layer, and one batch nor-

malization layer. Each output block consists of one flattening layer, and one dense layer

which is passed through sigmoid activation. The details of the architecture parameters for

each of the layers are given in Table 3.4. As shown in Table 3.4, the total number of pa-

rameters required to classify a heartbeat segment after the first, and second output block is

289, and 533, respectively.The two convolution blocks along with the second output block

are considered as the baseline architecture in this chapter.
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Output Block Selector

The Output Block Selector (OBS) is used to avoid the brute force method followed by

traditional early exit CNN architecture. It implements the template matching mechanism

using the Pearson correlation coefficient to determine whether we should try to exit FOB

or not. We create a template beat from the average of 10 random MI heartbeat segments.

It is to be noted that one can use a different number of heartbeat segments to create the

template beat. However, using very few heartbeats (like 2 or 3) may not generalize the

MI heartbeat template and may get biased to specific patients. Similarly, using too many

heartbeat segments (100 or 200) might lose the MI pattern in the template beat. We also

tried with 20 and 30 random beats to calculate the template beat. However, found no

significant change in the performance of our TMEX architecture. Therefore, we decided

to use the 10 random beats as it generalizes well and at the same time maintains the MI

pattern on the template beat. If the absolute value of the Pearson correlation coefficient [84]

between a segment and the template beat is greater than the correlation threshold, Corrth,

that means the segment is less complex and have a higher chance to be correctly classified

by the FOB. Therefore, it selects the FOB to classify the segment. Otherwise, it directly

uses the baseline architecture to classify a particular segment. It is to note that, even if the

OBS decides to use the FOB, it does not guarantee early exit. The early exit decision is

made by the TMEX algorithm as discussed in Section 2.4.2.

TMEX Algorithm

TMEX algorithm is used to make the final decision of early exit after FOB. Algorithm 1

shows the stepwise procedure followed to make the exit decision. As the template beat is cre-

ated from MI heartbeats, 1−|Corrcoeff | represents the correlation coefficient for the normal

heartbeats. Similarly, as we are using the sigmoid function at the output block, Classconf
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Algorithm 1: TMEX Algorithm
Input: Corrcoeff : Pearson Correlation Coefficient from the OBS
Input: Classconf : Classification confidence of the FOB
Output: Exitflag: Early exit decision

1 Constant Variables:
2 Corrth: Correlation Threshold used by OBS
3 Confth: Confidence Threshold for FOB
// For MI segments

4 if |Corrcoeff | ≥ Corrth and Classconf ≥ Confth then
5 Exitflag=True
6 end
// For Normal segments

7 else if 1− |Corrcoeff | ≥ Corrth and 1− Classconf ≥ Confth then
8 Exitflag=True
9 end
// To move to next convolution block

10 else
11 Exitflag=False
12 end
13 return Exitflag

represents the classification confidence for MI segments. Therefore, 1−Classconf represents

the classification confidence for normal segments. If both correlation co-efficient and clas-

sification confidence for either MI or normal segments are greater than the corresponding

thresholds, the algorithm decides to exit early. Otherwise, it proceeds to the next convolu-

tion block. The use of both the correlation coefficient and the confidence thresholds allows

us to overcome the limitations of traditional early exit architecture when the exit decision is

solely based on classification confidence. For example, if FOB misclassifies a segment with

high confidence it will exit after the FOB.

2.5 Experimental Setup

2.5.1 Database Used

We use two well known datasets – PTB diagnostic ECG database [56] and PTB-XL datastet

[61] from PhysioNet [62]. The PTB database contains MI data from 148 subjects and normal
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healthy control data from 52 subjects whereas the PTB-XL contains MI data from 5486

patients and healthy data from 9528 normal subjects. Each record includes 15 simultaneously

measured signals: the conventional 12 leads (i, ii, iii, avr, avl, avf, v1, v2, v3, v4, v5, v6)

together with the 3 Frank lead ECGs (vx, vy, vz). As our work is intended for the wearable

device we use the single lead ECG data. We use the 11th lead (v5) from PTB dataset and

2nd lead (II) from PTB-XL dataset, to ensure fair comparison with the related works on the

corresponding datasets. The signal in PTB and PTB-XL dataset is digitized at 1000 and

500 samples per second respectively. Table A.1 shows the summary of data distribution and

the specific lead used in each of the related works.

2.5.2 Performance Metric

As the number of segments for different classes in both the dataset is highly imbalanced,

only classification accuracy is not appropriate to measure performance. We use both the

sensitivity and specificity metric to ensure a fair comparison with our related works as shown

below:

Accuracy =
TP + TN

TP + FP + TN + FN
(2.1)

Sensitivity =
TP

TP + FN
(2.2)

Specificity =
TN

TN + FP
(2.3)

Where TP, TN, FP, FN represents True Positives, True Negatives, False Positives, and False

Negatives respectively. Sensitivity represents the true positive rate that measures the portion

of the positive class (MI segments) that is correctly classified. Similarly, specificity represents

the true negative rate that measures the portion of the negative class (Normal segments)

that is classified correctly.
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2.5.3 Training Multi-output CNN Classifier

To validate the performance of our Multi-output CNN classifier, we use data of 200 subjects

(52 Normal, 148 MI) from PTB [56]. A total of 62306 (51880 MI, 10426 Normal) heartbeat

segments are obtained after pre-processing steps from Lead 11 ECG data. The PTB dataset

is highly imbalanced since the number of MI segments is approximately 5 times the normal

segments. For the PTB-XL dataset data from 15014 subjects (9528 Normal, 5486 MI).

Unlike PTB, PTB-XL provides a specific distribution of train, validation, test subjects to

ensure a fair comparison of different related works. Thus, training and test data comes

from completely different subjects. After pre-processing steps, we obtained 136136 (83765

Normal, 52371 MI) train segments, 17186 (10536 Normal, 6650 MI) validation segments, and

17319 (10575 Normal, 6744 MI) test segments. The PTB-XL dataset is also imbalanced but

towards normal segments. To ensure proper training on the imbalance dataset, we assign

class weights to each class during training using the following formula in Eq. A.9.

wi =
1

Ni

∗ N
nc

(2.4)

Here, wi, and Ni represent the class weight and the number of segments belonging to class

i, respectively. N is the total number of segments from all classes and nc is the number of

output classes which is 2 in our case.

We train the classifier with a batch size of 500. The models are trained for 150 epochs and

select the model with minimum validation loss as the best one from those epochs. We use

Binary Crossentropy as the loss function for each output block. Adam optimizer is used

to train the models with a learning rate of .001. Similar to the related works in PTB, we

also perform stratified 5-fold cross-validation on the total data where 80% data (4 folds)

is used for training and 20% is used for testing. Moreover, 20% of the training data is

used validation during training. Stratified 5-fold cross-validation ensures each fold contains
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a similar distribution of data from each class. For the PTB-XL dataset, the model was

trained, validated, and tested using the provided distribution of train, validation, and test

subjects data.

2.5.4 Target Wearable Device

Our work is designed for low-power, low-memory wearable devices like SmartCardia [85].

For example, SmartCardia INYU [86] device is equipped with an ultra-low-power 32-bit

microcontroller STM32L151 containing an ARM Cortex–M3 with a maximum clock rate

of 32 MHz. It has 48 KB RAM, 384 KB Flash, and a standard 710 mAh battery. The

device captures ECG signals using a single lead ECG sensor [86]. Our solution applies to

any wearable device having the above or similar specifications.

2.6 Experimental Results and Analysis

2.6.1 Correlation and Confidence Threshold Analysis of TMEX

Architecture

The correlation threshold, Corrth of the output block selector (OBS), and the confidence

threshold, Confth of the first output block (FOB) play the most important role in our

TMEX architecture. Therefore, we conduct a detailed analysis of the different combinations

of these two thresholds and their impact on the early exit decision, performance and energy

efficiency. For the second output block, we always use the confidence threshold of 0.5 as it

is the last output block in our architecture. Tables 2.3 and 2.4 show the performance and

the different output blocks used to classify the segments of PTB and PTB-XL test dataset,

respectively. We have also analysed the execution time, power, energy, and associated energy
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Table 2.3: Correlation and Confidence Threshold Analysis of TMEX Architecture on PTB
Dataset

Work
OBS FOB Performance (%) Output Block Time Pwr. Energy Saved
Corrth Confth Acc. Sen. Spec. First Second (ms) (mW) (µJ) (%)

Baseline – – 99.33 99.25 99.74 0 62306 150.77 46.75 7048.49 0

E
a
rl
y
E
x
it

–

0.5 94.82 94.22 97.83 62306 0 110.50 44.76 4945.98 29.83
0.6 95.09 94.51 98.01 61860 446 110.81 44.77 4960.78 29.62
0.7 95.37 94.80 98.23 61379 927 111.15 44.78 4976.74 29.39
0.8 95.68 95.15 98.33 60691 1615 111.63 44.79 4999.59 29.07
0.9 96.12 95.65 98.47 59434 2872 112.50 44.81 5041.36 28.48

T
em

p
la
te

M
a
tc
h
in
g
B
a
se
d
E
a
rl
y
E
x
it

(T
M
E
X
)

0.5

0.5 98.85 99.06 97.78 39740 22566 126.24 45.16 5700.88 19.12
0.6 98.88 99.06 97.99 39494 22812 126.41 45.16 5709.18 19.00
0.7 98.92 99.07 98.21 39238 23068 126.59 45.17 5717.81 18.88
0.8 98.96 99.09 98.31 38855 23451 126.85 45.18 5730.74 18.70
0.9 99.00 99.11 98.45 38139 24167 127.35 45.19 5754.91 18.35

0.6

0.5 98.89 99.11 97.78 36097 26209 128.78 45.22 5823.93 17.37
0.6 98.92 99.11 97.99 35866 26440 128.94 45.23 5831.74 17.26
0.7 98.96 99.11 98.21 35618 26688 129.11 45.23 5840.13 17.14
0.8 98.99 99.12 98.33 35264 27042 129.36 45.24 5852.11 16.97
0.9 99.03 99.14 98.47 34598 27708 129.82 45.25 5874.65 16.65

0.7

0.5 99.06 99.15 98.60 30006 32300 133.02 45.33 6030.40 14.44
0.6 99.08 99.14 98.77 29814 32492 133.16 45.34 6036.92 14.35
0.7 99.11 99.15 98.94 29607 32699 133.30 45.34 6043.95 14.25
0.8 99.14 99.15 99.05 29304 33002 133.51 45.35 6054.25 14.11
0.9 99.16 99.16 99.16 28726 33580 133.92 45.36 6073.90 13.83

0.8

0.5 99.20 99.17 99.33 17723 44583 141.59 45.55 6449.55 8.50
0.6 99.20 99.16 99.40 17621 44685 141.66 45.55 6453.05 8.45
0.7 99.21 99.16 99.44 17509 44797 141.74 45.55 6456.88 8.39
0.8 99.23 99.17 99.52 17326 44980 141.87 45.56 6463.16 8.30
0.9 99.24 99.18 99.55 16952 45354 142.13 45.56 6475.98 8.12

0.9

0.5 99.22 99.13 99.71 1260 61046 153.07 45.84 7017.20 0.44
0.6 99.22 99.13 99.71 1256 61050 153.07 45.84 7017.33 0.44
0.7 99.23 99.13 99.72 1251 61055 153.08 45.84 7017.51 0.44
0.8 99.25 99.15 99.74 1241 61065 153.08 45.84 7017.85 0.43
0.9 99.26 99.16 99.74 1229 61077 153.09 45.84 7018.27 0.43

saving achieved by the TMEX architecture for different Corrth and Confth. The details of

the energy calculation is provided later in Section 2.6.6. As shown in Tables 2.3 and 2.4, the

increasing value of Corrth increase the performance while increasing the energy consumption

which in turn reduces the amount of energy saved by the TMEX architecture. This is because

the OBS selects more segments to be classified by the second output block which has better

performance but requires more energy. For each Corrth value, the same happens with the

increase of the Confth value. The performance increases at the cost of energy. This happens

as the TMEX algorithm does not allow early exit after FOB as it requires higher classification

confidence. Rather they are sent to the second output block which has better performance

and higher energy requirement. This is why the number of segments classified by FOB

decreases which increases the count for second output blocks. Tables 2.3 and 2.4 show that,
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Table 2.4: Correlation and Confidence Threshold Analysis of TMEX Architecture on PTB-
XL Test Data

Work
OBS FOB Performance (%) Output Block Time Pwr. Energy Saved
Corrth Confth Acc. Sen. Spec. First Second (ms) (mW) (µJ) (%)

Baseline – – 84.36 78.60 88.03 0 17319 150.77 46.75 7048.49 0

E
a
rl
y
E
x
it

–

0.5 84.12 74.02 90.55 17319 0 110.50 44.76 4945.98 29.83
0.6 84.15 74.32 90.42 17108 211 111.03 44.77 4971.17 29.47
0.7 84.18 74.57 90.32 16868 451 111.63 44.79 4999.84 29.07
0.8 84.16 74.96 90.03 16557 762 112.41 44.81 5037.01 28.54
0.9 84.05 75.37 89.59 16147 1172 113.44 44.83 5086.07 27.84

T
em

p
la
te

M
a
tc
h
in
g
B
a
se
d
E
a
rl
y
E
x
it

(T
M
E
X
)

0.5

0.5 84.08 74.87 89.95 12002 5317 123.84 45.10 5585.06 20.76
0.6 84.05 74.97 89.84 11904 5415 124.09 45.11 5596.92 20.59
0.7 84.09 75.22 89.75 11788 5531 124.38 45.11 5610.97 20.39
0.8 84.10 75.61 89.52 11617 5702 124.81 45.12 5631.69 20.10
0.9 84.05 76.11 89.11 11380 5939 125.40 45.14 5660.41 19.69

0.6

0.5 84.16 75.43 89.72 9854 7465 129.23 45.24 5845.81 17.06
0.6 84.11 75.53 89.58 9776 7543 129.42 45.24 5855.30 16.93
0.7 84.11 75.77 89.43 9685 7634 129.65 45.25 5866.38 16.77
0.8 84.06 76.11 89.13 9552 7767 129.99 45.26 5882.58 16.54
0.9 84.02 76.62 88.75 9355 7964 130.48 45.27 5906.59 16.20

0.7

0.5 84.21 75.98 89.47 6930 10389 136.56 45.42 6203.12 11.99
0.6 84.17 76.08 89.33 6881 10438 136.69 45.43 6209.14 11.91
0.7 84.16 76.29 89.18 6811 10508 136.86 45.43 6217.72 11.79
0.8 84.07 76.53 88.88 6710 10609 137.12 45.44 6230.12 11.61
0.9 84.05 77.00 88.55 6570 10749 137.47 45.45 6247.31 11.37

0.8

0.5 84.50 76.81 89.41 3948 13371 144.05 45.61 6570.35 6.78
0.6 84.47 76.93 89.28 3916 13403 144.13 45.62 6574.31 6.73
0.7 84.42 77.05 89.13 3869 13450 144.24 45.62 6580.12 6.64
0.8 84.31 77.19 88.84 3802 13517 144.41 45.62 6588.40 6.53
0.9 84.24 77.46 88.56 3707 13612 144.65 45.63 6600.15 6.36

0.9

0.5 84.55 77.65 88.95 1430 15889 150.36 45.77 6882.65 2.35
0.6 84.54 77.73 88.88 1414 15905 150.40 45.77 6884.64 2.32
0.7 84.51 77.77 88.80 1395 15924 150.45 45.78 6887.01 2.29
0.8 84.40 77.85 88.58 1354 15965 150.55 45.78 6892.11 2.22
0.9 84.30 77.91 88.38 1308 16011 150.67 45.78 6897.84 2.14

for Corrth=0.5 and Confth=0.5, our TMEX archiecture achieves the lowest performance

with the highest energy saving of 19.12% and 20.76% energy efficiency for the PTB and

PTB-XL test dataset, respectively. Conversely, for Corrth=0.9 and Confth=0.9, it achieves

the highest performance with lowest energy efficiency of 0.43% and 2.14% on the respective

datasets. This proves that there is a trade off between performance and energy efficiency for

different values of correlation and confidence thresholds. Therefore, our goal is to find out

the best combination of these two thresholds that maintains a similar performance of the

TMEX architecture as the baseline one while providing descent energy efficiency. As shown in

Tables 2.3 and 2.4, Corrth = 0.8 and Confth = 0.9 achieves the best performance considering

all three metrics while maintaining a decent energy efficiency of 8.12% and 6.36% for the

respective datasets. Therefore, we consider these two values for the correlation threshold
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of OBS and the confidence threshold of FOB in our TMEX architecture. However, TMEX

architecture provides flexibility to achieve more energy efficiency at the cost of performance

by choosing lower threshold values.

2.6.2 Performance Analysis of the Traditional Early Exit

To demonstrate the importance of the template matching based early exit architecture, we

analyze the performance of the traditional early exit where exit decision is made solely based

on the FOB confidence threshold. Tables 2.3 and 2.4 show the performance of traditional

early exit architecture for different confidence thresholds (Confth = 0.5 to 0.9). As the tables

show, the performance of traditional early exit increases with the increasing value confidence

thresholds from 0.5 to 0.9. For the PTB dataset in Table 2.3, the best performance of

traditional early exit architecture (for Confth = 0.9) is still lower than that of the lowest

performance of our TMEX architecture (for Corrth = 0.5, Confth = 0.5). And for the

PTB-XL test dataset in Table 2.4, our TMEX architecture starting from Corrth = 0.5 and

Confth = 0.8 or any combination upto 0.9, outperforms traditional early exit architecture.

However, traditional early exit architecture achieves higher energy efficiency while sacrificing

the performance. They achieve upto 29.83% of energy saving compared to the 19.12% and

20.76% for our TMEX architecture. On the other hand, TMEX architecture ensures similar

performance as the baseline while being as energy-efficient as possible.

2.6.3 Performance Analysis of the Other Dynamic Model Com-

pression Techniques

This section evaluates the performance of other dynamic model compression techniques on

our baseline architecture. As shown in Table 2.5, for all the dynamic compression techniques
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the performance of the baseline architecture decreases to some extent. For slimmable neural

network and dynamic pruning we have applied compression on the weights/neurons of the

two convolution layers and the dense layer was kept intact. This is because, compressing

dense layer causes even more performance degradation. For slimmable neural network, we

have considered two configurations. In the first configuration we have slimmed the lowest

magnitude filter kernel from the first convolution layer thus using only 2 of the 3 filter kernels.

Similarly, in the second configuration we have slimmed the lowest magnitude filter kernel

from the second layer thus using 7 of the 8 filter kernels. For dynamic weight pruning, we

have pruned 20% of the weights with lowest magnitude. And for dynamic neuron pruning

we have pruned 20% of the neurons with lowest magnitude. As shown in the Table 2.5, the

baseline performance drops significantly for both the slimming and pruning options. This

justifies the fact that our baseline architecture is already compact and does not have much

redundant weights/neurons to prune or slim. On the other hand, dynamic quantization

shows a better performance compared to pruning or slimming, as it does not change the

baseline architecture during inference. Rather, it just quantizes the network weights while

keeping the architecture intact. Similarly, traditional early exit architecture also suffers

from performance loss compared to baseline one. And TMEX architecture outperforms

other techniques while maintaining similar performance as the baseline one. It is to note

that, the dynamic model compression techniques are independent of each other and can

be used simultaneously. Our TMEX architecture can be implemented on a quantized and

pruned version of the baseline architecture. However, we chose to implement the TMEX

architecture on the baseline directly as other compression techniques reduce the baseline

performance significantly.
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Table 2.5: Performance Comparison with Dynamic Model Compression Techniques

Technique Configuration
PTB PTB-XL Test

Acc. Sen. Spec. Acc. Sen. Spec.

Baseline [Ours] – 99.33 99.25 99.74 84.36 78.60 88.03
TMEX [Ours] Corrth=0.8, Confth=0.9 99.24 99.18 99.54 84.24 77.46 88.56

Slimmable NN [78]
Filter: Conv1=2; Conv2=8 87.21 98.50 31.03 69.92 88.67 57.96
Filter: Conv1=3; Conv2=7 95.47 99.25 76.61 66.44 93.29 49.31

Dynamic Pruning [77]
Weight Pruning (20%) 95.77 98.97 79.84 84.20 76.52 89.10
Neuron Pruning (20%) 82.98 99.42 1.16 74.06 89.39 64.29

Dynamic Quantization[79] int8 97.33 97.05 98.72 83.53 76.01 89.69
Trad. Early Exit [57, 59] Confth=0.9 96.12 95.64 98.46 84.05 75.37 89.59

2.6.4 Performance Evaluation against Related Works on MI De-

tection

As shown in Tables A.1 and 2.7, our baseline architecture outperforms the related works

on MI detection for both PTB and PTB-XL datasets. For PTB dataset (Table A.1), our

baseline architecture achieves an accuracy of 99.33%, sensitivity of 99.25%, and specificity

of 99.74%. Our TMEX architecture shows a similar performance as the baseline one with an

accuracy, sensitivity, and specificity of 99.24%, 94.18%, 99.54%, respectively. Both baseline

and TMEX architectures significantly outperform the other state-of-the-art works [48–52]

in almost all three metrics. Moreover, SVM and RF models, in general, are not suitable

for wearable devices in terms of memory footprint which we will discuss in the next Section

2.6.5. The work [51] using deep CNN achieves comparatively better performance compared

to other wearable device solutions [49, 50, 52]. However, our work still outperforms [51]

Table 2.6: Performance Comparison of Related Works on PTB Dataset

Work
PTB Patient Classifier Performance (%)

Normal MI Lead Type Accuracy Sensitivity Specificity

[48] 52 148 11 k-NN 98.80 99.45 96.27

[49] 52 52 11
Full SVM 95 – –

2-level SVM 90 – –

[50] 52 52 11
Full RF 83.26 87.95 78.82

5-level RF 80.32 81.02 79.63
[51] 52 148 2 CNN 95.22 95.49 94.19
[52] 52 148 11 BCNN 90.29 90.41 90.16

[53] 52 148 11
Baseline CNN 98.03 97.26 98.82

Early Exit (Confth=0.99) 98.54 97.66 99.44

Ours 52 148 11
FOB CNN 94.82 94.22 97.83

Baseline CNN 99.33 99.25 99.74
TMEX (Corrth=0.8, Confth=0.9) 99.24 99.18 99.54

31



Table 2.7: Performance Comparison of Related Works on PTB-XL Dataset

Work
PTB-XL Patient Classifier Performance (%)

Normal MI Lead Type Accuracy Sensitivity Specificity

[55] 9528 5486 2 Deep LSTM 84.17 78.37 87.55

Ours 9528 5486 2
FOB CNN 84.12 74.02 90.55

Baseline CNN 84.36 78.60 88.03
TMEX (Corrth=0.8, Confth=0.9) 84.24 77.46 88.56

which is designed for clinical setups. The work [48] achieves the highest performance among

the related works with accuracy, sensitivity, and specificity of 98.80% and 99.45%, and

96.27% respectively. However, the k-NN classifier is only suitable for clinical set up as all

the training data should be loaded in the memory during the inference phase. The solution in

[53] is implemented for wearable devices and achieves a close performance to ours. However,

our architecture is much more energy-efficient than [53] which is detailed later in Section

2.6.6. As shown in Table 2.7, our baseline architecture also outperforms [55] on PTB-XL

dataset achieving an accuracy, sensitivity, and specificity of 84.36%, 78.60.36%, and 88.03%,

respectively. Our TMEX architecture shows a similar performance as the baseline one with

an accuracy, sensitivity, and specificity of 84.24%, 77.46%, 88.56%, respectively. Moreover,

the work [55] uses deep LSTM network which is not suitable for wearable devices.

2.6.5 Memory Footprint Evaluation on Real Hardware

We evaluate the memory footprint of all works mentioned in Table A.1 except for the work

[48] that uses k-NN classifier. The k-NN classifier is not suitable for wearable devices as

it requires all the training data to be loaded into the memory. For the machine learning

approaches in [49, 50] the reported memory footprint is for the feature extraction and clas-

sification process. For the deep learning approaches using CNN [51, 52], we evaluate the

memory footprint of the classification as it automatically extracts features during classifica-

tion.

The work [49] and [50] uses 2-level SVM and a 5-level RF classifier respectively. Both
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Figure 2.4: Variation of Model Size with Increasing Training Samples and Features

approaches have three major drawbacks in terms of memory. First , the model size of the

SVM and RF increases with the increasing amount of training data as well as the number

of features. Second , both of them need to have multiple models (2 for SVM and 5 for RF)

loaded into memory. Third , the feature extraction process for the full level SVM and RF

classifier requires a huge amount of memory.

To demonstrate an example of the first drawback, we train the SVM and RF models with

varying numbers of training samples. For SVM models, we train with both 5 (first level)

and 47 (second/full) features. For RF models we train with 5 and 72 features corresponding

to the first and fifth level classifiers in [50]. As shown in Figure 2.4, the size of the SVM

model increases linearly with the increasing number of training samples. The model size

also increases as the feature number increases from 5 to 47 for SVM. On the other hand,

the RF model is trained with 100 weak learners as used in [50]. Moreover, they also used a

variable-sized split for the RF where the tree grows until no further split is possible which

also increases the model size exponentially. In Figure 2.4, we demonstrate the change of the
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RF model size for both variable split and a fixed split of 20. As shown in Figure 2.4, the

size of the RF model for both variable and fixed split increases with the increasing number

of training samples as well as the increase of features from 5 to 72. Figure 2.4 shows that

the SVM, fixed split RF, and variable split RF model trained with 8000 samples will have a

model size of 185, 281, 896 KBs, respectively for only 5 features. For the same 8000 samples,

the SVM model size increases from 185 KB to 567 KB when the number of features increases

from 5 to 47. The same holds for the RF model with fixed and variable split as the number of

features increases from 5 to 72, the model size changes from 281 KB and 896 KB to 299 KB

and 1290 KB, respectively. Thus, both of these approaches are not suitable for low-memory

wearable devices.

Moreover, the work [49] requires 2 of the SVM models and the work [50] requires 5 of the RF

models to be loaded into the memory which gives us the perspective of the second drawback.

Besides, both the approaches in [49, 50] require a huge amount of memory for the feature

extraction process of their full level classifiers which brings us to the third drawback. We

demonstrate the third drawback using the RAM footprint for each level of the SVM and RF

classifier on the EFM32 Giant Gecko microcontroller which has 128 KB of RAM and 1 MB of

flash memory. As our goal is to evaluate the memory requirement for the feature extraction

of different levels of SVM and RF, we train the SVM with only 20 training samples and RF

with only 100 training samples so that they can fit within the 128 KB of RAM. Also, for

the RF model, we use only 10 weak learners with a fixed split of 10. As shown in Table 2.8,

both the full level classifier in [49] and [50] requires almost 83 MB of RAM making them

incompatible for wearable devices with lower memory.

One of the advantages of deep learning approaches in [51–53, 55] over the machine learning

ones in [49, 50] is that the classifier model size does not change with the number of training

samples. However, the memory requirement of the deep learning models still changes with

architecture size, parameters, and input segment size. For example, the 11 layers deep CNN
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Table 2.8: Memory Footprint and Energy Consumption Evaluation on EFM32 Giant
Gecko Development Board

Works
Classifier RAM Exe. Avg. Energy

Level Footprint (B) Time (ms) Power (mW) (µJ)

SVM[49]
First (5 Features) 78844 347.03 46.57 16161.18
Full (47 Features) Not Compatible: RAM Overflowed

RF[50]

First (5 Features) 78844 345.35 46.57 16082.94
Second (10 Features) 85948 3556.37 46.58 165655.71
Third (15 Features) 87316 7669.7 46.81 359018.65
Fourth (20 Features) 88132 8188.21 46.48 380588.00
Full (72 Features) Not Compatible: RAM Overflowed

CNN[51] - 114176 2036.82 46.97 95669.43
BCNN[52] - 3568 253.73 44.45 11278.29

CNN[53]
Baseline 15972 – – 28320

Early Exit (Confth=0.99) 15972 – – 28189
Deep LSTM[55] – Not Compatible: RAM Overflowed

CNN[Ours]

OBS 2612 3.18 44.98 143.04
FOB 11868 107.32 44.54 4780.03

Baseline 20160 150.77 46.75 7048.49
TMEX∗ (PTB) 20160 142.13 45.56 6475.98

TMEX∗ (PTB-XL Test) 20160 144.65 45.63 6600.15

∗TMEX energy measurements for Corrth=0.8, Confth=0.9. Measurements for other thresholds are

presented in Tables 2.3 and 2.4

architecture used in [51] requires 114 KB of RAM. Whereas the work in [52] focuses on low

memory wearable devices and requires only 3.5 KB of RAM. The approach in [52] focused

on memory and energy efficiency while sacrificing performance. Authors in [53] developed

wearable device solution with a RAM footprint of 15.97 KB. The deep LSTM architecture

used in [55] has more than fourteen thousand parameters and encounters RAM overflow.

Table 2.8 shows the RAM footprint our baseline architecture is 20 KB. The OBS requires

only 2.61 KB of RAM (which is less the 20 KB) without adding any extra memory overhead.

The RAM footprint of our TMEX architecture is also 20 KB which is the maximum of RAM

footprints of the output block selector and each of the output blocks. Thus, our proposed

baseline and TMEX CNN architecture are compatible with any device with a minimum

RAM of 32 KB.
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Figure 2.5: Comparison of Energy Consumption w.r.t Baseline Classifier

2.6.6 Energy Consumption Evaluation on Real Hardware

Evaluation of energy consumption is conducted on the same EFM32 Giant Gecko microcon-

troller as used for memory evaluation. The energy measurement is done using the integrated

energy profiler [87] of the Simplicity Studio IDE for the EFM32 boards. While measuring

the energy, the board is set to active/run mode (EM0-Energy Mode 0) with a clock speed of

48 MHz. To ensure a fair comparison, the same configuration is used for measuring the en-

ergy of all the state-of-the-art work implementations. For the machine learning approaches

[49, 50], the energy for the feature extraction and classification are calculated. For deep

learning ones using CNN, we evaluate the classification energy only as they automatically

extract features during classification. The energy for the TMEX architecture is calculated

through the summation of the products between the ratios segments classified by each output

block and the corresponding energy consumption for that block. For the energy evaluation

of work [49], we train the SVM classifier with only 20 training samples to just fit the trained

model in the memory. Similarly, the RF classifier in [50] is trained with only 100 training

samples, 10 weak learners with a fixed split of 10 just to fit the model into the RAM. The

detailed analysis of execution time, power, and energy for one heartbeat segment are shown

in Table 2.8.

Figure 2.5 shows a summary of the energy consumption of various works reported in Table
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2.8. The results are normalized with respect to the energy consumption of our baseline

CNN classifier. As shown in Figure 2.5, RF first, second, third, and fourth level classifiers

in [50] consumes 1.28×, 22.50×, 49.93×, and 52.99× more energy compared to our baseline

classifier. All the 20 features calculated in RF fourth level are the same as the first 20 features

out of the 47 features in full SVM classifier of [49]. This indicates that the full SVM and RF

classifiers will consume much more energy compared to our baseline classifier. Even the first

level SVM classifier in [49] consumes 1.29× more energy compared to our baseline classifier.

It is to be noted that we used a small number of training samples to train the SVM and RF

models to keep the model size small. The energy consumption of SVM and RF classifiers,

like the model size, will increase with the increase of training samples. The BCNN [52]

which has the lowest energy consumption among the related works also consumes 60% more

energy than our baseline classifier. The work [51] using CNN classifier consumes 12.57×

more energy than the baseline one. The work [53] is designed for wearable devices and still

consumes 3.01× more energy than ours. The early exit version of [53] also consumes 2.99×

more energy than ours. It is to note that the early exit version of [53] does not provide

any significant energy saving from its baseline. This is because they used a confidence

threshold of 0.99 which probably causes most of the segments to be classified by the baseline

architecture. That is why the performance of the early exit is also similar to the baseline

(as shown in Table A.1) as it hardly uses the early exit option. On the other hand, our

TMEX architecture (for Corrth=0.8, Confth=0.9) for PTB-XL and PTB dataset consumes

6.36% and 8.12% less energy compared to our baseline architecture as shown in Figure 2.5.

Moreover, for lower correlation and confidence threshold values our TMEX architecture can

achieve upto 19.12% (PTB) and 20.76% (PTB-XL) energy efficiency while sacrificing some

performance (but still outperforming the traditional early exit strategy).
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Table 2.9: Performance and Resource Consumption Analysis of the Baseline Architecture
W/O Resampling

Dataset Baseline
Performance (%) Param FLOP Time Energy RAM

Acc. Sen. Spec. Count Count (ms) (µJ) (Bytes)

PTB
W/O Resampling 99.35 99.43 98.92 1429 212665 446.82 21188.2 101760

With Resampling 99.33 99.25 99.74 533 43489 150.77 7048.49 20160

PTB-XL
W/O Resampling 83.42 77.12 87.44 829 99865 224.40 10598.41 44880

With Resampling 84.36 78.60 88.03 533 43489 150.77 7048.49 20160

2.6.7 Ablation Study of the Segment Resampling

We perform an ablation study without resampling the segment for our baseline architecture

to demonstrate the efficacy of the segment resampling in our proposed methodology. As

mentioned in Section 2.4.1, before resampling there are 600 and 300 samples in a heartbeat

segment for PTB and PTB-XL dataset, respectively. Therefore, we trained our baseline

architecture as discussed in Section 3.4.2 with an input size of 600 and 300 samples instead

of 150. As shown in Table 2.9 for PTB dataset, the accuracy, sensitivity, and specificity of

our baseline architecture with resampling is very similar to that without resampling. This

shows that resampling a segment from 600 samples to 150 does not cause any significant per-

formance loss. Rather, resampling reduces the parameter and FLOP count of the baseline

architecture by 2.68× and 4.89×, respectively as shown in Table 2.9. This in turn makes

the inference time 2.96× faster requiring 3.01× less energy. Moreover, resampling reduces

the memory footprint by 5.05× thus making the baseline architecture memory-efficient. For

PTB-XL dataset, our baseline architecture with resampling outperforms the one without

resampling as shown in Table 2.9. Also, it reduces the – parameter count, FLOP count,

inference time, energy consumption, and memory footprint of the baseline architecture by

1.56×, 2.30×, 1.49×, 1.50×, and 2.23×, respectively. The ablation study shows that resam-

pling in our methodology helps to achieve energy and memory efficiency without significant

performance loss making it suitable for resource constraint wearable devices.
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2.7 Summary

This chapter proposes an energy-efficient methodology for real-time MI detection on wear-

able devices using a Convolutional Neural Network (CNN). It involves novel pre-processing

of the heartbeat segments to reduce the sample size that allows the baseline CNN to outper-

form the state-of-the-art works for two different datasets - PTB and PTB-XL, while being

energy and memory-efficient. Moreover, we also propose a Template Matching based Early

Exit (TMEX) CNN architecture that further increases the energy efficiency compared to

baseline architecture while maintaining similar performance. On PTB dataset, our baseline

and TMEX architecture achieve 99.33% and 99.24% accuracy, whereas on PTB-XL dataset

they achieve 84.36% and 84.24% accuracy, respectively. Evaluation on real hardware shows

that our baseline architecture achieves from 0.6x to 53x more energy efficiency while out-

performing state-of-the-art works on wearable devices. Moreover, our TMEX architecture

further achieves 8.12% (PTB) and 6.36% (PTB-XL) more energy efficiency compared to the

baseline architecture while maintaining similar performance. To the best of our knowledge,

the baseline and TMEX architecture of our methodology achieve the best performance on

wearable devices while being energy-efficient with a RAM footprint of only 20 KB.
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Chapter 3

Energy-efficient Human Activity

Recognition in Low-power Wearable

Devices

3.1 Abstract

Human Activity Recognition (HAR) is one of the key applications of digital health that re-

quires continuous use of wearable devices to track daily activities. This chapter proposes an

Adaptive CNN for energy-efficient HAR (AHAR) suitable for low-power edge devices. Un-

like traditional adaptive (early-exit) architecture that makes the early-exit decision based on

classification confidence, AHAR proposes a novel adaptive architecture that uses an output

block predictor to select a portion of the baseline architecture to use during the inference

phase. Experimental results show that traditional adaptive architectures suffer from perfor-

mance loss whereas our adaptive architecture provides similar or better performance as the

baseline one while being energy-efficient. We validate our methodology in classifying loco-
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motion activities from two datasets- Opportunity and w-HAR. Compared to the fog/cloud

computing approaches for the Opportunity dataset, our baseline and adaptive architecture

shows a comparable weighted F1 score of 91.79%, and 91.57%, respectively. For the w-HAR

dataset, our baseline and adaptive architecture outperforms the state-of-the-art works with

a weighted F1 score of 97.55%, and 97.64%, respectively. Evaluation on real hardware shows

that our baseline architecture is significantly energy-efficient (422.38x less) and memory-

efficient (14.29x less) compared to the works on the Opportunity dataset. For the w-HAR

dataset, our baseline architecture requires 2.04x less energy and 2.18x less memory compared

to the state-of-the-art work. Moreover, experimental results show that our adaptive architec-

ture is 12.32% (Opportunity) and 11.14% (w-HAR) energy-efficient than our baseline while

providing similar (Opportunity) or better (w-HAR) performance with no significant memory

overhead. The findings in this chapter have been published in [88].

3.2 Introduction

Human Activity Recognition (HAR) applications are useful tools for health monitoring,

fitness tracking, and patient rehabilitation [89–91]. Since the HAR applications need con-

tinuous sensor data to infer user activity, advances in sensor technology [92] have enabled

wide adoption of HAR applications in daily life. Smartphones have been significantly used

for HAR in the past decade [93–95]. However, this kind of solution requires the user to con-

tinuously carry the phone which causes inconvenience. Moreover, the smartphone solutions

consume higher energy in the range of watts [96] which may hinder the primary use of the

phones reducing the battery life.

Therefore, wearable devices have gained much popularity for HAR applications [97]. More-

over, the use of wearable devices enable remote monitoring of patients suffering from critical

diseases like movement disorders in Parkinson’s disease [91]. However, most of the solutions
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Figure 3.1: Shift from cloud computing to edge computing architecture

[98–106] using wearable devices follow a fog/cloud computing approach as shown in Figure

3.1. The collected data from wearable devices are sent over Bluetooth to a mobile phone

(fog) [44] or remote server (cloud) where all the processing and classification takes place.

The daily use of these devices generates vast amounts of raw data, and sending them over

Bluetooth entails higher energy consumption [97]. Additionally, it also introduces latency,

which is unsuitable for real-time monitoring. Moreover, passing the raw data to a mobile

phone makes the users’ data vulnerable to privacy breaches. Many researchers [107] fol-

lowed a hierarchical approach where some simple activities are classified on the device where

complex ones are transmitted over to the fog/cloud. Although this kind of solution saves

computational energy to some extent, it still suffers from latency and privacy issues. Con-

sequently, researchers shifted to an alternative architecture to overcome these limitations,

which is called ‘edge computing’ [108], where all the processing is done on the device itself

[52, 109]. Therefore, it reduces the energy consumption, latency, and vulnerability of privacy

breaches. Figure 3.1 illustrates the shift from cloud to edge computing architecture.

The small form factor of wearable devices imposes three constraints on the processing al-

gorithms as shown in Figure 3.1. The algorithms should consume low-energy, execute with
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Table 3.1: Difference between Baseline and Adaptive Architecture for HAR Dataset

Architecture

Output % of # of Correct Total Total Total

block total total classification FLOP exec. time energy

used segments segments (%) count (ms) (µJ)

Baseline Second 100 4740 97.60 35,905,500 152,011.80 2,316,627.60

Adaptive

First 97.13 4604 95.06 26,606,516 121,361.44 1,849,564.92

Second 2.87 136 2.87 1,030,200 4,361.52 66,468.64

Overall 100 4740 97.93 27,636,716 125,722.96 1,916,033.56

Total saving due to adaptive architecture 8,268,784 26,288.84 400,594.04

Average saving per segment due to adaptive architecture 1,744.47 5.55 84.51

0% 25% 50% 75% 100%

16 (.33%) Segments 
Correctly Classified 

by First Output 
Block Only

4490 (94.73%) 
Segments Correctly 
Classified by Both 

Output Block

136 (2.87%) 
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Classified by Second 
Output Block Only

98 (2.07%) Segments 
Incorrectly 

Classified by Both 
Output Block

Figure 3.2: Blockwise multi-output CNN architecture performance breakdown

minimum-memory, and provide maximum performance within the previous two constraints.

State-of-the-art works on HAR are mostly intended for fog/cloud platform where they use

complex machine learning [98–100] and deep learning algorithms [101–106] to achieve high

performance. They prioritize performance over the other two constraints, hence are not

wearable device compatible. Machine learning algorithms perform classification based on

the extracted features from the data which is often time and energy consuming, whereas,

wearable device solutions should be fast and energy-efficient. Deep learning algorithms using

Convolutional Neural Networks (CNN) [65, 110] have an advantage in this regard as they

automatically extract features through convolution and do not require manual feature en-

gineering or extraction. However, such deep networks require higher energy, memory, and

execution time as they use a large number of layers. Therefore, for wearable device solutions

CNN should be designed in such a way that satisfies the energy and memory constraints

while maintaining reasonable performance. As CNN works in layers, it provides the flexi-
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bility to design a network by adding or removing layers as necessary in the training phase

which is used to classify data during the inference phase. However, the full architecture from

the training phase may not be needed at the inference phase as many of the data may be

correctly classified using only the first few layers of the architecture. Therefore, if we use a

portion of the network as needed, it will help to avoid redundant operations of the CNN ar-

chitecture leading to energy efficiency while maintaining the performance. This technique is

called adaptive (early-exit) or Conditional Deep Learning Network (CDLN) architecture and

was adopted by many researchers [57, 58] for image classification or computer vision applica-

tions. The traditional adaptive architectures or CDLN makes the early-exit decision based

on the classification confidence at each output (exit) layer. If the classification confidence of

an output layer for a particular class exceeds a threshold they exit the network. However,

such architectures may suffer from performance loss than the baseline architecture when the

earlier layer misclassifies a segment with higher confidence which is demonstrated later in

Table 3.2. Therefore, implementing adaptive architecture based on classification confidence

does not ensure similar performance as the baseline. This motivates us to propose an adap-

tive architecture that uses an output block predictor to make the early-exit decision which

will ensure similar or better performance as the baseline while providing energy efficiency.

Sections 3.2.1 and 4.4 provide a motivational example along with the observation to support

our proposed adaptive architecture.

3.2.1 Motivational Example

To demonstrate the advantage of an adaptive architecture we have conducted a small exper-

iment. We have created a multi-output CNN architecture with 2 convolution blocks and 2

output blocks. One output block is used after each of the convolution blocks so that we can

exit the architecture after any convolution block at the inference phase. The first convolu-

tion block consists of one convolution layer, one pooling layer, and one batch normalization
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Figure 3.3: Blockwise statistics of multi-output CNN architecture

layer. The second convolution block consists of one convolution and one batch normalization

layer only. The output blocks contain either one or two dense layers which represents the

output layer. The details of the multi-output CNN architecture is provided in Section 3.4.2.

Throughout the rest of this chapter, the first output block (FOB) is used as the portion of

the CNN model that uses the first convolution block. The second output block is referred

to as the CNN architecture that uses two blocks of convolution which is the baseline archi-

tecture. We performed a 5-fold cross-validation of the multi-output CNN architecture with

4740 activity segments from the w-HAR dataset [111]. Figure 3.2 shows the Venn diagram

for the multi-output CNN architecture performance where 94.73% are correctly classified

by both the FOB and baseline architecture. Only 0.33% and 2.87% of the segments are

correctly classified by the FOB and baseline architecture respectively. Rest 2.07% segments

are incorrectly classified by both of them. Figure 3.3a shows the blockwise performance

breakdown. We find that the accuracy of the multi-output CNN architecture after the FOB,

and baseline architecture are 95.06%, and 97.60%, respectively. Figure 3.3b shows the cor-

responding number of Floating Point Operations (FLOP) necessary to classify one activity

segment after the FOB, and baseline architecture which are 5,799, and 7,575, respectively.

Figure 3.3c shows the amount of execution time required to classify one activity segment on

target wearable platform after FOB, and baseline architecture which are 26.36 µJ, and 32.07

µJ, respectively. Figure 3.3d demonstrates the amount of energy required to classify one
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activity segment on target wearable platform after FOB, and baseline architecture which are

401.73 µJ, and 488.74 µJ, respectively.

3.2.2 Observation and Problem Statement

Figure 3.3 demonstrates that the FLOP counts, execution time, and energy increases as

performance increases from the first to second output block. To get a better performance,

one would choose the second output block as the baseline architecture (as in our case) at

the cost of increased energy. However, Figure 3.2 shows that 94.73% (4490) segments that

are correctly classified by the baseline architecture are also correctly classified by the FOB.

Therefore, using the baseline architecture for those segments would be redundant. If we can

avoid these redundant operations, we can easily save some inference time and energy of the

wearable devices. Therefore, instead of using a fixed baseline architecture, it would be energy-

efficient if we could adaptively decide at the inference phase up to which output block we

should use. As shown in Figure 3.2, if we could adaptively use the FOB to classify the 95.06%

(4490+16=4506) segments and use the baseline only for the 2.87% (136) segments, overall

accuracy (97.93%) would be greater than that of the baseline architecture (97.60%) at a much

lower energy consumption. Table 3.1 shows the theoretical breakdown of the performance,

FLOP counts, execution time and energy of the adaptive architecture considering the FOB is

also used for the 2.07% (98) segments those are misclassified by both output block. Table 3.1

demonstrates that using adaptive architecture, theoretically we can save a total of 8,268,784

FLOPs, 26,288.84 ms of execution time and 400,594.04 µJ of energy for 4740 segments.

On average for each segment, we can save 1,744.47 FLOPs, 5.55 ms of execution time, and

84.51 µJ of energy using an adaptive architecture compared to the baseline architecture.

In summary, an adaptive architecture would provide a much more energy-efficient solution

than a baseline architecture while providing better or similar performance that is suitable

for low-power wearable edge devices. On the other hand, traditional adaptive architectures
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Table 3.2: Performance of CDLN for different FOB confidence threshold

Method Weighted F1 Accuracy Precision Recall

CDLN (th = 0.5) 94.49 95.06 94.87 95.05
CDLN (th = 0.6) 94.71 95.25 95.09 95.24
CDLN (th = 0.7) 94.93 95.42 95.31 95.41
CDLN (th = 0.8) 95.01 95.48 95.37 95.47
CDLN (th = 0.9) 95.23 95.68 95.59 95.67
Baseline [Ours] 97.55 97.60 97.57 97.60
Adaptive [Ours] 97.64 97.70 97.69 97.70

or CDLN suffer from performance loss as the earlier layer misclassifies a segment with higher

confidence and ends up exiting the network wrongly. As shown in Table 3.2, the performance

of CDLN for various confidence thresholds at FOB. The maximum performance of CDLN

is achieved for the confidence threshold of 0.9 which is still much less than our baseline

architecture. Therefore, our adaptive architecture uses an output block predictor (instead of

classification confidence) to make the early-exit decision. Table 3.2 shows that our adaptive

architecture not only outperforms the traditional CDLN but also the baseline architecture

for all performance metrics. It shows the efficacy of our adaptive architecture over traditional

CDLN.

3.2.3 Novel Contributions

The novel contributions of this chapter are as follows:

• A novel Adaptive CNN architecture for HAR (AHAR) that uses an output block

predictor to select a portion of the baseline architecture as needed during the inference

phase. To the best of our knowledge, we are the first to investigate such an adaptive

CNN architecture for HAR application.

• Evaluation of our methodology in classifying locomotion activities from Opportunity

[112] and w-HAR [111] dataset. In comparison to the fog/cloud computing approaches

47



on the Opportunity dataset, both our baseline and adaptive architecture shows a com-

parable weighted F1 score of 91.79%, 91.57% respectively. For the w-HAR dataset,

both our baseline and adaptive architecture outperforms the state-of-art-work with a

weighted F1 score of 97.55% and 97.64%, respectively.

• Evaluation on real hardware shows that our baseline architecture is significantly energy-

efficient (422.38x less) and memory-efficient (14.29x less) compared to the works on

Opportunity dataset. For w-HAR dataset, our baseline architecture requires 2.04x

less energy and 2.18x less memory compared to the state-of-the-art work on wearable

devices.

• Experimental validation show that our adaptive architecture is 12.32% (Opportunity)

and 11.14% (w-HAR) energy-efficient than our baseline while providing similar (Op-

portunity) or better (w-HAR) performance with no significant memory overhead.

3.3 Related Works

3.3.1 Works on Human Activity Recognition

The main goal of this chapter is to propose a wearable device solution for classifying loco-

motion activities. Therefore, to validate our proposed methodology, we have considered the

Opportunity [112] and w-HAR [111] datasets that has labeled locomotion data from wearable

devices. Accordingly, we will discuss and compare against the works mentioned in Table 3.3

that have used either of these two datasets for classifying the locomotion activities.

As shown in Table 3.3, works [99, 104–106] have used Opportunity dataset for classifying

4 locomotion activities - Stand, Walk, Lie, Sit. In [99] the authors proposed an activity-

recognition algorithm based on the random forest classifier by extracting 4086 features which

48



Table 3.3: Summary of Related Works

Work
Data # of Classifier

Adaptive
Computing

used chan. used platform

[99] Opp. 117 RF (n=[40,95]) No Fog/Cloud
[104] Opp. 113 CNN, LSTM No Fog/Cloud
[105] Opp. 6 2-D CNN No Fog/Cloud
[106] Opp. 113 Deep CNN No Fog/Cloud
[109] w-HAR 4 SVM, DT, NN No Edge
Ours Both 7 DT, 1-D CNN Yes Edge

Opportunity (Opp.)

Figure 3.4: Overview of our proposed AHAR methodology

are from both time and frequency domain. They achieve a weighted F1 score of 90%. Authors

in [104] use deep CNN architecture composed of 4 convolutional and 2 LSTM recurrent layers

and achieves a weighted F1 score 93%. The work in [105] achieves an weighted F1 score of

92.57% using a two dimensional CNN architecture. Finally, the work in [106] used a CNN

architecture that combines temporal and spatial convolutions to extract appropriate features

to make it suitable for mobile devices. Their solution achieves a weighted F1 score of 92.5%.

On the other hand, the work in [109] used w-HAR dataset to propose a baseline and an

activity-aware classifier for classifying 8 locomotion activities in wearable devices. The base-

line and activity-aware classifier achieves an weighted F1 score of 94.96% and 97.37% respec-

tively. The baseline architecture uses 120 statistical and frequency domain features whereas

the activity-aware classifier works in hierarchical order. First, it classifies the activities as

static (Lie down, Sit, Stand) or dynamic (Jump, Walk, Stairs down, Stairs up, Transition)

by feeding 8 statistical features (mean, variance, minimum, maximum) to a support vector
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machine (SVM) classifier. Then, if the activity is classified as static, a decision tree is used

to classify it further with the same statistical features. Otherwise, the other 112 frequency

domain features (FFT) are extracted and together 120 features are fed to a neural network

(NN) to classify dynamic activities. Table 3.3 shows a summary of the related works.

3.3.2 Energy-efficient CNN Design Approaches

The deep architecture of CNN with hundreds of layers are very computationally expensive

and not suitable for energy and memory constraint wearable devices. Therefore, different

approaches have been introduced in the literature to make it energy and memory-efficient

while maintaining similar or competitive performance. Such approaches can be broadly

classified into two categories - 1) Software-based approach, 2) Hardware-based approach.

The software-based approaches can be further classified into 2 phases - 1) Offline or training

phase, 2) Online or inference phase. The software-based approaches in the training phase can

be broadly divided into 3 types - a) Neural Architecture Search (NAS), b) Network Pruning,

c) Model Compression. NAS looks for optimum network parameters from a search space

using reinforcement learning [67] or gradient-based methods [68] or multi-objective bayesian

optimization [113–115]. Network pruning performs random pruning of a portion of the big

network, retraining it, and repeating the process until it achieves the desired performance

[73]. Finally, model compression involves binarization [74] or quantization [75] of network

weights to reduce the model size to make it memory-efficient. Another model compression

technique is knowledge distillation where a smaller network (student model) is taught, step

by step, exactly what to do using a bigger already trained network (teacher model) [116].

Regardless of the methods used, the final model from the training phase is considered as the

baseline classifier to be used at the inference phase.

Software-based approach designed for the inference phase is called adaptive (early-exit) or
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Conditional Deep Learning Network (CDLN) architecture [57, 58]. If the input data is

classified with enough confidence after a convolutional layer then it considers that as the

final class without further proceeding to the next layers of convolution. However, they may

suffer from performance loss if the earlier layer misclassifies a segment with higher confidence

and exits the network wrongly.

It is to note that, the software-based approaches from the training and inference phase are

independent of each other and they can be applied together as well. For example, during

the inference phase, one can apply the early-exit mechanism to a baseline architecture that

has been finalized at the training phase by using any of the NAS, network pruning, or model

compression techniques.

Hardware-based approaches usually focus on the design of custom hardware such as accelera-

tors which are specifically designed for CNN [80, 81]. The main goal is to make the inference

phase faster thereby making it more energy-efficient.

In this chapter, we mainly focus on the inference phase of the software-based approach which

allows early-exit. However, unlike the related works [57, 58], we propose a novel adaptive

CNN architecture that uses an output block predictor (instead of classification confidence)

to make the early-exit decision without any performance loss. To the best of our knowledge,

we are the first to investigate such an adaptive CNN architecture for HAR application.
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3.4 Proposed Methodology

3.4.1 Pre-processing Steps

Filtering

As shown in Figure A.15, the pre-processing starts with the denoising and smoothing. Raw

data is filtered using a moving average filter with a window of 8 samples to smoothen it.

Then the filtered data is segmented.

Segmentation

As the data from different datasets varies, we apply different segmentation technique for

two datasets used in this chapter. For the Opportunity [112] dataset, the segmentation of

filtered data is done using a sliding window of 100 samples with 70% overlap. As the data is

collected at a sampling rate of 30 Hz, each segment of data captures 3.33 seconds of data. For

the w-HAR [111] dataset, we follow the dynamic segmentation technique based on five-point

derivative on the stretch sensor data as mentioned in [109]. The details of the datasets are

given in Section 3.5.1.

Downsampling

Once segmented, we downsample each segment to 32 samples. Downsampling helps in two

ways - 1) Lower number of samples in a segment requires less computation for the CNN

architecture which makes the solution energy-efficient. 2) Downsampling to a fixed number

of samples also helps when we perform dynamic segmentation as CNN requires a fixed size

for the input segments.
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Calculating Statistical Features

Next, we extract simple statistical features for each segment to be used by our output block

predictor to implement our adaptive CNN architecture. The details of the output block

predictor is given in Section 3.4.2. We have used a minimum number of features to en-

sure minimal overhead for our adaptive architecture. For the segments in the Opportunity

dataset, we extract 4 features (mean acceleration along X and Z axis, minimum and max-

imum value of angular velocity along Z axis). For the segments in w-HAR dataset, we

extract 6 features (mean acceleration along X and Z axis, minimum and maximum of gyro-

scope value along Z axis, minimum and maximum of Stretch sensor value). These extracted

features will be used by our output block predictor to decide which output block to be used

at the inference phase to classify a particular segment.

Z-score Normalization

Before passing the downsampled segments to our multi-output CNN architecture, we nor-

malize each segment using Z-score normalization (Eq. 3.1) to reduce the effect of any outlier

samples in the corresponding segments.

Zi =
Xi − X̄

S
(3.1)

For a particular segment, Zi is Z-score value of the ith sample Xi whereas, X̄ and S are the

mean and standard deviation of the samples in that segment.
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3.4.2 Adaptive CNN Architecture

Our designed adaptive CNN architecture consists of two parts - 1) Multi-output CNN archi-

tecture that classifies the segments of activity, 2) Output block predictor that decides which

output block of the multi-output CNN architecture is to be used at inference phase based

on some statistical features of each segment.

Multi-output CNN Architecture

As our target platform is the low-power edge devices, we design the multi-output CNN

architecture considering the resource constraints of the wearable devices. Our multi-output

CNN architecture consists of 2 convolution blocks and 2 output blocks. Each convolution

block is followed by one output block. Figure 3.5 shows the architecture layout of our multi-

output CNN architecture. The first convolution block consists of one convolution layer

which is passed through Leaky-ReLU activation, one average-pooling layer, and one batch

normalization layer whereas the second convolution block has one convolution layer which is

passed through Leaky-ReLU activation, and one batch normalization layer. The first output

block consists of one flattening layer, and one dense layer which is passed through Softmax

activation. The second output block consists of one flattening layer, and 2 dense layers which

are followed by the Softmax activation as well. The details of the architecture parameters

for each of the layers are given in Table 3.4. As shown in Table 3.4, the total number of

parameters required to classify a segment after first output block (FOB) and second output

block (baseline architecture) is 240+(31*nc), and 744+(17*nc), respectively where nc is the

number of output classes. For the Opportunity dataset, we have 4 output classes and for

the w-HAR dataset, we have 8 output classes.
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Figure 3.5: Multi-output CNN architecture layout

Output Block Predictor (OBP)

The output block predictor (OBP) is very crucial for our adaptive CNN architecture as

the performance of the adaptive architecture greatly depends on the OBP. The better the

performance of the OBP is, the better the performance of our adaptive architecture will be.

We use a decision tree as our OBP to decide which output block to be used at the inference

phase based on the statistical features for each segment. Therefore, instead of using the

baseline architecture (second output block) to classify all the segments, we will adaptively

use FOB or baseline based on the decision of output block predictor. This will help to avoid

unnecessary computation up to the second output block of baseline architecture as some

of the segments might be correctly classified just after FOB. As the goal of our adaptive

architecture is to ensure energy efficiency compared to the baseline architecture, the OBP
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Table 3.4: Multi-output CNN Architecture Details

Layer Kernel Stride Act. Output # of
name size size func. shape param.

Input - - - 32x7 0
Conv 1 5 3 LR 10x6 216
Pool 1 2 2 - 5x6 0
BN 1 - - - 5x6 24
Flat 1 - - - 30 0
Dense 1 - - SM nc 31*nc

Conv 2 4 1 LR 2x8 200
BN 2 - - - 2x8 32
Flat 2 - - - 16 0
Dense 2 - - LR 16 272
Dense 3 - - SM nc 17*nc

Number of parameters after FOB 240+(31*nc)
Number of parameters after baseline architecture 744+(17*nc)

Batch Normalization (BN), Leaky-ReLU (LR), Softmax (SM)

should be designed in such a way that satisfies the following constraint:

[N × Epred +N1 × E1 +N2 × E2] < [N × E2] (3.2)

Where Epred, E1, E2 is the amount of energy - for the OBP and the FOB, and baseline

architecture respectively. N1, and N2 are the number of segments that are classified by the

FOB, and baseline architecture, respectively where, N1 + N2 = N . Equations 3.2 ensures

that the total amount of energy needed to classify N segments using adaptive architecture

should be less than that of the baseline one.
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3.5 Experimental Setup

3.5.1 Datasets

Opportunity Dataset [112]

Opportunity dataset contains multimodal data from different wearable, object, and ambient

sensors to benchmark the works on human activity recognition. The dataset contains a total

of 6 hours of recording from 4 subjects. Each subject performs five sessions of Activities

of Daily Living (ADL) and a drill session. The dataset is labeled for different gesture and

locomotion activities. In our work, we use the locomotion activities (Stand, Walk, Sit, Lie

down) as our goal is to propose a wearable device solution that can classify the locomotion

activities on the device itself. Therefore, we use only 7 channels of data in total where 3

channels (accX, accY, accZ ) are from accelerometer on the upper right knee and the other

4 channels (AngVelBodyFrameX, AngVelBodyFrameY, AngVelBodyFrameZ, Compass) are

from the Inertial Measurement Unit (IMU) on the right shoe. The channels are selected as

they are suitable for designing a wearable device where the sensors are in close proximity

while collecting maximum information with minimum channels. All the data are collected

at 30 Hz from all the sensors.

w-HAR Dataset [111]

w-HAR dataset contains wearable sensor data using IMU and stretch sensors from 22 subjects

while performing 7 different locomotion activities (Jump, Lie down, Sit, Stairs down, Stairs

up, Stand, Walk). Additionally, they also labeled the Transition between the activities. The

dataset has 7 channels of data where 6 channels (Ax, Ay, Az, Gx, Gy, Gz ) are from the IMU

on the right ankle and 1 channel (Stretch value) is from the stretch sensor on the right knee.
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Table 3.5: Data Labeling Mechanism for Output Block Predictor

Cases FOB Baseline Assigned label

Both ✓ ✓ 1
FOB only ✓ × 1

Baseline only × ✓ 2
None × × 1

We use all 7 channels from this dataset as it is targeted towards wearable device design for

locomotion activities. The IMU data is collected at 250 Hz and the stretch sensor data is

collected at 25 Hz.

3.5.2 Training Multi-output CNN Classifier

As mentioned above, we train and test our multi-output CNN classifier on two different

datasets. To ensure a fair comparison with the related works on locomotion activity recog-

nition from the Opportunity dataset, we use similar distribution of training, testing and

validation data as provided in the Opportunity challenge. Therefore, for training data we

use - ADL1, ADL2, ADL3, ADL4, ADL5, DRILL data from subject 1; ADL1, ADL2, DRILL

data from subject 2 and 3. The ADL3 data from subject 2 and 3 is used for validation. Fi-

nally, the classifier is tested on the ADL4 and ADL5 data from the subject 2 and 3. The

classifier is trained for 100 epochs with Sparse Categorical Cross Entropy as the loss function.

Adam optimizer is used to train the models with a learning rate of .007.

For the w-HAR dataset, we perform a stratified 5-fold cross-validation as there is no specific

distribution of train test data. Therefore, 80% of the data is used for training, and the rest

20% is used for testing. Moreover, 20% of the training data is used for validation during

training. For this dataset, the classifier is trained for 300 epochs with Sparse Categorical

Cross Entropy as the loss function. Adam optimizer is used to train the models with a

learning rate of 0.01.
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Table 3.6: Confusion Matrix of Different Output Blocks on Opportunity Dataset

True label
FOB Baseline Adaptive

Stand Walk Lie Sit Stand Walk Lie Sit Stand Walk Lie Sit

Stand 1090 108 1 13 1103 98 1 10 1091 107 1 13
Walk 103 813 0 7 107 807 1 8 103 813 0 7
Lie 0 117 63 5 0 0 184 1 0 1 181 3
Sit 18 6 2 785 21 1 9 780 18 3 8 782

3.5.3 Training Output Block Predictor

To train the output block predictor (OBP), we first generate a dataset based on the per-

formance of the best multi-output CNN model for each of the Opportunity and w-HAR

datasets. Then for each of the segments in the dataset, we determine which output block of

the multi-output classifier can correctly classify them. For an activity segment, there are 4

different possible cases in our multi-output classifier as shown in Table 3.5. If the segment

is correctly classified by both output blocks we would want to use the FOB to save energy

hence it is labeled as 1. If it is correctly classified by either FOB or baseline architecture

only, it will be labeled as either 1 or 2 respectively. Finally, if it is misclassified by both FOB

and baseline architecture that should also be labeled as 1 to avoid unnecessary computation

by second output block to classify that segment. Thus, the activity segments of each dataset

are labeled which is used as the true label to train and test the OBP (decision tree).

And the input to the OBP is the statistical features for each activity segment as calculated

in Section 3.4.1. For the Opportunity dataset, we use 4 features whereas for the w-HAR

dataset we use 6 features. To train and test the OBP for Opportunity dataset, we use the

same training and testing segments as used in training and testing the multi-output CNN

architecture as mentioned in Section 3.5.2. For OBP of the w-HAR dataset, we use stratified

5-fold cross-validation where 80% data is used for training and 20% data is used for testing.
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Table 3.7: Performance Comparison of Related Works on Opportunity Dataset for Locomo-
tion (4 Activities)

Works Weighted F1 Accuracy Precision Recall

RF[99] 90.00 - - -
CNN,RNN[104] 93.00 - - -
2-D CNN[105] 92.57 - - -
1-D CNN[106] 92.50 - - -
FOB [Ours] 87.24 87.86 88.54 87.86

Baseline [Ours] 91.79 91.79 91.80 91.79
Adaptive [Ours] 91.57 91.57 91.57 91.57

Table 3.8: Performance Comparison of Related Works on w-HAR Dataset for Locomotion
(8 Activities)

Works Weighted F1 Accuracy Precision Recall

Baseline[109] 94.96 94.87 95.14 94.87
Activity-aware[109] 97.37 97.34 97.45 97.34

FOB [Ours] 94.45 95.06 94.87 95.06
Baseline [Ours] 97.55 97.60 97.57 97.60
Adaptive [Ours] 97.64 97.70 97.69 97.70

3.5.4 Wearable Platform

Our proposed methodology is designed for low-power, low-memory wearable edge devices.

Therefore, we evaluate our classifier on an ultra-low-power 32-bit microcontroller EFM32

Giant Gecko (EFM32GG-STK3700A) [117] which has an ARM Cortex–M3 processor with

a maximum clock rate of 48 MHz. It has 128 KB of RAM, 1 MB of Flash.

3.6 Experimental Results and Analysis

As the number of segments for different activities in both the datasets are highly imbalanced,

only classification accuracy is not appropriate to measure performance. Therefore, to ensure

proper performance evaluation, we use precision, recall, and weighted F1 score in addition
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Table 3.9: Confusion Matrix of First Output Block on w-HAR Dataset

True label
First Output Block (FOB)

J L S SD SU ST W T

J 445 0 0 2 0 3 2 6
L 0 474 0 0 0 0 0 0
S 0 0 687 0 0 9 0 0
SD 0 0 0 93 0 0 6 0
SU 0 0 0 0 106 0 3 0
ST 1 1 5 0 0 604 6 3
W 3 2 0 3 2 6 1983 8
T 7 11 70 2 1 24 48 114

Table 3.10: Confusion Matrix of Baseline Architecture on w-HAR Dataset

True label
Second Output Block (Baseline architecture)
J L S SD SU ST W T

J 450 0 0 1 0 1 2 4
L 0 474 0 0 0 0 0 0
S 0 0 688 0 0 8 0 0
SD 0 0 0 94 0 0 5 0
SU 0 0 0 1 105 0 3 0
ST 0 1 3 0 0 607 6 3
W 5 1 0 0 1 6 1986 8
T 4 3 14 0 0 16 18 222

to accuracy. The metrics used for evaluation are given below:

Accuracy =
TP + TN

TP + FP + TN + FN
(3.3)

Precision =
TP

TP + FP
(3.4)

Recall =
TP

TP + FN
(3.5)

WF1 =
nc∑
i

2 ∗ wi
Precisioni.Recalli
Precisioni +Recalli

(3.6)

Where TP, TN, FP, FN represents True Positives, True Negatives, False Positives, and False

Negatives respectively. The activity classes are indexed by i, and wi=ni/N . ni is the number

of activity segments in each class, and N is the total number of activity segments.
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Table 3.11: Confusion Matrix of the Output Block Predictor (OBP)

True label
Opportunity w-HAR

FOB Baseline FOB Baseline

FOB 2932 44 4582 22
Baseline 36 119 11 125

Table 3.12: Confusion Matrix of Adaptive Architecture on w-HAR Dataset

True label
Adaptive architecture

J L S SD SU ST W T

J 455 0 0 0 0 1 1 1
L 0 474 0 0 0 0 0 0
S 0 0 688 0 0 8 0 0
SD 0 0 0 97 0 0 2 0
SU 0 0 0 0 106 0 3 0
ST 1 1 4 0 0 606 6 2
W 3 2 0 1 2 6 1986 7
T 3 3 17 0 0 17 18 219

3.6.1 Performance Evaluation of Multi-output CNN Classifier

The performance for each output block of our multi-output CNN classifier is given in Tables

3.7 and 3.8. As shown in Table 3.7 for the Opportunity dataset, the FOB has overall

accuracy, precision, recall, and weighted F1 score of 87.86%, 88.54%, 87.86% and 87.24%

respectively, whereas; the baseline architecture shows higher overall accuracy, precision,

recall, and weighted F1 score of 91.79%, 91.80%, 91.79%, and 91.79% respectively. The

confusion matrices of the output blocks are presented in Table 3.6. It shows that the FOB

performs poorly in classifying lying activity (63), whereas baseline architecture shows an

improved performance (184). Similarly, for the w-HAR dataset, the baseline architecture

achieves higher performance than the FOB. As shown in Table 3.8, the FOB achieves an

overall accuracy, precision, recall, and weighted F1 score of 95.06%, 94.87%, 95.06% and

94.45% respectively, whereas; the baseline architecture achieves better accuracy, precision,

recall, and weighted F1 score of 97.60%, 97.57%, 97.60%, and 97.55% respectively. Table 3.9

shows that the FOB can classify only 114 transition segments correctly, whereas the baseline
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Figure 3.6: Performance of Output Block Predictor (OBP)

architecture shows a better performance while classifying 222 segments correctly as shown

in Table 3.10.

3.6.2 Performance Evaluation of Output Block Predictor

To ensure a better performance of our adaptive architecture, our OBP has to perform better

as well. As shown in Figure 3.6 for the Opportunity dataset, the OBP has an accuracy, pre-

cision, recall, weighted F1 score of 97.44%, 97.51%, 97.44%, 97.47% respectively. Table 3.11

shows the corresponding confusion matrix of the OBP in deciding which output block to use

for the 3131 test segments of the Opportunity dataset. Similarly, for the w-HAR dataset, the

OBP achieves an accuracy, precision, recall, weighted F1 score of 99.30%, 99.34%, 99.30%,

and 99.32% respectively, as shown in Figure 3.6. The corresponding confusion matrix for

the w-HAR dataset is shown in Table 3.11. Both confusion matrix shows that our OBP

performs quite well in deciding the required output block to classify the activity segments.
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3.6.3 Performance Evaluation of Adaptive Architecture

The performance of the adaptive architecture depends on the decision of OBP. We use the

FOB to classify the segments that are predicted as 1 by the OBP. Similarly, the baseline

architecture is used to classify the segments that are predicted as 2. The performance of

adaptive architecture is determined by the combined performance of the FOB and baseline

architecture in classifying the corresponding segments decided by the OBP. As shown in Table

3.7 for Opportunity dataset, our adaptive architecture achieves 91.57% performance for all

four metrics- accuracy, precision, recall, and weighted F1 score. It shows that our adaptive

architecture achieves very close performance as our baseline architecture while classifying

most of the segments (2968) using the FOB. Table 3.6 shows how the adaptive architecture

takes the advantage of both the output blocks. For example, 63 out of 185 lying activity

segment is correctly classified by FOB whereas the baseline architecture can correctly classify

184 of them. And our adaptive architecture can classify 181 of them which is close to the

baseline one. Moreover, both our baseline and adaptive architecture outperforms the work

[99] and achieves a comparable performance with respect to [104–106] as shown in Table 3.8.

It is to note that the works [99, 104–106] are designed for fog/cloud platform whereas our

solution is designed for wearable platform.

For the w-HAR dataset, our adaptive architecture outperforms our baseline architecture with

an accuracy, precision, recall, and weighted F1 score of 97.70%, 97.69%, 97.70%, 97.64%

respectively as shown in Table 3.8. Moreover, both our baseline and adaptive architecture

outperforms both the baseline and activity-aware classifier used in [109]. As shown in Table

3.12, the adaptive architecture can classify 455 out of 458 jump activity whereas the FOB

and baseline architecture can classify 445 and 450 of them respectively. This is because there

were jump activities that were being classified either by FOB or baseline architecture only.

The adaptive architecture uses the best of the two which results in improved performance.

Therefore, it proves that the adaptive architecture achieves similar (Opportunity) or better
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Table 3.13: Energy and Memory Consumption Evaluation of the Works on Opportunity
Dataset

Works
Classifier RAM Exe. Avg. pwr. Energy

level (Bytes) time (ms) (mW) (µJ)

[99] - 60932 11722.14 16.59 194470.31
[104] - Not compatible: RAM overflowed
[105] - Not compatible: RAM overflowed
[106] - Not compatible: RAM overflowed

[Ours]

OBP 1120 1.61 15.26 24.56
FOB 2688 24.57 15.25 374.69

Baseline 4264 30.25 15.22 460.41
Adaptive 4264 26.48 15.25 403.71

performance (w-HAR) with respect to our baseline architecture while using the FOB to

classify most of the segments.

3.6.4 Energy and Memory Evaluation on Real Hardware

We evaluate the energy and memory consumption of our proposed architecture including

the related works using the EFM32 Giant Gecko microcontroller as mentioned in Section

3.5.4. For the works [99, 109] that uses machine learning approaches, the reported execution

time, power, energy, and RAM are for the feature extraction and classification together. For

the works using CNN, we evaluate the classification as they automatically extract features

during classification. The execution time, power, and energy values presented in the Table

3.13 and 3.14 are for one activity segment of data using the 14 MHz clock speed of the

microcontroller.

As shown in Table 3.13, for Opportunity dataset the works [104–106] using deep CNN en-

countered RAM overflow and could not be executed on the target hardware. It shows that

this kind of solution is only suitable for fog/cloud platforms with higher computational re-

sources. Although the work [99] is designed for fog/cloud platform, it executes on the target

hardware with around 60KB of RAM. It takes around 11.72 seconds to extract features and
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Table 3.14: Energy and Memory Consumption Evaluation of the Works on w-HAR Dataset

Works
Classifier RAM Exe. Avg. pwr. Energy

level (Bytes) time (ms) (mW) (µJ)

[109]

Baseline 9988 63.85 15.30 976.91
Static 2164 31.93 15.31 488.84

Dynamic 9988 85.55 15.30 1308.92
A. aware 9988 65.07 15.3 995.77

[Ours]

OBP 1128 1.96 15.23 29.86
FOB 3216 26.36 15.24 401.73

Baseline 4568 32.07 15.24 488.74
Adaptive 4568 28.50 15.24 434.29

classify an activity segment with 194.47 µJ of energy consumption. On the other hand, our

FOB executes with only 2.62 KB of RAM. It takes only 24.57 ms with an energy consump-

tion of 374.69 µJ to classify an activity segment. Our baseline architecture requires higher

resources than the FOB as expected. As shown in Table 3.13, the OBP takes only 1.09 KB

of RAM to execute. It takes only 1.61 ms to extract 4 statistical features from each seg-

ment and classify it with an energy consumption of 24.56 µJ. It shows that the OBP is very

lightweight and does not add much overhead to implement our adaptive architecture. To

evaluate the execution time and energy of our adaptive architecture, we calculate the average

time and energy to classify 3131 test segments either by FOB or baseline architecture based

on the decision of our OBP as presented in the confusion matrix of Table 3.11. Table 3.13

shows that the adaptive architecture takes only 26.48 ms with an energy consumption of

403.71 µJ which is less than our baseline architecture while providing similar performance.

For the w-HAR dataset, first, we evaluate the baseline classifier of the work in [109]. As

shown in Table 3.14, the baseline classifier takes 63.85 ms to classify a segment with 976.91

µJ of energy. It takes 9.75 KB of RAM to execute. The baseline classifier in [109] involves

extracting 120 statistical features from the activity segment and then classify it with a

neural network. The activity-aware classifier uses different classifier for static - Sit (S), Lie

(L), Stand (ST) and dynamic - Stairs up (SU), Stairs down (SD), Jump (J), Walk (W),
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Transition (T) activities. For classifying a static activity, it takes 31.93 ms with 488.84 µJ

energy. For the dynamic activities, it consumes higher energy of 1308.92 µJ with a longer

execution time of 85.55 ms. The execution time and energy for the activity-aware classifier

reported in Table 3.14 is the average time and energy to classify 4740 segments either by

the static or dynamic classifier. Out of 4740 segments, the SVM classifier classifies 1810

segments as static and 2930 segments as dynamic as mentioned in [109]. Therefore, the total

time and energy for classifying 1810 segments by the static classifier and 2930 segments

by dynamic classifier is calculated and summed up. Next, the summation is averaged by

4740 which gives us the average time of 65.07 ms and energy of 995.77 µJ required by the

activity-aware classifier. The activity-aware classifier also requires the 9.75 KB of RAM same

as the baseline. This RAM is required for calculating the 120 features which is done in both

baseline and activity-aware classifier.

On the other hand, our FOB executes with only 3.14 KB of RAM and takes only 26.36

ms with an energy consumption of 401.73 µJ to classify an activity segment of the w-HAR

dataset. As expected, our baseline architecture requires higher resources - 4.46 KB of RAM

and 32.07 ms to classify a segment with 488.74 µJ of energy. The OBP takes only 1.10

KB of RAM to execute which takes only 1.96 ms to extract 6 statistical features from

each segment and classify it with an energy consumption of 29.86 µJ. Therefore, the OBP

takes very minimum resources which ensures minimal overhead to implement our adaptive

architecture. To evaluate the execution time and energy of our adaptive architecture, we

follow the same procedure as the Opportunity dataset and do it for 4740 segments of the

w-HAR dataset. As shown in Table 3.11, the OBP decides 4593 and 147 segments to be

classified by the FOB and the baseline architecture respectively. Therefore, the summation

of total time and energy taken by the OBP, FOB, and baseline architecture is averaged by

4740 which gives us the average time and energy to classify a particular segment by our

adaptive architecture. Table 3.14 shows that the adaptive architecture takes only 28.50 ms

with an energy consumption of 434.29 µJ which is less than our baseline architecture while
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Figure 3.7: Benchmarking of the deep CNN works on Opportunity dataset
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Figure 3.8: Benchmarking on Opportunity dataset

providing better performance.

3.6.5 Final Benchmarking

Finally, we make an overall comparison among the performance of different works along

with the computational resources they require. As the deep CNN works [104–106] on Op-

portunity dataset are designed for the fog/cloud platform and do not fit into our target

wearable platform, we compare their performance with the network parameter size to give a

perspective. As shown in Figure 3.7, they achieve higher weighted F1 score of 93%, 92.57%,
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Figure 3.9: Benchmarking on w-HAR dataset

and 92.50%, whereas; our baseline architecture achieves a comparable weighted F1 score

of 91.79% with 1228.22x, 1052.86x, and 507.83x less parameter size compared to [104–106]

respectively. Besides, our baseline architecture outperforms the work [99] while consuming

422.38x less energy and 14.29x less RAM as shown in Figure 3.8. Moreover, our adaptive

architecture achieves similar performance as the baseline while being 12.32% energy-efficient.

As shown in Figure 3.9 for the w-HAR dataset, our baseline architecture outperforms both

the baseline (94.96%) and activity-aware (97.37%) classifier in [109] with a weighted F1

score of 97.55% while being 2.04x and 2.18x energy and memory-efficient compared to the

activity-aware classifier. Moreover, our adaptive architecture outperforms our baseline while

being 11.14% energy-efficient.

It is to note that, the 12.32% or 11.14% energy efficiency achieved by our adaptive architec-

ture over the baseline one is only for 2 layers of convolution. The energy efficiency would be

even more if we had deeper CNN architecture with multiple convolution layers. Therefore,

our future plan is to investigate the potential of our adaptive CNN architecture for other

applications that require multiple convolution layers.
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3.7 Summary

This chapter proposes an Adaptive CNN for HAR (AHAR) to develop an energy-efficient

solution for low-power edge devices. AHAR uses a novel adaptive architecture that decides

which portion of the baseline architecture to be used during the inference phase based on the

simple statistical features of the activity segments. Our proposed methodology is validated

for classifying locomotion activities from Opportunity and w-HAR datasets. Compared to

the fog/cloud computing approaches that use the Opportunity dataset, both our baseline and

adaptive architecture shows a comparable weighted F1 score of 91.79%, 91.57% respectively.

For the w-HAR dataset, both our baseline and adaptive architecture outperforms the state-

of-art-work with a weighted F1 score of 97.55% and 97.64% respectively. Evaluation on

real hardware shows that our baseline architecture is significantly energy-efficient (422.38x

less) and memory-efficient (14.29x less) compared to the works on the Opportunity dataset.

For the w-HAR dataset, our baseline architecture requires 2.04x less energy and 2.18x less

memory compared to the state-of-the-art work. Moreover, experimental results show that

our adaptive architecture is 12.32% (Opportunity) and 11.14% (w-HAR) energy-efficient

than our baseline while providing similar (Opportunity) or better (w-HAR) performance

with no significant memory overhead. To the best of our knowledge, we are the first to

propose such adaptive CNN architecture for HAR in wearable devices that provides energy

efficiency while maintaining performance.
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Chapter 4

Fog-enabled Energy Aware Online

Human Eating Activity Recognition

4.1 Abstract

Eating Activity Recognition (EAR) plays an important role in ensuring healthy eating habits.

Recent advancements of the Internet of Things (IoT) have bolstered automated EAR through

various wearable edge devices. State-of-the-art work uses some offline trained classifiers at

the fog device to recognize eating activities. However, the eating habits of a person change

quite frequently and vary from person to person. Therefore, the classifiers should be updated

continuously with new data to adapt to these changes and be personalized over time through

online learning. To the best of our knowledge, no state-of-the-art work has addressed this

issue so far. In this chapter, we propose an online learning methodology called Human Eating

Activity Recognition (HEAR) by introducing an online update phase. We also design an

algorithm to be used in the online update phase that provides approximate true labels

for the new data. Moreover, we also design a wearable neckband as the edge device to
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capture eating activity data (Chewing, Swallowing, Talking, and Idle) in a lab environment.

Through a detailed experimental evaluation on 12 users, we show that an Online Learned

Neural Network (OLNN) classifier using our HEAR methodology performs better than any

state-of-the-art offline trained classifier. We also demonstrate that our OLNN classifier is

energy efficient compared to the competitive offline trained classifiers. The findings in this

chapter have been published in [44].

4.2 Introduction and Related Work

Eating habits have a direct correlation with a healthy lifestyle and are the primary reason for

many chronic diseases like obesity, diabetes, and hypercholesterolemia. Obesity itself cost

more than 147 billion US dollars for medical treatment alone in the United States in 2008

[118]. According to the most recent National Health and Nutrition Examination Survey

(NHANES), 18.5% of children and nearly 40% of adults in the United States had obesity in

2015-2016. These are the highest rates ever documented by NHANES [119]. A study in [120]

estimated that overweight and obesity during childhood resulted in an excess lifetime cost

per person of 4,209 euros (men) and 2,445 euros (women) in Germany and for the German

population, the overall excess lifetime cost was 145 billion euros.

Food intake monitoring plays a primary role in establishing healthy eating habits because

proper monitoring can ensure smooth functioning metabolism. Applications of food intake

monitoring include i) Recognition of food eating activities (chewing, swallowing); ii) Classi-

fication of food type (solid, liquid); iii) Quantification of food (volume, weight, calorie) [121].

Among these applications, recognition of food eating activities is the most important as it

lays the foundation for food classification and quantification.

The traditional way of food intake monitoring used to follow manual approaches of self-
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reporting from the users. However, these methods often tend to be tedious and suffer from

poor recall accuracy from the individuals [122]. The drawbacks of manual methods cou-

pled with the recent advancements of the IoT and wearable devices have encouraged the

researchers to dive into the automated approach of food intake monitoring.

Some researchers used acoustics as a sensing modality to capture eating activity [123–125].

Many researchers used other sensors like - strain gauge [126], piezoelectric [127–130], and

proximity sensors [131] to pick up muscle movements around the larynx or outer ear for

EAR to detect eating activity. Inertial sensors were also used to detect eating activity

by capturing feeding gestures [132, 133]. Researchers also combined multiple modalities

to better recognize eating activities. Authors in [134] used both strain gauge sensor and

a microphone to detect eating activity. Researchers in [135] developed a smart necklace

combining piezoelectric, inertial and microphone sensor. Another group in [136] developed a

wearable system fusing inertial, proximity, and microphone sensor. Another group developed

[137] a wearable necklace combining proximity, inertial, and an ambient light sensor. Among

the aforementioned related works, the work in [135] is close to our work which uses a Random

Forest classifier to detect eating or non-eating activities and achieves an F1-score of 80.8%.

Although, different researchers used different sensors or combination of sensors, they all

follow a fog computing architecture [138–140] as shown in Figure 4.1. In EAR systems, the

wearable device is the edge device primarily used for sensing and communication. Afterward,

Figure 4.1: Fog Computing Architecture of EAR Systems
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the data collected from the wearable device is sent over Bluetooth to a mobile phone used as

a fog device. The fog device is mostly responsible for communication and computation. The

computation in fog device mainly involves data processing, segmentation, feature extraction

and finally classifier training. All these classifiers are trained offline then classify the online

data coming from the edge device. However, the offline trained classifier is not suitable for

EAR in the long run as the eating habits of a person change over time and vary from person

to person. Therefore, the classifier should also be updated continuously to adapt to those

changes and get personalized over time. To the best of our knowledge, no state-of-the-art

work has addressed this issue so far. It is really important to keep the classifier updated

because regardless of how accurately we design the wearable device to capture the data if

the classifier is not good enough it will result in poor recognition accuracy.

4.2.1 Motivational Case Study

To demonstrate the limitation of using offline trained classifiers for EAR, we have conducted a

small experiment. Data was collected from a male user using a wearable neckband (Section

4.4.1) in a lab environment as the user ate cookies and bread slices and drank water in

between for around 8 minutes per session. We collected data for 4 sessions per day over 10

days (total of 40 sessions). The first half of the data was used as training and the second half

as testing data. The training data was used to train a neural network (Section 4.3.1) with

the training accuracy of 97.24%. We test the network both with and without updating it

after each eating session. We call the first method offline trained Neural Network (NN), and

the later method Online Learned Neural Network (OLNN). Figure 4.2a shows classification

accuracy for both NN and OLNN. To check whether OLNN improves after every eating

session, we also calculated its validation accuracy against a validation dataset of 4 eating

sessions (each collected in 4 different days) from the same user as shown in Figure 4.2b.
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(a) NN Vs. OLNN (b) OLNN

Figure 4.2: Motivational Case Study

4.2.2 Observation from Case Study

As depicted in Figure 4.2a, the performance of NN greatly varies on the test data collected

in a different timeline. This is because the test data has a different pattern than the training

data which implies that human eating patterns change from time to time. This gradual

change in data properties, called ‘Concept Drift’ [141, 142], cannot be handled by NN. It

can, however, be handled quite well by OLNN as shown in Figure 4.2a. This is because

OLNN learns from every new eating sessions. However, updating the classifier after every

eating session might not be wise as the presence of unusual data may make the classifier

worse. As shown in Figure 4.2b, the validation accuracy of the OLNN does not improve

after every eating sessions. It may remain the same or even decrease sometimes. We need

to make sure the validation accuracy does not decrease for the online classifiers.

To summarize, eating habits vary from time to time and from person to person. When

it comes to personalized health care, we should develop a personalized classifier for each

individual separately and update it continuously with new data to reflect daily changes in

their eating habits. This method of updating the model with the new data is called ‘Online

Learning’ [143]. The need for online learning can be summarized with a simple analogy -
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‘The way human body needs a continuous supply of food to be healthy and alive; similarly, a

machine learning model needs to be fed continuously with new data to be healthy and alive’.

4.2.3 Research Challenges

1) One of the key challenges of online learning is the availability of true labels of the new

data to update the model with. One way would be to ask users to continuously provide

feedback [144] by labeling the data as they eat. This is not a feasible solution as it requires

continuous human attention. Some researchers tackled this challenge by recording a video

of users as they eat and processing it to get true labels [136]. However, this method has two

major disadvantages. Firstly, it requires a lot of energy and memory and may even be more

costly than EAR. Secondly, users may be uncomfortable being videoed every time they eat

[145].

2) Another challenge of online learning is to protect the classifier against unusual data.

Classifiers may worsen in classification accuracy by training on such data and suffer from an

avalanche effect of poor classification accuracy.

3) Additionally while ensuring better performance compared to the offline trained classifiers,

online learned classifiers should be efficient in terms of energy as well.

4.2.4 Goals and Novel Contributions

This chapter makes the following novel contributions to overcome the above mentioned

challenges:

1. Human Eating Activity Recognition (HEAR) Methodology (Section 4.3):

In the fog side, we propose HEAR methodology that enables online learning by intro-
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ducing an online update phase (Section 4.3.3). This phase overcomes the challenges of

the online learning in two ways - 1) Implements a True Label Approximation (TLA)

Algorithm (Section 15) to get approximate true labels for the new data; 2) Performs

a validation check on the updated classifier to avoid the performance avalanche effect

(Section 23).

2. Wearable Neckband (Section 4.4.1): In the edge side, we develop an wearable

neckband that captures the signals for four activities - Chewing, Swallowing, Talking

and Idle.

3. Experimental Evaluation (Section 4.5): We perform a detailed experimental anal-

ysis of our proposed methodology using an online learned neural network classifier

(OLNN) which performs better than any offline trained state-of-the-art classifier (Sec-

tion 4.5.2). We also demonstrate that our classifier is energy efficient compared to the

competitive offline trained classifiers 4.5.3.

4.3 Proposed HEAR Methodology

As shown in Figure A.2, our HEAR methodology enables online learning by proposing an on-

line update phase in addition to the offline training and online classification phase. Following

sections discuss each phase in details.

4.3.1 Offline Training Phase

During the offline training phase, we design an initial classifier for the online classification

phase to start with. The details of this phase are discussed as follows:
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Figure 4.3: Overview of Proposed HEAR Methodology

Data Segmentation

To capture the correct data pattern for each activity we segment the sensor data coming from

the wearable device. We use a sliding window of 20 samples with a 70% overlap in between

the windows. In any window, if more than 60% of the samples belong to one activity, then

the window is labeled as that activity. The window size of 20 is selected considering the

sampling frequency of the wearable device which is 20 Hz.

Feature Engineering

The goal of feature engineering is to select the optimal features to be used for training

the classifiers. In this step, we extract the features for each window generated during the

segmentation step. From a total of 65 time-series features, we applied Correlation-based
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Feature Subset (CFS) selection and selected 34 features[146]. From the selected features,

we further applied FeatuRe Extraction based on Scalable Hypothesis tests (FRESH) [147]

algorithm to select the optimal ones. Table 4.1 shows the list of 18 optimal features used for

classifier training. The activities (Chewing, Swallowing, Talking) that we classify result in the

spike of physiological signals from piezoelectric and acoustic sensors. Therefore, the optimal

features are the ones that best characterize those spikes to better classify the corresponding

activities. The total number of features used for classifier training is doubled as we use the

same features for both the piezoelectric and the acoustic sensors.

Table 4.1: List of Optimal Features

Variance Std. Deviation Sum of Abs. Change
Skewness 1st FFT Coeff. Ratio of Unique Values
Minimum Autocorrelation Linear Trend for Std. Error
Maximum Has Duplicate/Not Percent of Re-occuring Val.
1st Quartile Mean Abs. Change Complex-Invariant Distance
3rd Quartile Num. of CWT Peaks Longest Strike Above Mean

Offline Classifier training

One of the goals of this chapter is to use a classifier that is energy efficient during online

classification and online update phase. Therefore, we use a neural network (NN) [148, 149]

that is small and simple enough to achieve the goal. NN can be easily updated with the

new data without the need for previous training data. We use a 3 layered fully connected

feed-forward architecture where the middle layer is the hidden layer with only 4 units plus

the bias unit. The reason for choosing the fewer number of hidden units is to reduce the

computational complexity of the NN while maintaining good accuracy. For the output layer,

there are 4 units (one for each activity). We use tanh activation function in between the input

layer and the hidden layer and for the output layer we use Softmax activation function. To

optimize the NN weights we use a stochastic gradient-based optimizer called ‘Adam’ [150].

Besides, state-of-the-art classifiers like - Decision Trees [151], Naive Bayes [152] and Ad-
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aBoost [153] show poor performance on the new user data as shown in Figure 4.10. Other

classifiers like Random Forest [154], Support Vector Machine [155], and k- Nearest Neighbors

[156] show competitive accuracy, however; are not suitable for online learning as they are

very computationally expensive to update. As shown in 4.5.3 the online classification phase

for these classifiers are more computationally expensive than the online classification and

online update phase of our neural network.

4.3.2 Online Classification Phase

In this phase, the sensor data from the wearable device is segmented in the same way

mentioned in Section 4.3.1. Then the selected features from Section 4.3.1 are extracted for

each segment. After that, the trained classifier from Section 4.3.1 classifies those segments

to one of the four activities. We call this classification of segments as the predicted labels for

the segments. All the segments generated during the online classification phase along with

their predicted labels are used in the online update phase.

4.3.3 Online Update Phase

The online update phase uses the segments generated during the online classification phase

and the corresponding predicted labels to update the classifier. Algorithm 2 shows the

stepwise procedure followed during the online update phase. Following sections discuss the

key steps during this phase.

True Label Approximation (TLA) Algorithm

One of the major goals of this chapter is to facilitate the availability of true labels of the

online data without the involvement of the user. Also, we want to follow a simple and
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Algorithm 2: Online Update Algorithm
Input: Datanew: Data from the last eating session
Input: Labelspred: Predicted labels by the current NN

1 Constant Variables:
2 Datavalid: User specific validation data.
3 Static Variables:
4 NNcur: Current NN (Initially it is the offline one)
5 Accuracycur: Accuracy of NNcur on Datavalid
6 Confcur: Confusion matrix of NNcur on Datavalid
7 Other Variables:
8 Labelsnew: Approximate true labels by TLA Algorithm 3
9 NNnew: Updated NNcur with Datanew and Labelsnew

10 Accuracynew: Accuracy of NNnew on Datavalid
11 Confnew: Confusion matrix of NNnew on Datavalid
12 if Accuracynew > Accuracycur then
13 NNcur=NNnew

14 Accuracycur=Accuracynew
15 Confcur=Confnew

lightweight method that does not add too much overhead during the online update phase.

The TLA algorithm exploits the fact that an offline trained classifier has a certain amount

of accuracy on the predicted labels. Therefore, it uses the classifier predicted labels of the

online data and apply confusion matrix based heuristics on them to get approximate better

labels than the predicted ones. It tries to find suspicious predictions in the predicted labels

using the Lemma 1. Then it applies some heuristic on them with the help of a confusion

matrix of the current neural network. The confusion matrix is calculated on the labeled

validation dataset of the new user whose data is not used in the offline training phase. It

holds information about how the classifier confuses between different activities of that user.

The TLA algorithm looks into the label of the previous and next window of the suspicious

prediction and tries to correct it using the confusion matrix. It also considers the fact that

the previous and the next window might also be labeled incorrectly. That is why it uses the

labels for the previous/next two consecutive windows to decide the labels of previous/next

window for the current suspicious one.

Lemma 1. If the sampling frequency is X Hz and the segmentation window is W (where

X,W ∈ R and W < X) and also the minimum duration (Durationmin) of each activity is
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more than 1 second then there should not be any consecutive 2 transitions of activities in

between the windows.

Proof: When sampling frequency is X Hz that means there are X samples of data in

1 second. The segmentation window of W samples represents W/X seconds of data. If

Durationmin > n(W/X) where n ≥ 2, then each activity should continue for at least n

windows or more. Therefore, if there is a consecutive transition of activities in between win-

dows that means one of the predicted activities was performed for W/X seconds whereas the

Durationmin > n(W/X) where n ≥ 2. Therefore, there is an error in the prediction when

there are 2 consecutive transitions in between the windows (Observation 3 in Figure 4.4).

We design our novel TLA algorithm based on the following observations (See Figure 4.4)

drawn from the classification errors made by the classifier -

1. Most of the classification errors happen during the transitions from one activity to

another.

2. The classification errors that occur when the transition of activities happens every

after multiple windows are hard to detect without the ground truth labels.

3. The classification errors that occur when the transition of activities happens every

after one window can be approximately detected using Lemma 1.

4. Whenever one of the windows is classified wrongly, the true label of that window is

one of the neighboring windows (either previous or the next).

Algorithm 3 shows the stepwise procedure followed by TLA. Among the four activities,

Chewing and Swallowing are the eating-related activities and follows a physiological pattern

in terms of duration. Table 4.2 shows their duration for the 12 users in our experiment.

Their duration is also similar to the one reported through clinical study in [124, 157, 158].
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Algorithm 3: True Label Approximation (TLA) Algorithm
Input: Labelspred: Predicted labels by the NNcur

Input: Confcur: Confusion matrix of NNcur on Datavalid
Output: Labelsnew: Approximate true labels using Confcur

1 n: Length of Labelspred
2 Labelsnew=Labelspred
3 for i = 3 : n− 2 do
4 if Labelspred[i] ̸= Labelspred[i− 1] and Labelspred[i] ̸= Labelspred[i+ 1] and

Labelspred[i] == Chewing or Swallowing then
5 if Labelspred[i+ 1] ̸= Labelspred[i+ 2] then
6 if Confcur[Labelspred[i+ 1]][Labelspred[i+ 2]] ≥

Confcur[Labelspred[i+ 2]][Labelspred[i+ 1]] then
7 next=Labelspred[i+ 1]

8 else
9 next=Labelspred[i+ 2]

10 else
11 next=Labelspred[i+ 1]

12 if Labelspred[i− 1] ̸= Labelspred[i− 2] then
13 if Confcur[Labelspred[i− 1]][Labelspred[i− 2]] ≥

Confcur[Labelspred[i− 2]][Labelspred[i− 1]] then
14 prev=Labelspred[i− 1]

15 else
16 prev=Labelspred[i− 2]

17 else
18 prev=Labelspred[i− 1]

19 if Confcur[next][Labelspred[i]] ≥ Confcur[prev][Labelspred[i]] then
20 Labelsnew[i]=next

21 else
22 Labelsnew[i]=prev

23 return Labelsnew
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Figure 4.4: Observations Drawn from Classification Errors

Table 4.2: Duration of Chewing and Swallowing

Activity Average Duration ± Standard Deviation

Chewing 4.368±2.802 (Seconds)
Swallowing 1.802±.686 (Seconds)

Besides, the Talking and Idle activities are non-eating activities which are used to distinguish

between the eating and non-eating artifacts. Therefore, our TLA method tries to detect and

correct the suspicious predictions for Chewing and Swallowing based on Lemma 1.

Operational Example of TLA Algorithm: We will demonstrate how TLA algorithm

operates based on an example sequence as shown in Figure 4.5. The yellow marked windows

- (i − 1)th, ith, (i + 1)th in predicted labels are the suspicious one based on Lemma 1. The

red highlighted windows represent incorrect predictions. Here, we will show how the TLA

algorithm works on the ith window using the confusion matrix in Table 4.4. The predicted

label for ith window is Chewing which takes place for just one window in between (i − 1)th

and (i+1)th windows where both of them are Swallowing. Then to decide the label of (i+1)th

window we look into the predicted labels of both (i + 1)th and (i + 2)th window which are

Swallowing and Chewing respectively. As they are different, we look into the confusion

matrix as <True label, Predicted label> tuple to decide the next label. Therefore, we look

for the value of <Swallowing, Chewing> tuple and <Chewing, Swallowing> tuple from the

confusion matrix in Table 4.4. As we can see, <Swallowing, Chewing> tuple has a higher

value than the <Chewing, Swallowing> which means when the true label is Swallowing it
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Figure 4.5: Operational Example of TLA Algorithm

is more often confused with Chewing than vice versa. So, the label for (i + 1)th window

is considered as Swallowing. Similarly, the label for (i − 1)th window is also considered as

Swallowing. As the label for both previous and the next window of ith one is Swallowing,

the ith window is more likely to be Swallowing instead of Chewing. If they were not same,

we would again take the help of confusion matrix to decide the label for ith window. It is to

note that, our TLA algorithm does not correct all the incorrect predictions. It only tries to

correct the suspicious predictions based on Lemma 1. As shown in Figure 4.5, the incorrect

prediction in (i+5)th window is not corrected. That is why the output of our TLA algorithm

is called approximate true labels.

Updating the Classifier

Once the TLA method generates the approximate true labels, we use the data segments

generated during the online classification phase and the corresponding approximate true

labels to update the current NN. The weights of the NN are updated using the ‘Adam’

optimizer’s update rule [150].
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Validation of Updated Classifier

Once we update the current NN, we calculate the accuracy of this updated one for the

validation dataset of the respective user. Then we use this validation accuracy as a measure

to understand whether the updated network is better than the current one or not. If the

validation accuracy of the updated one is better than the current one then we validate

the update and replace the current NN by the updated one. Correspondingly, the confusion

matrix of the updated one is used by the TLA algorithm in the next update phase. Otherwise,

we discard the update and keep on using the current NN. Thus, we protect the classifier from

being affected by unusual data and avoid the avalanche effect of poor classification. As the

update decision is made based on how the updated classifier performs on the individual’s

data, having a better accuracy on the validation dataset means the classifier is getting

personalized for that individual. And having a personalized model for each user is one of

the key goals of personalized health care. It is to note that, the validation dataset for each

individual should also be updated periodically to reflect the changing eating habits of the

user.

4.4 Experimental Setup

4.4.1 Wearable Setup

We have developed a wearable neckband equipped with a piezoelectric strip sensor, and a

microphone coupled with an amplifier integrated to a Bluetooth 4.0 LE enabled low powered

RFDuino microcontroller. The embedded processor is an ARM Cortex M0 with 256kB of

flash memory and 16 KB of RAM. The microcontroller is powered by a 250 mAh lithium

coin cell battery placed in a battery holder. All the components (microcontroller, battery,
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piezoelectric sensor, microphone) were integrated into the 3D printed box as shown in Figure

4.6. The box was mounted with an elastic rubber band around the neck using velcro patches.

The neckband is designed in such a way that, the piezoelectric sensor is placed on the larynx

and the microphone is placed in between the larynx and the laryngopharynx region of the

throat. The microcontroller samples the data from the piezoelectric sensor and microphone

at a sampling rate of 20 Hz and sends the data to a mobile phone over Bluetooth. The

wearable neckband was tested for battery life and it lasted around 26 hours with a 250 mAh

coin cell battery while continuously streaming the data.

4.4.2 User Information and Data Collection

A total of 12 users (6 female, 6 male) voluntarily participated in our experiment with the

approval of the Institutional Review Board (IRB) of the university. The users were aged

between 20 yrs to 33 yrs with an average body mass index (BMI) of 23.64±4.88 kg/m2.

The users were asked to eat different kinds of everyday foods like- a slice of bread, cookies,

chips, almonds, and also drank water in between. Data for a total of 204 eating sessions were

collected from 12 users over 1 month in a lab environment. Each eating sessions lasted for

around 8 minutes. For experimental purpose, we have collected labeled data from the users.

For that, we have developed a desktop application, where the users can see the readings from

Figure 4.6: Wearable Neckband
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different sensors of the neckband while eating. They also label activities while performing

them by pressing the corresponding button for each activity. All the data were collected

in the presence of 3 human experts who ensured the correct labeling of the data. Figure

4.7 shows a sample of the collected labelled data. As depicted in Figure 7, the spikes for

Talking activity is more significant and regular in acoustic sensor data than the piezoelectric

one which is expected. Similarly, the Chewing and Swallowing activities generate more

significant spikes in piezoelectric sensor data than the acoustic one. Moreover, the spikes in

piezoelectric sensor data for Chewing is sharper and more frequent than Swallowing which

completely aligns with human eating behavior.

Figure 4.7: Sample of Collected Labeled Data
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4.5 Experimental Evaluation

4.5.1 Offline Training Phase

For the offline training phase of the NN classifier, we used data from the 6 users (3 female,

3 male). Data for 10 eating sessions from each user resulting in a total of 60 eating sessions

were used in this phase. Comparative analysis of our classifier against other related works is

not possible as different works considered different sensors to recognize different activities.

However, we do a comparative analysis of the NN with other state-of-the-art classifiers [151–

156] during the offline training phase as shown in Table 4.3. As per the standard practice,

80% of the data were used for training and rest 20% were used for testing the classifiers.

Table 4.3: Accuracy Comparison of Offline Classifiers

Classifier
Training Testing

Accuracy (%) Accuracy (%)

k-NN (k=3) 96.43 91.15
Decision Trees 100 87.41

Random Forest (n=100) 99.99 91.42
Adaboost 76.85 74.33

Naive Bayes 91.36 87.34
SVM 92.78 91.21

Neural Network 94.06 91.78

4.5.2 Online Learning

The online learning involves the online classification phase and the online update phase of

our proposed HEAR methodology. To evaluate our proposed methodology for online learning

we have used data of 20 eating sessions from each of the 6 new users (3 female, 3 male).

Users 1, 2, 3 represent male and users 4, 5, 6 are female. For each new user, we also maintain

a separate validation dataset of 4 eating sessions of the respective user and the confusion

matrix of the current NN on that validation dataset. The confusion matrix is used by the
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TLA algorithm and the validation dataset is used to validate the update during online update

phase.

Table 4.4: Confusion Matrix for Offline NN on Validation Dataset of User1

True Label
Predicted Label

Talking Chewing Swallowing Idle

Talking 95.17% 0.48% 0.00% 4.35%
Chewing 0.00% 89.33% 10.67% 0.0%

Swallowing 0.00% 16.18% 78.11% 5.71%
Idle 0.60% 0.00% 2.41% 96.99%

Table 4.4 shows the confusion matrix of the offline trained NN (initial NN) on the validation

dataset for User 1. For each user, the online classification phase initially starts with the

offline trained NN and considered as the current one. For each eating session, the online

classification phase is followed by the online update phase.

Figure 4.8, shows the percentage of the actual prediction errors detected by TLA algorithm

using the Lemma 1. Accuracy of TLA algorithm in correcting the detected errors using the

confusion matrix based heuristics is also shown in Figure 4.8. The detection and correction

accuracy are calculated from the 20 eating sessions of each user and presented with 95%

confidence interval. As different users have a different eating pattern, the detection and

correction accuracy also varies greatly from user to user. As shown in Figure 4.8, the TLA

algorithm has the highest detection and correction accuracy for user 5 which is 24.51% and

79.59% respectively. On the other hand user 4 has the lowest detection and correction

accuracy which are 11.38% and 64.17% respectively. It means user 4 has a very different

and unpredictable eating pattern compared to other users.

Figure 4.9 presents how the validation accuracy of the OLNN improves over 20 eating sessions

for each new user. It indicates how the offline trained neural network gets better through

online update phase (Section 4.3.3). It is to note that, the validation accuracy is calculated

using the user specific validation dataset of each user. To reflect the changing eating habits
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Figure 4.8: Performance of TLA Algorithm

Figure 4.9: Change of Validation Accuracy for OLNN

of the user, the validation dataset is also updated. For our experiment, we updated the

validation dataset in a first in first out (FIFO) manner after each day. Initially, we collect 4

eating sessions of data for validation dataset for each new user. After each day one new eating

session of data is added to the validation dataset and the data of the earliest eating session

from the validation dataset is removed. For 20 eating sessions of testing data collected over 5

days (4 eating sessions in each day) for each new user, the validation dataset is updated after

each day. As shown in Figure 4.9, the validation accuracy for the 0th eating sessions is for the

offline trained NN. When the validation accuracy after an eating session is greater than the

previous one, that means the current NN gets replaced by the updated one after that eating

session. As depicted in Figure 4.9, the green marked region for user 4 indicates the eating
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sessions after which the current NN is replaced by the updated one. On the other hand, the

red marked region for user 4 represents the eating sessions where the validation accuracy

does not change. That means the current NN does not get replaced by the updated one after

those eating sessions. It applies for all the other users as well. It is to note that, OLNN has

the over all lowest validation accuracy for user 4 compared to other users which means user

4 has a very different eating pattern. It also justifies the relatively poor performance of TLA

algorithm in detecting and correcting the actual prediction errors for user 4 as mentioned

in the previous paragraph. Another very important thing to notice from Figure 4.9 is, the

validation accuracy of OLNN for each user either remains the same or increases but never

decreases than before. Thus it proofs that, our HEAR methodology protects OLNN against

unusual data.

Figure 4.10, shows the average classification accuracy of all the offline trained classifiers

along with our OLNN with 95% confidence interval. For each of the 6 new users, the average

classification accuracy is measured for 20 eating sessions. As depcited in Figure 4.10, our

OLNN performs better than any other offline trained classifiers for each of the 6 new users.

The overall classification accuracy of OLNN for 120 (6x20) eating sessions is 92.09% which

is greater than offline classifiers - NN (89.39%), SVM (89.27%), k-NN (87.56%), Random

Forest (86.15%), AdaBoost (77.72%), Naive Bayes (73.14%), Decision Tree (70.15%).

Figure 4.10: Various Classifiers’ Accuracy on New Users
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4.5.3 Power and Energy Evaluation

We evaluate the energy consumption of our OLNN with k-NN, SVM and Random Forest

as they show competitive accuracy during the online classification phase as shown in Figure

4.10. The energy consumption was calculated in a mobile phone with an ARM Cortex-

A53 (ARMv8) 64-bit processor with a clock speed of 1.2 GHz. It also has 1 GB of RAM

with 64 GB of storage capacity. Table 4.5 shows the energy consumption of the competitive

classifiers for each segment (1 second) of data. The energy consumption of OLNN combining

the classification and update phase is 205.24 µJ which is 41.06% less than SVM, 59.38% less

than Random forest and 76.63% less than k-NN classifier. The only overhead that our HEAR

methodology incurs is the memory. We have to store the data of the last eating session, the

validation dataset of the user and the corresponding confusion matrix. As the sampling

frequency of wearable neckband is only 20 Hz, an eating session of 8 minutes generates

around 150 KB of data. In that case, one eating session plus 4 eating sessions of validation

dataset require 750 KB of storage in total. Given the higher memory and storage capacity

of recent mobile devices, it should not be a problem as long as we follow fog computing

architecture.

Table 4.5: Energy Consumption of the Competitive Classifiers

Classifiers
Exec. Time Avg. Power Energy

(ms) (mW) (µJ)

k-NN Classification 1.956 449.08 878.40
Random Forest Classification 1.280 394.74 505.27

SVM Classification 1.012 344.08 348.21

OLNN
Classification .036 374 13.46

Update .448 428.08 191.78
Total .484 401.04 205.24
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4.6 Discussion & Future Work

The main goal of this chapter is to demonstrate the importance of online learning and its

associated challenges in the food intake monitoring application. Although we investigated

this problem concentrating on the food intake monitoring application, the challenges of online

learning can be generalized for any healthcare application using wearable devices. We also

propose the HEAR methodology that overcomes the challenges with no significant overhead.

The advantage of our methodology is that it has the potential to be generalized for other

healthcare applications like activity recognition where the average/minimum duration of

tasks or activities are bound by the physiological properties of humans. Then with careful

selection of the segmentation window, it is possible to formulate a lemma similar to lemma 1

in this chapter. We plan to explore this possibility in our future work. In that case, the TLA

algorithm has to be modified accordingly based on the lemma specifically designed for the

problem. To evaluate our proposed methodology, we have developed a wearable neckband

as they are not commercially available. While many state-of-the-art works focused on the

design, development, and usability of the neckband, this chapter mostly focuses on the

methodology that is applicable regardless of the wearable devices. In the future, we plan to

extend our methodology for the activity recognition problem.

4.7 Summary

Human eating habits change over time and vary from person to person. In this chapter, we

propose a Human Eating Activity Recognition (HEAR) methodology which uses an online

update phase to keep up with these changes. In this regard, we designed an algorithm that

creates approximate true labels for the new eating data. We have also designed a wearable

neckband to capture the eating activity related data in a lab environment. Through detailed
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experimental evaluation of our methodology, we show that an online learned neural network

classifier outperforms state-of-the-art offline trained classifiers while also being more energy-

efficient.
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Chapter 5

Stress Detection using Context-Aware

Sensor Fusion from Wearable Devices

5.1 Abstract

Wearable medical technology has become increasingly popular in recent years. One function

of wearable health devices is stress detection, which relies on sensor inputs to determine a

patient’s mental state. This continuous, real-time monitoring can provide healthcare pro-

fessionals with vital physiological data and enhance the quality of patient care. Current

methods of stress detection lack: (i) robustness—wearable health sensors contain high levels

of measurement noise that degrades performance, and (ii) adaptation—static architectures

fail to adapt to changing contexts in sensing conditions. We propose to address these deficien-

cies with SELF-CARE, a generalized selective sensor fusion method of stress detection that

employs novel techniques of context identification and ensemble machine learning. SELF-

CARE uses a learning-based classifier to process sensor features and model the environmental

variations in sensing conditions known as the noise context. SELF-CARE uses noise context
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to selectively fuse different sensor combinations across an ensemble of models to perform

robust stress classification. Our findings suggest that for wrist-worn devices, sensors that

measure motion are most suitable to understand noise context, while for chest-worn devices,

the most suitable sensors are those that detect muscle contraction. We demonstrate SELF-

CARE’s state-of-the-art performance on the WESAD dataset. Using wrist-based sensors,

SELF-CARE achieves 86.34% and 94.12% accuracy for the 3-class and 2-class stress clas-

sification problems, respectively. For chest-based wearable sensors, SELF-CARE achieves

86.19% (3-class) and 93.68% (2-class) classification accuracy. This work demonstrates the

benefits of utilizing selective, context-aware sensor fusion in mobile health sensing that can

be applied broadly to Internet of Things applications. The findings in this chapter have been

published in [159, 160].

5.2 Introduction

Advancement in technology and the prevalence of Internet of Things (IoT) has led to the

wide adoption of wearable medical devices in recent years. Wearable medical devices have

shaped the study and practice of healthcare by allowing continuous, remote monitoring of

vital physiological signs [40, 159, 161, 162]. Wearable health devices can also be used for

stress detection, which uses inputs from body-worn sensors to analyze a patient’s mental

state [163–165].

Stress detection is of growing interest as recently the American Psychological Association

issued a warning about long-term physical and mental health impacts due to stresses from

the COVID-19 Pandemic, deeming it a ‘a national mental health crisis’ [163].

Medically, stress is a physiological state that can be triggered by hormonal surges during

moments of physical, cognitive, or emotional challenges [164]. Stress detection falls under the
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umbrella of affective computing—the area of computing that allows machines to recognize

and interpret human emotions [166]. Affective computing using wearable devices is a rapidly

developing industry, the value of which is projected to expand from $29 billion to $140

billion—an increase of nearly five times—by 2025 [167].

5.2.1 Research Challenges

The increasing prevalence of wearable health technology—and the data that can be gleaned

from this technology—has given rise to a body of academic literature focusing on stress de-

tection [168–174]. The relationship between this sensor data and stress states is not governed

by known physical equations. As a result, researchers have used classical machine learning

models (e.g., random forests, decision trees) or deep learning models (e.g., convolutional

neural networks, long short-term memory) to perform stress classification via supervised

learning over labeled datasets with annotated stress states [110, 175–177]. Deep learning

models have benefits in their ability to incorporate temporal modeling from the sensor data

into the stress detection problem. Despite this, in stress detection, classical machine learn-

ing models have been more widely adopted compared to deep learning models due to the

classical models’ lower complexity levels, important for wearable on-device deployment [39].

However, both of these types of learning-based methods lack robustness when using single

sensor modalities, since the coverage area of each sensing modality is limited by the domain

in which the sensors operate [178].

Researchers commonly use sensor fusion across multi-modal physiological data to increase the

performance of emotion recognition from wearable devices [179]. Early fusion (also known

as feature-level fusion) focuses on combining data at the raw-data level. Alternatively, late

fusion (also known as decision-level fusion) combines the final outputs of a system. Current

methods of sensor fusion that employ combinations of early and late fusion still have limited
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Figure 5.1: The context of noise on sensors depends on the respective sensor locations on the
human body. a) Physiological signals from chest sensors. A baseline segment where EMG
affects ECG and RESP even with no motion whereas, ECG remains unaffected even during
motion. This shows that EMG is more suitable than ACC to understand the noise context
from chest wearable devices. b) Physiological signals from wrist sensors. A baseline segment
where BVP and EDA is affected due to motion. Hence, ACC is more suitable to understand
the noise context in wrist wearable devices. Both sets of data in a) and b) are taken from
wrist and chest sensors on one subject from the WESAD dataset.

efficacy due to the use of static architectures that cannot adapt to changing sensing conditions

within the environment [180].

Another notable challenge in using data from these physiological signals for affective com-

puting is that the data may be susceptible to substantial amounts of sensor noise due to

physical motion or muscle contraction. Throughout the remainder of this chapter, we de-

fine the noise context of wearable health sensors as the group of external factors that can

influence the variation in measurements and noise levels of the sensors. This context can

be interpreted through intra-sensor relationships in the device as well as through sensing

conditions surrounding the device (e.g., the location of a wearable sensor on the body).

And fusing data from multiple sensors without understanding the noise context may lead to

performance degradation as found in [174].

The main research challenges we address in this work include: (i) how to effectively fuse

multi-modal sensor data from wearable devices; (ii) how to develop an adaptive architecture

to account for variations in sensing conditions; and (iii) how to model noise context in
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wearable sensors to improve stress classification performance.

5.2.2 Motivation

In this subsection, we provide motivation and qualitative analysis regarding the challenges

our approach addresses. Fig. 5.1 shows that the context of noise on sensors varies depending

on the location of the wearable device. Fusing such noisy measurements can subsequently

degrade the classification performance [39]. For example, Fig. 5.1 b) represents a baseline

segment of data from four wrist sensing modalities: tri-axis accelerometer (ACC), blood

volume pulse (BVP), electrodermal activity(EDA), skin temperature (TEMP). At several

times during the segment, significant motion causes two of the sensors (BVP, EDA) to

vary in their readings, which could cause a model to classify this segment incorrectly as

stress. Therefore, it is important to understand the noise context when making sensor fusion

decisions. Moreover, it also shows that motion sensors (ACC) have benefits for modeling the

noise context in wrist-worn devices.

On the other hand, Fig. 5.1 a) shows data from six sensing modalities from the chest (ACC,

electromyography: EMG, electrocardiogram: ECG, EDA, TEMP, respiration: RESP) for

a baseline segment of the subject. While chest motion may affect EMG and EDA, it does

not affect ECG. However, EMG may be affected even without any motion when the subject

makes muscle contractions without moving. This may in turn affect ECG and RESP as

shown in Fig. 5.1. Thus, for chest wearable devices, motion is not the best modality to

understand the noise context for sensor fusion decisions. Rather, EMG is more suitable for

chest-worn devices which is empirically validated later in Section 5.6.

The aforementioned examples motivate us to develop a context-aware sensor fusion technique

that utilizes the noise context of wearable devices to make sensor fusion decisions, which will

help us to maintain performance while avoiding misclassification. Moreover, the developed

100



method should be generalizable to both chest and wrist wearable devices as the noise context

varies based on the location of wearable devices. Prior work has shown that stress detection

using wrist-based wearable devices can be improved by modeling noise context [159], however,

the differences in using chest-based wearable devices have yet to be examined.

5.2.3 Contributions

In this chapter, we propose SELF-CARE, a generalized stress detection method that utilizes

the noise context of wearable devices to perform sensor fusion. We show that while motion-

based noise context understanding works best for wrist-based wearable devices, muscle con-

traction works best for chest-based wearable devices. Through experimental evaluation, we

demonstrate that EMG is better than ACC in understanding the noise context of chest-based

wearable devices.

The key contributions of this chapter are as follows:

1. We introduce a generalized selective sensor fusion method, SELF-CARE, for stress de-

tection from wearable health sensors. SELF-CARE implements a novel context iden-

tification method that models noise context based on the location of wearable devices

(chest or wrist), and utilizes the noise context to dynamically adjust the sensor fusion

performed across an ensemble of machine learning classifiers to improve classification

performance.

2. We empirically demonstrate that noise context varies based on the location of wearable

devices through experimentation across nine different wearable sensors. Our findings

suggest that while motion (ACC) is most suitable to understand the noise context

in wrist-worn devices, muscle contraction (EMG) is more suitable to determine noise

context in chest-worn devices.
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3. We propose a novel late fusion technique for classification over an ensemble of learners

using a Kalman filter that incorporates temporal dynamics.

4. We perform an extensive performance evaluation of the different combinations of sen-

sors from chest and wrist wearable devices for stress detection. This may serve as

the benchmark for the research community to understand, evaluate, and compare the

impact of sensor fusion in stress detection.

5. We validate our methodology on the WESAD dataset, showing that SELF-CARE is

suitable for wrist-based and chest-based wearable devices and achieves state-of-the-art

performance for the 3-class and 2-class stress detection problems.

5.2.4 Chapter Organization

The remainder of this chapter is structured as follows. In Section 5.3, we discuss related

works in stress and emotion detection and sensor fusion. In Section 5.4, we describe the

stress classification problem formulation. In Section 5.5, we introduce the methodology of

our context-aware, selective sensor fusion approach. In Section 5.6 we show the results of

our approach on a publicly available stress classification dataset. In Section 5.7, we highlight

future directions and limitations, and in Section 5.8, we provide concluding remarks.

5.3 Related Works

As this chapter presents a context-aware sensor fusion technique for stress detection, we

consider the related works from stress detection and sensor fusion. Therefore, we categorize

the related works into two parts. In Section 5.3.1, we present some related works that

consider stress and emotion detection using various sensor modalities. We also discuss the
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availability of the dataset used in the corresponding works. In Section 5.3.2, we present and

compare against the works that mainly focus on sensor fusion techniques for stress detection.

5.3.1 Stress and Emotion Detection

A number of studies [168–170] focus on detecting stress or emotion from physiological signals

such as electrocardiograms (ECGs), electromyograms (EMGs), blood volume pulse (BVP),

respiration (RESP), electrodermal activity (EDA), and skin temperature (TEMP). However,

these datasets are not publicly available. Among works with publicly available datasets,

authors in [171] detect stress while driving a vehicle, while [172] and [173] perform a more

complex analysis on subjects’ general emotional states. However, these datasets are limited

in that they do not include data on both stress and additional emotions simultaneously.

Authors in [174] created the WESAD (Wearable Stress and Affect Detection) dataset, which

includes data on both stress and amusement states from chest- and wrist-worn devices.

Moreover, the authors compare the classification performance of multiple common machine

learning methods using chest-worn sensors, wrist-worn sensors, and their combinations. They

conclude that: (i) chest sensors perform better, and wrist sensors become redundant and

sometimes even decrease performance, (ii) fusing multiple sensor modalities together can

improve results, and (iii) the accelerometer can negatively impact classification performance.

The third finding supports our claims that modeling the context as a learned abstraction

of motion can be beneficial for wearable devices, and that sometimes fusing all available

sensors together reduces performance. Authors in [175] use the WESAD dataset to present

a translation method using a Generative Adversarial Network (GAN) to generate chest

sensor features using the wrist sensors. However, the higher computational complexity of

GANs, along with the requirement of chest data during training, limits the application

for computing on a wrist-worn device. Authors in [110] propose a hybrid convolutional
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neural network (CNN) architecture that uses both manually extracted and CNN features

for classification, but only uses one sensing modality. The authors of [181, 182] and [176]

explore the feasibility of deep learning models for stress and emotion detection using the

WESAD dataset. However, traditional machine learning models are currently favored over

deep learning approaches due to deep learning’s increased computational complexity and

lack of explainability [39, 179].

5.3.2 Sensor Fusion

Sensor fusion has many benefits when applied to both physiological signals and stress recog-

nition [38, 179]. By combining raw-sensor data or features (early fusion), more information

can be extracted from sensor measurements than would otherwise be available. Likewise,

using an ensemble method of multiple learners (late fusion) can increase robustness to sen-

sor/classifier errors. Performing late fusion on the outputs of multiple classifiers can improve

performance, as each classifier can be specialized for its particular set of input data [183].

Traditional late fusion approaches typically use a voting method over the outputs of the

classifiers to make a final decision. Other works have also proposed a learned late fusion

method, such as the method discussed in [184]. The authors propose an adaptive fusion

method, detailing the benefits of using event-related feature extraction techniques along with

an adaptive framework. However, their approach does not consider the noise context of data

for the sensor fusion decision as we do in our approach. Additionally, we also show that the

noise context varies based on the location of wearable devices, which has not been addressed

in their work. Furthermore, although their late fusion is adaptive, their method is static

in that it requires a set number of classifiers. Our model, on the other hand, can dynami-

cally adjust the number and type of classifiers used based on the performance-computation

trade-off.
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Lastly, sensor fusion presents additional benefits when fusing time-series data with temporal

correlations, like the data present in physiological sensors. Kalman filters are tools for

estimating unknown quantities by iteratively predicting and updating the estimated state of

interest [185], which in our case is the predicted class. Some works propose using Kalman

filters to solve classification problems, [186], while other works do not consider temporal

aspects within their formulation. In this work, we present a novel late fusion method using a

Kalman filter to take advantage of the temporal dynamics in the stress classification problem.

5.4 Problem Formulation

As discussed in Section 5.3, fusing multiple heterogeneous physiological signals has benefits

for stress detection. The main sources of these physiological signals are generally either chest-

or wrist-worn wearable devices. Between the two, wrist-worn wearable devices are more prone

to noise induced by random movements of hands, and, as shown in Fig. 5.1, movements

create varying impacts on different physiological signals. Fusing such noisy signals often

deteriorates the classification performance [174]. On the other hand, chest-worn wearable

devices are less prone to random movements due to their location, but signals may be

affected or become noisy for other reasons, such as muscle contraction. Therefore, it is

important to understand the context of the noise which varies based on the location of the

wearable devices. Understanding the noise context can help to dynamically select the less

impacted signals to be fused, which will eventually improve the classification performance.

The problem formulation for stress detection in a selective approach is provided as follows.

For each input segment of sensor data, the goal of a classifier ϕ is to utilize the measurements

from available sensors, X, to classify the segment, Y:

Y = ϕ(X) = [p1, p2, . . . pc] (5.1)
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X = {Xi}i=1...s (5.2)

where s is the number of available sensors; Xi represents the measurements from sensor

i; and Y represents the classifier output which is comprised of the probabilities p of the c

classes, (e.g., c = 1: baseline, c = 2: stress, c = 3: amusement). ϕ can be implemented via

traditional sensor fusion techniques, a machine learning (ML) or deep learning (DL) model,

or an ensemble of ML/DL models.

Since X represents data from multiple heterogeneous sensing modalities, sensor fusion can

be used to fuse the data to provide a better estimate of Y. In early fusion, the raw sensor

inputs are fused before being passed through the classifier as follows:

Ŷ = ϕ(ψ(X1,X2, . . . ,Xs)) (5.3)

where ψ represents the function for fusing the different inputs. In contrast, late fusion,

involves fusing the outputs of an ensemble of sensor-specific classifiers as follows:

Ŷ1, Ŷ2, . . . , Ŷs = ϕ1(X1), ϕ2(X2), . . . , ϕs(Xs) (5.4)

Ŷ = ϕ(Ŷ1, Ŷ2, . . . , Ŷs) (5.5)

The context of noise can vary dramatically based on the wearable device location and may

have a range of impacts on different sensor modalities. This variance calls for the use of

an adaptive ϕ that selects the sensor modalities to be fused based on the noise context—
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for example, movements of hands in wrist-worn wearable devices or muscle contractions in

chest-worn wearable devices. In this case, ϕ represents an ensemble of classification models,

and ϕ∗ represents the selected best subset of models in the ensemble for a given input X.

The context of the noise (either learned and modeled from the inputs or provided externally)

is denoted as Ω. We introduce the context identification problem formulation as:

Ω = π(X), (5.6)

ϕ∗ = ρ(Ω), (5.7)

where π represents a gating model that performs context identification, and ρ represents

the mechanism for selecting ϕ∗ given the identified context Ω. The goal of π and ρ is to

select the optimal subset of branch models ϕ∗ for the inferred context Ω to maximize stress

classification performance for a given X. In our specific case, context is defined as motion

for wrist-worn wearable devices or as muscle contraction for chest-worn wearable devices.

The inputs to π typically consist of measurements from the accelerometer (wrist-worn) or

EMG (chest-worn) based on the wearable device location.

5.5 Methodology

In this Section we detail our method, SELF-CARE, depicted in Fig. 5.2. Our method per-

forms stress classification given input sensor measurements from a specified time segment

using four main blocks: (i) preprocessing, (ii) context identification, (iii) branch classifiers,

and (iv) late fusion. SELF-CARE takes the form of a multi-branched architecture in which

different “branches” represent stress detection classifiers using different combinations of sen-

107



Figure 5.2: Proposed SELF-CARE Architecture. In this depiction different types of
chest/wrist-worn sensors are used, the gating model selects the branches given the con-
text, a Random Forest/AdaBoost classifier is used for the branch models, and a Kalman
filter is used for the late fusion over the selected branches.

sors. Context identification selects which branches to execute, while late fusion is used to

fuse the stress classification predictions if multiple branches are selected. The following

subsections provide further details on the proposed method.

5.5.1 Preprocessing Step

SELF-CARE can take in data from varying numbers of heterogeneous or homogeneous phys-

iological sensors as inputs. Preprocessing is a common step when dealing with raw, unfiltered

sensor data. By applying various filters (e.g., band-pass filters or lowpass filters) to the in-

put data, random noises are reduced, and important features are more easily extracted. The
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preprocessing performed over each sensing modality is detailed in Section 5.6.

5.5.2 Context Identification

Feature Extraction

The purpose of the context identification block is to predict which branch classifier(s) will

perform the best given an input set of sensor features that are used to model the context of the

system. Contextual modeling can help illuminate the performance of various sensors in terms

of their levels of noise under different situations and the locations of the wearable device on

the human body. For wrist wearable devices, we use motion to model the context. Therefore,

for wrist devices, we first extract only ACC features as they are directly related to the relative

motion of the test subject. For chest wearable devices, on the other hand, the context is best

modeled by muscle contraction, which is captured by EMG signal. We then extract EMG

features for chest-worn devices for contextual modeling. Next, these features are processed

by the gating model to select the best performing branch. The feature extraction of the

other modalities takes place after the gating model has selected which branch(es) will be

used for classification.

Gating Model (π)

The gating model trains a classifier that uses the ACC/EMG features as inputs to select

one of the available branch classifiers according to wrist/chest-worn devices. For wrist-

worn device, we shortlist these three branches:WB1={BVP, EDA, TEMP}; WB2={ACC,

BVP, EDA}; WB3={BVP, EDA} using Random Forest classifier for both 3-class and 2-

class classification. Similarly, for chest-worn devices, we shortlist five branches for 3-class

and 2-class classification using AdaBoost classifiers. For 3-class classification, the short-
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listed branches are: CB1={ECG, RESP, EMG, EDA, TEMP}; CB12={ECG, EMG, EDA,

TEMP}; CB14={RESP, EMG, EDA, TEMP}; CB24={ECG, EMG, EDA}; CB27={EMG,

EDA, TEMP}. For 2-class classification, the shortlisted branches are: CB5={ACC, ECG,

RESP, EDA}; CB7={ACC, ECG, EMG, EDA}; CB9={ACC, ECG, EDA, TEMP}; CB13={ECG,

RESP, EDA, TEMP}; CB20={ACC, ECG, EDA}. The process for choosing these branches

is discussed further in Section 5.6.2. We employ a Decision Tree (DT) classifier for our gating

model because it is lightweight and adds minimum overhead to our architecture.

Performance-Computation Trade-off (δ)

An important feature of SELF-CARE is its ability to balance constraints between perfor-

mance and computation. We introduce the term δ that aids the gating decision in considering

this trade-off. The gating model outputs prediction probabilities for the available branches

with b̄ representing the maximum probability branch. δ has a range between 0 and 1, rep-

resenting the range in which non-maximum branches are selected by allowing branches with

probabilities greater than b̄ − δ to be also selected. Lower δ values indicate tighter compu-

tation constraints, with δ = 0 indicating that only the highest probability branch from the

gating classifier is selected, while higher δ values allow more branches to be selected, with

δ = 1 indicating that all possible branches are selected.

Early Fusion (ψ)

Once the branches are selected after applying δ on the gating model decision, the features for

those branches will be extracted and concatenated together to be passed to the corresponding

classifiers. For example, while using wrist modalities, if WB1 and WB3 are the selected

branches by the gating model for either 3-class or 2-class classification, the features from

BVP, EDA, and TEMP signals are concatenated together using early fusion for WB1, while
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features from BVP and EDA are fused for branch WB3. Similarly, for 3-class classification

using chest modalities, the features from ECG, RESP, EMG, EDA, and TEMP are fused

together if the gating model selects the CB1 branch.

5.5.3 Branch Classifiers

Next, the corresponding branch classifier(s) are used to classify the segment. For our ap-

proach, we use a Random Forest (RF) classifier for all three branches of wrist modalities

for 3-class and 2-class classification. For chest modalities, we use the AdaBoost classifier for

all five branches for 3-class and 2-class classification. The details of the classifier training

and selection are provided below in Section 5.6.2. Currently, SELF-CARE operates using

either only wrist sensors or only chest sensors, however, our method is capable of integrating

both sets of branches with modifications to the context identification module. Each selected

branch produces a classification prediction to serve as input for the late fusion method.

5.5.4 Late Fusion Method

The late fusion method is tasked with fusing the class predictions from the various selected

branches, {Ŷ1, Ŷ2, . . . , Ŷs}, with the goal of producing higher accuracy predictions than

any one individual branch by itself. Here we present our Kalman filter-based method for

classification over an ensemble of classifiers.

Kalman filters are powerful and commonly used tools for sensor fusion and the broader field

of estimation. They are designed to estimate the unknown state of a system along with the

state’s uncertainty by performing a series of recursive predictions and measurement updates.

In the context of our problem, we consider a Kalman filter approach towards the multi-class

classification problem like in [186], and we additionally model the temporal dynamics in the
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stress classification problem for each sample at time k. The general form of the discretized

linear dynamics of a system with state x and measurements z is given as:

x(k) = Fx(k − 1) + v(k) (5.8)

z(k) = Hx(k) +w(k) (5.9)

where F is the state transition matrix; v is the process noise vector, which is modeled as

zero-mean, normally distributed random variable with covariance, Q; H is the measurement

matrix relating the state to the measurements; and w is the measurement noise vector, which

also is zero-mean with a normal distribution and covariance, R.

During the prediction step of the Kalman filter, the state estimate and its estimation error

covariance matrix, P(k), are propagated forward through the dynamics model with the added

process noise. This step enforces the temporal dependency that the stress class probabilities

at the current time step have on the future time step. The prediction equations are:

x(k|k − 1) = Fx(k − 1|k − 1), (5.10)

P(k|k − 1) = FP(k − 1|k − 1)F⊤ +Q(k − 1) (5.11)

where the notation (k+1|k) indicates the next time step given the current time step. Next,

during the update step, measurements are processed and updated estimates of the states

and their covariance are corrected according to the measurements. The measurement update
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equations are as follows:

x(k|k) = x(k|k − 1)−K(k)[H(x(k|k − 1)− z(k)] (5.12)

P(k|k) = P(k|k − 1)−K(k)HP(k|k − 1) (5.13)

K(k) = P(k|k − 1)H⊤[HP(k|k − 1)H⊤ +R(k)]−1 (5.14)

with K representing the Kalman gain. The prediction and update step are iterated to

produce an estimate of the state, x, and its associated estimation error covariance, P, rep-

resenting the uncertainty involved with the state estimate.

For our case, we abstract the multi-class classification problem as follows. The unknown state

our filter is attempting to estimate is the probability of each class during each segment. Thus,

x is a c dimensional vector of estimated class probabilities. Additionally, the predictions from

each separate classifier are the measurements z, which are processed sequentially per time

step. This allows for s∗ measurement updates per iteration where s∗ is adaptively selected

per sample by the gating model. We additionally provide some measurement thresholding

during the filter updates that are detailed in Section 5.6.2. Finally, we arrive at our late

fusion output using the Kalman filter-based method:

Ŷkf = argmax
c

x (5.15)

where x is the state vector from the Kalman filter. To validate our Kalman-filter based

method, we benchmark its performance against commonly used voting mechanisms for late
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fusion: hard-voting and soft-voting [183]. The method of hard-voting assigns the final class

based on the class most commonly voted by each classifier, whereas soft-voting selects the

class with the highest average value across all the classifiers. Our results comparing different

late fusion approaches are presented in Figures 5.4, 5.5, 5.6, and 5.7 of Section 5.6.

5.6 Experimental Analysis

This section presents the experimental findings of SELF-CARE on a wearable health device

stress detection dataset. First, we describe the dataset used for evaluation. Second, we

explain the training and implementation of our models. Third, we describe our evaluation

metrics and analyze experimental results.

5.6.1 Dataset

SELF-CARE is validated on the publicly available WESAD dataset [174]. This dataset was

selected because it contains data from both wrist- and chest-worn wearable devices, which

makes it an ideal dataset for understanding the noise context devices worn on different

parts of the body. The dataset contains data for a total of 15 subjects, from both chest-

(RespiBAN) and wrist- (Empatica E4) worn sensors. The chest sensors used in RespiBAN

are ACC, ECG, RESP, EMG, EDA, TEMP. The wrist sensors from the Empatica E4 are

ACC BVP, EDA, TEMP. The dataset has three types of classes related to emotional states:

(i) baseline (neutral), (ii) amusement, and (iii) stress. For the 2-class problem, baseline and

amusement are grouped together in the non-stress class.
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Figure 5.3: SELF-CARE training and implementation procedure.

5.6.2 SELF-CARE Training and Implementation

This section describes the training and implementation details for the SELF-CARE archi-

tecture, shown in Fig. 5.3.

Preprocessing Step

The preprocessing step involves raw data processing to filter out typical noises.

Wrist Modalities: The ACC data is passed through a Finite Impulse Response (FIR) filter

with a length of 64 with a cut-off frequency of 0.4 Hz. Following the work in [110], the raw

BVP signal is filtered by a Butterworth band-pass filter of order 3 with cutoff frequencies

(f1=0.7 Hz and f2=3.7 Hz), which takes into account the heart rate at rest (≈40 BPM) or

high heart rate due to exercise scenarios or tachycardia (≈220 BPM) [187]. The raw EDA

signals are filtered using a Butterworth lowpass filter of order 6 with cut-off frequency of 1

Hz. Finally, we use a Savitzky-Golay filter (window size=11, order=3) to smooth the raw

TEMP signals.

Chest Modalities: Because the chest data is collected at a very high sampling rate (700

Hz), the signals are first smoothed using a Savitzky-Golay filter. The ACC data is smoothed

using a window size of 31 with an order of 5. The other signals (ECG, EMG, EDA, RESP,

and TEMP) are smoothed using a window size of 11 and an order of 3. Similar to wrist BVP,
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the ECG signal is further filtered by a Butterworth band-pass filter of order 3 with cutoff

frequencies (f1=0.7 Hz and f2=3.7 Hz) that takes into account the heart rate at rest (≈40

BPM) or high heart rate due to exercise scenarios or tachycardia (≈220 BPM) [187]. The

EDA signals are filtered using a Butterworth lowpass filter of order 2 with a cutoff frequency

of 5 Hz. To extract some of the peak features (number of peaks, peak amplitude), the EMG

signal is passed through a Butterworth lowpass filter of order 3 and a cutoff frequency of 0.5

Hz. We extract other EMG features from the smoothed EMG signal. The RESP signal is

filtered by a Butterworth bandpass filter of order 3 with cutoff frequencies f1=0.1 Hz and

f2=0.35 Hz.

The filtered signals from both the wrist and chest are segmented by a window of 60 seconds

of data with a sliding length of 5 seconds following [175]. This process produces a total of

6458 segments for each signal across all subjects of the WESAD dataset.

Feature Extraction

We extract the same wrist and chest sensor features as used in [174], some of which include

mean/standard deviations, correlations, slope, and dynamic ranges, peak and power frequen-

cies, and absolute integrals. We note that this feature extraction is only performed across the

sensors that are selected to run by the gate for a given input sample. Table 5.1 contains the

list of extracted features. We refer readers to [174] for further details of extracted features

per sensor.

Train Branch Classifiers

To train the individual branch classifiers within SELF-CARE, we train using different com-

binations of input sensor data.
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Table 5.1: List of Extracted Features

Feature Symbol Feature Names

ACC Features
µACC,i, σACC,i Mean and STD of each
i ∈ {x, y, z, 3D} axis and summed over all axes

|
∫
ACC,i |, i ∈ {x, y, z, 3D} Absolute integral for each/all axes

fpeak
ACC,j , j ∈ {x, y, z} Peak frequency of each axis

ECG/BVP Features
µHR, σHR Mean and STD of HR

µHRV , σHRV Mean and STD of HRV

NN50, pNN50
Number and percentage of HRV

intervals differing more than 50 ms
rmsHRV Root mean square of the HRV
fx
HRV Energy in ultra-low, low, high,

x ∈ ULF,LF,HF,UHF ultra-high frequency band of the HRV

f
LF/HF
HRV Ratio of LF and HF component∑f

x

∑
of the frequency components

x ∈ ULF,LF,HF,UHF in ULF-HF

relfx Relative power of freq. components
LFnorm, HFnorm Normalised LF and HF component

EMG Features
µEDA, σEDA Mean and STD of EMG
rangeEDA Dynamic range of EMG
|
∫
EMG | Absolute integral

π̄EMG Median of EMG

P 10
EMG, P 90

EMG 10th and 90th percentile

µf
EMG, f̄EMG, fpeak

EMG Mean, median, and peak frequency
PSD(fEMG) Energy in seven bands

#peaks
EMG Number of peaks

µamp
EMG, σamp

EMG Mean and STD of peak amplitude∑amp
EMG,

∑̄amp
EMG

∑
and norm.

∑
of peak amplitude

EDA Features
µEDA, σEDA Mean and STD of EDA

minEDA, maxEDA Min and max value of EDA
δEDA, rangeEDA Slope and dynamic range of EDA
µSCL, σSCL, σSCR Mean and STD of SCL/SCR

CorrSCL,t Correlation between SCL and time
# SCR Number of SCR segments∑amp

SCR,
∑t

SCR

∑
of SCR magnitudes and duration∫

SCR Area under SCR segments

RESP Features
µx, σx Mean and STD of inhalation (I)
x ∈ I, E exhalation (E) duration

I/E Inhalation/exhalation ratio
volinsp, rangeRESP Volume and range of RESP
rateRESP ,

∑
RESP Respiration rate and duration

TEMP Features
µTEMP , σTEMP Mean and STD of TEMP

minTEMP , maxTEMP Min and max of TEMP
δTEMP , rangeTEMP Slope and dynamic range of TEMP

Standard Deviation (STD), Skin Conductance Response (SCR), Skin
Conductance Level (SCL), Heart Rate (HR), Heart Rate Variability
(HRV)

For Wrist Modalities, we use five different early fusion combinations of wrist sensors as

input branches: WB1={BVP, EDA, TEMP}; WB2={ACC, BVP, EDA}; WB3={BVP,

EDA}; WB4={ACC, BVP}; WB5={ACC, EDA} as shown in Tables 5.2 and 5.3. For chest
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modalities, we tried forty-two different combinations of chest sensors as input branches as

shown in Tables 5.4 and 5.5.

We evaluate each branch on five different machine learning classifiers—Decision Tree (DT),

Random Forest (RF), AdaBoost (AB), Linear Discriminant Analysis (LDA), K-Nearest

Neighbor (KNN). We selected these classifiers to ensure a fair comparison with the orig-

inal WESAD work [174]. Following the work in [174], we use the same configurations for

the classifiers. We use DT as the base estimator for the RF and AB ensemble classifiers,

and use 100 base estimators for both RF and AB. In order to measure the splitting quality

of the decision nodes, we used information gain and set the minimum number of samples

to split a node to 20. For KNN, the K value is set to 9. All classifiers are trained using

leave-one-subject-out (LOSO) validation.

Select Branch Classifiers

We select the branches with the least amount of training loss to be used. The training loss is

calculated from the classification confidence of the trained classifiers on the training samples

using the categorical cross-entropy, CE = −
∑nc

i yi log ŷi, where y is the one hot encoded

true label of a sample, ŷ is the corresponding classification output for that sample, and nc is

the number of classes. CE is then calculated for all the training samples across all rounds

of LOSO validation.

Next, out of the 25 (5 branches x 5 classifiers per branch) possible branch classifiers for wrist

modalities, RF classifiers for input branchesWB1,WB2, andWB3 are selected as the branch

classifiers for both 3-class and 2-class classification. Similarly, for chest modalities, out of 210

(42 branches x 5 classifiers per branch) possible branches, AB classifiers for input branches

CB1, CB12, CB14, CB24, and CB27 are selected for 3-class classification. And for 2-class

classification, we select AB classifiers for input branches CB5, CB7, CB9, CB13, and CB20
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Table 5.2: Early Fusion Performance of Wrist Modalities in WESAD Dataset for 3-Class
(Baseline vs. Stress vs. Amusement)

Modality Used
DT RF AB LDA KNN

MF1 Acc. MF1 Acc. MF1 Acc. MF1 Acc. MF1 Acc.

WB1={BVP, EDA, TEMP} 56.23 62.32 62.73 76.62 63.78 75.78 52.62 61.79 58.3 69.04
WB2={ACC, BVP, EDA} 58.46 48.27 62.88 77.71 62.39 76.63 60.23 69.63 58.9 68.55

WB3={BVP, EDA} 55.14 59.02 61.02 73.96 60.67 72.54 56.55 69.8 65.73 53.44
WB4={ACC, BVP} 51.54 60.66 56.86 71.38 57.83 71.96 58.67 68.36 55.51 67.05
WB5={ACC, EDA} 47.98 54.5 52.97 70.15 56.47 71.31 57.71 68.6 58.75 64.87

Table 5.3: Early Fusion Performance of Wrist Modalities in WESAD Dataset for 2-Class
(Stress vs. Non-stress)

Modality Used
DT RF AB LDA KNN

MF1 Acc. MF1 Acc. MF1 Acc. MF1 Acc. MF1 Acc.

WB1={BVP, EDA, TEMP} 74.1 84.27 84.66 89.01 85.29 88.96 71.46 77.32 83.74 86.56
WB2={ACC, BVP, EDA} 69.44 77.06 85.08 88.76 85.44 88.45 85.66 87.92 80.25 83.62

WB3={BVP, EDA} 80.8 84.48 86.37 89.33 86.13 89.26 83.77 86.55 79.7 83.66
WB4={ACC, BVP} 74.97 79.94 76.43 82.45 79.77 84.21 82.37 85.07 76.49 80.13
WB5={ACC, EDA} 65.65 76.1 72.77 82.42 75.39 83.52 78.66 84.19 73.72 77.55

for use within our SELF-CARE methodology. These classifier selections are informed by the

extensive experiments we performed across the classifiers variations, which we benchmark in

Tables 5.2, 5.3, 5.4, and 5.5.

Generate Gating Labels

The objective of the gating model is to predict one or a subset of branch classifiers from the

classifiers listed in Section 5.6.2 to be used in our SELF-CARE methodology. For each of

the training samples, we generate gating labels representing the branch that has the least

amount of training loss. These gating labels will be used to train the gating model. For each

round of LOSO validation, gating labels are generated based only on the training data, and

no test data is used to ensure the validity of our approach.

Train Gating Model

The gating model interprets the context of a sample by modeling the movement (for wrist-

worn devices) or muscle contraction (for chest-worn devices) that occurred during that seg-
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Table 5.4: Early Fusion Performance of Chest Modalities in WESAD Dataset for 3-Class
(Baseline vs. Stress vs. Amusement)

Modality Used
DT RF AB LDA KNN

MF1 Acc. MF1 Acc. MF1 Acc. MF1 Acc. MF1 Acc.

CB1={EC,RE,EM,ED,TE} 54.26 62.07 58.68 71.39 65.63 76.53 30.14 38.2 53.87 65.1
CB2={AC,EC,RE,EM,TE} 49.41 57.01 53.55 69.1 60.18 71.88 55.71 72.0 43.15 51.5

CB3={AC,RE,EM,TE} 45.8 55.14 53.46 68.58 57.11 69.14 54.93 66.07 44.79 55.49
CB4={AC,EC,RE,EM} 48.29 55.55 50.37 63.36 54.52 65.55 51.8 62.8 43.04 51.56
CB5={AC,EC,RE,ED} 44.33 53.75 52.32 69.15 55.02 73.09 44.05 54.93 43.73 52.43
CB6={AC,EC,EM,TE} 48.96 56.55 53.98 69.58 58.98 70.88 55.31 71.41 42.33 49.93
CB7={AC,EC,EM,ED} 51.22 61.09 57.0 72.64 59.54 73.35 45.79 56.21 46.82 56.17
CB8={AC,RE,ED,TE} 42.79 51.74 54.6 71.06 52.34 67.32 22.66 24.62 40.91 48.78
CB9={AC,EC,ED,TE} 41.94 51.1 54.75 72.57 57.36 75.99 38.59 48.37 45.53 54.2
CB10={EC,RE,EM,TE} 47.17 52.8 58.11 70.71 61.8 71.92 54.51 68.6 51.17 59.94
CB11={EC,RE,EM,ED} 51.14 59.24 57.7 68.9 60.47 70.68 50.34 60.93 51.54 62.99
CB12={EC,EM,ED,TE} 53.95 61.41 57.95 71.12 62.09 74.51 31.52 39.52 53.31 63.83
CB13={EC,RE,ED,TE} 51.75 60.09 55.02 72.85 57.73 73.45 31.98 38.97 57.14 70.26
CB14={RE,EM,ED,TE} 48.93 54.44 60.87 71.41 63.68 74.16 31.59 37.16 51.69 64.38

CB15={AC,ED,TE} 41.23 49.34 53.69 69.18 52.91 68.95 24.18 25.84 42.29 50.57
CB16={AC,EM,ED} 48.81 58.07 54.59 69.32 54.7 69.25 35.84 45.83 44.99 54.87
CB17={AC,RE,ED} 43.23 51.69 51.5 67.36 49.91 66.85 35.15 45.74 39.96 49.74
CB18={AC,EC,RE} 40.4 50.19 48.55 61.61 50.11 65.04 51.39 61.91 39.85 48.3
CB19={AC,RE,EM} 45.19 52.93 48.03 61.65 50.84 62.98 43.41 54.94 42.54 54.79
CB20={AC,EC,ED} 44.66 53.48 53.36 69.41 53.78 72.28 43.15 53.74 42.98 50.43
CB21={EC,RE,EM} 43.25 49.07 51.13 58.51 52.17 59.63 54.68 65.37 47.82 57.02
CB22={EC,ED,TE} 52.6 62.66 55.06 72.59 57.63 72.9 33.23 39.41 56.58 68.1
CB23={EC,RE,ED} 49.02 55.73 51.74 65.97 50.34 65.1 46.24 59.24 52.38 64.95
CB24={EC,EM,ED} 52.58 60.19 57.89 68.58 61.69 71.25 49.41 59.77 50.23 60.75
CB25={RE,EM,ED} 42.09 49.83 56.13 64.04 61.46 69.09 39.07 49.63 48.25 61.33
CB26={RE,ED,TE} 45.95 54.85 56.76 74.1 54.56 71.05 22.48 23.51 50.27 64.98
CB27={EM,ED,TE} 49.94 55.45 61.32 71.51 64.72 74.36 32.73 40.29 51.23 62.91

CB28={AC,RE} 42.27 51.12 48.39 60.41 45.06 58.18 43.3 56.92 40.93 52.46
CB29={AC,EM} 44.36 52.12 47.96 61.39 50.41 63.09 42.04 53.55 42.18 53.4
CB30={AC,EC} 39.41 48.76 49.48 63.37 48.79 62.9 51.14 61.68 37.45 45.01
CB31={AC,ED} 42.26 49.04 51.56 67.42 47.84 65.89 32.8 42.47 40.46 50.72
CB32={AC,TE} 39.86 48.43 49.58 62.29 46.81 59.66 52.05 63.16 42.78 52.02
CB33={EC,RE} 42.24 47.3 44.13 54.5 45.72 55.92 52.31 66.59 45.34 56.68
CB34={EC,EM} 40.99 46.91 51.12 57.73 50.89 58.93 54.25 64.96 48.46 55.93
CB35={EC,ED} 51.3 57.86 50.4 64.85 50.02 64.46 44.76 57.57 50.21 61.31
CB36={EC,TE} 41.34 48.0 48.82 63.43 51.94 63.68 53.47 69.58 50.07 59.97
CB37={ED,TE} 47.52 56.72 55.39 72.88 53.17 69.89 23.22 24.12 47.97 59.91
CB38={RE,ED} 39.88 47.63 50.19 60.34 45.98 54.46 30.8 42.41 48.9 64.12
CB39={RE,EM} 42.73 50.93 47.94 57.68 47.65 57.34 44.9 57.34 45.69 56.73
CB40={RE,TE} 41.78 53.36 51.85 69.44 49.91 59.96 56.65 71.94 48.43 62.27
CB41={EM,ED} 42.9 51.26 55.5 63.64 60.54 68.68 36.4 45.9 49.92 60.11
CB42={EM,TE} 40.63 45.37 62.12 71.95 63.16 70.91 58.63 67.99 50.41 59.67

AC = ACC, ED = EDA, EC = ECG, EM = EMG, RE = RESP, TE = TEMP

ment. Therefore, we use the ACC (wrist) or EMG (chest) features as input data to train

the gating model with the labels generated from the previous Section 5.6.2. We use a DT

classifier as the gating model where the minimum number of samples to split a node is set to

20. The DT classifier is very lightweight and helps to minimize the overhead of SELF-CARE.

Once the gating model is trained, the test subject data is used to test our architecture as

shown in Fig. 5.2. For wrist-worn devices, the gating model outputs the probability of using
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Table 5.5: Early Fusion Performance of Chest Modalities in WESAD Dataset for 2-Class
(Stress vs. Non-stress)

Modality Used
DT RF AB LDA KNN

MF1 Acc. MF1 Acc. MF1 Acc. MF1 Acc. MF1 Acc.

CB1={EC,RE,EM,ED,TE} 73.17 75.85 82.02 83.24 81.45 84.14 46.32 48.77 74.68 78.81
CB2={AC,EC,RE,EM,TE} 67.25 73.11 80.12 83.86 77.07 82.75 77.53 79.98 63.81 69.48

CB3={AC,RE,EM,TE} 68.85 76.61 78.15 83.44 73.16 81.56 74.03 77.17 61.97 70.88
CB4={AC,EC,RE,EM} 66.93 72.16 70.57 78.06 72.98 80.57 75.66 79.83 64.12 69.86
CB5={AC,EC,RE,ED} 70.39 75.81 82.41 84.21 83.21 85.64 68.46 75.02 74.6 77.75
CB6={AC,EC,EM,TE} 66.06 72.22 80.13 83.88 75.77 82.36 77.13 79.64 62.97 68.0
CB7={AC,EC,EM,ED} 72.45 77.72 83.49 85.64 82.29 85.72 69.6 75.2 72.05 75.86
CB8={AC,RE,ED,TE} 68.71 73.26 81.03 84.16 72.19 79.34 29.71 32.23 66.42 74.28
CB9={AC,EC,ED,TE} 65.13 70.79 84.47 86.12 82.15 85.2 59.5 61.72 75.02 78.4
CB10={EC,RE,EM,TE} 52.55 54.77 76.87 80.08 76.02 80.39 76.89 79.17 68.32 73.94
CB11={EC,RE,EM,ED} 74.89 77.51 81.23 82.93 82.25 84.79 70.15 75.69 73.76 77.89
CB12={EC,EM,ED,TE} 72.35 75.25 82.05 83.39 79.64 82.7 47.71 50.14 73.03 77.14
CB13={EC,RE,ED,TE} 73.62 75.58 79.2 80.24 83.31 84.78 49.66 51.9 79.22 82.04
CB14={RE,EM,ED,TE} 70.82 73.11 81.8 84.15 77.41 81.44 47.13 50.71 67.67 76.19

CB15={AC,ED,TE} 66.82 72.0 80.51 83.08 71.5 79.53 32.61 35.96 66.95 73.5
CB16={AC,EM,ED} 69.7 76.11 78.93 83.67 74.92 82.07 54.66 61.85 64.89 71.65
CB17={AC,RE,ED} 66.46 73.42 77.17 81.81 70.91 79.16 53.28 62.59 63.82 71.44
CB18={AC,EC,RE} 62.03 69.17 72.22 78.51 75.78 81.16 74.68 79.53 65.87 69.49
CB19={AC,RE,EM} 63.76 71.48 66.44 77.19 64.21 75.5 63.29 71.03 60.84 70.04
CB20={AC,EC,ED} 69.46 74.81 84.11 85.62 84.0 86.37 66.96 73.53 73.19 76.18
CB21={EC,RE,EM} 61.32 65.25 68.82 73.78 67.5 74.26 75.91 80.2 65.96 72.18
CB22={EC,ED,TE} 73.09 75.06 78.33 79.4 81.01 82.4 52.84 55.01 77.92 80.7
CB23={EC,RE,ED} 70.15 72.45 78.83 80.05 79.93 81.62 67.9 74.41 76.45 79.31
CB24={EC,EM,ED} 74.75 77.26 80.69 82.39 82.03 84.58 69.03 74.81 71.75 75.88
CB25={RE,EM,ED} 60.6 65.44 74.27 78.99 73.3 79.62 54.6 62.95 67.22 76.13
CB26={RE,ED,TE} 69.55 71.23 77.57 78.93 77.44 79.83 35.86 39.07 70.25 75.78
CB27={EM,ED,TE} 70.92 73.2 80.65 83.39 77.88 82.14 50.88 54.17 66.11 73.9

CB28={AC,RE} 64.32 70.8 68.92 77.16 66.29 75.53 62.96 75.13 65.24 72.01
CB29={AC,EM} 61.76 69.37 66.36 76.85 64.19 75.86 60.91 69.19 60.51 68.4
CB30={AC,EC} 63.41 70.31 71.71 78.03 75.3 80.99 74.32 79.37 62.87 66.02
CB31={AC,ED} 65.63 73.35 77.51 81.63 69.97 78.57 50.03 59.14 64.28 70.83
CB32={AC,TE} 65.69 72.52 76.55 82.0 68.5 78.26 73.3 76.77 67.49 74.41
CB33={EC,RE} 65.21 69.46 72.23 77.74 73.98 78.63 77.57 82.62 68.9 72.35
CB34={EC,EM} 59.41 64.16 68.24 73.16 66.69 74.49 75.07 79.67 65.89 71.05
CB35={EC,ED} 73.98 75.83 79.27 80.54 79.02 80.46 66.44 73.23 74.62 77.1
CB36={EC,TE} 60.01 62.86 74.62 77.53 76.0 79.02 77.6 79.43 69.8 72.64
CB37={ED,TE} 67.64 69.64 76.97 78.79 73.82 76.4 42.8 45.87 68.43 72.55
CB38={RE,ED} 56.46 59.02 74.86 77.79 66.92 71.09 48.47 59.08 71.71 78.38
CB39={RE,EM} 57.13 66.44 53.69 69.12 54.17 69.16 61.04 70.26 57.0 69.98
CB40={RE,TE} 54.42 56.14 73.9 77.39 73.96 77.51 73.24 76.48 70.44 74.84
CB41={EM,ED} 61.9 67.19 76.18 80.4 72.54 79.26 51.34 59.27 66.06 74.2
CB42={EM,TE} 56.15 60.49 77.06 81.6 72.14 78.9 73.38 76.76 62.5 71.6

AC = ACC, ED = EDA, EC = ECG, EM = EMG, RE = RESP, TE = TEMP

the three final branch classifiers based on the test subject’s ACC features. Similarly, for

chest-worn devices, EMG features are used by the gating model to determine the probability

of using the five final branch classifiers as mentioned in Section 5.6.2. One, two, or all of

the final classifiers may be selected for final classification depending on the value of δ, as

discussed earlier in Section 5.5.2. For our 3-class (2-class) classification using wrist-worn

devices, we set δ = 0.40 (δ = 0.10). And for the chest-worn devices, we set δ = 0.20 for
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3-class and δ = 0.15 for 2-class classification. The model extracts additional features based

on the required input of the selected branch classifiers, and applies a late fusion method to

the classification output of the selected branches to generate the final result.

Kalman Filter Tuning

The Kalman filter-based method is the only late fusion method in our implementation that re-

quires tuning. As described in Section 5.5.4, Kalman filters require an initial state (x0), state

covariance (P0) and process noise and measurement noise vectors, v and w, respectively. For

the 3-class (2-class) classification using wrist-worn devices, we initialize x0 = [0.8, 0.1, 0.1]⊤

(x0 = [0.8, 0.2]⊤). Similarly, for the 3-class and 2-class classification using chest-worn de-

vices, x0 is initialized to [0.93, 0.21, 0.01]⊤ [1.0, 0.55]⊤. For 3-class (2-class) classification, we

initialize P0 = 0.01 · I3x3 (P0 = 0.01 · I2x2) for both wrist-worn and chest-worn devices. The

state transition matrix F and measurement matrix H are identity matrices for the respective

problems. The Q for both problems is modeled as a discrete time white process noise with

variance set at 5e-4. The measurement noise is modeled as a function of each measurement

to allow the filter to adjust the confidence of the measurements according to each reported

class probability: R = ((1− z) · 2 · I3x3)2 (R = ((1− z)/2 · I2x2)2). Lastly, a tunable thresh-

old technique was used to process the measurements which involved (i) an ϵ parameter to

select measurements which had a maximum predicted probability above the threshold and

(ii) a γ factor to scale the measurements to account for the imbalanced class distribution

in the dataset. This thresholding process allows the filter to weigh each measurement it

receives with a different degree of noise while also attempting to resolve issues that arise

from imbalanced datasets. For the 3-class (2-class) classification using wrist-worn devices,

we set ϵ = 0.4 (ϵ = 0.7) and γ = [0.278, 1, 1]⊤ (γ = [0.667, 1.1]⊤). For the 3-class (2-class)

classification using chest-worn devices, we set ϵ = 0.5 (ϵ = 0.5) and γ = [1.35, 1.5, 1.6]⊤

(γ = [0.915, 0.995]⊤).
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Figure 5.4: Overall Performance Comparison of Related Works using LOSO Validation on
Wrist Data 3-Class

5.6.3 Evaluation Metrics

As stated previously, the WESAD dataset is highly imbalanced in terms of the number of

segments per class. For this reason, F1 score is also used along with accuracy to measure the

classification performance. To ensure a fair comparison with other works, we use the macro

F1 score. The metrics used for evaluation are given below:

Accuracy = (TP + TN)/(TP + FP + TN + FN) (5.16)

P = TP/(TP + FP ), R = TP/(TP + FN) (5.17)

Macro F1 =
1

nc

nc∑
i

2 ∗ Pi.Ri

Pi +Ri

(5.18)

where TP, TN, FP, FN represents True Positives, True Negatives, False Positives, and False

Negatives, respectively; and P and R represent Precision and Recall, respectively. The classes

are indexed by i, and nc is the number of output classes.
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Figure 5.5: Overall Performance Comparison of Related Works using LOSO Validation on
Wrist Data 2-Class

5.6.4 Experimental Results

This section presents the performance of SELF-CARE for stress detection in 3-class and

2-class classification using wrist and chest modalities.

Performance Evaluation of Wrist Modalities

Tables 5.2 and 5.3 show the performance analysis of different classifiers for various input

branches for the 3-class and 2-class problems, with each branch representing different com-

binations of input sensors. The RF classifier for branches WB1, WB2, and WB3 shows

better or competitive performance compared to the other classifiers for both 3-class and

2-class. The RF classifiers also achieved minimum training loss for these input branches

during training, leading to our selection of these three branches with the RF classifier for

our approach.

As shown in Fig. 5.4, for 3-class classification, the SELF-CARE method outperforms other

related works [110, 174, 176], the branch classifiers, and the traditional late fusion methods
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Figure 5.6: Overall Performance Comparison of Related Works using LOSO Validation on
Chest Data 3-Class

in terms of both accuracy and macro F1 score achieving a performance of 86.34% and

71.97%, respectively. Compared to [175], SELF-CARE achieves better accuracy—though

[175] achieves a better macro F1 score, as this work uses both wrist and chest sensors for

stress classification. For 2-class classification, the SELF-CARE method achieves an accuracy

of 94.12% and macro F1 score of 92.93%, outperforming the related works [110, 174–176],

the branch classifiers, and the traditional late fusion methods in terms of both accuracy

and macro F1 score (as shown in Fig. 5.5). For the three selected branch classifiers, we

apply soft- and hard-voting methods, showing performance improvements compared to the

individual branch classifiers for both 3-class and 2-class classifications. SELF-CARE also

uses Kalman filter-based late fusion to further improve the performance for 3-class and 2-

class classification compared to these traditional late fusion methods.

Performance Evaluation of Chest Modalities

Tables 5.4 and 5.5 show the performance analysis of different classifiers for various input

branches for the 3-class and 2-class problems, with each branch representing different combi-
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Figure 5.7: Overall Performance Comparison of Related Works using LOSO Validation on
Chest Data 2-Class

nations of input sensors. The AB classifier for branches CB1, CB12, CB14, CB24, and CB27

shows better or competitive performance compared to the other classifiers 3-class classifi-

cation. Similarly, for 2-class classification, the branches CB5, CB7, CB9, CB13, and CB20

showed better performance that other classifiers. The AB classifiers also achieved minimum

training loss for these input branches during training, which led to the selection of five

branches for the SELF-CARE framework. The soft- and hard-voting methods applied to the

five selected branch classifiers do not show performance improvements compared to the indi-

vidual branch classifiers for both 3-class and 2-class classifications. However, incorporating

Kalman filter-based late fusion significantly improves the performance for 3-class and 2-class

classification compared to these traditional late fusion methods.

As shown in Fig. 5.6 and 5.7, for both 3-class and 2-class classification, the SELF-CARE

method, using either muscle contraction (EMG) or motion (ACC) for context understanding,

outperforms other related works [110, 174–176], the branch classifiers, and the traditional late

fusion methods in terms of both accuracy and macro F1 score. This study also demonstrates

that even with motion-based context understanding, SELF-CARE outperforms other works.
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However, the model’s performance improves by 2-3% while using muscle contraction for

context understanding compared to motion. This illustrates that the impact of movement

on other sensors depends on the location of wearable devices. Therefore, movement is not

always the best choice for contextual understanding as we observe the results while using

chest modalities for stress detection.

5.7 Limitations and Future Directions

One of the main goals of this chapter is to explore how the context of noise varies depend-

ing on the location of wearable devices. For this reason, we modeled the noise context of

sensor modalities from stand-alone devices, choosing not to combine the wrist and chest

sensor modalities. However, future research could explore this issue further. Understanding

the relation between the noise context of multiple wearable devices from physically different

locations and fusing cross modal sensors based on that relation may produce interesting sci-

entific findings that can be leveraged for methods of affective computing. Modeling the noise

context of wearable health sensors can lead to further levels of human emotion understanding

as information from the health sensors becomes increasingly useful when interpreted on a

contextual basis.

Further, SELF-CARE is limited by the manual design of sensor fusion branch configurations.

Though domain knowledge is required to determine which sensor data to fuse together,

future works could explore using machine learning to make these determinations instead.

Additionally, the energy efficiency of wearable health devices is an important constraint

that could be examined in future works. SELF-CARE implements a configurable parameter

for balancing computation and performance, but future works could examine the efficiency

trade-offs between chest and wrist sensing modalities. This chapter did not focus on deep

learning models, but SELF-CARE’s modular design allows for the implementation of any
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learning-based classifier, including deep learning branches. Further, SELF-CARE could be

applied more broadly in the domain of affective computing to include additional tasks beyond

stress detection and emotion recognition. Moreover, it can also be applied to wearable

healthcare applications like human activity recognition [44, 53, 88], myocardial infarction

detection [40, 52, 113] and various others [188–192] etc., that involves data from multiple

wearable sensors. Lastly, SELF-CARE’s use of a specialized set of ensemble classifiers has

broad applicability to IoT sensing, including the domains of sensor networks [193], and

transportation [194–197] and others [198–201].

5.8 Summary

In this chapter, we propose SELF-CARE, a generalized selective sensor fusion method for

stress detection that utilizes the noise context in the chest- and wrist-worn devices to dy-

namically adjust the sensor fusion performed to maximize classification performance. SELF-

CARE determines the noise context using muscle contractions (EMG) or motion (ACC)

of a subject, and performs an intelligent gating mechanism to select which sensor fusion

schema to use depending on the location of the sensor.We also show that, while determining

the noise context based on motion works best for wrist-based wearable devices, it is not

the best for chest-based wearable devices. Through experimental evaluation, we conclude

that EMG is better than ACC in understanding the noise context of chest-based wearable

devices. To the best of our knowledge, SELF-CARE achieves state-of-the-art performance

on the WESAD dataset for both chest and wrist-based sensors among methods that use

LOSO validation. Using wrist-based sensors our methodology achieves 86.34% (3-class) and

94.12% (2-class) classification accuracy while outperforming current state-of-the-art works.

Similarly, for chest-based wearable sensors, our methodology outperforms existing models

with 86.19% (3-class) and 93.68% (2-class) classification accuracy.
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Chapter 6

Conclusion

This thesis presents some efficient methodologies for designing digital health solutions using

wearable devices for various healthcare applications like – Myocardial Infarction Detection,

Human Activity Recognition, Human Eating Activity Recognition, and Stress Detection.

Particularly, this thesis contributes by addressing the following research challenges - 1) De-

signing energy and memory-efficient edge computing solutions while maintaining perfor-

mance; 2) Generating ground truth labels of collected data for online learning without much

user involvement; and 3) Degradation of model’s performance due to the fusion of noisy data

from multiple heterogeneous sensors.

Chapter 2 addresses the first challenge by proposing an energy-efficient methodology for

real-time MI detection on wearable devices using a Convolutional Neural Network (CNN).

It proposes a Template Matching based Early Exit (TMEX) CNN architecture that further

increases the energy efficiency compared to baseline architecture while maintaining similar

performance. On PTB dataset, our baseline and TMEX architecture achieve 99.33% and

99.24% accuracy, whereas on PTB-XL dataset they achieve 84.36% and 84.24% accuracy,

respectively. Evaluation on real hardware shows that our baseline architecture achieves from

129



0.6x to 53x more energy efficiency while outperforming state-of-the-art works on wearable

devices. Moreover, our TMEX architecture further achieves 8.12% (PTB) and 6.36% (PTB-

XL) more energy efficiency compared to the baseline architecture while maintaining similar

performance. To the best of our knowledge, the baseline and TMEX architecture of our

methodology achieve the best performance on wearable devices while being energy-efficient

with a RAM footprint of only 20 KB.

Chapter 3 also addresses the first challenge by proposing an Adaptive CNN for HAR (AHAR)

to develop an energy-efficient solution for low-power edge devices. AHAR uses a novel adap-

tive architecture that decides which portion of the baseline architecture to be used during

the inference phase based on the simple statistical features of the activity segments. Our

proposed methodology is validated for classifying locomotion activities from Opportunity

and w-HAR datasets. Compared to the fog/cloud computing approaches that use the Op-

portunity dataset, both our baseline and adaptive architecture shows a comparable weighted

F1 score of 91.79%, 91.57% respectively. For the w-HAR dataset, both our baseline and

adaptive architecture outperforms the state-of-art-work with a weighted F1 score of 97.55%

and 97.64% respectively. Evaluation on real hardware shows that our baseline architecture

is significantly energy-efficient (422.38x less) and memory-efficient (14.29x less) compared to

the works on the Opportunity dataset. For the w-HAR dataset, our baseline architecture

requires 2.04x less energy and 2.18x less memory compared to the state-of-the-art work.

Moreover, experimental results show that our adaptive architecture is 12.32% (Opportunity)

and 11.14% (w-HAR) energy-efficient than our baseline while providing similar (Opportu-

nity) or better (w-HAR) performance with no significant memory overhead. To the best

of our knowledge, we are the first to propose such adaptive CNN architecture for HAR in

wearable devices that provides energy efficiency while maintaining performance.

Chapter 4 explores the second challenge addressed in the thesis. This chapter proposes

a Human Eating Activity Recognition (HEAR) methodology which uses an online update
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phase to keep up with the changes of eating habits through online learning. In this regard,

we designed an algorithm that creates approximate true labels for the new eating data.

We have also designed a wearable neckband to capture eating activity data in a lab envi-

ronment. Through detailed experimental evaluation of our methodology, we show that an

online learned neural network classifier outperforms state-of-the-art offline trained classifiers

while also being more energy-efficient.

Finally, chapter 5 addresses the third challenge of maintaining model’s performance while

fusing noisy data from multiple heterogeneous sensors. In this chapter, we propose SELF-

CARE, a generalized selective sensor fusion method for stress detection that utilizes the

noise context in the chest- and wrist-worn devices to dynamically adjust the sensor fu-

sion performed to maximize classification performance. SELF-CARE determines the noise

context using muscle contractions (EMG) or motion (ACC) of a subject, and performs an

intelligent gating mechanism to select which sensor fusion schema to use depending on the

location of the sensor.We also show that, while determining the noise context based on mo-

tion works best for wrist-based wearable devices, it is not the best for chest-based wearable

devices. Through experimental evaluation, we conclude that EMG is better than ACC in

understanding the noise context of chest-based wearable devices. To the best of our knowl-

edge, SELF-CARE achieves state-of-the-art performance on the WESAD dataset for both

chest and wrist-based sensors among methods that use LOSO validation. Using wrist-based

sensors our methodology achieves 86.34% (3-class) and 94.12% (2-class) classification accu-

racy while outperforming current state-of-the-art works. Similarly, for chest-based wearable

sensors, our methodology outperforms existing models with 86.19% (3-class) and 93.68%

(2-class) classification accuracy.

Overall, this thesis uses one of the aforementioned applications as use cases to address one of

the challenges mentioned above. However, novel methods and algorithms introduced in this

thesis may also be applicable to other various wearable healthcare applications that are not
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used in this thesis. Other researchers or even engineers interested in designing digital health

solutions may find the content of this thesis useful for their novel applications. Moreover, the

findings of this thesis may also attract researchers from other domains such as transportation

systems, environment monitoring, smart city, and agriculture to name a few that involves

the integration of different sensors through the Internet of Things.
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Appendix A

Secondary Thesis Contributions

Apart from the key thesis contributions, the findings in this thesis have also contributed to

several other research works which are summarized in the following sections. Besides, while

working on this thesis, the author also contributed to several other research works [202–207].

A.1 Real-time Myocardial Infarction Detection onWear-

able Devices

In this work [52], we propose an MI detection methodology using Binary Convolutional

Neural Network (BCNN) that is fast, energy-efficient, and outperforms some of the state-of-

the-art works on wearable devices. We validate the performance of our methodology on the

well known PTB diagnostic ECG database from PhysioNet. Evaluation on real hardware

shows that our BCNN is faster and achieves up to 12x energy efficiency compared to the

state-of-the-art work. The main contributions of this work are as follows:

1. Real-time MI methodology, using a Binary Convolutional Neural Network (BCNN),
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that is faster, achieves up to 12x energy-efficiency and provides better performance

compared to state-of-the-art work on wearable devices.

2. Validating the performance of our approach on well known PTB diagnostic ECG

database (PTBDB) [56] from PhysioNet [62].

3. Validating the energy-efficiency of our BCNN on real hardware.

A.1.1 Methodology

Figure A.1: Our MI Detection Methodology

Preprocessing

As shown in Figure A.15, the preprocessing step starts with the denoising of raw ECG data

using a bandpass filter with cut-off frequencies f1=5 and f2=15 Hz. Then the Pan-Tompkin’s

algorithm [82] is used to detect the R-peaks from the filtered ECG data. Similar to other

works [48–51], we take 250 samples before and 400 samples after the R-peak. Thus, each

segment consists of 651 samples representing a heartbeat.
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1-D BCNN

We design our BCNN with the minimum number of layers possible to maintain the low-power

and low-memory constraint while maintaining acceptable performance for wearable devices.

Rationale of memory efficiency: Despite the enormous benefits of CNNs, their higher

memory requirement makes them unsuitable for embedded/wearable device applications.

To reduce the memory requirements of CNNs, we use the weight binarization technique

from the Binarized Neural Network (BNN)[208] where all the filter weights in a layer are

represented as -1 or 1 instead of 32-bit floating-point values. Thus the binary representation

of weights enables 32 times memory efficiency compared to floating-point CNNs. Besides, we

also use the binary activation function that clamps all negatives inputs to -1 and all positive

to 1. Although the weights in CNNs are represented using binary values, the temporaries

generated in between the CNN layers are still represented in floating-point values which

requires a lot of memory.

To reduce the memory overhead of the temporaries, we reorganize the computation order of

CNN layers following the technique of embedded Binarized Neural Networks (eBNNs) [209].

eBNN reorganizes the computation order of standard BNNs. In standard BNNs, the results

of the convolution layer are stored (in floating-point values) before passing through batch

normalization, binary activation, and pooling as shown in Figure 2(a). Whereas, in eBNN

the result of the convolution is not stored in memory but is directly sent to pooling followed

by batch normalization and binary activation as shown in Figure 2(b). Further details can

be found in [209]. This binary representation of weights and temporaries not only makes our

BCNN memory efficient but also energy-efficient. Because binary representation allows for

faster execution and reduces computational complexity, it uses less energy.

Architecture: As shown in Figure A.15, we use one fused convolution-pool block and one

fully connected block. The fused convolution-pool block consists of one 1-D convolution layer
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Figure A.2: Memory Efficiency due to Fused Convolution and Pool Block

(kernel=100, stride=2), one max-pooling layer (kernel=2, stride=2), one batch normalization

layer, one binary activation layer. We use 3 feature maps for the convolution operation. The

fully connected block consists of one fully connected layer with 2 neurons (for 2 output class),

one batch normalization layer and finally the softmax activation layer. To train the BCNN

we use Adam optimizer with a learning rate of .007. We use softmax cross-entropy as the

loss function for the optimizer.

A.1.2 Experimental Setup and Evaluation

Wearable Platform

Our work is designed for low-power, low-memory wearable devices like SmartCardia INYU

[85]. The device is equipped with an ultra-low-power 32-bit microcontroller STM32L151

containing an ARM Cortex–M3 with a maximum clock rate of 32 MHz. It has a 48 KB

RAM, 384 KB Flash, and a standard 710 mAh battery. The device captures ECG signals

using a single lead ECG sensor [210]. Our solution applies to any wearable device having
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the above or similar specifications.

Performance Evaluation

To validate the performance of our BCNN, we use data from 200 subjects (52 Normal, 148

MI) from PTDDB [56]. We obtained a total of 50371 (44214 MI, 6157 Normal) heartbeat

segments after preprocessing. Since the number of MI segments is approximately 7 times

more than the number of normal segments, the model achieves an accuracy of 88% even

when it predicts all input data to be from MI patients. Thus sensitivity and specificity

are important metrics to judge model performance. To ensure proper training, we split

the MI segments into 7 parts, each consisting of around 6316 MI segments (close to the

total number of normal segments). One part of these MI segments is combined with all

the normal segments and a 10-fold cross-validation is performed on the combined data. In

each fold, 90% of the combined data is used for training and validation for 100 epochs. The

remaining 10% is used for testing. The performance of the model is averaged across the 10

folds. This entire process is repeated for all the MI segment parts. The overall performance

of the model is the average of all the 10-fold cross-validations. Our methodology achieves

an accuracy of 90.29%, the sensitivity of 90.41%, and specificity of 90.16% as shown in

Table A.1. Our methodology outperforms the other state-of-the-art works [49, 50] which are

intended for wearable devices in all three metrics. We significantly improve on the sensitivity

and specificity compared to [50]. Although [49] is a close competitor for accuracy, it does

not report sensitivity and specificity. As noted above, it is easy for models to achieve high

accuracy on this data but it is harder to achieve high performance on all the metrics. As

expected, the work [48, 51] achieves a very high performance as they are designed for clinical

set up not for wearable devices.
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Table A.1: Performance comparison of related Works

Related PTBDB Data Performance (%)
Works Normal MI Lead Acc. Sen. Spe.

[48] 52 148 11 98.80 99.45 96.27
[51] 52 148 2 95.22 95.49 94.19
[49] 52 52 11 90 – –
[50] 52 52 11 – 81.02 79.63

Our Work 52 148 11 90.29 90.41 90.16

Energy Consumption Evaluation

We evaluate the energy consumption of our BCNN using an EFM32 Leopard Gecko (EFM32LG-

STK3600) microcontroller which has similar specifications as the SmartCardia device. En-

ergy profiling is done using the simplicity studio software that comes with the EFM32 mi-

crocontrollers. As BCNN automatically extracts features and classifies them, we compare

the energy consumption of our BCNN against the feature extraction and classification steps

of other wearable device solutions [49, 50]. [49] uses a 2-level SVM classifier where the first

level uses 10 features and the second level uses 47 features. [50] uses a 5-level Random Forest

classifier where the first level uses only 5 features and the final level uses 72 features. We

compare using the first level classifier of both the works as their first level classifiers are

the most energy-efficient ones. Table A.2 shows the energy consumption of all the wearable

device solutions to classify one heartbeat segment. Our BCNN consumes 536.80 µJ whereas

[49] consumes 4641.62 µJ and [50] consumes 6478.64 µJ. Thus, our BCNN achieves 8x and

12x energy-efficiency compared to [49] and [50] respectively. Moreover, our BCNN execute

with only 3.3 KB of RAM and takes only 7.05 KB of flash thus leaving enough space for

other application to run parallelly on wearable devices.
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Table A.2: Energy Consumption Analysis on Real Hardware

Related Exe. Avg. Avg. Energy
Works Time (ms) Curr. (mA) Power (mW) (µJ)

[49] 333.93 4.24 13.90 4641.62
[50] 465.42 4.25 13.92 6478.64

Our Work 37.83 4.33 14.19 536.80

A.1.3 Summary

In this work, we propose a methodology for real-time MI detection on wearable devices using

Binary Convolutional Neural Network (BCNN). Evaluation on real hardware shows that our

BCNN is faster and achieves up to 12x energy efficiency while providing better performance

compared to the state-of-the-art work.
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A.2 Energy-Aware Design Methodology for Myocar-

dial Infarction Detection on Wearable Devices

In this work [113], we propose a methodology to incorporate Neural Architecture Search

(NAS) [211] to co-optimize the design of BCNNs for MI detection with regard to accuracy

and energy using Multi-Objective Bayesian Optimization (MOBO). Figure A.3 shows the

generalized design flow using our methodology where MOBO performs a systematic design

space exploration of a BCNN inspired search space to sample the most efficient models sat-

isfying both objectives. Each sampled model is trained to estimate its accuracy before being

deployed on the target device to retrieve the related energy measurements. The Bayesian

models are updated each iteration with new data in order to improve the search strategy.

Finally, our methodology renders a set of Pareto optimal neural architectures that repre-

sent the most suitable models for deployment on the target wearable devices. The main

contributions of this work are summarized as follows:

• A methodology is proposed to automate the design of BCNNs for MI detection on

wearable devices through co-optimizing both accuracy and energy using real-hardware

target device measurements.

• To the best of our knowledge, we are the first to propose a NAS based design method-

ology working with time-series ECG signals.

• The performance of our methodology is validated using PTB diagnostic ECG database

[56] from PhysioNet [62].

• In comparison with the state-of-the-art works for wearable devices, one of our explored

models achieves the highest accuracy of 91.22% while others achieve up to 8.26×

more energy efficiency.
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Figure A.3: The design flow process using MOBO. The actual function is unknown in reality.
Instead, a Gaussian Process (GP) model is constructed for each objective function and
updated each iteration based on the information collected so far.

A.2.1 Methodology

Overview

The multi-objective optimization problem can be formulated as -

minx∈X(error(x), energy(x)) (A.1)

Where the goal is to find a network architecture parameterized by x from the search space

X that minimizes two objective functions: MI detection error and energy consumption on

the target device. As shown in Figure A.11, our methodology does not assume direct closed-

form models for both functions with respect to the neural architectural parameters. Instead,

the problem is treated as a black box optimization one. This requires that for each sampled

architecture, the accuracy loss and energy consumption should be evaluated to understand

better how they relate to the architectural search parameters x. While the classification loss

is estimated computationally, energy is obtained through measuring power and execution

time directly from the target device. However, as the two objectives are conflicting in

nature, improving on one objective will negatively impact the other. Therefore, the outcome

of this problem would have to be a set of Pareto optimal architectures X⋆ which dominate
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all other explored architectures but not each other. Formally in a minimization context, a

point x is said to dominate x′ if for every objective function fk, fk(x) ≤ fk(x
′)∀k and at

least one inequality is strict.

Figure A.4: Our proposed energy-aware design methodology of neural architectures for MI
detection on wearable devices.

To solve this problem, we exploit MOBO [212] for our black-box optimization problem.

Bayesian optimization methods provide efficient design space exploration in order to sample

the most promising candidates that meet the minimization requirements of the objective

functions. This is extremely useful when the search space is large and when evaluating an

objective function is costly (like computing the loss function in our case). In this problem,

once an architecture is sampled from the search space, the objective functions are evaluated

to determine whether this candidate architecture should belong to the optimal set or not.

Also, with each evaluation, the search strategy is updated to find better architectures in the

following iterations.

Binary Convolutional Neural Network

Our search space is inspired by the BCNN architecture proposed in [52]. Their aim was

to design an efficient CNN that can fit into wearable devices with limited memory while
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conserving energy resources. To achieve this, the model weights are limited only to +1 or -1.

Moreover, only a binary activation function is used to clamp the inputs to either +1 or -1

as introduced in the binarized neural networks [208]. This binary representation of weights

achieves 32× memory efficiency compared to the standard floating-point representation.

Although the weights are in binary, temporaries generated between convolutional layers are

still represented in floating-point. They require a lot of working memory resources which

can still present an issue for wearable devices. To handle this, the computation order of

inference in a binarized neural network has been modified following the work in [209]. Unlike

in the traditional order, the resulting temporaries after the convolution layer are not stored

in memory. Alternatively, they are directly passed to the pooling layer followed by batch

normalization and binary activation layers. This makes the models not only memory efficient

but also energy efficient because of the faster and less complex binary operations. Figure

A.5 shows the modified order of computation in one BCNN block for processing heartbeat

segments.

Multi-Objective Bayesian Optimization

Given previous evaluations for each of the k objective functions fk(x), the goal is to find

samples that provide more information about the Pareto optimal set X⋆. MOBO serves this

purpose by performing a sequential design space exploration where each objective function

is replaced by a surrogate, cheaper to evaluate, probabilistic Gaussian Process (GP) model.

Let Dn = {(xi, Yi)}n
i=1 represent the set of all the queried points up to iteration n; where

for each step i, xi represents the sampled architecture at iteration i and Yi represents its

corresponding vector of k real evaluated values from the k objective functions. It is assumed

that for each function fk(x), evaluations fk := Y1:n[k] are jointly Gaussian with mean m

and co-variance K, i.e., fk|x1:n ∼ N(m,K). This means each GP model at iteration n

represents a distribution over all the possible functions of fk(x) based on the data collected
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so far. This distribution is known as the posterior, and it represents the current belief about

the shape of functions that most likely fit Dn.

The next sample from the search space is selected using an acquisition function ϑ(x). The

merit in using ϑ(x) is that, unlike the k objective functions, it is analytically available,

making it much cheaper to evaluate than any fk(x). Hence for each iteration n, ϑn(x) is

constructed using one of the k GP models to identify which point should be queried next.

The GP model selected to construct ϑn(x) is chosen based on the improvement potential

with regard to that specific objective function. Once the GP model is chosen, ϑn(x) is

formulated to yield high values where the uncertainty of the probabilistic model is high

(exploration), and around where the GP has had the best evaluations (exploitation). Then,

the sample that maximizes ϑn(x) is selected to be the next query point xn+1. In the

following iteration n + 1, the objective functions are evaluated yielding Yn+1. Given this

new data pair and the previous ones, the GP models are updated using the new dataset

Dn+1 = Dn ∪ (xn+1, Yn+1). MOBO proceeds with this select-evaluate-update loop until

the final iteration N is reached, and the Pareto set at that iteration is rendered as the final

solution.

Figure A.5: Processing heartbeat segments through the layers of the BCNN block and the
final result is stored in binary.
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Table A.3: Ranges of the Architectural Search Parameters.

Parameter Search Parameters Ranges

# BCNN blocks [1-3]
# filters [2-5], [2-5], [2-5]

Conv. layer kernel length [10-120], [10-70], [5-20]
Conv. layer kernel stride [1-2], [1-2], [1-2]
Pool. layer kernel length [2-3], [2-3], [2-3]

(a) (b) (c) (d)

Figure A.6: Results from our experiments. Sub-figures (a) and (b) show MOBO and
normalized-MOBO over 3 reference architectures, respectively. While (c) and (d) compare
MOBO and random sampling, respectively, over one block reference architecture.

A.2.2 Experimental Setup

The multi-objective Bayesian optimization is built on top of Dragonfly [213]. We use Thomp-

son sampling [214] for our acquisition function. Wrapper scripts are implemented around the

objective functions to automate the selected models’ generation, training, and deployment

onto the target board. The details are provided below:

Training Process

Lead 11 ECG dataset from PTB diagnostic ECG database [56] is used for training and

testing the models during and after the search process. It contains data for 200 subjects

where 148 subjects suffer from MI, and the remaining 52 are normal. Out of the obtained

heartbeat segments, 44214 segments are classified as MI while 6157 are normal. Since the
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number of MI segments are 7× the number of normal ones, we ensure proper training by

dividing the segments into 7 groups. Each group will always contain all the normal segments

combined with around 6316 MI segments. Then for each group, a 10 fold cross-validation is

performed. In this scheme, each group is divided into 10 folds where for each fold, a unique

10% of that group’s segments are used for testing while the remaining 90% are for training

and validation. Each model selected during the search process is trained for 20 epochs with

Adam optimizer, a learning rate of 0.007, and softmax cross-entropy as the loss function.

For each group, the model’s performance is averaged across all folds. Finally, the model’s

overall performance is estimated as the average across the entire 10 fold cross-validations in

all groups.

Target Device

Our proposed design methodology targets low-power medical wearable devices like Smart-

Cardia INYU [85]. This device was used by the related works in [49, 50]. It is equipped

with an ultra-low-power Microcontroller STM32L151 running on an ARM Cortex-M3 with

a maximum clock frequency of 32 MHz. The device also has a 48 KB RAM, 384 KB of

Flash memory, and 710 mAh battery. The device also possess an ECG sensor to retrieve

ECG signals through a single lead. For our experiments, we utilize both a desktop machine

with a GeForce RTX 2070 SUPER and an EFM32 Leopard Gecko [215] as the low-power

target device. The Bayesian search and the accuracy estimation procedures are performed

on the desktop machine. Then to retrieve the relative hardware measurements, the model is

converted into its corresponding C code implementation and automatically flashed onto the

EFM32 board.

The EFM32 Leopard Gecko development board has been chosen for our experiments as it

runs on the same ARM Cortex-M3 as SmartCardia INYU and has similar specifications.

Estimating the energy consumption from hardware measurements can be detailed as follows:

146



Figure A.7: Analysis of Bitwise MAC Operations Count, Energy Consumption and Error
for the Binary Based Models.

First, the execution time for a single inference of an ECG segment is calculated once the cycle

count per inference is retrieved. After that, the target device is reset. Then, the average

power over the calculated execution time for a single inference is measured. Finally, the

energy consumption per inference can be computed directly by multiplying both the average

power and the execution time.

A.2.3 Results and Discussion

Experiments

We have performed multiple experiments to assess the effectiveness of MOBO within this

problem context, as shown in Figure A.6. The first experiment incorporated conducting

MOBO over a BCNN-inspired search space. The chosen architectural search parameters are

defined in Table A.6, and their ranges are shown. Multiple ranges indicate the respective

range of values for each consecutive BCNN block in an architecture. For convenience, this

experiment was divided into 3 child experiments where for each one, the number of blocks
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was fixed as either one, two, or three to manage the dependency of the search parame-

ters on the number of blocks. The search spaces for each child experiment accounted for

1.78 × 103, 1.73 × 106, and 4.44 × 108 possible architectures, respectively. Each child

experiment was run for 200 iterations, and their combined results are shown in Figure A.6a.

The evolution of the combined Pareto frontier over 50, 100 and 200 iterations from each

child experiment is shown. Two observations can be made here. The first is that MOBO

tends to explore more around models that minimize energy consumption because the poten-

tial for improvement with respect to energy is greater than that with respect to error. The

second observation is about how the single block architecture models dominate those from

the other two architectures with respect to both objective functions.

Based on the first observation, the second experiment is designed to allow biasing the search

in favor of one objective function over the other. Hence, rather than just directly using the

real function evaluations, we add the option to normalize those evaluations in the Bayesian

search process. This required modifying each function evaluation at every iteration n from

fkn(x) := Yn[k] to fkn(x) := αk× Yn[k]−mink

maxk−mink
, where αk, mink, and maxk are the bias

constant, minimum, and maximum values of the kth objective function, respectively. Since

the first experiment was more biased towards energy, we set αk for all objectives to 1 and

use the min and max values from the previous experiment and re-run it. Figure A.6b shows

that the sampled architectures are more spread out than those in Figure A.6a, indicating

that MOBO has become more neutral in its search with respect to both objective functions.

The final experiment was to assess the effectiveness of the Bayesian search in terms of design

space exploration. Based on the second observation from the first experiment, we re-run that

non-normalized experiment twice but only for the one-block architecture. Bayesian search

is used for the first run while the second employs random sampling. Figures A.6c and A.6d

show their respective results. It can be observed that the Bayesian approach is much more

systematic in its search to minimize the objective functions. This is evident through the
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Table A.4: Models’ Architectural Parameters

Model # filters Conv. len. Conv. str. Pool. len.

BCNN [52] 3 100 2 3
a 4 117 1 2
b 3 55 2 2
c 4 13 2 2
d 2 11 2 2

Table A.5: Comparison between Our Models and Previous Works with regard to Performance
and Energy Metrics

Performance Avg. Power (mW) Exec. Time (ms) Energy (mJ)
Model Acc. Sen. Spec. 14 MHz 48 MHz 14 MHz 48 MHz 14 MHz 48 MHz

SVM [155] 90 - - 14.24 46.92 13049.14 4303.28 185.82 201.91
RF [50] 83.26 87.95 78.82 14.34 46.98 13278.69 4378.69 190.42 205.71
BCNN [52] 90.29 90.41 90.16 14.52 46.71 893.14 279.86 12.97 13.07
Model a 91.22 91.57 90.86 14.47 47.07 2477.77 846.39 35.85 39.84
Model b 89.63 90.01 89.24 14.63 46.97 553.68 176.74 8.10 8.30
Model c 88.26 87.27 89.27 15.30 47.08 235.2 80.54 3.60 3.79
Model d 86.92 85.91 87.96 15.31 47.14 104.30 36.23 1.57 1.71

rapid convergence of the Pareto frontier in the Bayesian experiment, as it is almost the same

after 100 and 200 iterations.

Final Benchmarking

The four models pointed out in Figures A.6b and A.6c are the ones we use for our final

benchmarking. Their architectural search parameters values are presented in Table A.7.

Regarding their memory footprint, our models a , b, c, and d use up around 19.33, 19.12,

19.17, and 19.05 KB of flash and 3.69, 3.54, 3.63, and 3.52 KB of RAM, respectively.

This indicates that models from our design space comply with the low memory requirements

of medical wearable devices like SmartCardia INYU. Next, we re-train those models to the

full 100 epochs and compare them against the BCNN implementation in [52]. As shown in

Figure A.7, as the complexity of the model grows, so does the number of bitwise Multiply

and Accumulate (MAC) operations. This, in turn, leads to increased energy consumption.

However, as complexity is reduced, the energy savings are significant in comparison to the
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loss in accuracy. For instance, our model d incurs 1.04× more detection error than the

BCNN, yet it is 8.26× more energy efficient.

Finally, we benchmark our retrained models against the SVM [49], RF [50], and BCNN

[52] works. We compare their performance in terms of accuracy, sensitivity, and specificity

metrics. Additionally, we also re-implement these works on the EFM32 board to ensure

consistency of the energy consumption estimation across them all. However, it should be

noted that although we report the best performance values for the SVM and RF, we only

implement their first level classifiers for the energy-related evaluations. This is justifiable

since the first level classifiers are the most efficient in terms of the execution time and energy

consumption. The energy-related readings are measured at 14 MHz (default) and 48 MHz

(maximum) operating frequencies of the EFM32 board for validation. Table A.8 shows

all measurements across all performance and energy metrics. Our Model a achieves the

highest scores across the 3 performance metrics, whereas our remaining models are the most

energy-efficient at the cost of some performance drop.

A.2.4 Summary

Adding intelligence to low-power wearable devices presents a design conundrum regarding

the trade-off between high performance and energy efficiency. To address this, our proposed

methodology provides a systematic automated design space exploration of efficient neural

networks for MI detection on wearable devices. Our MOBO-based methodology allows for

co-optimizing both detection error and energy consumption on the target device to render

a Pareto optimal set of binarized models, allowing designers to choose their most suitable

architectural design. Also, designers would be able to bias the search in the design process

towards one objective or the other based on their preferences. To adhere to the memory

limitations, our methodology explores the design space of variants of the BCNN architecture
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suitable for deployment on wearable devices. Experimental evaluation shows that one of our

explored models achieves an accuracy of 91.22%, outperforming the MI detection state-of-

the-art performance on wearable devices. Other explored models trade off some accuracy to

conserve more energy (as high as 8.26×).
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A.3 Early Exit Neural Architecture Search for Wear-

able Devices

Equipping wearable devices with intelligence is essential for promoting mobile healthcare

applications. However, challenges remain due to the resource limitations of these devices. In

this work [53], we introduce EExNAS, a methodology for designing high-performance and

resource-efficient dynamic Neural Architecture solutions for wearable devices. The method-

ology incorporates a platform-aware Neural Architecture Search (NAS) that accounts for

energy efficiency at runtime through an Early-Exit (EEx) option. We showcase our method-

ology’s merit across 2 wearable applications, Myocardial Infarction (MI) detection and Hu-

man Activity Recognition (HAR). Solutions from EExNAS are compared against those from

related works in terms of accuracy and performance. For MI detection, our final solutions

with EEx capability could reach 98.54% accuracy on the PTB ECG dataset.

To show the merits of a 1D CNN solution with EEx option, we provide a case study us-

ing a model a whose 1D CNN-based architecture follows the template in Figure A.8. We

provide an analysis in Figure A.9 on how data segments from the PTB ECG database [56]

for Myocardial Infarction (MI) detection problem are processed using model a. The classi-

fication probability estimates at the EEx block indicate the confidence of the classification

decision and all evaluations are normalized with respect to the relative baselines with no

Figure A.8: The template baseline architecture from EExNAS with potential objective func-
tions associations.
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EEx option. In the top bar-chart, note how most segments in both conditional models with

decision thresholds (th) of 0.7 and 0.99 are directed to take the EEx, indicating that the

probability estimates are high enough to exceed the th values. This led to significant energy

gains compared to the baseline reaching 7.34× and 9.13×, respectively. However, these

performance improvements came at the expense of a slight degradation of accuracy.

Addressing the accuracy drop, rather than taking the probability estimates as they are, we

apply temperature scaling to address possible mismatch between the probability estimates

and true confidence values [216]. In the lower bar-chart of Figure A.9, note how the number

of data segments not invoking the EEx option is clearly larger than that in the uncalibrated

models, indicating how the original probability values can overestimate the true confidence

values. Another interesting observation is that the accuracy of the conditional models sur-

passed that of the baseline. Mainly because more complex interpretations of relatively simple

segments can occur at deeper parts of the architecture, leading to occasional misclassifica-

tions. And since the models are calibrated, these segments can be classified at the EEx

block with high confidence using simpler representations, improving the overall accuracy.

Note how calibration alters the accuracy and energy responses over confidence thresholds

in Figure A.10. Although the energy savings are lower compared to the uncalibrated cases

(2.23× at th=0.7), calibration offers a more generic sustainable approach applicable to

multiple wearable applications in which decision making is critical, and high accuracy is

needed. Therefore, the final takeaway here is that a calibrated wearable solution with an

EEx capability can offer an overall more accurate and energy-efficient solution compared to

a fixed solution.

Based on the previous arguments, the research challenges we aim to address in this work

include:

• What techniques should be utilized to provide a generic design methodology for wear-
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able applications that can render accurate and resource-efficient solutions?

• How to include potential EEx benefits at design time within the global design opti-

mization problem?

Addressing the above-mentioned challenges, we propose a platform-aware Multi-Objective

Neural Architecture Search (NAS) approach, namely EExNAS, that explores a pre-defined

search space of architectural parameters to provide optimal model implementations with

EEx capability. The most promising architectures are identified through their estimated

evaluations over a designated set of objective functions. These objective functions can be

accuracy- or performance-related (e.g., energy consumption and memory utilization). Also,

they can be defined at different parts of the backbone architecture to promote the EEx

capability, as shown in Figure A.8. Our research contributions can be summarized as follows:

• We propose EExNAS, a Multi-Objective NAS-based design methodology to develop

resource-efficient solutions for wearable applications employing time-series data.

• We separately associate objective functions at the EEx block to optimize its imple-

mentation.

• We demonstrate the effectiveness of EExNAS across two wearable applications, My-

ocardial Infarction (MI) detection and Human Activity Recognition (HAR).

• On the PTB ECG dataset [56], EExNAS final solutions achieve state-of-the-art accu-

racy for MI detection on wearable devices, reaching 96.5% and 98.54%.

• On the w-HAR dataset [111], EExNAS final solution incurs a 0.584% accuracy drop

from the state-of-the-art but is 47.076% more energy-efficient.

154



Figure A.9: Comparisons between conditional models at different confidence thresholds and
their baselines for uncalibrated (top) and calibrated (bot) cases on the MI dataset. Blocks 1
and 2 are the consecutive inference blocks from Figure A.8.

Figure A.10: Parametric sweeps across the confidence threshold for the uncalibrated (left)
and calibrated (right) models

A.3.1 EExNAS Design Methodology

Figure A.11 illustrates an overview of EExNAS methodology. We go through the main

components of the methodology in the following subsections.

A.3.2 Neural Architecture Search

The purpose of the NAS within EExNAS is not only to identify the models with the best

accuracy evaluations but also the ones that efficiently utilize the limited resources of the

target wearable device. Thus, the problem becomes a multi-objective optimization one

incorporating performance objectives as well. Due to the conflicting nature between the
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Figure A.11: EExNAS Design Methodology Overview

accuracy and performance objectives, the problem would not have a single solution, but a set

of Pareto optimal ones instead. These Pareto-optimal solutions dominate all other explored

solutions except each other, where formally in a minimization context, an architecture x⋆

would belong to the Pareto set if: fk(x
⋆)≤fk(x)∀k, x and ∃j : fj(x⋆) < fj(x)∀x ̸= x⋆. where

fk represents the kth objective function.

When searching for the Pareto optimal architectures, a NAS controller each iteration needs

to: sample architectural candidates from the search space, evaluate their respective objective

functions, and update its search strategy based on these evaluations. In this work, the

search strategy employed by the EExNAS controller is implemented using Multi-Objective

Bayesian Optimization (MOBO) [212]. Other strategies like RL could’ve been implemented

as well without any loss of generality. MOBO approximates each objective function with a

surrogate Gaussian Process (GP) model. Thus, previous evaluations fkn of the kth objective

function at iteration n are assumed to be jointly Gaussian with mean m and co-variance

κ, i.e., fkn|x1:n ∼ N(m,κ), making the GP model a probabilistic distribution over possible

functions of the associated objective function. From these GP models, an acquisition function

is constructed and solved analytically to identify the next query point, whose true objective

evaluations are determined and used to update the GP models.
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Multi-Objective Formulation

To solve the multi-objective optimization problem, we apply linear scalarization across the

multiple objective function estimates to identify the next query point through:

xn = argmax
x

∑
i

wi.fi (A.2)

where our aim each iteration n is to identify the sample xn which maximizes a reward

associated with the objective functions. Note that fi and wi represent the ith function

estimate sampled from the respective objective’s GP model and its associated user-assigned

weight, respectively.

To maximize the effect of the function weights, true evaluations of each objective function

Fi need to be normalized with respect to their max. and min. attainable values as follows:

Finorm. =
Fi − Fimin

Fimax − Fimin

(A.3)

Hence, each weight wi becomes the sole determiner of the extent of impact each objective

function can have on the search process. In our experiments, 4 objective functions were

defined as shown in Figure A.8, where the max. and min. values for the performance

objectives were obtained through evaluating the largest and smallest possible architectures

in the search space, respectively. Whereas for the accuracy objectives max. and min. were

estimates from well- and poorly- trained models.

Search Space

Our search space encompasses a backbone macro-architecture of 1D convolutional blocks with

an additional EEx block. Variable architectural parameters from each convolution block are
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used for the search space. These parameters encompass the number of output filters in

addition to the kernel and strides for each of the convolution and pooling layers, respectively

(Note that pooling layers are optional for each block). Therefore, each architecture in the

search space can be characterized by a string x defined as follows:

x = (nF1 , kc1 , sc1 , kp1 , sp1 , ...kpN , spN , fc)

where k and s are the kernel and stride for each successive convolutional c and pooling p

layer. N is the number of blocks and fc is an extra optional fully-connected layer. Although

the dimensionality increases with the number of blocks in the search space, we found that

utilizing 2-3 blocks is enough for multiple healthcare applications with time-series data,

keeping the dimensionality relatively low. Even so, our MOBO-based solution is built on

dragonfly [213], which provides techniques to handle high-dimensionality problems if needed.

Algorithm

We show in Algorithm 4 the pseudo-code for the MOBO-based NAS in EExNAS over a

predefined search space X. In lines 1-4 , random samples are obtained according to pre-

configured capital Cinit (usually 5% of the total iteration number Niter). These samples,

alongside their corresponding evaluations, are used to initialize the GP models of the K

objective functions. Then each iteration, one function estimate from each objective function’s

posterior is sampled in line 8. Then, the sampled function estimates are used to identify the

next query point using the acquisition function in line 9 . This query point is then evaluated

using the real objective functions and used to update the sets of the queried points D and

the Pareto frontier X∗ in lines 12-13 . After the last iteration Niter, the Pareto set in line

14 is returned as the final solution.
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EEx Confidence Calibration

Once the final models are settled on from the NAS process, they need to be calibrated for

their classification probabilities to reflect true confidence values, as was discussed in the

motivational case study earlier. Firstly, the classification probability estimates arising from

the softmax activation function at the EEx’s block last layer are defined as:

σ(zi)
k =

exp(zki )∑K
j=1 exp(z

j
i )

(A.4)

where K is the total number of classes and zki is the softmax’s function input for the kth class.

We follow the temperature scaling technique in [216] to calibrate the probability estimates.

The technique involves dividing the probability estimates into M interval bins, where the

accuracy and average confidence for each bin Bm can be defined as:

acc(Bm) =
1

|Bm|
∑
i∈Bm

I(ŷi == yi) (A.5)

conf(Bm) =
1

|Bm|
∑
i∈Bm

p̂i (A.6)

where ŷi and yi, represent the predicted and true class labels while p̂i and |Bm| are the pre-

diction’s probability estimate and samples’ count in the mth bin. To calibrate the probability

estimates, the Expected Calibration Error (ECE) between accuracy and confidence defined

below needs to be minimized:

ECE =
M∑

m=1

|Bm|
n

|acc(Bm)− conf(Bm)| (A.7)

where n is the total number of samples. One way to minimize ECE is through scaling the

inputs to the softmax by a temperature factor, where new confidence prediction becomes:

q̂i = max
k
σ(zi/T )

(k) (A.8)
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Figure A.12: Sampled architectures and Pareto frontiers in non-normalized (brown) and
normalized (blue) search approaches.

Algorithm 4: EExNAS Architectural Search
Input: Configuration Variables: {Cinit, Niter}, Search Space: X
Output: Pareto Optimal Set: X∗

1 D = ϕ,X∗ = ϕ
// Random initialization starts

2 for i = 1 to Cinit do
3 Randomly sample xi and store its fn. evaluations Fi(xi) in Yi

4 D = D ∪ (xi, Yi) // Update queried points

5 end
6 X∗ = Pareto init(D) // Initial Pareto frontier

// MOBO starts

7 for n = 1 to Niter do
8 for k = 1 to K do
9 fk = GPk(D) // Sample fn. from posterior

10 end
11 xn = argmax

x∈X

∑
i wi.fi // Next Query

12 for k = 1 to K do
13 Yn[k] = Fk(xn) // Evaluate objective fns.

14 end
15 D = D ∪ (xn, Yn) // Update queried points

16 X∗ = Pareto update(xn, Yn, X
∗) // Update frontier

17 end
18 return X∗ // Final Pareto set

this works because the temperature factor T raises the output entropy of the softmax if

T > 1. Thus through a simple sweep operation, the temperature value which gives the

minimal ECE can be determined. At runtime based on the selected th value, if q̂i > th, then

EEx would be invoked for that segment.
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A.3.3 Experimental Setup

The MOBO-based NAS runs on a desktop machine and is built on top of Dragonfly [213].

Each search run takes 200 iterations where wrapper scripts are implemented around the

objective functions to automate the evaluation. Sampled architectures’ from the search have

their accuracy evaluations estimated after training for 30 epochs. We followed the same

Dataset preprocessing steps like filtering and segmentation in [51, 52, 111]. We also follow

the training procedure in [52] for the MI ECG dataset in which the ”MI” labeled segments

are divided first into 7 groups, and then the normal segments are repeated across the 7

groups to handle the class imbalance within the dataset. The overall accuracy is then the

average across the 10 fold cross-validations from all groups.

In terms of the target device, the EFM32 Giant Gecko [117] is selected as in [50, 52] for its

specifications emulate those of wearable devices. Mainly, it runs on an ARM Cortex-M3 with

a max operating frequency of 48 Mhz and a 128 kB RAM size. During the search process,

a C code version of each sampled architecture is automatically generated and flashed onto

the device to retrieve its energy and memory measurements.

A.3.4 Experiments and Results

The search strategy is first evaluated then the final models are bench-marked against other

works as follows:

Search Process Assessment

First, we illustrate the effectiveness of normalizing the objective functions in Figure A.12,

in which two searches, non-normalized and normalized, are run for 200 iterations each. In

the non-normalized setting, it can be observed that the sample distribution is more skewed
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Figure A.13: Comparison between normalized, non-normalized, and random search ap-
proaches in terms of the number of architectures sampled that satisfy various criteria of
the objective functions over 200 iterations of each.

towards improving upon the performance objectives. This is due to the large variations in the

energy and memory values across different models in comparison to accuracy values, making

the reward estimate more reliant on these objectives. On the other hand, the normalized

version remedies this through normalizing variations across all objectives between 0 and 1. In

this setting, the accuracy objectives were assigned 10× more the weights of the performance

objectives. Consequently, it can be seen from the samples’ distribution that the search has

become more biased towards minimizing the accuracy-related objectives.

Next, we compare the non-normalized, normalized, and random search approaches through

the quality of their sampled architectures. The results are shown in Figure A.13 where 4

criteria are defined to reflect the models’ quality with regard to the various objectives. From

the figure, the first observation is that the normalized approach always outperforms the ran-

dom search in identifying architectures that meet the criteria. This is attributed to the more

balanced exploitation-exploration nature of the normalized search. The second observation

is that although the non-normalized search finds the most resource-efficient architectures,

most of these architectures are trivial and do not satisfy the accuracy-related criteria. More

importantly, the non-normalized search presents the lowest number of architectures capable

of satisfying simultaneous criteria, pointing up once again the necessity of normalization.
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Figure A.14: Selected Temperature for each split from the MI ECG dataset is the one that
provides the minimal ECE

MI ECG Dataset Benchmarking

From the search process, two models, a and b, are chosen from the normalized Pareto

frontier and retrained over 100 epochs for our final benchmarking. First, we illustrate how

the temperature value is determined for model a in Figure A.14, where the ECE values are

swept across the temperature using model a’s evaluations for each of the 7 training splits.

The temperature which gives the minimum ECE value provides the optimal temperature

value for that split. Exact values for each split are also shown in which a larger ECE

value indicates a larger mismatch between the prediction estimates and the true confidence

values, highlighting once more the importance of calibration to scale down the confidence

represented by the prediction estimates.

We compare our models’ accuracy against those from other works in Table A.6. We also

provide the sensitivity and specificity evaluations as supplementary results. Although the

k-NN offers the best accuracy evaluation, it is not built for wearable devices as it requires

all the training data on the device. Our model b with EEx option at th=0.99 offers the

best accuracy results for a wearable-based solution at 98.54%. We can also observe how the

calibrated conditional models can offer better accuracy than their respective baselines. Note

that model a is the one we used for our motivational case study earlier.

In Table A.7, we compare the performance of our models against the CNN-based models
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Table A.6: Performance Benchmarking on MI ECG Dataset

Work Type Acc. (%) Sen. (%) Spe. (%)

k-NN [48] - 98.8 99.45 96.27

SVM [49]
Baseline 95 x x
Cond. 90 x x

RF [50]
Baseline 83.26 87.95 78.82
Cond. 80.32 81.02 79.63

CNN [51] - 95.22 95.49 94.19
BCNN [52] - 90.29 90.41 90.16

Model a
Baseline 95.61 93.44 97.85

Cond. (th=0.7 ) 95.66 95.55 95.77
(Ours) Cond. (th=0.99 ) 96.5 95.44 97.59

Model b
Baseline 98.03 97.26 98.82

Cond. (th=0.7 ) 97.21 96.6 97.84
(Ours) Cond. (th=0.99 ) 98.54 97.66 99.44

[51, 52]. We implemented their models in C-code and flashed them onto the EFM32 device for

a fair comparison. The energy calculation for the conditional models is obtained through the

summation of products of the ratios of segments classified and the total energy consumption

at each exit point. Although the binarized nature of the BCNN [52] deems it the most

resource-efficient solution with 13.03 mJ for each inference, the more accurate model a

(th=0.7) is not far behind with 16.34 mJ . Note that more efficient versions of model a

with th < 0.7 outperformed the BCNN with respect to both accuracy and performance.

However, we focus on providing more generic model versions. Moreover, we notice model b

(th=0.99) with the best accuracy is more efficient than its model a (th=0.99) counterpart.

Because, unlike model a, the complexity of model b’s architecture is more evenly distributed

between the two convolution blocks, making it the most suited overall candidate whenever

high confidence is demanded.

w-HAR Benchmarking

To demonstrate how the methodology adapts to other applications, we showcase the bench-

marking results on the w-HAR dataset for HAR. After NAS,model c is selected and retrained
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Table A.7: Measurements on the EFM32 for MI models

Work Type RAM Occ. (kB) Ergy/Inf. (mJ)

CNN [51] - 101.380 97.651
BCNN [52] - 3.556 13.033

Model a
Baseline

15.66
36.394

Cond. (th=0.7 ) 16.344
(Ours) Cond. (th=0.99 ) 35.978

Model b
Baseline

15.972
28.32

Cond. (th=0.7 ) 22.187
(Ours) Cond. (th=0.99 ) 28.189

Table A.8: Performance Benchmarking on wHAR dataset

Work Type Acc. (%) Weigh. F1 (%)

Baseline [109] - 94.87 94.96
Act.-aware [109] - 97.34 97.37

Model c
Baseline 95.59 95.4

Cond. (th=0.9 ) 96.203 95.995
(Ours) Cond. (th=0.99 ) 96.772 96.627

for 300 epochs for the final evaluation. Its optimal temperature value was found at 5.1 with

an ECE of 2.29%. The relatively small temperature factor means that the initial estimates

were a relatively good indication of the true confidence, and the estimate values would not

need to be scaled down aggressively. Model c is then compared against the ones in [109]

in terms of both accuracy and performance. The WF1 score, obtained from the confusion

matrix of each classification class, is also provided as a supplementary result. As displayed

in Tables A.8 and A.9, the activity-aware implementation still achieves the best accuracy

readings. However, model c (th=0.99) incurs a 0.584% drop in accuracy for 78.985% and

47.076% gains in memory and energy efficiency, respectively.

Table A.9: Measurements on EFM32 for HAR models

Work Type RAM Occ. (kB) Ergy/Inf. (mJ)

[109]
Baseline

10.012
1.037

Act.-aware 1.368

Model c
Base.

2.104
0.931

Cond. (th=0.9) 0.637
(Ours) Cond. (th=0.99) 0.724
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A.3.5 Summary

In this work, we have introduced EExNAS, a design methodology to render 1D CNN-based

wearable device solutions with EEx capability. Because the EEx decision depends on the

classification confidence at the EEx block, final models rendered through the NAS are cali-

brated using temperature scaling to remedy the mismatch between the prediction estimates

and the true confidence. We’ve shown that calibrated models with EEx are not only more

resource-efficient but also can outperform their baselines in terms of accuracy evaluations.

We demonstrated the efficiency of our methodology over MI and HAR applications, where

our model b (th=0.99) achieved state-of-the-art accuracy of 98.54% for a wearable device

solution on the MI PTB ECG dataset. While our model c (th=0.99) a 0.584% drop in

accuracy on the w-HAR dataset, but is 47.076% more energy-efficient.
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A.4 Feature Augmented Hybrid CNN for Stress Recog-

nition

Stress is a physiological state that hampers mental health and has serious consequences to

physical health. Moreover, the COVID-19 pandemic has increased stress levels among peo-

ple across the globe. Therefore, continuous monitoring and detection of stress are necessary.

The recent advances in wearable devices have allowed the monitoring of several physiological

signals related to stress. Among them, wrist-worn wearable devices like smartwatches are

most popular due to their convenient usage. And the photoplethysmography (PPG) sensor is

the most prevalent sensor in almost all consumer-grade wrist-worn smartwatches. Therefore,

this work [110] focuses on using a wrist-based PPG sensor that collects Blood Volume Pulse

(BVP) signals to detect stress which may be applicable for consumer-grade wristwatches.

Moreover, state-of-the-art works have used either classical machine learning algorithms to

detect stress using hand-crafted features or have used deep learning algorithms like Convo-

lutional Neural Network (CNN) which automatically extracts features. This work proposes

a novel hybrid CNN (H-CNN) classifier that uses both the hand-crafted features and the

automatically extracted features by CNN to detect stress using the BVP signal. Evaluation

on the benchmark WESAD dataset shows that, for 3-class classification (Baseline vs. Stress

vs. Amusement), our proposed H-CNN outperforms traditional classifiers and normal CNN

by ≈5% and ≈7% accuracy, and ≈10% and ≈7% macro F1 score, respectively. Also for

2-class classification (Stress vs. Non-stress), our proposed H-CNN outperforms traditional

classifiers and normal CNN by ≈3% and ≈5% accuracy, and ≈3% and ≈7% macro F1 score,

respectively.

The novel contributions of this work are as follows:

• Propose a novel hybrid CNN (H-CNN) classifier for stress detection using wrist-based
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Figure A.15: Overview of Our Proposed Methodology

PPG sensor. It uses both handcrafted features and automatically extracted features

by CNN to detect stress.

• Validation of our proposed approach using BVP signal from WESAD [? ] dataset

collected through wrist-based PPG.

• Evaluation on the benchmark WESAD dataset shows that, for 3-class classification

(Baseline vs. Stress vs. Amusement), our proposed H-CNN outperforms traditional

classifiers and normal CNN by ≈5% and ≈7% accuracy, and ≈10% and ≈7% macro

F1 score, respectively. Also for 2-class classification (Stress vs. Non-stress), our pro-

posed H-CNN outperforms traditional classifiers and normal CNN by ≈3% and ≈5%

accuracy, and ≈3% and ≈7% macro F1 score, respectively.

A.4.1 Methodology

Pre-processing Steps

Filtering: As shown in Figure A.15, the pre-processing steps start with filtering the raw

BVP signal. We filter the raw BVP signal by a butter-worth bandpass filter of order 3

with cutoff frequencies (f1=.7 Hz and f2=3.7 Hz). We take into account the heart rate at

rest (≈40 BPM) or high heart rate due to exercise scenarios or tachycardia (≈220 BPM)
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Table A.10: List of Extracted Features

Feature Symbol Feature Names

µHR, σHR Mean and Standard Devaiation of HR
µHRV , σHRV Mean and Standard Devaiation of HRV

NN50, pNN50
Number and percentage of HRV

intervals differing more than 50 ms
rmsHRV Root mean square of the HRV
fx
HRV Energy in different

x ∈ ULF,LF,HF,UHF frequency component of the HRV

f
LF/HF
HRV Ratio of LF and HF component∑f

x

∑
of the frequnecy components

x ∈ ULF,LF,HF,UHF in ULF-HF
relfx Relative power of freq. components

LFnorm, HFnorm Normalised LF and HF component

Heart Rate (HR), Heart Rate Variability (HRV)

following the method mentioned in [217].

Segmentation: The filtered signal is segmented by a window of 60 seconds of data following

the paper that introduced the WESAD dataset [174]. We use a sliding length of 5 seconds

in between the segments. Each segment contains 3840 samples as the sampling rate of the

BVP signal is 64 Hz.

Feature extraction: The first step of the feature extraction is the detection of heart-

beats. Once the peaks are detected, different time domain and frequency domain features

are extracted based on the location of the peaks. We extract the time and frequency domain

features as in [174] to ensure a fair comparison of our H-CNN classifier against the traditional

machine learning classifiers used in the WESAD paper. We use the same frequency bands -

ultra-low (ULF: 0.01-0.04 Hz), low (LF: 0.04-0.15 Hz), high (HF: 0.15-0.4 Hz) and ultra-high

(UHF: 0.4-1.0 Hz) band as in [174] to calculate different frequency domain features. The list

of extracted features is given in Table A.10.

Z-score normalization: Z-score normalization is performed before passing the segments

and extracted features to the H-CNN architecture.
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Hybrid CNN (H-CNN) Architecture

The normalized BVP segments and the corresponding features for each segment are passed

to our H-CNN architecture as shown in Figure A.15. The H-CNN architecture has two

input layers- Segment and feature input. The segment input layer is followed by a dropout

layer (with a 20% dropout rate) which is then followed by 3 convolution blocks. The first

and second convolution blocks have - convolution, ReLU activation, average pooling, and

batch normalization layers. Both first and second convolution block is followed by dropout

layers with 50% dropout rate which are added to reduce overfitting. The third convolution

block has one convolution layer followed by a global average pooling layer which is also used

to reduce the overfitting of the CNN. For the normal CNN architecture, the output of the

global average pooling layer is directly fed to the output dense layer followed by a Softmax

activation. However, for the H-CNN architecture, the output of the global average pooling

layer is concatenated with the feature dense layer. Finally, the concatenated layer is fed

to the output dense layer that is followed by the Softmax activation.The details of our H-

CNN architecture are shown in Table A.11. As shown in Table A.11, the total number of

parameters required to classify a segment is 6846+(13*nc), where nc is the number of output

classes. In this paper, we perform both 2-class (Stress vs. Non-stress) and 3-class (Baseline

vs. Stress vs. Amusement) classification from the WESAD dataset.

A.4.2 Experimental Evaluation

Dataset

WESAD dataset is used for the validation of our proposed methodology as it is the only

publicly available dataset that contains wrist-based PPG sensor data for stress and affect

detection. Although the dataset contains data for a total of 15 subjects from both chest
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Table A.11: Hybrid CNN Architecture Details

Layer Kernel Stride Act. Output # of
Name Size Size Func. Shape Param.

Seg. Inp. - - - 3840x1 0
D.O. 1 - - - 3840x1 0
Conv 1 64 4 ReLU 945x8 520
Pool 1 4 4 - 236x8 0
B.N. 1 - - - 236x8 32
D.O. 2 - - - 236x8 0
Conv 2 32 2 ReLU 103x16 4112
Pool 2 4 4 - 25x16 0
B.N. 2 - - - 25x16 64
D.O. 3 - - - 25x16 0
Conv 3 16 1 ReLU 10x8 2056
G. Pool 4 4 - 8 0
Flatten - - - 8 0

Feat. Inp. - - - 19 0
D.O. 4 - - - 19 0

Feat. Den. - - ReLU 4 80
Concate - - - 12 0
Out. Den. - - SM nc 13*nc

Total Number of Parameters 6846+(13*nc)

Segment Input (Seg. Inp.), Dropout (D.O.), Batch Normalization
(B.N.), Global Average Pooling (G. Pool), Feature Input (Feat. Inp.),
Feature Dense (Feat. Den.), Output Dense (Out. Den.), Softmax
(S.M.)

(RespiBAN) and wrist (Empatica E4) worn sensors, we are only interested in using the

wrist-based BVP signal collected through the PPG sensor. The dataset is labeled for 3

types of classes - baseline (neutral), amusement, stress.

Model Training and Evaluation

We train our normal CNN and H-CNN classifiers with a batch size of 500. The models

are trained for 200 epochs with an early stopping mechanism having a patience value of 70.

We monitor the validation recall value to select the best model from the epochs. To ensure
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proper training for the imbalance dataset, we assign class weights to each class using the

following formula in Eq. A.9.

wi =
1

Ni

∗ N
nc

(A.9)

Here, wi, and Ni represent the class weight and the number of segments belonging to class

i, respectively. N is the total number of segments from all classes and nc is the number of

output classes. The CategoricalCrossentropy is used as the loss function. We use the Adam

optimizer with a learning rate of .001. To demonstrate the generalization property of our

trained model and to ensure a fair comparison with the traditional classifiers in [174], we also

perform Leave One Subject Out (LOSO) validation. As shown in Figure A.16, the Linear

Discriminant Analysis (LDA) classifier in [174] outperforms other classical algorithms for

3-class classification with an accuracy of 70.17% and macro F1 score of 54.72%. Our normal

CNN achieves slightly less accuracy of 68.52% compared to LDA but outperforms in macro

F1 score with 57.67%. Our H-CNN classifier outperforms both LDA and our normal CNN

with an accuracy of 75.21% and macro F1 score of 64.15%. Thus, our H-CNN improves the

accuracy by ≈5% and ≈7% compared to LDA and normal CNN, respectively. For macro

F1 score, our H-CNN shows higher improvement of ≈10% and ≈7% compared to LDA and

normal CNN, respectively. For 2-class (Stress vs. Non-stress) classification, baseline and

amusement are considered as the non-stress class. As shown in Figure A.17, for 2-class

classification also, our H-CNN improves the accuracy by ≈3% and ≈5% compared to LDA

classifier and normal CNN, respectively. Similarly, for macro F1 score, our H-CNN improves

the performance by ≈3% and ≈7% compared to LDA and normal CNN, respectively.
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Figure A.17: Performance Comparison on 2-Class (Stress vs Non-stress) Classification

A.4.3 Summary

This paper proposes a novel hybrid CNN (H-CNN) classifier to detect stress using a wrist-

based PPG sensor focusing on consumer-grade wristwatches. Our H-CNN uses both the

hand-crafted features and the automatically extracted features by CNN to detect stress

using the BVP signal. Evaluation on the benchmark WESAD dataset shows that, for 3-

class classification (Baseline vs. Stress vs. Amusement), our proposed H-CNN outperforms

traditional classifiers and normal CNN by ≈5% and ≈7% accuracy, and ≈10% and ≈7%

macro F1 score, respectively. Also for 2-class classification (Stress vs. Non-stress), our
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proposed H-CNN outperforms traditional classifiers and normal CNN by ≈3% and ≈5%

accuracy, and ≈3% and ≈7% macro F1 score, respectively. To the best of our knowledge,

our H-CNN shows the highest performance for both 3-class and 2 -class classification using

the BVP signal from the WESAD dataset while performing LOSO validation.
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ing at industrial level, architecture, latency, energy, and security: A review. Heliyon,
6(4):e03706, 2020.
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