UC San Diego

UC San Diego Previously Published Works

Title

Structural Characterization of (C5H5)Co(PPh3)(n2-alkyne) and (C5H5)Co(n2-alkyne)
Complexes of Highly Polarized Alkynes

Permalink

https://escholarship.org/uc/item/1fq639zc

Journal

Organometallics, 32(19)
ISSN
0276-7333

Authors

Baldridge, Kim K Bunker, Kevin D Vélez, Carmen L et al.

Publication Date

2013-10-14

DOI

10.1021/om400749g

Peer reviewed

Structural Characterization of $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left(\mathrm{PPh}_{3}\right)\left(\eta^{2}\right.$-alkyne) and $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left(\eta^{2}\right.$-alkyne) Complexes of Highly Polarized Alkynes

Kim K. Baldridge,,$^{, \dagger}$ Kevin D. Bunker, ${ }^{*}$ Carmen L. Vélez, ${ }^{\ddagger}$ Ryan L. Holland, ${ }^{\ddagger}$ Arnold L. Rheingold, ${ }^{\ddagger}$ Curtis E. Moore, and Joseph M. O'Connor** ${ }^{*}$
${ }^{\dagger}$ Institute of Organic Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
${ }^{\dagger}$ Department of Chemistry and Biochemistry (0358), University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States

(5) Supporting Information

Abstract

The solid state structures of the cobalt-alkyne complexes (η^{5} $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right) \mathrm{Co}\left\{\eta^{2}-\left(\mathrm{R}_{3} \mathrm{Si}\right) \mathrm{C} \equiv \mathrm{C}\left(\mathrm{SO}_{2} \mathrm{Ar}\right)\right\}\left(3-\mathrm{TMS}, \mathrm{R}=\mathrm{Me}, \mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{5} ; 3-\right.$ TIPS, $\left.\mathrm{R}=\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{Ar}=p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)$ and the noncoordinated alkyne $\left(\mathrm{Me}_{3} \mathrm{Si}\right) \mathrm{C} \equiv \mathrm{C}\left(\mathrm{SO}_{2} \mathrm{Ph}\right)$ (6-TMS) have been characterized by X-ray crystallography and, in the case of 3-TMS, 6-TMS, and $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left\{\eta^{2}-\right.$ ($\left.\left.\mathrm{Me}_{3} \mathrm{Si}\right) \mathrm{C} \equiv \mathrm{C}\left(\mathrm{SO}_{2} \mathrm{Ph}\right)\right\}$ (5-TMS-calc), by B97D/Def2-TZVPP computational analysis. The phosphine-dissociated complex 5-TMS-calc is determined to be a ground state singlet. Analysis of bond angle and distance metrics,

EDG = Electron donating group EWG = electron withdrawing group calculated NMR chemical shift data, and molecular orbital analysis provide strong evidence for a four-electron-donor alkyne ligand in 5-TMS-calc. The degree of asymmetry in metal-alkyne bonding, as defined by the Gladysz alkyne-slippage parameter, is dramatically reduced in 5-TMS-calc relative to that in the precursor complex 3-TMS-calc.

INTRODUCTION

Metal-alkyne complexes continue to play a key role in the discovery and development of new organometallic reactions. ${ }^{1-3}$ The first stable mononuclear cobalt-alkyne complex, ($\eta^{5}-$ $\mathrm{Cp})\left(\mathrm{PPh}_{3}\right) \mathrm{Co}\left(\eta^{2}-\mathrm{PhC} \equiv \mathrm{CPh}\right)\left(\mathbf{1} ; \mathrm{Cp}=\mathrm{C}_{5} \mathrm{H}_{5}\right)$, was prepared over 45 years ago by Yamazaki and Hagihara, who also demonstrated the conversion of $\mathbf{1}$ and additional alkyne to a metallacyclopentadiene complex, 2 (Scheme 1). ${ }^{\text {1a }}$ More recently it has been found that unsaturated four-memberedring metallacycles are also accessible from $\left(\eta^{5}-\mathrm{Cp}\right)\left(\mathrm{PPh}_{3}\right) \mathrm{Co}$ (η^{2}-alkyne) precursors via reaction with ethyl diazoacetate. For example, ethyl diazoacetate undergoes a diastereoselective oxidative cyclization with the unsymmetrically substituted alkyne complexes $\left(\eta^{5}-\mathrm{Cp}\right)\left(\mathrm{PPh}_{3}\right) \mathrm{Co}\left\{\eta^{2}-\left(\mathrm{R}_{3} \mathrm{Si}\right) \mathrm{C} \equiv \mathrm{C}\left(\mathrm{SO}_{2} \mathrm{Ar}\right)\right\}$ (3-TMS, $\mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}=\mathrm{Me} ; 3-T I P S, \mathrm{Ar}=p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}, \mathrm{R}=$ $\left.{ }^{i} \mathrm{Pr}\right)$ to generate the metallacyclobutenes $\left(\eta^{5}-\mathrm{Cp}\right)\left(\mathrm{PPh}_{3}\right) \mathrm{Co}\left\{\kappa^{2}-\right.$ $\left.\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)\left(\mathrm{R}_{3} \mathrm{Si}\right) \mathrm{C}=\mathrm{C}\left(\mathrm{SO}_{2} \mathrm{Ar}\right)\right\}\left(4-T M S, \mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}=\right.$ Me; 4-TIPS, $\mathrm{Ar}=p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}, \mathrm{R}={ }^{\mathrm{i}} \mathrm{Pr}$) with complete control of alkyne regiochemistry (Scheme 1). ${ }^{2}$

The reactions of $\left(\eta^{5}-\mathrm{Cp}\right) \mathrm{Co}\left(\mathrm{PPh}_{3}\right)\left(\eta^{2}\right.$-alkyne) complexes, including the conversion of 3-TMS to $4-T M S$, may involve the formation of phosphine-free ($\left.\eta^{5}-\mathrm{Cp}\right) \mathrm{Co}\left(\eta^{2}\right.$-alkyne) (5) intermediates (Scheme 1); however, intermediates of this type have been neither observed nor isolated. It is therefore of interest to elucidate the structures of both the unsymmetrically substituted alkyne complexes, e.g. 3, and the corresponding phosphinedissociated analogues, 5.

Here we report the first solid-state structures of (η^{5} $\mathrm{Cp}) \mathrm{Co}\left(\mathrm{PPh}_{3}\right)\left(\eta^{2}\right.$-alkyne) complexes bearing unsymmetrically substituted alkynes, 3-TMS and 3-TIPS, as well as computa-

Scheme 1. Conversion of ($\left.\boldsymbol{\eta}^{5}-\mathrm{Cp}\right) \mathrm{Co}\left(\mathrm{PPh}_{3}\right)\left(\boldsymbol{\eta}^{2}\right.$-alkyne) Complexes to Unsaturated Metallacycles

tional analysis of 3-TMS and $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \operatorname{Co}\left\{\eta^{2}-(\mathrm{TMS}) \mathrm{C} \equiv\right.$ $\left.\mathrm{C}\left(\mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)\right\}\left(5-T M S\right.$-calc, TMS $\left.=\mathrm{SiMe}_{3}\right)$. The complex 5-

[^0]TMS-calc exhibits a singlet ground state which compares to a previous report that $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left(\eta^{2}-\mathrm{HC} \equiv \mathrm{CH}\right)$ exists as a ground state triplet. ${ }^{3}$ A comparison of the predicted structures for 3-TMS-calc and 5-TMS-calc supports the formulation of 5-TMS-calc as electronically saturated due to involvement of a four-electron-donor alkyne ligand. The degree of alkyne-ligand slippage, as defined by the Gladysz slippage parameter, ${ }^{4}$ is moderated significantly upon dissociation of the phosphine ligand from 3-TMS.

RESULTS AND DISCUSSION

Structural Characterization of (TMS)C $\equiv \mathrm{C}\left(\mathrm{SO}_{2} \mathrm{Ph}\right)$ (6TMS). In order to determine the structural changes that occur

Figure 1. (top) ORTEP drawings of the two independent molecules in the crystal lattice of $\mathrm{Me}_{3} \mathrm{SiC} \equiv \mathrm{CSO}_{2} \mathrm{Ph}(6-\mathrm{TMS}$). (bottom) Ball-and-stick drawing of the computed structure for 6-TMS-calc. Hydrogen atoms are omitted for clarity.

Table 1. Selected Bond Distances (\AA) and Angles (deg) for 6-TMS-calc and 6-TMS (Two Independent Molecules in the Unit Cell)

	$\begin{gathered} \text { 6-TMS- } \\ \text { calc } \end{gathered}$	6-TMS (av)	6-TMS-A ${ }^{\text {a }}$	6-TMS-B ${ }^{\text {a }}$
$\begin{gathered} \mathrm{C} 1(\mathrm{C} 12)- \\ \mathrm{C} 2(\mathrm{C} 13) \end{gathered}$	1.2225	1.2014(19)	1.2033(18)	$1.1995(19)$
$\mathrm{C} 1(\mathrm{C} 12)-\mathrm{S} 1(\mathrm{~S} 2)$	1.7270	1.7187(14)	1.7199(13)	1.7175(14)
$\mathrm{C} 2(\mathrm{C} 13)-\mathrm{Si1}(\mathrm{Si2})$	1.8582	1.8686(14)	1.8698(14)	1.8674(14)
S1(S2)-C6(C17)	1.7915	1.7543(14)	1.7549 (14)	1.7537(14)
S1(S2)-O1(O3)	1.4477	1.4332(11)	1.4314(11)	1.4351(11)
S1(S2)-O2(O4)	1.4477	1.4342(11)	$1.4335(10)$	1.4348(11)
$\begin{aligned} & \mathrm{C} 1(\mathrm{C} 12)- \\ & \mathrm{C} 2(\mathrm{C} 13)- \\ & \mathrm{Si1}(\mathrm{Si} 2) \end{aligned}$	179.72	178.6(1)	179.1(1)	178.2(1)
$\begin{aligned} & \mathrm{C} 2(\mathrm{C} 13)- \\ & \mathrm{C} 1(\mathrm{C} 12)- \\ & \mathrm{S} 1(\mathrm{~S} 2) \end{aligned}$	179.81	178.2(1)	178.3(1)	178.0(1)
$\begin{gathered} \mathrm{C} 1(\mathrm{C} 12)- \\ \mathrm{S} 1(\mathrm{~S} 2)- \\ \mathrm{C} 6(\mathrm{C} 17) \end{gathered}$	101.40	102.55(6)	101.85(6)	103.24(6)
${ }^{a} 6$-TMS-A is the $\mathrm{S} 1 / \mathrm{Sil}$ compound, and $\mathbf{6 - T M S}-\mathrm{B}$ is the $\mathrm{S} 2 / \mathrm{Si} 2$ compound.				

upon alkyne binding to cobalt, X-ray crystallographic and computational analysis of (TMS) $\mathrm{C} \equiv \mathrm{C}\left(\mathrm{SO}_{2} \mathrm{Ph}\right)$ (6-TMS and 6-TMS-calc) (Figure 1 and Table 1) was carried out. Good

Table 2. Selected Spectroscopic Data for Cobalt-Alkyne Complexes 1, 3-TMS, and 3-TIPS

compd ${ }^{\text {g }}$	IR $\nu(\mathrm{C} \equiv \mathrm{C})^{\text {a,b }}$	${ }^{1} \mathrm{H}$ NMR $(\delta){ }^{\text {c }}$	${ }^{13} \mathrm{C}$ NMR ($\left.\delta\right)^{c, d}$
$\begin{aligned} & {[\mathrm{M}]} \\ & \begin{array}{l} (\mathrm{TMSC} \\ (3-T M S) \end{array} \\ & \left.=\mathrm{C}^{1} \mathrm{SO}_{2} \mathrm{Ph}\right) \end{aligned}$	$1772^{e}(\Delta=338)$	$4.70\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)$	$\begin{aligned} & 118.1(\mathrm{C} 1), J_{\mathrm{PC}} \\ & =11.6(\Delta= \\ & 17.2) \end{aligned}$
		0.27 (TMS)	$\begin{aligned} & 105.5(\mathrm{C} 2), J_{\mathrm{PC}} \\ & =3.5(\Delta= \\ & 5.5) \end{aligned}$
$\begin{aligned} & {[\mathrm{M}]\left(\mathrm{TIPSC}^{2} \equiv\right.} \\ & \left.\mathrm{C}^{1} \mathrm{SO}_{2} \mathrm{Tol}\right)(3-\mathrm{TIPS}) \end{aligned}$	$1773(\Delta=348)$	$4.62\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)$	$\begin{aligned} & 120.0(\mathrm{C} 1), J_{\mathrm{PC}} \\ & =13.7(\Delta= \\ & 17.1) \end{aligned}$
		0.95 (TIPS)	$\begin{aligned} & 100.5(\mathrm{C} 2), J_{\mathrm{PC}} \\ & \approx 0(\Delta=2.0) \end{aligned}$
		1.12 (TIPS)	
$[\mathrm{M}](\mathrm{PhC} \equiv \mathrm{CPh})(1)^{10}$	$1819(\Delta=403)^{f}$	$4.81\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)$	$\begin{gathered} 90.4, J_{\mathrm{PC}}=8.0 \\ (\Delta=0.2) \end{gathered}$

${ }^{a}$ All IR data (in units of cm^{-1}) were obtained from thin films on either KBr or NaCl plates, unless otherwise noted. ${ }^{b}$ Values in parentheses are the differences in stretching frequencies between the free and coordinated alkynes. ${ }^{c}$ NMR resonances were referenced to solvent peaks and observed at ambient temperature; J_{PC} values are given in Hz . ${ }^{d}$ Values in parentheses are the chemical shift differences (ppm) of the sp carbons for the coordinated and noncoordinated alkynes. ${ }^{e}$ In Nujol. ${ }^{f}$ Free alkyne stretch from Raman spectrum. ${ }^{6}[\mathrm{M}]=\mathrm{CpCo}\left(\mathrm{PPh}_{3}\right)$.
agreement is found between the experimental and B97D/Def2TZVPP predicted structures for 6-TMS, with an average C1C2 triple-bond distance of 1.2014(19) \AA in the solid-state structures and a $1.2105 \AA$ distance in the predicted structure (Figure 1). The highly polarized nature of 6-TMS ($\sigma_{\mathrm{p}}=0.68$, $\sigma_{\mathrm{m}}=0.62$ for $\mathrm{SO}_{2} \mathrm{Ph} ; \sigma_{\mathrm{p}}=-0.07, \sigma_{\mathrm{m}}=-0.04$ for TMS$)^{5}$ is confirmed by the calculated 5.7 D dipole moment. For comparison, the computed dipole moment of (TMS) $\mathrm{C} \equiv$ C (COMe) is 3.6 D .

Synthesis and Spectroscopic Characterization of ($\eta^{5}-$ $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right) \mathrm{Co}\left\{\eta^{2}-\left(\mathrm{R}_{3} \mathrm{Si}\right) \mathrm{C} \equiv \mathrm{C}\left(\mathrm{SO}_{2} \mathrm{Ar}\right)\right\}(3-T M S, \mathrm{R}=\mathrm{Me}, \mathrm{Ar}$ $=\mathrm{C}_{6} \mathrm{H}_{5} ; 3$-TIPS, $\left.\mathrm{R}=\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{Ar}=p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)$. As described previously, ${ }^{2}$ the alkyne complexes 3-TMS and 3-TIPS were prepared from $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left(\mathrm{PPh}_{3}\right)_{2}$ and the corresponding alkynes 6-TMS and $\left({ }^{i} \mathrm{Pr}_{3} \mathrm{Si}\right) \mathrm{C} \equiv \mathrm{C}\left(\mathrm{SO}_{2}-p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)$ (6TIPS), following the procedure developed by Yamazaki and Wakatsuki for the synthesis of $1 .{ }^{10}$ Table 2 provides a summary of representative spectroscopic data for the cobalt-alkyne complexes 3-TMS and 3-TIPS and, for comparison, the symmetrically substituted alkyne complex $1 .{ }^{1 r}$ In the IR spectra (KBr) of the polarized alkyne complexes, the $\nu(\mathrm{C} \equiv \mathrm{C})$ stretching frequency occurs at lower wavenumber by 338$348 \mathrm{~cm}^{-1}$ relative to the free alkyne. In comparison, the symmetrically substituted alkyne complex 1 exhibits a larger wavenumber shift of $403 \mathrm{~cm}^{-1}$ relative to that for $\mathrm{PhC} \equiv \mathrm{CPh}$ (Raman spectroscopy). ${ }^{10,6}$

Preliminary ${ }^{13} \mathrm{C}$ NMR chemical shift assignments for the alkyne "sp" carbons in 3-TMS were made on the basis of the assumption that back-bonding from cobalt to the carbon bearing the electron-withdrawing sulfone substituent would be greater than back-bonding to the carbon bearing the electrondonating TMS substituent. In the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ of the sulfone-bearing alkyne complexes 3-TMS and 3TIPS, one of the alkyne "sp" carbon resonances exhibits a small downfield shift ($\Delta \delta \approx 5-7 \mathrm{ppm}$) and the other a large downfield shift $(\Delta \delta \approx 15-17 \mathrm{ppm})$, relative to the corresponding chemical shifts in the noncoordinated alkynes. In addition, the downfield resonance exhibits a larger carbonphosphorus coupling constant than does the upfield resonance.

Figure 3. ORTEP structure of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right) \mathrm{Co}\left[\eta^{2}\right.$-(TIPS) $\mathrm{C} \equiv$ $\left.\mathrm{C}\left(\mathrm{SO}_{2} \mathrm{Tol}\right)\right]$ (3-TIPS; top), 3-TIPS as viewed down the $\mathrm{C} 1-\mathrm{C} 2$ bond centroid to cobalt axis with the $\mathrm{C} 1-\mathrm{Co}-\mathrm{C} 2$ plane highlighted in red (bottom left), and view of 3-TIPS after a 90° rotation of the bottom left structure (bottom right). All hydrogen atoms except those on C12 have been omitted for clarity.

Figure 4. Definitions of percent slippage (Ω) and bend-back angles $(\alpha$ and β), as applied to Table 4.

Figure 5. (top) Highest occupied molecular orbital (HOMO, left) and lowest unoccupied molecular orbital (LUMO, right) of 3-TMS-calc (0.02 isosurface). (bottom) Schematic highlighting the common nodal plane in the HOMO of 3-TMS-calc.

Figure 6. B97D/Def2-TZVPP calculated structures of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ $\left(\mathrm{PPh}_{3}\right) \mathrm{Co}\left(\eta^{2}-\mathrm{Me}_{3} \mathrm{SiC} \equiv \mathrm{CSO}_{2} \mathrm{Ph}\right)\left(3-T M S\right.$-calc, left) and $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ -$\mathrm{Co}\left(\eta^{2}-\mathrm{Me}_{3} \mathrm{SiC} \equiv \mathrm{CSO}_{2} \mathrm{Ph}\right)$ (5-TMS-calc, right). PPh_{3} carbons are shown in lighter color for clarity; H atoms are omitted except for those on C5.
ring with the smallest ω value in both 3-TMS $\left(\omega^{A}=57.9^{\circ}\left(\mathrm{Ph}^{\mathrm{A}}\right.\right.$, 57.8° calcd); $\omega^{\mathrm{B}}=13.3^{\circ}\left(\mathrm{Ph}^{\mathrm{B}}, 5.4^{\circ}\right.$ calcd $) ; \omega^{\mathrm{C}}=70.8^{\circ}\left(\mathrm{Ph}^{\mathrm{C}}\right.$, 71.9° calcd $)$) and 3-TIPS $\left(\omega^{A}=67.7^{\circ}\left(\mathrm{Ph}^{\mathrm{A}}\right) ; \omega^{\mathrm{B}}=3.96^{\circ}\left(\mathrm{Ph}^{\mathrm{B}}\right)\right.$; $\omega^{\mathrm{C}}=105.6^{\circ}\left(\mathrm{Ph}^{\mathrm{C}}\right)$) (Figures 2 and 3). The similarity in the $\mathrm{Co}-\mathrm{P}$ conformations observed for 3-TMS and 3-TIPS is readily apparent from the $\mathrm{C} 1-\mathrm{Co}-\mathrm{P}-\mathrm{Ph}^{\mathrm{C}}$ dihedral angles of -84.14

Table 3. Alkyne Ligand Slippage Parameter ($\boldsymbol{\Omega}$), Substituent Bend-Back Angles ($\boldsymbol{\alpha}, \boldsymbol{\beta}$), and Deviations of Alkyne Substituents from the $\mathbf{C o}-\mathbf{C}(1)-\mathrm{C}(2)$ Plane in Cobalt-Alkyne Complexes (See Figure 4)

[^1]

Figure 7. Summary of B97D/Def2-TZVPP calculated bond distances (left, \AA) and angles (right, deg) for 3-TMS-calc and 5-TMS-calc.
and -92.61°, respectively. In both complexes the phosphine phenyl ring, Ph^{C}, is positioned below the $\mathrm{Co}-\mathrm{C} 2\left(\mathrm{SiR}_{3}\right)$ bond, with the greater steric bulk of TIPS relative to TMS resulting in a larger ω value for Ph^{C} in the 3-TIPS structure $\left(\Delta \omega=34.79^{\circ}\right)$.

The C1-S conformations in 3-TMS and 3-TIPS lead to a folding of the sulfone aryl ring back toward the silyl group, with the closest nonbonded contacts between the sulfone and silyl substituents involving a hydrogen atom of the silyl group and the centroid of the sulfone aryl ring. As seen in Figures 2 and 3, this CH $\cdots \pi$ distance is $2.86 \AA(2.67 \mathrm{calcd})$ for $3-T M S$ and 2.53 \AA for 3-TIPS, which are both well within the sum of the van der Waals radii for hydrogen ($1.2 \AA$) and the aromatic ring (1.9 \AA). ${ }^{11}$ The predicted gas-phase structure, 3-TMS-calc, reproduces this interaction with a CH $\cdots \pi$ distance of $2.67 \AA$ (Figure 2 , top right). Weak CH / π interactions (ca. $1 \mathrm{kcal} / \mathrm{mol}$) are often observed in the crystal packing of organometallic complexes. ${ }^{12}$ In the case of 3-TMS the similarity of the gasphase structure to the solid-state structure (Figure 2) indicates
that packing forces are not the primary influence on the observed $\mathrm{C}-\mathrm{S}$ conformations in the solid-state structures.

The geometric parameters associated with metal-alkyne bonding are defined by the $\mathrm{C} 1-\mathrm{C} 2, \mathrm{M}-\mathrm{C} 1$, and $\mathrm{M}-\mathrm{C} 2$ distances, by the bend-back angles α and β, which are a measure of the degree to which the alkyne substituents are bent away from the metal, and by the displacement of the alkyne substituents from the $\mathrm{M}-\mathrm{C} 1-\mathrm{C} 2$ plane.

The $\mathrm{C} \equiv \mathrm{C}$ bond distances in diphenylacetylene (1.192(4) \AA) and 6-TMS (1.201(2) A) are identical within experimental error, as are the corresponding bond distances within $\mathbf{1}$ (1.278(2) $\AA), 3-T M S ~(1.273(3) \AA)$, and 3-TIPS (1.278(3) $\AA)$. Pronounced bond length differences are observed for the CoC 1 and $\mathrm{Co}-\mathrm{C} 2$ bonds in 1 (C1, 1.961(2) \AA; C2, 1.955(1) \AA) relative to those in 3-TMS (C1, 1.920(2) \AA; C2, 2.010(2) \AA) and 3-TIPS (C1, 1.919(2) \AA; C2, 2.034(2) \AA). The observed cobalt-carbon bond distances follow the trend $\mathrm{Co}-\mathrm{C}\left(\mathrm{SO}_{2} \mathrm{Ar}\right)$ $<\mathrm{Co}-\mathrm{C}_{6} \mathrm{H}_{5}<\mathrm{Co}-\mathrm{C}\left(\mathrm{SiR}_{3}\right)$, which follows the expected inverse correlation with the anticipated degree of cobaltcarbon back-bonding. The steric effect of the TIPS group relative to the TMS group results in a significantly longer CoC 1 (TIPS) bond distance relative to the $\mathrm{Co}-\mathrm{Cl}$ (TMS) bond distance.

Both steric and electronic factors may impact the magnitude of the bend-back angle; however, in cases with two large alkyne substituents, such as in 3-TMS and 3-TIPS, α and β may also be influenced by steric congestion between the two alkyne substituents. For both complexes of $3, \alpha$ is substantially larger than β, which may be attributed primarily to greater backdonation to $\mathrm{C} 1\left(\mathrm{SO}_{2} \mathrm{Ar}\right)$ than to $\mathrm{C} 2\left(\mathrm{SiR}_{3}\right)$. The larger α value for 3-TMS $\left(37^{\circ}\right)$ relative to 3 -TIPS (31°) is attributed to greater steric congestion between the sulfone and silyl substituents in the latter complex. For 3-TIPS, β is 6° larger than in the case of 3-TMS, as is to be expected on the basis of the relative sizes of the TMS and TIPS groups.

A convenient structural parameter that encompasses many of the individual bond distance and angle metrics associated with alkyne coordination is the alkyne-slippage parameter (Ω),

Table 4. Selected Distances (\AA) and Angles (deg) for the $\left(\boldsymbol{\eta}^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right) \mathrm{Co}\left(\boldsymbol{\eta}^{2}-\mathrm{R}^{1} \mathrm{C} \equiv \mathrm{CR}^{2}\right)$ Complexes As Determined by Crystallography and/or Computation

[^2]

Figure 8. Molecular orbitals (0.03 isosurface, two views) indicative of a three-center-four-electron bonding interaction in 5-TMS-calc: LUMO (top), HOMO-5 (middle), and HOMO-15 (bottom).
previously developed by Gladysz (Figure 4 and Table 3). ${ }^{4}$ For metal-alkyne complexes the slippage value would be 0% when the perpendicular from cobalt to the $\mathrm{C} 1-\mathrm{C} 2$ bond intercepts the $\mathrm{C} \equiv \mathrm{C}$ midpoint, as in an equilateral triangle (red dashed lines in Figure 4). As expected, $\Omega \approx 0$ for the symmetrically substituted alkyne complex 1 . When slippage occurs, the $\mathrm{Co}-$ $\mathrm{C} 1-\mathrm{C} 2$ three-membered ring takes the form of a scalene triangle (black triangle in Figure 4). The slippage value would be 100% if the perpendicular shown in blue intersects at C 1 or C2. Alkyne slippage is greater in 3-TIPS (28\%) than 3-TMS (22%), primarily due to the greater size of TIPS relative to TMS.

Calculated Structures for $\left(\boldsymbol{\eta}^{5}-\mathrm{Cp}\right)\left(\mathrm{PPh}_{3}\right) \mathrm{Co}\left\{\boldsymbol{\eta}^{2}-\left(\mathrm{Me}_{3} \mathrm{Si}\right)-\right.$ $\left.\mathrm{C} \equiv \mathrm{C}\left(\mathrm{SO}_{2} \mathrm{Ph}\right)\right\}$ (3-TMS-calc) and ($\left.\boldsymbol{\eta}^{5}-\mathrm{Cp}\right) \mathrm{Co}\left\{\boldsymbol{\eta}^{2}-\left(\mathrm{Me}_{3} \mathrm{Si}\right) \mathrm{C} \equiv\right.$ $\left.\mathrm{C}\left(\mathrm{SO}_{2} \mathrm{Ph}\right)\right\}$ (5-TMS-calc). In order to determine the structural and electronic changes to alkyne coordination that occur upon

Figure 9. (bottom) Electrophilic HOMO frontier density plots for 3-TMS-calc and 5-TMS-calc. (top) Nucleophilic LUMO frontier density plots for 3-TMS-calc and 5-TMS-calc.
dissociation of PPh_{3} from 3-TMS-calc and ($\left.\eta^{5}-\mathrm{Cp}\right) \mathrm{Co}\left\{\eta^{2}\right.$ ($\left.\left.\mathrm{Me}_{3} \mathrm{Si}\right) \mathrm{C} \equiv \mathrm{C}\left(\mathrm{SO}_{2} \mathrm{Ph}\right)\right\}$ (5-TMS-calc; Figures 5-7) were compared. Figure 5 shows the frontier orbitals for $3-T M S$ calc, from which one can observe a nodal pattern in the HOMO (left upper panel), as depicted at the bottom of the figure, and the LUMO showing very little orbital density on the alkyne ligand (top right), with a larger component on C 2 than on C 1.

The calculated dipole moments for 6-TMS (5.72 D), 3-TMS (4.92 D), and 5-TMS-calc (4.94 D) are similar, and in the case of the two alkyne complexes they are nearly identical. However, significant differences in alkyne coordination are observed for 3-TMS-calc and 5-TMS-calc. The calculated structure for 5 -TMS-calc exhibits a nearly linear $\mathrm{Cp}-\mathrm{Co}-$ alkyne geometry with a $177.4^{\circ} \mathrm{Cp}$ (centroid)-Co-alkyne (C1-C2 midpoint) angle, with the degree of alkyne slippage reduced significantly from $\Omega=22 \%$ in 3-TMS-calc to $\Omega=9 \%$ in 5-TMS-calc (Table 3 and Figure 6). A second conformer very close in energy to the one shown for $5-T M S$-calc has the phenyl ring rotated away from the TMS group, indicative of a very minor preference for the conformer shown in Figure 6.

Four-electron-donor alkyne ligands typically exhibit longer $\mathrm{C} 1-\mathrm{C} 2$ and shorter $\mathrm{C}-\mathrm{M}$ bond distances relative to those observed for related complexes involving two-electron-donor alkyne ligands. ${ }^{13}$ A comparison of these bond distances for 3-TMS-calc and 5-TMS-calc reveals a significantly longer C1-C2 bond distance ($\Delta=0.039 \AA$) and significantly shorter CoC 1 (TMS) $(\Delta=-0.109)$ and $\mathrm{Co}-\mathrm{C} 2\left(\mathrm{SO}_{2} \mathrm{Ph}\right)(\Delta=-0.151 \AA)$ distances in the phosphine-dissociated complex (Figures 6 and 7 and Table 4), all of which are consistent with a four-electrondonor alkyne ligand. In addition, the $\mathrm{C} 1 / \mathrm{C} 2$ chemical shifts in the ${ }^{13} \mathrm{C}$ NMR spectra of four-electron-donor alkyne complexes typically resonate significantly downfield of those for two-electron-donor alkyne ligands. ${ }^{13 \mathrm{a}}$ In the case of 5-TMS-calc, the
calculated carbon- 13 chemical shifts for $\mathrm{Cl}\left(\mathrm{SO}_{2} \mathrm{Ph}\right)$ (175.9 $\mathrm{ppm})$ and C 2 (TMS) (190.7 ppm) are 63-76 ppm downfield of the corresponding chemical shifts found for 3-TMS-calc (C1, $113.0 \mathrm{ppm} ; \mathrm{C} 2,115.0 \mathrm{ppm}$), once again consistent with a four-electron-donor alkyne ligand.

The formulation of the alkyne ligand in 5-TMS-calc as a four-electron-donor alkyne ligand is further supported by an analysis of the calculated molecular orbitals (Figure 8). Electron donation from the π_{\perp} orbital of the alkyne breaks the degeneracy of the cobalt $\mathrm{d}_{x z}$ and $\mathrm{d}_{y z}$ orbitals, thereby leading to a singlet configuration. The cobalt d orbital (e.g., the $\mathrm{d}_{\mathrm{y} z}$ orbital) that accepts the π_{\perp} electrons is also involved as an acceptor of π electrons from the Cp ligand. The resultant three-orbital-four-electron interaction is described by the LUMO, HOMO-5, and HOMO-15 molecular orbitals. The LUMO is the totally antibonding component of the three-center-fourelectron interaction. This orbital shows that a nucleophile would be expected to attack at the alkyne, at the cyclopentadienyl ligand, or at cobalt. For alkyne nucleophiles, attack at cobalt would give bis(alkyne) complexes that are proposed as key intermediates in alkyne cyclotrimerizations. HOMO-5 is alkyne- π and Cp- π in character with a node at cobalt, and HOMO-15 represents the fully bonding descriptor of the three-center-four-electron interaction in which there is an alkyne out-of-plane π interaction with the cobalt $\mathrm{d}_{y z}$ orbital.

The electrophilic HOMO frontier density plots for 3-TMScalc and 5-TMS-calc (Figure 9, bottom) indicate a greater probability of attack by an electrophile (in the absence of steric effects) at C2 in 3-TMS-calc, whereas in the phosphinedissociated analogue 5-TMS-calc there is a greater probability of attack by an electrophile at cobalt. The nucleophilic LUMO frontier density plots for 3-TMS-calc and 5-TMS-calc (Figure 9, top) indicate that the probability of attack by a nucleophile at the alkyne carbons in 5-TMS-calc is greater than in 3-TMS-calc; however, alkyne nucleophiles would be expected to attack 5-TMS-calc at cobalt (as discussed above for the LUMO shown in Figure 8).

SUMMARY

The first X-ray crystallographic and computational studies on $\left(\eta^{5}-\mathrm{Cp}\right)\left(\mathrm{PPh}_{3}\right) \mathrm{Co}\left(\eta^{2}\right.$-alkyne) complexes of unsymmetrically substituted alkynes are reported. The calculated structure of the phosphine-dissociated complex $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Co}\left(\eta^{2}-\mathrm{Me}_{3} \mathrm{SiC} \equiv\right.$ $\left.\mathrm{CSO}_{2} \mathrm{Ph}\right)(5-T M S$-calc) reveals the presence of a four-electrondonor alkyne ligand. A comparison of the calculated structures for 3-TMS-calc and 5-TMS-calc demonstrates a significant decrease in the alkyne slippage parameter, which may be attributed to the effect of electron donation from the π_{\perp} orbital to cobalt. Studies are in progress to determine if this phenomenon is a general one for other four-electron-donor alkyne ligands bearing polarizing alkyne substituents.

- EXPERIMENTAL SECTION

Computational Methods. The conformational analyses of the molecular systems described in this study, including structural and orbital arrangements as well as property calculations, were carried out using the GAMESS ${ }^{14}$ and GAUSSIAN09 ${ }^{15}$ software packages. Structural computations of all compounds were performed using the B97-D dispersion enabled density functional method, with an ultrafine grid, in accord with the ansatz proposed by Grimme. ${ }^{16,17}$ The B97-D exchange-correlation functional is a special reparameterization of the original B97 hybrid functional of Becke, ${ }^{18}$ which is more neutral to spurious dispersion contamination in the exchange part than the original functional. The Def2-TZVPP basis set ${ }^{19}$ was used for all
calculations. Full geometry optimizations were performed and uniquely characterized via second derivatives (Hessian) analysis to determine the number of imaginary frequencies $(0=$ minima; $1=$ transition state), and effects of zero-point energy. From the fully optimized structures, single-point NMR computations were performed with the class II NMR methodology, CSGT, ${ }^{20}$ and calibrated against TMS. Visualization and analysis of structural and property results, including electrophilic (HOMO) and nucleophilic (LUMO) frontier density plots, were obtained using Avogadro ${ }^{21}$ and WEBMO. 22

ASSOCIATED CONTENT

(s) Supporting Information

CIF files giving X-ray crystallographic data. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Authors

*E-mail for K.K.B.: kimb@oci.uzh.ch.
*E-mail for J.M.O.: jmoconnor@ucsd.edu.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the NSF (grant CHE-1214024) and the Swiss National Science Foundation (K.K.B.) for support of this work. C.L.V. was supported by a National Science Foundation GK12 Grant (DGE-0742551). We thank Profs. Joshua Figueroa and Jay Siegel for helpful discussions.

REFERENCES

(1) (a) Yamazaki, H.; Hagihara, N. J. Organomet. Chem. 1967, 7, P22. (b) Yamazaki, H.; Hagihara, N. J. Organomet. Chem. 1970, 21, 431.
(c) Yamazaki, H.; Hagihara, N. Bull. Chem. Soc. Jpn. 1971, 44, 2260.
(d) Wakatsuki, Y.; Yamazaki, H.; Iwasaki, H. J. Am. Chem. Soc. 1973, 95, 5781. (e) Yasufuku, K.; Yamazaki, H. J. Organomet. Chem. 1976, i, 405. (f) Yamazaki, H.; Wakatsuki, Y. J. Organomet. Chem. 1977, 139, 157. (g) Yasufuku, K.; Yamazaki, H. J. Organomet. Chem. 1977, 127, 197. (h) Wakatsuki, Y.; Yamazaki, H. J. Organomet. Chem. 1977, i, 169. (i) Yamazaki, H.; Wakatsuki, Y. J. Organomet. Chem. 1978, 149, 377. (j) Hong, P.; Aoki, K.; Yamazaki, H. J. Organomet. Chem. 1978, 150, 279. (k) Wakatsuki, Y.; Yamazaki, H. J. Organomet. Chem. 1978, 149, 385. (1) McDonnell Bushnell, L. P.; Evitt, E. R.; Bergman, R. G. J. Organomet. Chem. 1978, 157, 445. (m) Wakatsuki, Y.; Aoki, K.; Yamazaki, H. J. Am. Chem. Soc. 1979, 101, 1123. (n) Wakatsuki, Y.; Nomura, O.; Kitaura, K.; Morokuma, K.; Yamazaki, H. J. Am. Chem. Soc. 1983, 105, 1907. (o) Yamazaki, H.; Wakatsuki, Y. J. Organomet. Chem. 1984, 272, 251. (p) Wakatsuki, Y.; Miya, S.; Ikuta, S.; Yamazaki, H. J. Chem. Soc., Chem. Commun. 1985, 35. (q) Wakatsuki, Y.; Miya, S.; Yamazaki, H.; Ikuta, S. J. Chem. Soc., Dalton Trans. 1986, 1201. (r) Wakatsuki, Y.; Miya, S.; Yamazaki, H. J. Chem. Soc., Dalton Trans. 1986, 1207. (s) Wakatsuki, Y.; Aoki, K.; Yamazaki, H. J. Chem. Soc., Dalton Trans. 1986, 1193. (t) Stolzenberg, A. M.; Scozzafava, M.; Foxman, B. M. Organometallics 1987, 6, 769. (u) Scozzafava, M.; Stolzenberg, A. M. Organometallics 1988, 7, 1073. (v) Wakatsuki, Y.; Yamazaki, H. Inorg. Syn. 1989, 26, 189. (w) O'Connor, J. M.; Chen, M.-C.; Frohn, M.; Rheingold, A. L.; Guzei, I. A. Organometallics 1997, 16, 5589. (x) O’Connor, J. M.; Chen, M.-C.; Rheingold, A. L. Tetrahedron Lett. 1997, 38, 5241. (y) Baldridge, K. K.; O'Connor, J. M.; Chen, M.-C.; Siegel, J. S. J. Phys. Chem. A 1999, 103, 10126. (z) Hoffman, F.; Wagler, J.; Roewer, G. Z. Anorg. Allg. Chem. 2008, 634, 1133. (aa) O’Connor, J. M.; Bunker, K. D.; Rheingold, A. L.; Zakharov, L. J. Am. Chem. Soc. 2005, 127, 4180. (ab) O'Connor, J. M.; Chen, M.-C.; Holland, R. L.; Rheingold, A. L. Organometallics 2011, 30, 369.
(2) (a) O'Connor, J. M.; Ji, H.; Iranpour, M.; Rheingold, A. L. J. Am. Chem. Soc. 1993, 115, 1586. (b) O'Connor, J. M.; Baldridge, K. K.;

Vélez, C. L.; Rheingold, A. L.; Moore, C. E. J. Am. Chem. Soc. 2013, 135, 8826.
(3) Gandon, V.; Agenet, N.; Vollhardt, K. P. C.; Malacria, M.; Aubert, C. J. Am. Chem. Soc. 2006, 128, 8509.
(4) (a) Boone, B. J.; Klein, D. P.; Seyler, J. W.; Mendez, N. Q.; Arif, A. M.; Gladysz, J. A. J. Am. Chem. Soc. 1996, 118, 2411. (b) Kowalczyk, J. J.; Arif, A. M.; Gladysz, J. A. Organometallics 1991, 10, 1079.
(5) Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165.
(6) Van Gaal, H. L. M.; Graef, M. W. M.; van der Ent, A. J. Organomet. Chem. 1977, 131, 453.
(7) (a) Kamienska-Trela, K.; Biedrzycka, Z.; Machinek, R.; Knieriem, B.; Luettke, W. Org. Magn. Reson. 1984, 22, 317. (b) Liepins, E.; Birgele, I.; Lukevics, E.; Sheludyakov, V. D.; Lahtin, V. G. J. Organomet. Chem. 1990, 385, 185.
(8) (a) Kitching, W.; Olszowy, H. A.; Drew, G. M. J. Org. Chem. 1982, 47, 5153. (b) Eliel, E. L.; Allinger, N. L.; Angyal, S. J.; Morrison, G. A. Conformational Analysis; Interscience: New York, 1965.
(9) Rücker, C. Chem. Rev. 1995, 95, 1009.
(10) For a slightly different definition of ω and a detailed analysis of PPh_{3} ligand conformations in organometallic complexes see: (a) Costello, J. F.; Davies, S. G. J. Chem. Soc., Perkin Trans. 2 1998, 1683. (b) Costello, J. F.; Davies, S. G.; McNally, D. J. Chem. Soc., Perkin Trans. 2 1999, 465.
(11) Pauling, L. The Nature of the Chemical Bond; Cornell University Press: Ithaca, NY, 1960; p 260.
(12) (a) Suezawa, H.; Yoshida, T.; Umezawa, Y.; Tsuboyama, S.; Nishio, M. Eur. J. Inorg. Chem. 2002, 3148. (b) Dunitz, J. D.; Gavezzotti, A. Cryst. Growth Des. 2005, 5, 2180. (c) Tsuzuki, S.; Fujii, A. Phys. Chem. Chem. Phys. 2008, 10, 2584.
(13) (a) Templeton, J. L. Adv. Organomet. Chem. 1989, 29, 1. (b) Marinelli, G.; Streib, W. E.; Huffman, J. C.; Caulton, K. G.; Gagné; Takats, J.; Dartiguenave, M.; Chardon, C.; Jackson, S. A.; Eisenstein, O. Polyhedron 1990, 9, 1867.
(14) Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.; Elbert, S. T. J. Comput. Chem. 1993, 14, 1347.
(15) Gaussian 09; Gaussian, Inc., Wallingford, CT, 2009.
(16) Grimme, S. J. Comput. Chem. 2006, 27, 1787-1799.
(17) Grimme, S. J. Chem. Phys. 2006, 124, 034108-034115.
(18) Becke, A. D. J. Chem. Phys. 1997, 107, 8554-8560.
(19) Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297-3305.
(20) Keith, T. A.; Bader, R. F. W. Chem. Phys. Lett. 1993, 210, 223.
(21) Hanwell, M.; Curtis, D.; Lonie, D.; Vandermeersch, T.; Zurek, E.; Hutchison, G. J. Cheminform. 2012, 4, 17.
(22) WEBMO: Cundari, T.; Schmidt, J. R. www.webmo.net.

[^0]: Received: July 30, 2013
 Published: September 13, 2013

[^1]: ${ }^{a}$ For a definition of slippage (Ω) see the text and Figure $4 .{ }^{b}$ The $\mathrm{R}^{1}(\mathrm{~S}$ or C$)$ and $\mathrm{R}^{2}(\mathrm{Si}, \mathrm{C})$ deviations are from the $\mathrm{Co}-\mathrm{C} 1-\mathrm{C} 2$ plane.

[^2]: ${ }^{a}$ Values in brackets are for the calculated structures.

