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Identification of NK Cell Subpopulations That Differentiate
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Jeffrey P. Murry,a Aaron Arvey,a* Rebecca Hoh,c Steven G. Deeks,c George Kukolj,a* Tomas Cihlar,a Stefan Pflanz,a*
Garry P. Nolan,b Gundula Min-Ooa

aGilead Sciences, Inc., Foster City, California, USA
bDepartment of Microbiology and Immunology, Baxter Laboratory in Stem Cell Biology, Stanford University, Stanford, California, USA
cDivision of HIV, Infectious Diseases and Global Medicine, University of California, San Francisco, San Francisco, California, USA

ABSTRACT HIV infection is controlled immunologically in a small subset of infected
individuals without antiretroviral therapy (ART), though the mechanism of control is
unclear. CD8� T cells are a critical component of HIV control in many immunological
controllers. NK cells are also believed to have a role in controlling HIV infection,
though their role is less well characterized. We used mass cytometry to simultane-
ously measure the levels of expression of 24 surface markers on peripheral NK cells
from HIV-infected subjects with various degrees of HIV natural control; we then used
machine learning to identify NK cell subpopulations that differentiate HIV controllers
from noncontrollers. Using CITRUS (cluster identification, characterization, and re-
gression), we identified 3 NK cell subpopulations that differentiated subjects with
chronic HIV viremia (viremic noncontrollers [VNC]) from individuals with undetect-
able HIV viremia without ART (elite controllers [EC]). In a parallel approach, we iden-
tified 11 NK cell subpopulations that differentiated HIV-infected subject groups using
k-means clustering after dimensionality reduction by t-neighbor stochastic neighbor
embedding (tSNE) or linear discriminant analysis (LDA). Among these additional 11
subpopulations, the frequencies of 5 correlated with HIV DNA levels; importantly,
significance was retained in 2 subpopulations in analyses that included only cohorts
without detectable viremia. By comparing the surface marker expression patterns of
all identified subpopulations, we revealed that the CD11b� CD57� CD161� Siglec-7�

subpopulation of CD56dim CD16� NK cells are more abundant in EC and HIV-negative
controls than in VNC and that the frequency of these cells correlated with HIV DNA
levels. We hypothesize that this population may have a role in immunological con-
trol of HIV infection.

IMPORTANCE HIV infection results in the establishment of a stable reservoir of la-
tently infected cells; ART is usually required to keep viral replication under control
and disease progression at bay, though a small subset of HIV-infected subjects can
control HIV infection without ART through immunological mechanisms. In this study,
we sought to identify subpopulations of NK cells that may be involved in the natu-
ral immunological control of HIV infection. We used mass cytometry to measure sur-
face marker expression on peripheral NK cells. Using two distinct semisupervised
machine learning approaches, we identified a CD11b� CD57� CD161� Siglec-7�

subpopulation of CD56dim CD16� NK cells that differentiates HIV controllers from
noncontrollers. These cells can be sorted out for future functional studies to assess
their potential role in the immunological control of HIV infection.
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immunodeficiency virus, natural killer cells
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HIV is a retrovirus that establishes a life-long latent infection and remains a global
health burden despite highly effective therapies. HIV-infected individuals treated

with suppressive antiretroviral therapy maintain undetectable HIV plasma viral loads,
but this treatment is not curative due to the slow decay of a reservoir of latently
infected cells (1, 2). Interruption of antiretroviral therapy is typically followed by a
robust rebound of viremia; thus, therapy must be continued for the life of the
individual. Intriguingly, a subset of HIV-infected individuals can control HIV load in the
absence of antiretroviral therapy (3–6). Viremic controllers (VC) maintain a low HIV load
(40 to 2,000 copies of HIV RNA/ml of plasma), and elite controllers (EC) maintain an
undetectable HIV load (�40 copies of HIV RNA/ml of plasma). The mechanism of
immunological control in these subjects is not fully understood.

NK cells and cytotoxic T lymphocytes (CTLs) have both been implicated in immu-
nological control of HIV infection (7). Certain major histocompatibility complex class I
(MHC-I) molecules are overrepresented in controller cohorts, most notably, HLA-B*57
and HLA-B*27 (8, 9), and several studies have demonstrated a quantitatively and
qualitatively superior CTL response in EC and VC who possess these protective MHC
alleles (10–15). Nevertheless, a substantial proportion of controllers lack protective MHC
alleles and may control HIV infection through a non-CTL mechanism (16). NK cells may
contribute to the controller phenotype, both in the absence of (17) and in conjunction
with (18–20) protective MHC-I alleles. Recently, in a case of early immunological control
of HIV by a subject lacking protective MHC-I alleles, researchers found an effective
cytotoxic NK effect without robust CTL activity (21).

In peripheral blood, classical NK cells are historically identified as CD56bright CD16�

(cytokine-producing) and CD56dim CD16� (cytotoxic) (22). A nonclassical NK cell pop-
ulation (CD56� CD16� CD7�) with reduced functional capacity is expanded in HIV-
infected subjects and may comprise recently activated cells that have become anergic
(23–27). This subset has been described in other chronic viral infections, such as
hepatitis C virus (HCV), but is largely absent in HIV-negative (HN) donors (28, 29).

NK cell activity is regulated by a balance of signals downstream of multiple activat-
ing and inhibitory receptors (30), including the killer cell immunoglobulin-like receptor
(KIR), C-type lectin receptor (e.g., CD94), and natural cytotoxic receptor (NCR) families.
These receptors interact with MHC-I, adhesion molecules, and costimulatory molecules,
among others.

Interactions between HLA-B Bw4-80Ile alleles (including HLA-B*57) and KIR3DL1 as
well as homozygosity for KIR3DS1 have been shown to be protective against HIV
acquisition (31, 32) and progression (18–20), and viral evolution to escape pressure
applied by KIR molecules has been described previously (33). A recent study demon-
strated the importance of immunological control of HIV by NK cells that express NKG2A
(34). In addition, upon activation with alpha interferon (IFN-�), NK cells are able to kill
HIV-infected CD4� T cells via activating NKG2D and NKp46 receptors (35), though the
HIV Nef protein has been shown to be able to downregulate ligands for both NKG2D
and KIRs (36, 37). Additionally, NCR molecules are downregulated during chronic HIV
infection, possibly contributing to the dysfunction of NK cells (38).

Prior studies have characterized NK cells from HIV controllers (39) or compared NK
cell functionality to clinical parameters (40). In this study, we used mass cytometry to
simultaneously profile 24 NK cell surface markers on the single-cell level in 93 subjects
with differing degrees of HIV infection control, including both VC and EC. We used
semisupervised machine learning approaches to identify and quantify NK cell subpopu-
lations associated with the ability to control HIV infection.

RESULTS
Subject characterization. Subjects were categorized into 5 groups based on HIV

load and antiretroviral therapy status (see Materials and Methods). Clinical character-
istics of the participating subjects are presented in Table S1 in the supplemental
material. The distributions of subject CD4� T cell counts and viral loads are shown in
Fig. 1A.
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FIG 1 Study subject characterization. A total of 93 subjects were recruited for participation in this study (EC, n � 13, red;
VC, n � 27, blue; VNC, n � 12, yellow; cART, n � 21, green; HN, n � 20, gray). (A) Subject peripheral blood CD4� T cell count
(left) and HIV load (right). All subjects had a CD4� T cell count above 200 cells/�l of blood (left, dotted line). The limit of
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We estimated HIV reservoir size for HIV-infected subjects with a previously published
PCR-based approach (41, 42). Although PCR-based total HIV DNA measurements in
peripheral blood mononuclear cells (PBMCs) detect defective provirus and uninte-
grated DNA and may not accurately measure reservoir size (43, 44), these measure-
ments can distinguish groups of HIV-infected subjects and can be used as a proxy for
reservoir size. Our data are consistent with other reports of HIV DNA reservoir mea-
surements in the subject groups representing combination antiretroviral therapy (cART)
and viremic noncontrollers (VNC) (41) (Fig. 1B). HIV DNA levels were higher in most VNC
subjects than in cART subjects, likely due to detection of actively infected cells, though
this difference was not statistically significant. VC and EC subjects had significantly
lower HIV DNA levels than VNC subjects (P � 0.0051 and P � 0.0001, respectively).

Mass cytometry NK cell phenotyping. To fully explore the repertoire of NK cell
subsets by simultaneously interrogating the expression levels of a wide variety of
activating and inhibitory receptors, we utilized a comprehensive mass cytometry
approach. We designed and qualified an NK cell-focused panel (Table S2) of 38
antibodies (Abs). A total of 34 antibodies passed our quality control, as 4 antibodies had
either minimal staining or high background levels. All 10 antibodies chosen for cell
lineage identification passed quality control. All 93 subjects were subjected to immune
phenotyping by mass cytometry in 6 independent runs. Run-to-run variability was
minimal, as determined by t-neighbor stochastic neighbor embedding (tSNE) (data not
shown). We interrogated mass cytometry results in two ways: first, we measured
correlations between individual surface marker expression frequencies and the size of
the HIV DNA reservoir; second, we used semisupervised machine learning approaches
to identify NK cell subpopulations that differed in abundance among the enrolled
HIV-infected subject groups.

Expansion of CD56� NK cells occurs in viremic subjects. Because NK cell subset
imbalance has been observed in subjects chronically infected with HIV (23–27), we
measured the frequencies of the two major NK cell subsets (CD56bright CD16� and
CD56dim CD16�) and of the more recently described CD56� CD16� CD7�subset in all
HIV-infected subject groups (23) to verify that the NK cell subset distribution in our
subject cohort reflected previous findings (23–27). The gating strategy used is shown
in Fig. 1C. There were no significant differences in the frequencies of either of the
two major NK cell subsets across HIV-infected subject groups, compared to HN, after
adjusting for multiple comparisons (Fig. 1D). We observed a higher frequency of CD56�

CD16� CD7� NK cells within lineage-negative cells (CD3� CD14� CD19� CD33�

CD45� CD66b� CD235�) in VNC than in HN (P � 0.014, false discovery rate [FDR]
adjusted). Additionally, we saw a significantly higher ratio of CD56� CD16� CD7� cells
to CD56dim CD16� cells in VNC than in HN (P � 0.0005, FDR adjusted), suggesting that
CD56� CD16� CD7� cells may have expanded in VNC subjects (Fig. 1E).

Frequencies of individual markers on NK cell subsets correlate with HIV DNA.
To identify the NK cell subpopulations whose frequencies correlated with immunolog-
ical control, we calculated correlations between the frequencies of NK cell subsets
expressing individual markers and viral load, CD4� T cell count, or HIV DNA levels. We
observed a number of individual NK cell markers that correlated with viral load or CD4�

T cell count, some of which have been previously reported as differentially expressed
in HIV controllers, including LIR1 (45), though none of these correlations withstood

FIG 1 Legend (Continued)
detection for viral load was 40 copies of HIV RNA/ml of plasma (right, dotted line). (B) HIV DNA measurement for each
subject. The limit of quantitation was 10 copies/106 PBMCs (dotted line). (C) Events were first gated on intact cells, followed
by dead cell discrimination gating. NK cells were identified as CD3� CD14� CD19� CD33� CD45� CD66b� CD235� and then
differentiated by CD56, CD16, and CD7 expression. (D) Frequency of NK cell subsets within lineage-negative (CD3� CD14�

CD19� CD33� CD45� CD66b� CD235�) PBMCs. (E) Expansion of CD56� CD16� CD7� NK cells as measured by the ratio of
CD56� CD16� CD7� to CD56dim CD16� NK cells. Each color-filled point represents an individual subject, and horizontal lines
represent the group medians. Significance was calculated using a Kruskal Wallis test with a post hoc Dunn’s test. Each
subject group was compared to VNC. P values were adjusted by multiplying by the number of comparisons made
(Bonferroni correction). *, P � 0.05; **, P � 0.005; ***, P � 0.0005.
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Bonferroni correction for multiple comparisons (P � 0.05). The only significant correla-
tions remaining after correction for multiple comparisons were those between HIV DNA
and expression of either CD62L or Siglec-7 on CD56dim CD16� NK cells (P � 0.001 and
P � 0.001, respectively) or of either CD27 or Siglec-7 on CD56� CD16� CD7� NK cells
(P� 0.011 and P � 0.026, respectively) (data not shown). These results corroborate
findings from multiple previous studies (26, 46–48).

CD56dim CD16� NK cell subpopulations that differentiate EC from VNC. In order
to discover novel NK cell subpopulations defined on the basis of multiple markers, we
analyzed the entire mass cytometry panel concurrently. We first used CITRUS (49) to
identify NK cell subpopulations that differentiated groups of HIV-infected subjects. In
order to minimize noise, our analysis included only NK cells and NK cell-related markers
(i.e., lineage markers were used to gate NK cells but were excluded from downstream
analyses). HIV-infected subject groups were compared in a pairwise fashion. Using
CITRUS, we could not distinguish any HIV-infected subject groups from one another
using the CD56bright CD16� NK cell subset (�15% model cross-validation error rate).
However, we were able to differentiate EC from VNC using the CD56dim CD16� NK cell
subset. Three clusters of cells identified by CITRUS within CD56dim CD16� NK cells
(clusters 24427, 24429, and 24432) differentiated EC from VNC (Fig. 2A). The expression
levels of selected markers that helped differentiate these clusters of cells are shown in
Fig. 2B; the expression levels of all NK markers measured are shown in Fig. S1 in the
supplemental material.
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Dimensionality reduction followed by k-means clustering revealed NK cell
subpopulations that differentiated multiple HIV-infected subject groups. As a
distinct approach, we performed supervised and unsupervised dimensionality reduc-
tion prior to cluster identification and pairwise comparisons of cluster frequencies. We
concatenated cells from subjects across all HIV-infected subject groups and ran
principal-component analysis (PCA), linear discriminant analysis (LDA), or tSNE. PCA and
tSNE are both unsupervised dimensionality reduction algorithms that preserve the
information in a data set while allowing identification of new clusters. In contrast,
LDA is a supervised dimensionality reduction algorithm that separates data points
using defined response variables as a guide to maximize separation. Using ACCENSE
(50), we used the first two dimensions from each dimensionality reduction algorithm
for k-means clustering to define NK cell subpopulations. To our knowledge, using a
supervised dimensionality reduction algorithm prior to clustering is a novel approach
to identify cellular populations that differentiate subject groups from high-parameter
mass cytometry data sets.

Dimensionality reduction by PCA performed poorly, as the information contained in
the first principal component was explained almost entirely by expression of CD57.
From two-dimensional coordinates generated by tSNE, we identified one subpopula-
tion within the CD56� CD16� CD7� NK cells (cluster 1) that differentiated viremic
subjects (VC, VNC) from aviremic subjects (EC, cART, HN) (Fig. 3A and B). This NK cell
subpopulation expressed higher levels of KIR3DL1 (Fig. 3C), suggesting a loss of this
inhibitory marker in response to viremia.

From two-dimensional coordinates generated by LDA, k-means clustering identified
five subpopulations within CD56bright CD16� NK cells (clusters 2 to 6) that differenti-
ated viremic subjects (VC, VNC) from aviremic subjects (EC, cART, HN) (Fig. 3D and E).
The relevant markers for identification of these NK cell subpopulations are shown in Fig.
3F. The cells in clusters 2 to 4, which were less abundant in viremic subjects, showed
high levels of CD11b and CD161 expression. Cells expressing these markers are
matured and play a proinflammatory role (51, 52); CD161-expressing NK cells have been
shown previously to be depleted in viremic HIV-infected subjects (52). The cells in
clusters 5 to 6, which were more abundant in viremic subjects, had higher expression
of DNAM-1 and NKp46, suggesting that they were matured and active NK cells (53, 54).

Also, using LDA followed by k-means clustering, we identified an additional five
subpopulations within the CD56dim CD16� NK cells (clusters 7 to 11) that differentiated
VNC from other groups of HIV-infected subjects (Fig. 4A). Similarly to the cells in clusters
2 to 4, the cells in clusters 7 to 11 expressed elevated levels of CD11b and CD161, but
they also showed increased expression of Siglec-7 and lacked expression of CD57 (Fig.
4B). Clusters 7 to 11 were differentially abundant between VNC and EC, with interme-
diate frequencies observed in the VC and cART groups. The cells identified by cluster
10 were also more frequent within the EC group than within the HN group (P � 0.001,
FDR adjusted).

We next performed a linear regression analysis to determine whether the frequen-
cies of the cells in clusters 1 to 11 were associated with HIV DNA levels. HIV DNA levels
correlated significantly with the frequencies of cells identified by clusters 7 to 11
(Fig. 5A); excluding the viremic subjects from the analysis (Fig. 5B), clusters 8 and 10
maintained significant correlations with HIV DNA levels. Importantly, this suggests that
these clusters were correlated with integrated HIV DNA as an approximate indicator of
the frequency of cells containing proviral DNA and representing the overall infection
burden in T cells rather than a latent replication-competent virus reservoir. This
conclusion was unaffected by converting the HIV DNA copy number per 106 PBMCs to
the HIV DNA copy number per 106 CD4� T cells for correlative analysis (data not
shown).

The CD11b� CD57� CD161� Siglec-7� subpopulation of CD56dim CD16� NK
cells differentiated HIV-infected subject groups. The expression levels of CD11b,
CD161, CD57, and Siglec-7 on cells identified by clusters 7 to 11 followed broadly
similar distribution patterns (Fig. 4B). When clusters 7 to 11 were combined, we
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FIG 3 Clusters identified after dimensionality reduction and k-means clustering differentiate viremic subjects from aviremic subjects. (A and B) Frequency of
cells within cluster identified after running tSNE analysis on CD56� CD16� CD7� NK cells followed by k-means clustering. Each color-filled point represents
an individual subject (orange, EC, cART, HN; purple, VC, VNC), and horizontal lines represent the group median. Significance testing was done by the Kruskal
Wallis test with a post hoc Dunn’s test. ***, P � 0.0005. (C) Expression intensity of markers that distinguish bulk CD56� CD16� CD7� NK cells (black line, shaded
background) from the cells identified in cluster 1 (green line). Histograms representing the expression intensities of all NK markers measured are shown in Fig.
S2. x-axis data represent marker expression intensity. (D and E) Frequency of cells within clusters identified after running LDA on CD56bright CD16� NK cells
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all NK markers measured are shown in Fig. S3. x-axis data represent marker expression intensity.
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observed that the distribution of these markers on these cells showed a profile similar
to that seen with the cells in cluster 24429 identified by CITRUS. These relationships are
shown in Fig. 6A. This suggests that two disparate machine learning algorithms
independently converged on identification of a similar NK cell subpopulation that
showed a high level of expression of CD11b, CD161, and Siglec-7 and a low level of
expression of CD57.
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Using manual gating approaches, we compared the frequencies of CD11b� CD57�

CD161� Siglec-7� cells within the CD56dim CD16� NK cell population across the
HIV-infected subject groups and the HN group (Fig. 6B, left). This subpopulation was
more frequently observed in EC and HN than in VNC (P� 0.048 and P � 0.010,
respectively). Though CD161� cells within the CD56dim CD16� NK cell population have
been previously shown to differentiate cART and VNC subjects (52), all 4 markers were
necessary to identify a subpopulation that differentiated the HIV-infected subject
groups in this study. We confirmed the expression of CD57 and CD161 from these mass
cytometry findings in an independent experiment performed using traditional flow
cytometry to verify that these markers alone were not sufficient to identify the NK cell
subpopulation (data not shown). The frequency of this NK cell subpopulation, either per
106 PBMCs or per 106 CD4� T cells, correlated with HIV DNA measurements (Fig. 6B,
right).

Increased functionality in the CD11b� CD57� CD161� Siglec-7� subpopulation
of CD56dim CD16� NK cells. In order to determine if the CD11b� CD57� CD161�

Siglec-7� subpopulation of CD56dim CD16� NK cells had enhanced functional capacity,
we used standard NK cell stimulation conditions to measure the levels of cytokine
production and degranulation. Enriched NK cells showed low production of IFN-�
without stimulation. Under conditions of stimulation with interleukin-12 (IL-12)/IL-18,
CD11b� CD57� CD161� Siglec-7� cells showed significantly more IFN-� production
than CD11b�, CD161�, or Siglec-7� subpopulations (Fig. 7A). We next cocultured
enriched NK cells with K562 cells; K562 cells are MHC class I deficient and act as NK cell
targets. NK cells cultured without K562 cells had a low background level of degranu-
lation. We observed a significantly higher frequency of degranulation in the CD11b�

CD57� CD161� Siglec-7� subpopulation of CD56dim CD16� NK cells than in CD11b�,
CD161�, or Siglec-7� subpopulations (Fig. 7B). The CD57� subpopulation, which is
believed to be “antigen-experienced” (55), showed high levels of cytokine production
and degranulation; there was no significant difference between CD11b� CD57�

CD161� Siglec-7� cells and CD57� cells under either of the sets of stimulation
conditions.

DISCUSSION

We used a multifaceted approach to identify novel NK cell phenotypes and sub-
populations associated with immunological control of HIV. A key advantage of mass
cytometry over traditional flow cytometry is the ability to generate high-parameter data
sets to interrogate many cellular phenotypic differences across subject cohorts simul-
taneously, considering a comprehensive receptor repertoire rather than individual
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receptors in isolation. High-parameter data sets can be interrogated computationally in
an unbiased fashion to uncover novel subsets of cells that may not be identified by
more-limited flow cytometry panels.

We identified several clusters that differentiated subjects with or without active HIV
viremia, a finding that suggests that NK cell receptor expression may be impacted by
the presence of HIV antigens and/or active viral replication. More intriguingly, after LDA
dimensionality reduction, the frequencies of cells identified in clusters 7 to 11 corre-
lated with HIV DNA measurements. Importantly, the frequencies of cells identified in
cluster 8 and cluster 10 remained significantly correlated with HIV DNA in the analyses
that included only aviremic subjects (EC and cART; Fig. 5B). The cells in clusters 7 to 11
were more abundant in EC than in VNC and when combined showed a pattern of
receptor expression similar to that seen with cluster 24429 (Fig. 6A).

The NK cell clusters identified from the semisupervised machine learning ap-
proaches used in this study are largely distinguished from other CD56dim CD16� NK
cells by their reduced expression of CD57 and increased expression of CD11b, CD161,
and Siglec-7.

Some of the markers that define this cell subset have been implicated in previous
studies of NK cell function. Siglec-7 is a sialic acid-binding protein that has an immune
tyrosine-based inhibition motif (ITIM). Siglec-7 is expressed on highly active NK cells
(56), and loss of expression is believed to correspond to dysfunction of NK cells, which
occurs in chronic HIV and HCV infection (46, 57). CD11b is a marker of maturation of NK
cells in humans and mice (58, 59). CD57 is a marker of terminally matured NK cells (60)
and has been suggested to identify antigen-experienced NK cells; consistent with this
hypothesis, the frequency of CD57-expressing NK cells is higher in HIV-infected subjects
(61). CD161 is a C-type lectin expressed on some T cells and on the majority of NK cells
early in maturation (62). CD161 marks cytotoxic NK cells, but interaction with its
cognate ligand LLT1 has been shown to repress NK cell function (63, 64). CD161�

NK cells, like CD161� T cells, have an enhanced ability to respond to cytokines,
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including IL-12 and IL-18 (52, 65), and CD161� CD57� NK cells have enhanced
proliferative capabilities (52). On the basis of the identified marker expression, the
CD11b� CD57� CD161� Siglec-7� CD56dim CD16� NK cells are likely highly active,
partially matured, cytotoxic NK cells (51, 52, 56, 60) and thus might contribute to
the spontaneous control of HIV replication in the absence of antiretroviral therapy.
Indeed, our in vitro data support this hypothesis, as the CD11b� CD57� CD161�

Siglec-7� subpopulation showed a higher response to stimulation than other
CD56dim CD16� NK cell subsets.

NK cells represent a heterogeneous population, and the complexity of NK cell
maturation and activation is an area of ongoing investigation. The identification of NK
cell clusters that correlate with HIV DNA levels could be a fingerprint of antigen
exposure level during the course of infection or, more intriguingly, could reveal NK
phenotypes that contribute to the control of viral replication in early stages of infection.
The interactions between the identified differentially expressed receptors on antigen-
inexperienced CD56dim CD16� NK cells, including CD11b, CD161, and Siglec-7, and the
functional impact of their modulation on the NK cell activity could contribute to better
understanding of various distinct mechanisms of HIV control and thus warrant further
exploration. Future studies to understand the effect of modulating this NK cell sub-
population would benefit from knowing if a similar subpopulation exists in animal
species.

MATERIALS AND METHODS
HIV-infected subject recruitment. Prior to enrollment in the study, all subjects provided informed

consent as approved by the Committee on Human Research of the University of California, San Francisco.
A total of 93 subjects were recruited from the SCOPE Study cohort as follows: 21 chronically infected,
antiretroviral therapy-treated subjects with a viral load of �40 copies/ml of plasma (cART); 12 chronically
infected, antiretroviral therapy-naive subjects with a viral load of �5,000 copies/ml of plasma (viremic
noncontrollers [VNC]); 27 antiretroviral therapy-naive subjects with a viral load of between 40 and 2,000
copies/ml of plasma (viremic controllers [VC]); 13 antiretroviral therapy-naive subjects with a viral load of
�40 copies/ml of plasma (elite controllers [EC]); and 20 HIV-seronegative subjects (HIV-negative [HN]).
Viral load measurements were confirmed in-house using the COBAS TaqMan test v2.0. HN were verified
as HIV antibody negative by Western blotting. All subjects were screened to have a CD4� T cell count
of �200 cells/�l of blood. All subjects were screened to be HCV antibody negative and/or HCV load
negative at the time of donation; HCV antibody positivity was not an exclusion criterion if the subject had
undetectable HCV load at the time of sample collection. Additional details are available in Table S1 in the
supplemental material.

Sample preparation and storage. Whole blood was collected in acid citrate dextrose (ACD)-
containing Vacutainers. Blood was processed on the day of collection. PBMCs were isolated by density
centrifugation over Ficoll-Paque media. PBMCs were counted and resuspended at 10 M cells/ml of
freezing media (90% fetal bovine serum [FBS], 10% dimethyl sulfoxide [DMSO]). Cells were frozen to
�80°C in a controlled-rate freezing chamber. The next morning, samples were transferred to liquid
nitrogen storage and maintained at �160°C for long-term storage.

Genomic DNA isolation and cell-associated HIV quantification. Genomic DNA was isolated from
thawed PBMCs, and HIV was quantified as previously reported. In brief, genomic DNA was isolated by
sonicating cells, treating them with chaotropic salts, and precipitating them with alcohol (41). Genomic
DNA isolated from U1 cells (containing 2 copies of integrated HIV/cell) was used to make a standard
curve for human genome copy number as well as HIV copy number determinations. CCR5 was used as
a standard control for human genome copy number determinations (66). HIV was detected using primers
and probes within the HIV integrase gene as previously optimized for the integrase single-copy assay
(67). Quantitative PCR (qPCR) was performed using TaqMan Fast Advanced master mix (Thermo Fisher)
in a final volume of 25 �l (42).

Mass cytometry Ab validation. Monoclonal antibodies were conjugated to metals isotopes (Table
S2) using a MaxPAR antibody conjugation kit (Fluidigm) and were diluted to 0.2 to 0.4 mg/ml in antibody
stabilizer phosphate-buffered saline (PBS) (Candor Bioscience). Optimal staining concentrations for each
antibody were determined by titrating antibody concentrations prior to staining cell lines and primary
cells as positive and negative controls.

Sample processing and data acquisition. Frozen PBMCs were thawed rapidly at 37°C. Prewarmed
RPMI 1640 supplemented with 10% FBS and 0.1 mg/ml DNase I was added dropwise in a swirling motion
to maximize viability and prevent clumping. Each sample was treated with cisplatin for the exclusion of
dead cells (68) and fixed with 1.5% paraformaldehyde. A total of 1 � 106 cells from each sample were
aliquoted, and pre-Perm palladium barcoding was performed as previously described (69, 70). Cells were
then pooled, treated with Fc receptor blocking solution (BioLegend), and stained with metal-labeled
antibodies and DNA intercalators as previously reported (69, 71–73). Cells were washed and resuspended
with normalization beads (74) prior to being loaded into a CyTOF 1 instrument for acquisition (Fluidigm).
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All samples were run in a total of 6 batches. PBMCs from the same 3 subjects (1 EC, 1 cART, and 1 HN)
were included in each run for all 6 batches to verify consistency from run to run.

After acquisition, individual markers were checked to verify that the positive population had
been successfully resolved from the negative population. A total of 3 antibodies (2B4, NKp30, and
NKp44) showed minimal staining. CD137-positive cells could not be resolved from CD137-negative
cells due to high background levels. Those four markers were excluded from downstream analysis.
Additionally, t-distributed stochastic neighbor embedding (tSNE) was run to rule out batch effects
(data not shown).

Linear regressions and statistical tests. Ordinary least-squares linear regressions were calculated
using Python (statsmodels). Pairwise comparisons were performed using a Kruskal-Wallis (KW) test with
a post hoc Dunn’s test (https://gist.github.com/alimuldal/fbb19b73fa25423f02e8) or Friedman’s paired
test (GraphPad Prism). To correct for false discovery, P values corresponding to the KW-Dunn results were
further adjusted by multiplying by the number of comparisons made (Bonferroni correction). All reported
P values were adjusted for multiple testing.

CITRUS analysis. CITRUS (cluster identification, characterization, and regression) (49) was run using
a Cytobank platform. CD56bright CD16�, CD56dim CD16�, and CD56� CD16� CD7� NK cells were
downsampled to equal sample sizes for each subject (CD56bright CD16�, 206 cells; CD56dim CD16�, 1,111
cells; CD56� CD16� CD7�, 265 cells). Subjects with too few cells per NK cell subtype were excluded from
analysis. Cluster sizes were limited to a minimum of 5% of total cells. HIV-infected subject groups were
compared in a pairwise fashion. Cells were concatenated from subjects within the two subject groups
being compared. After unsupervised agglomerative hierarchical clustering, cluster abundances were
inputted into a LASSO-regularized logistic regression to build a logistic classifier; hyperparameters were
optimized using k-fold cross-validation.

Dimensionality reduction and cluster identification. The downsampled data used for CITRUS were
used also for principal-component analysis (PCA), linear discriminant analysis (LDA), and tSNE using
Python (scikit-learn). PCA prioritizes describing data sets as a combination of attributes (e.g., in this study,
individual marker intensities), representing their variation through principal components (PCs), which
preserve as much variance in the data set as possible. The focus of tSNE is to deconvolute high-parameter
data by identifying similarities between data points (e.g., in this study, individual cells) and then
projecting the relationships in two dimensions. Both of these approaches preserve the information in a
data set in an attempt to portray the data in a way that allows the user to identify new clusters in an
agnostic fashion (e.g., in this study, to identify NK cell subpopulations without taking HIV-infected subject
groups into consideration). LDA is a supervised dimensionality reduction algorithm that identifies
combinations of attributes (e.g., in this study, individual marker intensities) that maximize the separation
of a given response variable (e.g., in this study, HIV subject groups); LDA does not maintain the overall
variance of the data set but separates the data points based on response variables more effectively (e.g.,
in this study, identified the NK cell subpopulations that differentiated HIV-infected subject groups). tSNE
was run with a random seed, a maximum of 5,000 iterations, and perplexity set to 50, using the
Barnes-Hut approximation (angle � 0.5). LDA was run using eigenvalue decomposition and was limited
to two dimensions. Clusters were subsequently identified by k-means clustering using the ACCENSE
package (50).

NK cell functional assays. Frozen PBMCs were thawed rapidly at 37°C and washed in RPMI 1640
supplemented with 10% FBS. Cells were rested at 37°C and 5% CO2 for 3 h prior to enrichment of NK cells
(Stemcell Technologies). After being rested overnight at 37°C and 5% CO2, 2 � 105 NK cells were plated
in individual wells of a 96-well flat bottom plate and stimulated with either cytokines (10 ng/ml IL-12
[BioLegend] plus 100 ng/ml IL-18 [BioLegend]) or K562 cells (10:1 effector/target ratio) for 5 h at 37°C and
5% CO2. After the first hour of stimulation, brefeldin A (BioLegend), monensin (BioLegend), and CD107a
(clone H4A3; BioLegend) were added. After stimulation, cells were stained for viability (Zombie dyes;
BioLegend), CD3 (clone UCHT1; BioLegend), CD11b (clone ICRF44; BioLegend), CD16 (clone 3G8; Bio-
Legend), CD56 (clone HDC56; BioLegend), CD57 (clone H CD57; BioLegend), CD161 (clone 191B8;
Miltenyi Biotec), and Siglec-7 (clone 6 to 434; BioLegend). Cells were fixed and permeabilized with
CytoFix/CytoPerm reagent (BD Biosciences) prior to staining for intracellular IFN-� (clone B27; BioLeg-
end). Stained cells were analyzed on an LSRFortessa X-20 instrument (BD Biosciences), and data were
analyzed using FlowJo (TreeStar).
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