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Purpose: Structure-guided total variation is a recently introduced prior that allows  
reconstruction of images using knowledge of the location and orientation of edges in a 
reference image. In this work, we demonstrate the advantages of a variant of structure-
guided total variation known as directional total variation (DTV), over traditional total 
variation (TV), in the context of compressed-sensing reconstruction and super-resolution.
Methods: We compared TV and DTV in retrospectively undersampled ex vivo dif-
fusion tensor imaging and diffusion spectrum imaging data from healthy, sham, and 
hypertrophic rat hearts.
Results: In compressed sensing at an undersampling factor of 8, the RMS error of 
mean diffusivity and fractional anisotropy relative to the fully sampled ground truth 
were 44% and 20% lower in DTV compared with TV. In super-resolution, these  
values were 29% and 14%, respectively. Similarly, we observed improvements in 
helix angle, transverse angle, sheetlet elevation, and sheetlet azimuth. The RMS error 
of the diffusion kurtosis in the undersampled data relative to the ground truth was 
uniformly lower (22% on average) with DTV compared to TV.
Conclusion: Acquiring one fully sampled non-diffusion-weighted image and 10  
diffusion-weighted images at 8× undersampling would result in an 80% net reduction 
in data needed. We demonstrate efficacy of the DTV algorithm over TV in reducing 
data sampling requirements, which can be translated into higher apparent resolution 
and potentially shorter scan times. This method would be equally applicable in diffu-
sion MRI applications outside the heart.
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1 |  INTRODUCTION

Diffusion tensor imaging is a method for noninvasive as-
sessment of tissue microstructure, and measures water dif-
fusion that serves as a surrogate marker of features such as 
cell integrity and tissue anisotropy.1 Diffusion tensor im-
aging is used in a wide range of applications and diseases, 
such as the assessment of neurodegenerative disorders,2 
chronic kidney disease,3 and prostate cancer.4 In the heart, 
for example, diffusion tensor imaging (DTI) has been 
used to identify changes in myocardial sheetlet dynamics 
in patients with hypertrophic cardiomyopathy and dilated 
cardiomyopathy,5-7 and to assess remodeling in the heart 
following infarction.8 However, DTI is inherently slow, due 
to the need to acquire at least seven images, including im-
ages that are diffusion-weighted (DW) in at least six unique 
directions, and one non-DW image. For example, for robust 
measurements, in the presence of noise, 20 or more unique 
diffusion directions are recommended, thereby extending 
scan times.9,10 In cardiac imaging,11 scan times are further 
prolonged by the need to acquire multiple averages to com-
pensate for motion and short T2.

To address this limitation, several methods have been pro-
posed that can accelerate DTI and diffusion MRI in general, 
including parallel imaging,12 simultaneous multislice imag-
ing,13-15 and compressed sensing.16 The former two methods 
typically operate in image space or k-space, and rely on ded-
icated multichannel RF coils, and their performance depends 
on the spatially variant noise amplification characterized by 
the geometry or g-factor of the coil. Given that diffusion 
MRI requires multiple acquisitions with different diffusion- 
encoding directions and magnitudes of diffusion weighting 
in q-space, compressed-sensing approaches are well-placed 
to additionally exploit redundancies in q-space. Applications 
of compressed sensing include reconstruction of complex 
fiber architecture in the brain from single q-shell data,17 and 
recovery of fiber orientation information in the presence of 
3-8× undersampling of data.18,19 Joint k-q-space acceleration 
has been proposed, including the use of ℓ1 regularization and 
motion compensation,20,21 and phase-constrained low-rank 
models.22 These used spiral or pseudo-randomized under-
sampling in both k-space and q-space to achieve 4-fold time 
savings and/or reductions in image distortion. Furthermore, 
k-b principal component analysis has been proposed for  
the reconstruction of up to 6× undersampled intravoxel- 
incoherent motion imaging data in human brain.23

Structural total variation is a recently introduced regu-
larizer that allows the reconstruction of images using edge 
information from a reference image.24 This approach, and in 
particular the variant of it known as directional total variation 
(DTV), in which both the location and orientation of edges 
is used, has been demonstrated to great effect in phantoms as 
well as T1-weighted and T2-weighted MRI in the brain. One 

advantage of this algorithm, in particular over the method of 
Jiang and Hsu,25 is that the contrast of the reference image 
has no effect on the image to be reconstructed. This makes it 
an ideal candidate for DWI reconstruction, in which images 
with similar image structure, but different diffusion contrast, 
are acquired. In particular, non-DW images are well-suited to 
being used as a reference image for DWI reconstruction, as 
the SNR is typically higher.

Although acceleration of image acquisition is one relevant 
aspect, undersampling of k-space or q-space is only relevant 
in acquisitions involving multiple shots or diffusion MRI data 
with multiple, and typically large, numbers of q-samples. 
Where images are acquired in a single shot, as is often the 
case in single-shot EPI diffusion MRI, data undersampling 
may be used in conjunction with super-resolution techniques 
to instead improve image resolution and minimize image dis-
tortions. Various algorithms have been proposed to improve 
the resolution of diffusion MRI. Peled and Yeshurun applied 
a method based on subvoxel shifts26; however, the viability of 
this method for improving resolution has been questioned,27 
as a subvoxel shift is equivalent to a linear phase offset in 
k-space. Jiang and Hsu used reduced encoding imaging28 to 
modify the edges of k-space from a high-resolution reference 
image.25 Poot proposed a method that combines information 
from thick 2D slices acquired in a unique orientation for each 
DW image.29 Alexander et al proposed a method based on 
image-quality transfer to perform super-resolution in diffu-
sion MRI.30 As with all methods based on machine learning, 
this approach relies on the training data being representative 
of any images that are being reconstructed.

In this paper, we demonstrate the suitability of the DTV 
regularizer for the reconstruction of diffusion-weighted im-
ages. This is demonstrated by retrospectively undersampling 
and reconstructing images using both a compressed-sensing 
framework with random undersampling of k-space, and in a 
super-resolution framework that reconstructs down-sampled 
images through k-space truncation. The source data consist 
of ex vivo rat hearts imaged at high resolution on a preclini-
cal MR scanner, and the reconstructions are validated against 
fully sampled MR images. Although the algorithm is per-
formed on ex vivo cardiac data, it is equally applicable to DW 
images of other organs, in which there is structural similarity 
between a reference image and DW images.

2 |  THEORY

We consider the process of image formation to be formulated 
as an inverse problem. Let 3D volume Z be sampled under the 
process A to yield discrete data X. Assuming additive Gaussian 
noise �, this is modeled as X=AZ + �. The process A can in-
clude a combination of spatial transforms, integral transforms 
(such as the Fourier transform in MRI, or the Radon transform 
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in CT), convolution with a point spread function, and data 
sampling. Assuming that the problem is well posed, the recon-
structed image Y may be obtained as follows:

In many cases, such as in super-resolution or compressed 
sensing, this problem is badly conditioned or underdeter-
mined. A common approach to addressing this is in the use of 
a regularizer, in the form of

The regularizer, R, introduces an assumption to the 
solution, such as controlling the smoothness of the image. 
Common choices for regularizers include TV31 or squared 
Laplacian.29 We consider the DTV method of Ehrhardt et al.24

2.1 | Directional total variation

The TV of a 3D image A may be expressed as 

The 3D DTV constraint J applied to image A with refer-
ence image B is defined as24

where matrix field Dn ∈�
3 = I−�n�

∗
n
; I is the identity matrix; 

and �n:=
∇Bn

|∇Bn|�
. Tuning parameter � relates to the size of the 

edges in reference image B.
Images are reconstructed by minimizing the 3D DTV 

while maintaining consistency with the acquired data, as 
follows:

where Y is the reconstructed image; X is the sampled data; 
F consists of the 3D Fourier transform and the sampling  
operator; and Iref is the reference image with the same size 
as Y.

Two experiments were performed to demonstrate the 
algorithm. The first applies the DTV before the problem 
of reconstructing randomly undersampled data (ie, a com-
pressed-sensing-style acquisition). The second applied the 
prior to the problem of super-resolution. In both experiments, 

Equation 5 was solved using the algorithm and software de-
scribed previously.24 As the original software operated on 
magnitude-only 2D images, modifications were made to ex-
tend it to operate on complex 3D images. The modified soft-
ware will be made available upon request.

3 |  METHODS

3.1 | Data acquisition

Ex vivo rat heart data were acquired in a previous study.32 
Briefly, hearts were excised from Sprague Dawley rats  
(N = 5). Isolated hearts were perfused in Langendorff con-
stant pressure mode with modified Krebs-Henseleit solu-
tion, cardioplegically arrested with high potassium, and 
then perfused and stored in low-osmolality Karnovsky's 
fixative doped with 2 mM gadolinium solution (ProHance; 
Bracco, Minnesota). Before imaging, the fixed hearts were 
washed in phosphate-buffered saline + 2 mM gadolinium, 
and embedded in 1% agarose gel (Web Scientific, Crewe, 
United Kingdom). Nonselective 3D fast spin-echo DTI data 
were acquired on a 9.4T preclinical MRI scanner (Agilent, 
Santa Clara, CA) with transmit/receive birdcage coil (inner 
diameter = 20 mm; Rapid Biomedical, Rimpar, Germany). 
Acquisition parameters were as follows: TR = 250 ms,  
TE = 9.3 ms, echo spacing = 4.9 ms, echo train length = 8, 
FOV = 20 × 16 × 16 mm, resolution = 100 μm3 isotropic, 
b = 1000 s/mm2, diffusion duration (δ) = 2 ms, diffusion 
time (Δ) = 5.5 ms, and number of DW directions = 10. 
Three-dimensional spoiled gradient-echo anatomical images 
were acquired with the same FOV, TR = 20 ms, TE = 4 ms, 
flip angle = 30°, and resolution = 33 μm3 isotropic. Noise 
data were acquired using an identical sequence without RF 
pulses and with TR minimized. The shims, receiver gain, 
and center frequency were unchanged during acquisition of 
the noise data. Experimental investigations conformed to the 
UK Home Office guidance on the Operations of Animals 
(Scientific Procedures) Act 1986 and were approved by the 
University of Oxford ethical review board.

To demonstrate application in cardiomyopathy, we exam-
ined data from a previous study33 comparing male Sprague 
Dawley rats with sham surgery (N = 4) and transverse aor-
tic constriction (TAC; N = 4). Use of these rats followed 
National Institutes of Health guidelines and were approved 
by the University of California San Diego Institutional 
Animal Care and Use Committee. Hearts were excised, ar-
rested, fixed, and embedded for imaging in the same manner 
as described previously. Diffusion spectrum imaging data 
were acquired using a fast spin-echo sequence: TR = 250 ms, 
TE = 15 ms, echo spacing = 4 ms, echo train length = 8,  
FOV = 21.6 × 14.4 × 14.4 mm, resolution = 180 μm3 isotropic, 
bmax = 10 000 s/mm2, and number of DW directions = 514.  

(1)Y
∗
= argmin

Y

(AY−X)
2
2

(2)Y
∗
= argmin

Y

(AY−X)
2
2
+�R (Y) .

(3)TV (A)=

3∑

n=1

||∇An
|| .

(4)J (A, B)=

3∑

n=1

||Dn∇An
|| ,

(5)Y
∗
= argmin

Y

‖FY − X‖2
2
+ �J

�
Y, Iref

�
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For further details on the generation of the TAC model and 
pulse sequence, please refer to McClymont et al.33

3.2 | Experiment 1: Random undersampling 
in k-space

In experiment 1, the data were randomly retrospectively un-
dersampled in k-space. A random sampling mask was applied 
based on a Gaussian distribution of samples in the two phase-
encoding directions. The central region of k-space was fully 
sampled, using a circle with a radius of 10 samples. The readout 
dimension was fully sampled. The acceleration factor for the  
10 DW images, Adw, varied between 2 and 10. The non-DW 
image was fully sampled and used as the reference image. 
Therefore, the effective acceleration for the acquisition, Aeff , 
was

The undersampled data were reconstructed using both 
traditional TV (Equation 3) and DTV (Equation 4) as pri-
ors. The optimization settings for the DTV and TV recon-
struction algorithms were identical. The algorithm was run 
with 200 iterations, and tuning parameter � was set such 
that ‖FY − X‖2

2
≈ �2, where �2 is the measured variance of 

the noise. The noise level was computed based on the real 

component of the noise data in k-space according to our pre-
vious work.16 In the DTV reconstruction, � was set to 0.05. 
The value of η was empirically determined as a reasonable 
compromise between allowing edge information to be re-
constructed in the target image without introducing spurious 
edges.

3.3 | Experiment 2: Super-resolution 
using non-DW reference

In experiment 2, the central portion of k-space was selected 
to simulate a low-resolution acquisition, effectively down-
sampling the image as shown in Figure 1. As in experiment 
1, the non-DW image was used as a reference, and was not 
down-sampled. The DW images were down-sampled in each 
dimension by a factor of 2, 4, 6, 8, and 10, effectively re-
ducing the isotropic resolution to 200 μm, 400 μm, 600 μm,  
800 μm, and 1 mm, respectively. The retrospective undersam-
pling masks for experiments 1 and 2 are shown (Figure 1).

In both experiments 1 and 2, the reconstructed images 
were validated using the original fully sampled data. The 
magnitude of the images was fit to a diffusion tensor model, 
and the mean diffusivity and fractional anisotropy were cal-
culated. The helix angle, transverse angle, sheetlet elevation, 
and sheetlet azimuth were generated using the local coor-
dinate system described.32 The RMS error (RMSE) in the 
myocardium of these six parameters was calculated, and the 

(6)Aeff =
11

1+
10

Adw

.

F I G U R E  1  Masks for retrospective undersampling of k-space. In Experiment 1, masks in 2D were generated based on random sampling with 
a Gaussian distribution along the first and second phase-encoding directions (in-plane). The central region and the readout dimension (through-
plane) were fully sampled. The number of remaining k-samples was equal to the total number of samples in 3D divided by the acceleration factor, 
A

dw
. In Experiment 2, the masks retained only the central region of k-space, where the number of samples in each dimension were down-sampled 

by a factor of A
dw
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mean and SD of the RMSE across the five hearts is reported. 
In addition, the DTV algorithm was applied using the high- 
resolution anatomical data as a reference.

In the sham and TAC groups, the DW data were down- 
sampled by a factor of 8 using both random undersampling and 
super-resolution approaches described in Experiments 1 and 2.  
We showed previously that the diffusion kurtosis was useful 
in discriminating the sham versus TAC groups where DTI was 
not. The beta distribution model was therefore fitted to the 
diffusion spectrum imaging data, and the diffusion kurtosis 
was obtained along the principal eigenvectors of the diffusion 
tensor.33 The kurtosis and RMSE of the kurtosis relative to 
the fully sampled case were reported in the left ventricular 
myocardium in a single long-axis slice. We evaluated whether 

there were significant differences in kurtosis between sham 
and TAC hearts, and in the RMSE of the kurtosis between TV 
and DTV reconstructions. Unpaired two-tailed t-tests were 
performed, and P = .05 significance level was used.

4 |  RESULTS

Figure 2 presents sample parameter maps for the reconstruc-
tion algorithms. Heart 5, with the DW images down-sampled 
to 600 μm, was selected as representative of the algorithm 
performance. Zero-filled images show significant blurring 
and Gibbs ringing. In the super-resolution reconstructions, 
the traditional TV algorithm effectively removes Gibbs 

F I G U R E  2  (Right) Representative diffusion-weighted (DW) images, mean diffusivity (MD; mm2/s), and fractional anisotropy (FA) maps 
in a midventricular slice. (Top to bottom) Fully sampled ground truth, zero-filled, compressed-sensing (CS) total variation (TV) and directional 
total variation (DTV), and super-resolution (SR) TV and DTV data, where CS data were undersampled by 6× and the zero-filled and SR data were 
undersampled by 63. Ground-truth and zero-filled data are shown for comparison. Improvements in edge definition are shown in data reconstructed 
with DTV (arrows). (Top left) A reference non-DW image is shown, and (bottom left) corresponding line profiles through the lateral and septal 
walls in the DW images show better fidelity compared with the ground-truth data when using DTV. The SR line profiles are not shown for clarity
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ringing, but does not sharpen edges. In comparison, the DTV 
algorithm removes Gibbs ringing and sharpens the image at 
the interfaces between tissue and gel/buffer. Edges that were 
not present in the low-resolution image (such as the observed 
fine structures within the right ventricle) were not introduced 
in the TV or DTV reconstructed image. In the case of com-
pressed sensing, we present data undersampled by 6×. Here, 
the observed fine structures were better preserved compared 
with the super-resolution data, and edges were sharper using 
DTV compared with TV. Figure 3 shows that helix angle and 
transverse angle in all cases are close to the ground truth due 

to their inherent smoothness. However, the blurring in the 
zero-filled and super-resolution data exceeds that of the data 
reconstructed with compressed sensing. This is reflected in 
larger angles between the reconstructed and ground-truth pri-
mary eigenvectors.

The results of experiment 1 representing the compressed- 
sensing approach are presented in Figure 4. The data show 
that the RMSE in the DTV reconstructions were uniformly 
lower than that of TV, as measured against the ground-truth 
data. At an undersampling factor of 8, for example, the 
RMSE of the TV/DTV reconstructions were mean diffusivity 

F I G U R E  3  (Left to right) Representative helix angle (HA), transverse angle (TA), sheetlet elevation (SE), sheetlet azimuth (SA) maps, and 
the angle between reconstructed and ground-truth primary eigenvectors (dv1) (in °). (Top to bottom) Fully sampled ground truth, zero-filled, CS TV 
and CS DTV, and SR TV and SR DTV data, where CS data were undersampled by 6× and the zero-filled and SR data were undersampled by 63
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([8.86 ± 0.39] × 10−5/[5.22 ± 0.19] × 10−5 mm2/s), frac-
tional anisotropy (0.0461 ± 0.0014/0.0409 ± 0.0011),  
helix angle (9.18º ± 0.15º/8.42º ± 0.13º), transverse  
angle (8.76º ± 0.48º/8.23º ± 0.52º), sheetlet elevation  
(15.18º ± 0.31º/14.42º ± 0.27º), and sheetlet azimuth  
(13.64º ± 0.22º/12.94º ± 0.26º), respectively.

The results of experiment 2 indicate that the DTV algo-
rithm consistently yields lower RMSE than the TV algorithm 
(Figure 5). At an undersampling factor of 8, corresponding 
to an effective isotropic resolution of 800 μm, the RMSE 
of the TV/DTV reconstructions were MD (1.40 ± 0.14] × 
10−4/[1.00 ± 0.09] × 10−4 mm2/s), fractional anisotropy  
(0.0711 ± 0.0058/0.0637 ± 0.0055), helix angle (13.17º ± 
1.02º/12.73º ± 0.73º), transverse angle (9.45º ± 0.41º/9.20º ± 
0.45º), sheetlet elevation (16.95º ± 0.56º/16.16º ± 0.49º), and 
sheetlet azimuth (15.12º ± 0.32º/14.21º ± 0.35º), respectively.

The DW images reconstructed to 33 μm3 isotropic reso-
lution using the DTV algorithm and the high-resolution ana-
tomical data as a reference are shown in Figure 6.

Figure 7 depicts the sample DW images at b = 2012 s/mm2 
and the kurtosis along principal eigenvectors of the diffusion 
tensor v1, v2, and v3 as reconstructed using compressed- 
sensing, super-resolution, TV, and DTV methods. Fully  
sampled data are shown as a reference. Edges are generally 
better preserved in the DTV reconstructed data, and regions 
of artifactually high kurtosis can be seen particularly in the 
TV reconstructed sham heart data.

Figure 8 and Table 1 show that the kurtosis is higher in 
the TAC hearts compared with the sham hearts, regardless of 
the method of undersampling and reconstruction. The differ-
ences were significant in all cases of kurtosis along v2 and v3. 
Furthermore, only the super-resolution DTV reconstructed 

F I G U R E  4  Root mean square error (RMSE) from experiment 1 with random undersampling of k-space shows greater agreement of DTV 
reconstructions with the fully sampled ground-truth data, compared with that of the TV reconstructions. Mean diffusivity (mm2/s), FA, HA (º),  
TA (º), SE (º), and SA (º) are reported (mean ± SD across hearts)
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data showed significant differences in the kurtosis along v1 
between TAC and sham, which were present in the fully sam-
pled data. Artifactually high kurtosis along v1 was observed 
in the TV reconstructed data, particularly along the subendo-
cardium of the sham heart. Across sham, TAC, compressed 
sensing, and super-resolution groups, the RMSE of the kur-
tosis was consistently lower, by 22% on average, in the DTV 
compared with the TV reconstructed data, although the dif-
ferences were not significant.

5 |  DISCUSSION

In this work, the DTV algorithm of Ehrhardt et al was applied 
to diffusion MRI, with the aim of accelerating the acquisition 
with minimal loss in image quality and accuracy of diffusion 

metrics. An 8× undersampling in the DW data resulted in an 
80% net reduction in data requirements, factoring in fully sam-
pled non-DW data, which could be translated into time savings.

Image reconstruction was achieved by leveraging edge 
information provided by a reference image to build the pe-
ripheral portions of k-space. The DTV algorithm works by 
promoting edges in reconstructed images occurring in re-
gions where edges are known to exist in the reference image. 
This is in contrast to the original TV algorithm, which penal-
izes all edges. Therefore, enough data in the center of k-space 
must be acquired to drive the image contrast.

Because each DW image is reconstructed individually, 
the reconstruction algorithms presented here do not im-
pose any specific model on the data. This also means that 
the reconstruction is highly parallelizable. However, it is 
possible to additionally impose a model that uses the DWI 

F I G U R E  5  Root mean square error from experiment 2 with down-sampling of k-space by 2 ≤ A
dw

 ≤ 10 in each dimension, resulting in 
effective undersampling of A

dw

3, and reducing the effective isotropic resolution to 200, 400, 600, 800, and 1000 μm, respectively. Directional 
TV yielded consistently lower RMSE than TV reconstructions. Mean diffusivity (mm2/s), FA, HA (º), TA (º), SE (º), and SA (º) are reported 
(mean ± SD across hearts)
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relationships in q-space, such as the diffusion tensor model 
or compartmental model,34 to further constrain the recon-
structed image.

The random acquisition scheme used in experiment 1 
yielded better results than the truncated k-space scheme 
used in experiment 2, due to the incoherence of the random 

F I G U R E  6  Representative DW image reconstructed at 33 μm3 isotropic resolution using the DTV algorithm and the high-resolution 
anatomical data as a reference. The DTV reconstructed image is less pixelated than the original image, with structures such as large vessels 
(arrows) corresponding well with the anatomical image

F I G U R E  7  Diffusion-weighted images and kurtosis maps in representative sham and transverse aortic constriction (TAC) hearts. (Top to 
bottom) Single DW image at b = 2012 s/mm2 and diffusion kurtosis along principal eigenvectors of the diffusion tensor v1, v2, and v3. (Left to 
right) Sham heart data reconstructed with fully sampled (FS) k-space in the DW images, and 12.5% k-space in the DW images reconstructed with 
CS, SR, TV, and DTV. Artifactually high kurtosis was seen along v1 in the subendocardium of the TV-reconstructed sham heart data (arrows)
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undersampling pattern with TV. In experiment 2, the recon-
struction algorithm was effective at removing ringing and 
sharpening large edges, but did not re-introduce the fine de-
tails that were lost in the down-sampling process. Among the 
parameters reported, the difference in RMSE between TV 
and DTV reconstructions was greatest in the mean diffusiv-
ity. This is due to the DTV algorithm more efficiently reduc-
ing blurring than the TV algorithm. Consequently, the effect 
of partial volume at the interfaces of the myocardium with 
the gel and buffer, wherein the latter have considerably higher 
diffusivities than the myocardium, is mitigated with DTV. 
Across parameters, there appears to be a general trend toward 
increasing RMSE with decreasing SD as the undersampling 
factor is increased. The increasing RMSE can be explained 
by the increased smoothing of the images at higher under-
sampling. The decreasing SD of RMSE across the hearts sug-
gests that the RMSE plateaus at higher undersampling.

The results in sham and TAC hearts showed that DTV 
consistently outperformed TV in terms of RMSE of the kur-
tosis relative to the fully sampled data. We observed that the 
kurtosis was consistently higher in TAC than sham hearts, 
particularly in the directions of the second and third diffusion 
eigenvectors, recapitulating our previous observations in fully 
sampled data.33 We additionally show that DTV was able to 
detect significant differences in kurtosis along v1 between 
TAC and sham hearts, where TV was unable to. We note that 

the sample size was small, and similar trends, not reaching 
statistical significance, were observed in the TV data. The 
artifactually high kurtosis at the subendocardial border with 
the buffer in the TV reconstructed data are reflective of the 
contributions of TV-related blurring and partial voluming of 
myocardium and buffer to non-mono-exponential diffusion 
signal behavior. This effect is also present elsewhere along 
the myocardial surfaces. The benefits of using DTV may be 
further enhanced in applications with greater microstructural 
heterogeneity such as myocardial infarction, and this is the 
subject of future investigation. Importantly, these findings 
demonstrate that the utility of DTV extends beyond DTI to 
more extensive q-space sampling approaches, in which accel-
eration becomes even more critical.

Here, we applied DTV in the ex vivo heart. Although 
the technique would be applicable in vivo, additional issues 
need to be considered. For example, the use of single-shot 
EPI may limit the application of compressed sensing due to 
the impracticalities of irregular k-space sampling, and the 
super-resolution approach may be more appropriate. The 
DTV algorithm also requires good alignment of the refer-
ence and target image. Therefore, it is important to design 
sequences that can be undersampled without changing the 
distortion profile relative to a fully sampled reference image. 
The algorithm assumes that edges are spatially co-located in 
the reference and target image. As shown by Ehrhardt et al, 

F I G U R E  8  (Top) Diffusion kurtosis along principal eigenvectors of the diffusion tensor v1, v2, and v3 (mean ± SD across hearts). Unpaired 
two-tailed t-tests were performed between corresponding sham-TAC pairs with P < .05 (*) and P < .01 (**). Data reconstructed with FS, CS, SR, 
TV, and DTV approaches. (Bottom) Corresponding RMSE of diffusion kurtosis with respect to the fully sampled data (mean ± SD across hearts). 
The differences between TV and DTV pairs were not significant at P = .05
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this creates the potential to suppress real edges or create 
false edges in the target image if this assumption is violated. 
One way to reduce distortion, and simultaneously increase 
resolution, is the use of multishot fast spin-echo sequences, 
including the twin navigator35 and split echo approaches.36 
This could be combined with a weighted k-space sampling 
scheme and T2 correction for compressed sensing in fast spin 
echo.16 However, there is the challenge of validating in vivo 
measurements due to the inherently lower imaging resolu-
tion and lack of a suitable high-resolution ground truth. This 
limitation was observed in our reconstruction of DW data 
at 33 μm3 isotropic resolution. Although we show potential 
improvements, acquisition of such high-resolution DW data 
may be impractical, due primarily to inadequate SNR. This 
difficulty is compounded in vivo due to motion and distor-
tion. Although in vivo implementation will be challenging, 
we foresee that unconventional k-space sampling schemes 
will provide opportunities to exploit the proposed DTV tech-
nique, and this is the subject of future work.

6 |  CONCLUSIONS

The DTV algorithm of Ehrhardt et al was introduced to ad-
dress the problem of accelerating DWI. Two important 
purposes of DTV are to (1) improve the accuracy in quanti-
fication of data acquired with accelerated imaging methods, 
such as compressed sensing and super-resolution, and (2) to 
enable acquisition of large data sets, such as multiple q-shell 
diffusion MRI, not otherwise possible with full k-space sam-
pling. Although applied in the heart in this context, the algo-
rithm is non-application-specific. The algorithm was used in 
the context of reconstructing DW data undersampled by up 
to 10×, as well as sharpening and removing ringing artifacts 
from images with 10× lower resolution than the reference 
image. One important feature of the algorithm is that it is 
contrast-independent, using only on the location and orienta-
tion of edges in a reference image. Furthermore, it does not 
require any training data or impose any particular diffusion 
model on the data, but could potentially yield even better  
results when applied in combination with these types of  
reconstruction algorithms. 
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