
UC Irvine
ICS Technical Reports

Title
Structured process description

Permalink
https://escholarship.org/uc/item/1fq7w0cp

Authors
Tonge, Fred M.
Barton, Robert S.
Cowan, Richard M.

Publication Date
1979

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1fq7w0cp
https://escholarship.org
http://www.cdlib.org/

STRUCTURED PROCESS DESCRIPTION

Fred M. Tonge*
Robert s'. Barton+
Richard M. Cowan+ Notice: This Material

may be protected
by Copyright Law
(Title 17 U.S.C.)

Department of Information and Computer Science
University of California, Irvine

Irvine, CA 92717

March 1979

Technical Report #130

*University of California, Irvine
+Burroughs Corporation

This work was supported in part by the Burroughs Corporation
and by National Science Foundation grant no. MCS77-02715.
The authors acknowledge the helpful comments of R. Flint,
K. Gostelow, and R. Thomas.

iBhsJeM
elrlT

isoiJoM
bstostoiq

9d
yBm

w
sJ

Jrlo'nyqoO
yd

(.O
.S.U

X
rglJiT)

Paqe 1

Abstract

Structured process description employs a small set of
constructs which facilitate functional programming with
concurrency. These constructs can be mapped directly onto a
process interconnection architecture. Using these
structured connectives, maximum pipelining throughput can be
achieved. The constructs are presented and illustrated with
example programs.

Index terms; structured processes, dataflow,
multiprocessing, concurrency, parallel processors,
distributed processing, functional programming.

1. Introduction

Structured process descriptions are a means of talking about
functional programming emphasizing concurrency. in this
paper we first present an informal discussion intended to
motivate the approach, followed by formal definitions of
relevant concepts and process structuring constructs,
together with an illustrative example. Next are sections
discussing measures of concurrent performance of structured
process description, data structures, and the process
allocation environment. Finally, several additional
functional forms are introduced, and more example process
descriptions are given.

2 . Informal Pi scussion

Informally, a process is a device (machine, algorithm,
mathematical function, ...) which when presented with a set
of input values later produces a set of output values. The
relationship between an input set and the corresponding
output set expresses the function of the process. This
relationship is described by a process description, which
serves as a blueprint for the process. The process is
realized from its process description by allocating
resources, such as processing elements, to the component
parts of the process.

Paqe 2

Structured process description is motivated by a desire to
exploit tne potential for concurrency inherent in possible
LSI-based system architectures involving large numbers of
microprocessors. Our emphasis is on expressing process
descriptions such that there is a natural mapping of process
descriptions onto processors at many levels. As such, this
work is related (and complementary) to work on functional
programming languages [BA78,BU75,LA64,MC60], dataflow
[AR77a,DE75]], and structured programming [DA72,DI76,K074]].

Our underlying model of a computer system architecture
i ncludes:

hierarchical decomposition (a processor-storage module
is composed of some structural interconnection of
processor-storage modules, down to some atomic level);

functionality (at any level, the outputs of a process
are expressions of the inputs; i.e., there are no
"side effects" of a process);

data-driven (a process is initiated when its inputs are
available, and no other form of synchronization among
processors is used).

In keeping with this model of a processing element (p.e.),
process descriptions are themselves hierarchically
decomposed into interconnected process descriptions, down to
some atomic level. Functionality dictates the order of
process activation since the outputs of one expression are
the inputs of the next.

Structured process descriptions describe the interconnection
of processes, not the interconnections of the processing
elements on which they are realized. The basic principles
are applicable across a broad range of specific p.e.
capabilities and interconnection architectures. In this
discussion we do not specify a particular p.e.
architecture, system interconnection architecture, or
procedure for mapping process descriptions onto particular
p.e.'s (although we introduce some assumptions for the sake
of examples) .

This approach to structured process description can be
viewed either as specifying connectives for process
interconnection or as specifying rules for function

Page 3

composition. process descriptions can be written as network
diagrams or as equivalent functional expressions.

A complete specification of a system would include a
language for expressions in which atomic processes
(functions) are described, a set of inter-process
connectives (metafunctions), and a scheme for the allocation
of processes to a network of p.e.'s. In this paper we
concentrate on the principles of process composition, and
develop only such details of a language for expressions and
an allocation scheme as are needed for examples. ,

We envisage the language for expressions, rules for
functional composition, and allocation scheme all as being
implemented in each p.e., and so executed as "machine
language". Under these conditions, process descriptions
would be realized as programs almost directly, subject only
to the level of translation done in simple assemblers.

3. Definitions

^ ptocsss descr iption consists of a process expression and a
process body. The process expression specifies the function
of the process by giving either a base level computation
rule or an expansion of the process into components. The
process body consists of specifications of the input and
output sets and of minimum resource requirements (including
shared resources). For the remainder of this paper, we
concentrate on process expressions and their input and
output sets.

A processing element consists of processors and associated
storage, typically interconnected with other processing
elements in a regular manner.

A process is a process description and a set of resources
(minimally, processing elements) allocated to the process
d esc r i pt i on.

^"P^t case is a complete set of values for the input set
of a process. An output case is a complete set of values
for the output set of a process. For each input case there
is (assuming process termination) a corresponding output
case. Together, these are a data case.

The domain of a process is the set of resources (for
example, processing elements) assigned to the process. A
process accepts (begins processing) a data case when that
input case enters its domain, and produces (finishes
processing) a data case when that output case leaves its
domain. A process is active when any data case is wittiin
its domain.

Within a process, an input case may subdivide into several

Page 4

data cases, eventually recombining into a single output
case. A process is capable of parallel ism if within its
domain several data cases derived from the same input case
can be processed concurrently. A process is capable of
pipelining if it can accept a second (or further) input case
before producing the first output case. A process can
parallel or pipeline (or both) only if both its process
description and its resource allocation permit parallelism
or pipelining.

A process (and so its process description) is
order-preserving if data cases are produced in the same
order as they are accepted. This can be achieved trivially
by not accepting a second input case until the current
output case is produced; thus, order preservation is of
interest only in the presence of pipelining. If a
pipelining process is order-preserving, then the
correspondence between input cases and output cases is
directly derivable from the orders of acceptance and
production. If not, additional case identification
information is necessary to maintain that correspondence,
plus some form of sorting to maintain order. In the
following, only order-preserving processes are considered.

The allocation of processing elements to processes is done
hierarchically on a data-driven basis. The immediate
components of a process are allocated processing elements
when the first input case is presented to the process.

Ijl Structural Connectives and Metafunctions

The decomposition of process expressions into their
components (or, the synthesis of components into larger
process descriptions) is specified by three structural
connectives. Corresponding to each connective is an exactly
equivalent metafunction. In the following we give for each
connective a diagrammatic representation of the process
expression and the equivalent metafunction.

In the ser ial connective, components occur in a specified
order.

diagram:

(output case

F:
I

(Note that the flow in network diagrams is depicted right to
left, corresponding to composition of functions.)

Page 5

The equivalent metafunction is functional composition:

F= f
n-1 1 0

In the para11e1 connective, components occur (may be carried
out for a particular data case) in any order, including
simultaneously if sufficient resources are available.

diagram;

L ;
The equivalent metafunction is functional construction:

" = '^0

In the alternative connective, one of the component
processes is performed as selected by an index.

diagram: r-.

j€input case

The equivalent metafunction is functional selection;

F = (f ...,f) .
0 n-1 3

By convention, a predicate used as a selector evaluates to 0
if false and 1 if true.

Definition of a function is specified as in the above
examples. Reference to a function is indicated in diagrams
as given below, and in expressions by use of the function

di agram;

I 1
« r- I' CT"I F I
1 1

Page 6

As is shown elsewhere [T078], structured process description
networks derived using these connectives (and so functional
expressions using the equivalent metafunctions) are
equivalent to Dijkstra's D-charts with the addition of
parallelism, and with loops achieved through the recursive
use of function reference. Consequently, results concerning
the power and applicability of that formalism hold also for
structured process description.

5. An Example

The following procedure computes the square root of a number
using the Newton-Raphson approximation, with ten iterations
of the method and taking the number itself as the initial
approximation. The procedure is represented as a structured
process description network, with input n and output s.
Each process is a simple expression evaluation. In this
process description symbolic names are used as a convenient
shorthand for describing elements of a data case; they in
no way imply storage locations.

•v^^v

v<«- u-l

This process description implies no particular allocation of
processes to p.e.'s. The entire process description could
be allocated to a single p.e., where it would be executed as
a sequential program; or it could be allocated to a network

I

LL^/K

Page 7

of very small p.e.'s, each expression evaluation carried out
by a distinct p.e.. The opportunities for parallelism and
for pipelining in computing a sequence of square roots are
directly indicated in the process description. The extent
to which that concurrency can be achieved will depend upon
the allocation scheme and available resources.

The equivalent functional notation for this process
description is given below.

sqrt ((n)—>(s))

= (undefined,f•(n,n,10))

where

f ((u,v,w)—>(s))

= (u,f•((u+v/u)/2,v,w-l))

The symbolic names used above stand for primitive selector
functions, named by underlined integers, where i selects the
i-th member of its input set. Thus, the above square root
function could be expressed (much less legibly) as:

sqrt = (undefined,f 0(1,1,10)

where

f = (l,fo((1+2/1)72,2,3-1))

While the network diagram form of process description is
useful for reasoning about the properties of processes, and
is often suggestive of potentials for concurrency, it is
cumbersome for large process descriptions. In the remaining
examples we use functional notation.

6. Data Structures

From the standpoint of inter-process data transfer, data
structures are represented as bracketed sequences which are
transmitted and processed serially.

For example, the list (or vector) of integers 1,2,3,5 could

Page 8

be represented as (1235). The two-by-two identity matrix
could be ((1 0) (0 1)). The tree shown below could be
represented as (a (b (e) c d (f g))).

The language of expressions must include at least a minimal
set of operations for manipulating bracketed sequences. One
such set would include (1) test if a data element is a
sequence, (2) return first element of sequence, (3) return
all but first element of sequence, (4) insert element at
beginning of sequence, and (5) append element at end of
sequence.

In later examples, we also use a syntactic shorthand to
refer to specific sequence elements (x[i]) or subsequences
(x[i:j]).

7. Measures of Performance

As stated above, a major consideration in structured process
description is the exploitation of concurrency attainable
through parallelism and pipelining. The structure of many
(most?) large problems—e.g., matrix manipulations, business
data processing — involve processing sequences of like data
items. In such situations pipelining, as measured by the
rate of production of the data items, may be a greater
source of concurrency than parallelism.

In considering the amount of concurrency attainable by a
process description, we are particularly interested in two
measures of performance—the elapsed time to process a
single data case, and the average throughput or rate of
production of data cases.

It is easy to demonstrate an arbitrarily interconnected
process description network with a smaller elapsed time than
any equivalent (in terms of the computation performed)
structured network. However, elapsed time is typically a
measure of single case performance, and minimizing elapsed
time need not maximize throughput. Elsewhere [T078] we
prove that for any arbitrary network and for any regular
input sequence there exists an equivalent structured network
with an equal or larger average throughput. That is,
there need be no reduction in throughput (pipelining
performance) from constructing process description networks
using only a small set of structured process

interconnections, rather than allowing arbitrary
interconnactions.

Page 9

8. Implementation of Order Preservation

Our approach to order preservation is to insure that each of
the interprocess connectives preserves the order of data
cases processed assuming that its component processes are
order-preserving. Order preservation is accomplished by
switches introduced where data paths branch out or merge
together. At the lowest level, atomic processes are assumed
to handle only one data case at a time, and so preserve
o rder.

The serial connective (functional composition) is inherently
order-preserving. The parallel connective (functional
construction) preserves order in that its output case is
constructed out of an output case from each component,
effectively synchronizing the component processes. The
alternative connective (functional selection) does not
inherently preserve order. If successive input cases select
different component processes, there is no constraint on the
order in which output cases are produced. Order-preserving
pipelining is achieved by preceding each change in selection
with a switching signal which follows the previous data case
through the process network. This signal is generated by
the initial switch and informs the final switch that the
next output in order will be produced by a different
designated component.

9. Process Allocation Considerations

The effectiveness of various schemes for the allocation of
processes to processing elements and for the release of
processing elements for other tasks depends on such
variables as numbers of p.e.'s, topology of p.e.
interconnection, and the storage and computational power of
individual p.e.'s.

We assume that the allocation of processing elements to
processes is data-driven; that is, no component process is
allocated to a p.e. until its containing process has
received an input case. (This bounds recursive function
reference to the depth required by the data at hand.) From
this standpoint, the inter-process connectives are operators
which effect component process allocation for the first data
case and thereafter are identity processes.

Deallocation of processing elements can occur in at least
two cases— when their allocated process is completed, and
when the allocated process must be suspended and the p.e.'s
assigned to another process. The latter case arises when
there are fewer p.e.'s than are implied by the potential

Page 10

concurrency of the process description. For process
completion, if all data cases are considered elements of
some sequence, then the closing bracket of the top level
sequence can cause process termination and p.e.
deallocation as it moves through the network of p.e.'s.

Structured process description specifies a logical
interconnection of processing elements, and can be realized
on many physical interconnection topologies. Possibilities
include processing elements arranged in a ring, array,
hyper-array, tree, or linear pipe. The choice of process
allocation strategy depends both on the particular physical
organization of p.e.'s and on typical patterns of
information flow among processes as described in this
language. The latter is not yet well understood.

The choice of process allocation strategy, and indeed of
what structure to use in expressing processes, also depends
on the power and, primarily, the storage capacity of
individual processing elements. This can range from p.e.'s
with minimal storage to p.e.'s with substantial storage and
corresponding computational power. For example, the
interpretation of function reference would vary with
different levels of p.e., ranging from repeating the same
sequence of processes in a single p.e. to allocating new
p.e.|s for each reference to attain pipelining, in the next
section we present several additional functional forms whose
realization in a particular instance would depend on the
level of processing elements being used.

Process allocation must also deal with the use of shared and
restricted resources such as input and output devices or
data files. Some notion of dedicated processes (monitors)
is required to handle such resources [AR77b]. One approach
involyes processes for requesting, using, and releasing each
restricted resource, together with a requesting discipline
that prevents deadlock. Some interesting questions arise as
to how to achieve maximum pipelining among several
concurrent users of a shared process while guaranteeing that
the pipeline will not become deadlocked.

10. Addi tional Functional Forms

Additional functional forms may be introduced. Although
these forms could be expressed using the metafunctions
previously presented, there are advantages in stating them
directly. First, they make explicit some common action
(such as repetition). Second, they result in simpler and
less error-prone process descriptions. And third, they
provide information useful in some cases for achieving
increased concurrency which may be difficult to extract from
an extended expression.

As long as these forms can be defined in terms of

Page 11

composition, construction, and selection, and are so
implemented, the earlier statements concerning performance
will hold, m some architectures it might be desirable to
implement certain forms directly, as additional primitives
depending, for example, on the amount of storage available
to each processing element. In this section we discuss
several additional forms.

Functional exponentiation indicates repetition of a
function, and is indicated by an exponent (which must
evaluate to an integer). It may be defined as:

f = fo...of

e times

For a predicate as exponent, this may be expressed as:

f^ = (identity-function,f)

Another form of exponentiation, called functional iteration
and indicated by an asterisk, involves repetition of the
function as long as a predicate is true.

f^ = (identity-function,f^e

While all of these exponential forms can be realized using
the metafunctions as indicated above, they could also be
implemented directly by iteration within the storage of a
single processing element, or by a cyclic connective if one
were available. More generally, functional iteration could
be implemented as though the component function were
recomputed each iteration "in place" by a processing element
with sufficiently large storage to contain the data
structures involved. For example, the square root function
could be expressed iteratively as:

sqrt ((n)—>(s))

= (undefined,fo(n,n.l0))

where

f ((u,v,w)—>(s))

=]^o((u+v/u)/2,v,w-l) w>0 *

The storage implied by this square root function is small,
only three scalars, but other uses of iteration could

Page 12

involve storing large vectors or arrays for indexed access
to components.

Finally, an additional construct is useful for achieving a
variable number of parallel executions of a function. Such
parallel execution can be achieved with the constructs
already presented, using recursive expansion of a fixed
number of copies (see [T076]), but at a cost in elapsed time
proportional to logi^n, where k is the (fixed) size of each
expansion and n is the total number of copies to be
achieved. The for-al1 construct allocates a parallel copy
of its component function for each element of the sequence
which is its input case. The input case of each copy of the
function is an element of the sequence which is the input of
the for-al1. This construct is expressed functionally as:

and corresponds to the diagram:

Fur ther

Following are two example process definitions using the
constructs introduced above. Underlined identifiers (such
as size) denote undefined or primitive functions whose
action is as suggested by the identifier.

l^^tr ix Multiplication. Matrices are stored as sequences of
sequences in row order. The similarity of this process
definition to that presented by Backus (BA78] is
intentional.

((amat,bmat)—>(cmat))

= WlPo VdiSTL0DISTRo(]^,TRANS«(2))

Paqe 13

where

IP ((vectorl,vector2)—>(scalar))

,vectorl,vector2,1)

XIP (sum,vecl,vec2,i)—>{sum,vecl,vec2,i))

= (sum+vecl [i]*vec2[i] ,vecl,vec2,i + 1)

forms the inner product of two vectors.

TRANS (transpose an array), DISTR (distribute to the right),
and DISTL (distribute to the left) are here taken as
previously defined.

Sort. This function sorts a sequence of values in
descending order (that is, produces an output sequence whose
elements are those of the input sequence, but ordered) by
first ranking the sequence and then constructing an ordering
based on that ranking. If enough processing elements are
available to exploit fully the potential concurrency (and
ignoring communication costs), the function is of time
complexity 0 (n) .

SORT ((unsorted)—> (sorted))

= CONSTRUCTo(unsorted,RANK)

where

RANK ((in)—>(ranking))

= VcOUNTLARGERoDISTLo(in,in)

builds for the input sequence a ranking sequence
showing how many elements of the input are larger;

COUNTLARGER ((seq,elem)—>(count))

= 3^oC0MPARE^^o(seq,elem, 1)
counts the number of elements in the input sequence
larger than the element in position index;

COMPARE ((seq,elem,count)—>(seq,el em,count))

= (tailo seq ,elem,(count,count+1)
head o seq =elem'

adds one to count if sequence element larger than e1 em;

Page 14

and where

CONSTRUCT ((in,ranking)—>(out))

= o(in,ranking,

makeseqo(si ze o in ,blank) ,1)

builds an output sequence by entering each element of
in in the position given by the corresponding element
of ranking;

ENTER ((in,ranking,out,i)—>(in,ranking,out,i))

= (in,ranking,

PUTINPLACEO(in[i] ,j^osKIPEQUALSo(ranking f il ,out) ,

out) , i + 1)

puts element in[i] in place in sequence out after
skipping over any equal elements;
PUTINPLACE ((el em,index,out)—>(out))

= concate(appendo(out[1:index-1],elem),

out[index+1;si ze (out)])

concatenates el em at position index in sequence out;

SKIPEQUALS ((index,out)—>(index,out))

/ ,• , , out [index]/blank*= (index+l,out) '

advances index past all non-blank elements.

13. References

[AR77a] Arvind and K.P. Gostelow, "A computer capable of
exchanging processors for time". Proceedings IFIP Congress
'77, Toronto, Canada, (1977).

(AR77b] Arvind, K.P. Gostelow and W. Plouffe,
"Indeterminacy, monitors and dataflow". Proceedings of the
Sixth ACM Symposium on Operating System Principles, Purdue
University, Operating Systems Review II,(Nov. 1977).

[BA78] Backus, J., "Can programming be liberated from the
von Neumann style? A functional style and its algebra of
programs", CommACM 21, 8, (August 1978).

Page 15

[BU75] Burge, W.H., Recursive Programming Techniques,
Addison-Wesley, Reading, Mass., (1975).

[DA72] Dahl, 0-J, E.W. Dijkstra and C.A.R. Hoare,
Structured Programming, Academic Press, New York, (1972).

[DE751 Dennis, J.B. and D.P. Misunas, "A preliminary
architecture for a basic data-flow processor". Proceedings
of the Second Annual Symposium on Computer Architecture,
IEEE, New York, (1975).

[DI76] Dijkstra, E.W., A Discipline of Programming,
Prentice-Hall, Englewood Cliffs, New Jersey, (1976).

[K074] Kosaraju, S. Rao, "Analysis of structured programs".
Journal of Computing and System Sciences 9, (197 4).

[LA64] Landin, P.J., "The mechanical evaluation of
expressions". Computer Journal 6,4, (1964).

[MC60] McCarthy, J., "Recursive functions of symbolic
expressions and their computation by machine, part 1",
CommACM 3,4, (April 1960).

[T076] Tonge, P.M., "Expressions for time and space in a
recursive realization of parallelism", TR79, Department of
Information and Computer Science, University of California
Irvine, (May 1976) .

[T078] Tonge, P.M., "Pipelining performance of structured
networks", TR117, Department of Information and Computer
Science, University of California Irvine, (May 1978).

