
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
High-performance Software and Hardware Designs for Genomics and Proteomics

Permalink
https://escholarship.org/uc/item/1fr0s17k

Author
Xu, Weihong

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1fr0s17k
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

High-performance Software and Hardware Designs for Genomics and Proteomics

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Computer Science (Computer Engineering)

by

Weihong Xu

Committee in charge:

Professor Tajana Šimunić Rosing, Chair
Professor Mingu Kang
Professor Niema Moshiri
Professor Jishen Zhao

2024

Copyright

Weihong Xu, 2024

All rights reserved.

The Dissertation of Weihong Xu is approved, and it is acceptable in quality and

form for publication on microfilm and electronically.

University of California San Diego

2024

iii

DEDICATION

To my parents
For their endless love, support, and encouragement to go on and complete this journey

iv

EPIGRAPH

Victory Belongs To The Most Tenacious.

—Roland Garros

Stay Hungry Stay Foolish.

—Steve Jobs

v

TABLE OF CONTENTS

Dissertation Approval Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . ix

List of Tables . xiii

List of Algorithms . xv

Acknowledgements . xvi

Vita . xviii

Abstract of the Dissertation . xxi

Chapter 1 Introduction . 1
1.1 Acceleration for Genomics . 3

1.1.1 Processing-in-memory Acceleration for Genome Alignment 3
1.1.2 High-performance Software for Genome Sketching 4

1.2 Acceleration for Mass Spectrometry-based Proteomics . 4
1.2.1 High-performance Software for Mass Spectrometry Clustering 4
1.2.2 Near-storage Acceleration for Mass Spectrometry Preprocessing 5

Chapter 2 Processing In-Memory Acceleration for Genome Alignment 6
2.1 Introduction . 6
2.2 Related Work . 9

2.2.1 Software for Sequence Alignment . 9
2.2.2 Hardware Acceleration for Sequence Alignment . 10

2.3 Background . 11
2.3.1 Genome Sequence Analysis . 11
2.3.2 Difference-based Dynamic Programming (DP) Alignment 13
2.3.3 Digital Processing In-Memory (PIM) . 15

2.4 Efficient Alignment in RAPIDx . 17
2.4.1 Challenges of Alignment using PIM . 17
2.4.2 Adaptive Banded Parallelized DP Alignment . 19

2.5 In-Memory Architecture of RAPIDx . 22
2.5.1 Overview . 23
2.5.2 Data Flow with Four-level Data Parallelism . 24
2.5.3 In-memory Alignment . 26

vi

2.5.4 Reconfigurable Design with Dynamic Precision . 29
2.6 Evaluation . 30

2.6.1 Experimental Setup . 30
2.6.2 Algorithm Validation . 32
2.6.3 Design Space Exploration . 33
2.6.4 Area and Power Results . 36
2.6.5 Performance Evaluation . 36
2.6.6 Discussions . 42

2.7 Conclusion . 43

Chapter 3 Memory-efficient Sketching for Genomics . 45
3.1 Introduction . 45

3.1.1 Motivation . 46
3.1.2 Contributions . 48

3.2 Preliminaries . 49
3.2.1 MinHash and Jaccard Similarity . 49
3.2.2 Jaccard Similarity using DotHash . 50

3.3 HyperGen: Memory-efficient Genome Sketching Tool . 51
3.3.1 Step 1: k-mer Hashing and Sampling . 53
3.3.2 Step 2: Hyperdimensional Encoding for k-mer Hash 54
3.3.3 Step 3: ANI Estimation using Sketch Hypervector 56
3.3.4 Software Implementation and Optimization . 57

3.4 Evaluation and Results . 60
3.4.1 Evaluation Methodology . 60
3.4.2 ANI Estimation Quality . 62
3.4.3 Genome Database Search . 65
3.4.4 Discussion . 71

3.5 Conclusion . 72

Chapter 4 High-performance Clustering for Mass Spectrometry 73
4.1 Introduction . 73
4.2 HyperSpec: Fast Clustering Software for Mass Spectrometry 75

4.2.1 Overall Flow . 75
4.2.2 Efficient Spectrum Preprocessing . 76
4.2.3 Bucket Division . 78
4.2.4 GPU-accelerated Spectral Clustering in Hyperdimensional Space 79
4.2.5 Software Development and Code Availability . 83

4.3 Evaluation . 83
4.3.1 Evaluation Methodology . 83
4.3.2 Clustering Quality Comparison . 86
4.3.3 Spectra Database Searching Comparison . 90
4.3.4 Runtime Performance Comparison . 92
4.3.5 Discussion . 95

4.4 Conclusion . 96

vii

Chapter 5 Near-storage Acceleration for Preprocessing for Mass Spectrometry 98
5.1 Introduction . 98
5.2 Background . 101

5.2.1 Mass Spectrometry . 101
5.2.2 Modern SSD . 102

5.3 MSAS Near-storage Architecture . 103
5.3.1 Overview . 103
5.3.2 MSAS Accelerator . 106
5.3.3 Data Mapping Scheme in MSAS . 108

5.4 Evaluation . 109
5.4.1 Methodology . 109
5.4.2 Performance and Energy Evaluation . 111
5.4.3 Overhead Analysis . 113

5.5 Conclusion . 113

Chapter 6 Summary and Future Work . 115
6.1 Thesis Summary . 115
6.2 Future Work . 117

Bibliography . 119

viii

LIST OF FIGURES

Figure 2.1: Trend of unit sequencing cost [1] and genome data volume [2] over the past
decade. 7

Figure 2.2: (a) The pipeline of genome sequence analysis. (b) Alignment example of
sequences ACGTCCG and AGTTATC with affine gap penalties, (c) Score
matrix, (d) Traceback matrix. 12

Figure 2.3: Implementing NOR operation using ReRAM-based digital processing in-
memory (PIM). 16

Figure 2.4: Illustration of three variants of DP alignment algorithms. Bandwidth 𝐵 = 6
in (b) and 𝐵 = 3 in (c). 20

Figure 2.5: RAPIDx architecture. 1 ReRAM memory organization of RAPIDx. 2
Internal architecture of RAPIDx tile. 3 Peripheral circuits (shifter, interleaved
bit-serial max finder, and traceback logic). 4 Interleaved bit-serial max finder. 23

Figure 2.6: Four-level data parallelism and in-memory alignment in RAPIDx: (a)
Tile-level parallelism. (b) Batched alignment in CM using sequence-level
parallelism, (c) PIM-based in-situ banded parallelized alignment in each
memory segment of CM. 25

Figure 2.7: Illustration of adaptive wavefront direction and traceback process using
peripheral circuits. 27

Figure 2.8: The lower bound and upper bound of voltages 𝑉0, 𝑉𝐻𝑆, 𝑉𝑉𝑆 under different
ReRAM array sizes. 34

Figure 2.9: Relationship between maximum sequence-level parallelism and number of
TBMs on long reads. 35

Figure 2.10: Performance comparison for different column widths of peripheral circuits. 36

Figure 2.11: Performance comparison for PIM designs, including RAPIDx, RAPID [3],
AlignS [4], AligneR [5], and PIM-Aligner [6]. 38

Figure 2.12: Alignment throughput comparison of RAPIDx, GASAL2 [7], and Min-
imap2 [8] for short reads. 39

Figure 2.13: Alignment throughput comparison of GenASM [9], ABSW [10], and
RAPIDx for long reads. 40

Figure 2.14: Throughput and latency comparison of RAPIDx and Edlib [11] for edit
distance computation. 41

ix

Figure 3.1: Algorithmic overview for (a) Mash-like sketching, and (b) HyperGen sketch-
ing for genome sequences. Mash stores the genome sketch in a 𝑘-mer hash
set with O(𝑁) complexity while HyperGen aggregates 𝑁 𝑘-mer hashes into
a 𝐷-dimensional sketch HV with O(𝐷) complexity. 52

Figure 3.2: Sketch hypervector generation and set intersection computation in HyperGen.
Each 𝑘-mer with size 𝑘 = 3 first passes through a hash function ℎ(𝑥). The
𝑘-mers (𝐴 = 𝐴𝐺𝐴𝐶𝑇𝑇 and 𝐵 = 𝐴𝐺𝐴𝐶𝑇𝐶) are hashed to hash set. Then
each 𝑘-mer hash value is converted into the associated orthogonal binary
HV. The set intersection between two 𝑘-mer hash sets is computed using Eq.
(3.11). 55

Figure 3.3: The value distribution of sketch hypervectors (HVs) generated by HyperGen
when using various scaled factor 𝑆 = 800 to 2000. 58

Figure 3.4: Error metrics (MAE, RMSE, MPAE) and ANI linearity (Pearson coefficient)
as a function of scaled factor 𝑆 and HV dimension 𝐷. 63

Figure 3.5: Database search ANI comparison for FastANI, Mash, Dashing 2, HyperGen,
and ground-truth ANIm on NCBI RefSeq, Parks MAGs, and GTDB MAGs
datasets. 66

Figure 3.6: The ANI estimation error distribution of database search for all benchmarking
tools (HyperGen, Mash, Bindash, Dashing 2, FastANI, and Skani). Data
points with ANI > 85 are considered here. 68

Figure 3.7: Runtime performance comparison for genome search in Table 3.6. (a)
Reference sketching time and (b) Query search time. 69

Figure 4.1: (a) Overall diagram of HyperSpec. (b) HyperSpec’s spectrum preprocessing
and bucket division flow. HyperSpec’s spectra preprocessing and bucket
division are optimized using multiprocessing on CPU. HD encoding and
distance computation are offloaded to highly parallel GPU. 76

Figure 4.2: Runtime profiling for five clustering tools (falcon [12], msCRUSH [13],
MaRaCluster [14], spectra-cluster [15], and MS-Cluster [16]). The runtimes
were evaluated in terms of the time required for spectrum preprocessing and
the time required for spectral clustering. 77

Figure 4.3: HD encoding and distance computation on GPU. Each preprocessed spec-
trum’s m/zand intensity after vectorization and quantization are encoded
into single hypervector (HV). Then the bucket distance matrix is computed. 80

x

Figure 4.4: Clustering quality comparison for seven clustering tools: (a) clustered
spectra ratio vs incorrect clustering ratio, (a) clustering completeness vs
incorrect clustering ratio. 88

Figure 4.5: Distribution of cluster sizes for the most frequently identified peptide
sequence VATVSIPR with precursor charge 2. 90

Figure 4.6: Distribution of cluster sizes for the six most frequently identified peptide
sequences on Dataset-E with precursor charge 2 and charge 3. 91

Figure 4.7: Venn diagrams that depict the overlap of identified unique peptides using
consensus spectra generated by HyperSpec, GLEAMS, and falcon, respec-
tively. The precursor charges include charge 2 in (a) and charge 3 in (b).
Identified peptides from HyperSpec are highly overlapped with the results
generated by GLEAMS and falcon. 91

Figure 4.8: Runtime comparison for HyperSpec with DBSCAN and hierarchical cluster-
ing with complete linkage on five datasets. 93

Figure 4.9: Total clustering runtime speedup of HyperSpec compared to alternative
clustering tools. The tool with the slowest runtime on each dataset was
normalized to 1. 93

Figure 4.10: Runtime performance of msCRUSH [13], falcon [12], and HyperSpec when
scaling to different dataset sizes and number of spectra. 94

Figure 5.1: Execution time and energy breakdown for various mass spectrum clus-
tering tools, msCRUSH [13], MS-Cluster [16], and MaRaCluster [17].
Preprocessing = Loading + Computing. 99

Figure 5.2: (a) Pipeline of data analysis for MS, (b) A spectrum example in MGF format. 101

Figure 5.3: Overall diagram of MSAS accelerators embedded in regular SSD, including
two types of designs in different storage levels: (a) SSD-level design, (b)
Channel-level design in the buffer manager. 103

Figure 5.4: (a) Architectures of MSAS accelerator, 1: regular SSD read datapath, 2:
metadata loading, 3 datapath for m/z and intensity preprocessing, (b) Spectra
filter, (c) Scale and normalization module, (d) Processing element (PE). . . . 105

Figure 5.5: (a) Full Bitonic sorting network with 𝑁 = 8, (b) Simplified Bitonic network
for Top-k selection (𝑁 = 8 and 𝑘 = 6), (c) Iterative Top-k selector for
streaming data. 107

Figure 5.6: Execution time comparison for SSD-level and channel-level designs. 111

xi

Figure 5.7: Preprocessing speedup of INSIDER [18] and MSAS over CPU baselines. . . 112

Figure 5.8: Speedup and energy efficiency over CPU after integrating MSAS into
clustering tools. 113

xii

LIST OF TABLES

Table 2.1: Comparison of DP alignment algorithms in Figure 2.4 21

Table 2.2: Error rates of generated datasets . 31

Table 2.3: Hardware specifications of CPU and GPU baselines . 31

Table 2.4: Specifications of ASIC baselines . 32

Table 2.5: Alignment accuracy of banded DP algorithms . 33

Table 2.6: Area and power breakdown of RAPIDx . 37

Table 3.1: Comparison for related work for genome search and seed matching 47

Table 3.2: Specifications for the evaluated genome datasets . 60

Table 3.3: Names, versions, and commands of benchmarked genome tools for ANI
calculation. The sketch-based tools include: Mash, Dashing 2, and HyperGen.
The mapping-based tool is FastANI. The alignment-based tool is ANIm. . . . 61

Table 3.4: Error metrics for the 100×100 pairwise Jaccard estimation. HyperGen-2048
and HyperGen-4096 use 𝐷 = 2048 and 𝐷 = 4096, respectively. Other tools
use their default parameters. The ground truth values of Jaccard index are
calculated using Dashing 2’s exact mode. The command is given in Table 3.3
(The 3rd line of Dashing 2’s commands). 64

Table 3.5: Error and linearity metrics for pairwise ANI estimation. (Underline: the best
among sketch-based algorithms. Bold: the best among all algorithms.) 65

Table 3.6: Sketch size, error, and linearity metrics for database search. (Underline: the
best among sketch-based algorithms. bold: the best among all algorithms.) . 67

Table 3.7: Benchmarking peak memory consumption and runtime for single-query
search on GTDB MAGs dataset. OOM: out of memory. 70

Table 4.1: Properties of the evaluated MS datasets . 85

Table 4.2: Clustering quality on Dataset-E for different clustering algorithms and values
of HD dimension 𝐷 . 86

Table 4.3: Clustering quality on Dataset-E for different clustering algorithms and values
of HD quantization level 𝑄 . 87

xiii

Table 4.4: Key performance metrics of HyperSpec, GLEAMS, falcon, msCRUSH, and
MaRaCluster on the draft human proteome Dataset-E. 92

Table 5.1: Spectra datasets for evaluation . 109

Table 5.2: MSAS implementation and area breakdown . 110

xiv

LIST OF ALGORITHMS

Algorithm 1 Generation of sketch hypervector in HyperGen 53

xv

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest gratitude to my Ph.D. advisor,

Professor Tajana Šimunić Rosing, for her invaluable guidance and unwavering support throughout

my Ph.D. journey. Her mentorship has been instrumental in shaping both the direction and

the outcome of my research. Without her encouragement, insightful critiques, and exceptional

leadership, this dissertation would not have been possible, and the experience would not have

been as enriching and memorable as it has been. I have learned immensely from her wisdom

and the example she sets through her great personality. I would also like to extend my heartfelt

thanks to my doctoral committee members, Professor Mingu Kang, Professor Jishen Zhao, and

Professor Niema Moshiri, for their constructive feedback, which greatly enhanced the quality of

this dissertation.

I have been fortunate to collaborate with esteemed researchers including Professor

Shimeng Yu from Georgia Institute of Technology, Professor Niema Moshiri from UCSD,

Professor Mingu Kang from UCSD, Professor Kevin Skadron from the University of Virginia,

Professor Vikram Adve from UIUC, and Professor Wout Bittremieux from the University of

Antwerp. Their enthusiasm for sharing ideas and their willingness to offer help were critical to

the success of this interdisciplinary research. My academic journey has been enriched by the

opportunity to experience a unique blend of both academic and industry-based research. I am

deeply grateful to Dr. Carlos H Diaz at TSMC and Dr. Ameen Akel, Sean Eilert, Justin Eno, and

Ken Curewitz at Micron. The hands-on experience and professional insights gained through our

collaboration have been a significant motivation for my research.

Additionally, I would like to thank all my colleagues in SEELab at UCSD over the years,

including Minxuan Zhou, Jaeyoung Kang, Sumukh Pinge, Youhak Lee, Xuan Wang, Saransh

Gupta, Xiaofan Yu, Derek Jones, Flavio Ponzina, Behnam Khaleghi, Tianqi Zhang, Chang Eun

Song, Haichao Yang, Keming Fan, Yue Pan, Haein Choi, Anthony Thomas, and many others.

Their camaraderie and support have made this journey even more rewarding.

Last but not least, I owe an immense debt of gratitude to my family, Jinnen and Meifang,

xvi

whose constant love and support have been the cornerstone of my academic pursuits. Their

unwavering belief in me has provided the strength and motivation necessary to achieve this

milestone.

Research in this thesis was generously supported by funding from the National Science

Foundation; CRISP, one of six centers in JUMP 1.0; PRISM and CoCoSys, centers in JUMP

2.0, a Semiconductor Research Corporation (SRC) program sponsored by the Defense Advanced

Research Projects Agency (DARPA); and SRC-Global Research Collaboration grants.

The material in this dissertation is based on the following publications:

Chapter 2, in full, is a reprint of the material “RAPIDx: High-performance ReRAM

Processing in-Memory Accelerator for DNA Alignment”, by Weihong Xu, Saransh Gupta, Niema

Moshiri, and Tajana Rosing, which appears in IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 2023. The dissertation author was the primary investigator and

author of this paper.

Chapter 3, in full, is a reprint of the material “HyperGen: Compact and Efficient Genome

Sketching using Hyperdimensional Vectors”, by Weihong Xu, Po-kai Hsu, Niema Moshiri,

Shimeng Yu, and Tajana Rosing, which appears in Bioinformatics, 2024. The dissertation author

was the primary investigator and author of this paper.

Chapter 4, in full, is a reprint of the material “HyperSpec: Fast Mass Spectra Clustering in

Hyperdimensional Space”, by Weihong Xu, Jaeyoung Kang, Wout Bittremieux, Niema Moshiri,

and Tajana Rosing, which appears in Journal of Proteome Research, 2023. The dissertation

author was the primary investigator and author of this paper.

Chapter 5, in full, is a reprint of the material “A Near-Storage Framework for Boosted Data

Preprocessing of Mass Spectrum Clustering”, by Weihong Xu, Jaeyoung Kang, and Tajana Rosing,

which appears in IEEE/ACM Design Automation Conference (DAC), 2022. The dissertation

author was the primary investigator and author of this paper.

xvii

VITA

2017 Bachelor of Engineering, Southeast University

2020 Master of Engineering, Southeast University

2024 Doctor of Philosophy, University of California San Diego

PUBLICATIONS

Weihong Xu, Saransh Gupta, Justin Morris, Xincheng Shen, Mohsen Imani, Baris Aksanli, and
Tajana Rosing, “Tri-HD: Energy-Efficient On-Chip Learning With In-Memory Hyperdimensional
Computing”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
(TCAD), 2024.

Weihong Xu, Po-kai Hsu, Niema Moshiri, Shimeng Yu, and Tajana Rosing, “HyperGen: Compact
and Efficient Genome Sketching using Hyperdimensional Vectors”, Bioinformatics, 2024.

Weihong Xu, Jaeyoung Kang, and Tajana Rosing, “AttBind: Memory-Efficient Acceleration for
Long-Range Attention Using Vector-Derived Symbolic Binding”, Design, Automation and Test
in Europe Conference (DATE), 2024.

Haichao Yang, Chang Eun Song, Weihong Xu, Behnam Khaleghi, Uday Mallappa, Monil Shah,
Keming Fan, Mingu Kang, and Tajana Rosing, “FSL-HDnn: A 5.7 TOPS/W End-to-end Few-shot
Learning Classifier Accelerator with Feature Extraction and Hyperdimensional Computing”,
European Solid-State Electronics Research Conference (ESSERC), 2024.

Lingxi Wu, Minxuan Zhou, Weihong Xu, Ashish Venkat, Tajana Rosing, and Kevin Skadron,
“Abakus: Accelerating k-mer Counting With Storage Technology”, ACM Transactions on
Architecture and Code Optimization (TACO), 2024.

Minxuan Zhou, Yujin Nam, Pranav Gangwar, Weihong Xu, Arpan Dutta, Chris Wilkerson,
Rosario Cammarota, Saransh Gupta, and Tajana Rosing, “MatHE: A Near-Mat Processing
In-Memory Accelerator for Fully Homomorphic Encryption”, ACM/IEEE Design Automation
Conference (DAC), 2024.

Jaeyoung Kang, Weihong Xu, Wout Bittremieux, Niema Moshiri, and Tajana Rosing, “DRAM-
Based Acceleration of Open Modification Search in Hyperdimensional Space”, IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems (TCAD), 2024.

Jaeyoung Kang, You Hak Lee, Minxuan Zhou, Weihong Xu, and Tajana Rosing, “HygHD:
Hyperdimensional Hypergraph Learning”, Design, Automation and Test in Europe Conference
(DATE), 2024.

xviii

Pinge, Sumukh, Weihong Xu, Jaeyoung Kang, Tianqi Zhang, Niema Moshiri, Wout Bittremieux,
and Tajana Rosing, “SpecHD: Hyperdimensional Computing Framework for FPGA-based Mass
Spectrometry Clustering”, Design, Automation and Test in Europe Conference (DATE), 2024.

Weihong Xu, Saransh Gupta, Niema Moshiri, and Tajana Rosing, “RAPIDx: High-performance
ReRAM Processing in-Memory Accelerator for DNA Alignment”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD), 2023.

Weihong Xu, Viji Swaminathan, Sumukh Pinge, Sean Fuhrman, and Tajana Rosing, “HyperMetric:
Robust Hyperdimensional Computing on Error-prone Memories using Metric Learning”, IEEE
International Conference on Computer Design (ICCD), 2023.

Weihong Xu, Jaeyoung Kang, Wout Bittremieux, Niema Moshiri, and Tajana Rosing, “HyperSpec:
Fast Mass Spectra Clustering in Hyperdimensional Space”, Journal of Proteome Research, 2023.

Weihong Xu, Jaeyoung Kang, and Tajana Rosing, “FSL-HD: Accelerating Few-Shot Learning
on ReRAM using Hyperdimensional Computing”, Design, Automation and Test in Europe
Conference (DATE), 2023.

Po-kai Hsu, Weihong Xu, Tajana Rosing, and Shimeng Yu, “An In-Storage Processing Archi-
tecture with 3D NAND Heterogeneous Integration for Spectra Open Modification Search”, In
Proceedings of the International Symposium on Memory Systems (MemSys), 2023.

Jaeyoung Kang, Weihong Xu, Wout Bittremieux, Niema Moshiri, and Tajana Rosing, “Acceler-
ating open modification spectral library searching on tensor core in high-dimensional space”,
Bioinformatics,2023.

Weihong Xu, Jaeyoung Kang, and Tajana Rosing, “A Near-Storage Framework for Boosted
Data Preprocessing of Mass Spectrum Clustering”, IEEE/ACM Design Automation Conference
(DAC), 2022.

Jaeyoung Kang, Minxuan Zhou, Abhinav Bhansali, Weihong Xu, Anthony Thomas, and Tajana
Rosing, “Relhd: A graph-based learning on fefet with hyperdimensional computing”, International
Conference on Computer Design (ICCD), 2022.

Jaeyoung Kang, Weihong Xu, Wout Bittremieux, and Tajana Rosing, “Massively parallel
open modification spectral library searching with hyperdimensional computing”, International
Conference on Parallel Architectures and Compilation Techniques (PACT), 2022.

Arpan Dutta, Saransh Gupta, Behnam Khaleghi, Rishikanth Chandrasekaran, Weihong Xu,
Tajana Rosing, “Hdnn-pim: Efficient in memory design of hyperdimensional computing with
feature extraction”, The Great Lakes Symposium on VLSI, 2022.

Minxuan Zhou, Weihong Xu, Jaeyoung Kang, and Tajana Rosing, “TransPIM: A Memory-
based Acceleration via Software-Hardware Co-Design for Transformers”, IEEE International
Symposium on High-Performance Computer Architecture (HPCA), 2022.

xix

Minxuan Zhou, Yunhui Guo, Weihong Xu, Bin Li, Kevin Eliceiri, and Tajana Rosing, “Mat:
Processing in-memory acceleration for long-sequence attention”, ACM/IEEE Design Automation
Conference (DAC), 2021.

Xiaofan Yu, Weihong Xu, Ludmila Cherkasova, Tajana Rosing, “Automating Reliable and
Fault-Tolerant Design of LoRa-based IoT Networks”, International Conference on Network and
Service Management (CNSM), 2021.

xx

ABSTRACT OF THE DISSERTATION

High-performance Software and Hardware Designs for Genomics and Proteomics

by

Weihong Xu

Doctor of Philosophy in Computer Science (Computer Engineering)

University of California San Diego, 2024

Professor Tajana Šimunić Rosing, Chair

Genomics and proteomics are at the forefront of innovations in precision medicine

and drug discovery. However, the rapid data expansion in these fields presents significant

computational challenges, emphasizing the need for more efficient algorithm and hardware

designs. Current research overlooks systematic acceleration from both software and hardware

aspects. This dissertation bridges these gaps by presenting high-performance designs that enhance

the efficiency, accuracy, and scalability of data analysis in genomics and proteomics.

Genome alignment is crucial for evaluating sequence similarity in genomics, but existing

solutions are hindered by high memory footprints and computational complexity. To address these

xxi

challenges, this thesis introduces RAPIDx, an algorithm and hardware co-design that enhances

the efficiency and throughput of genome alignment. RAPIDx leverages Processing-in-Memory

(PIM) techniques for in-situ computation, significantly boosting energy efficiency. It also employs

an adaptive banded alignment algorithm tailored for ReRAM-based PIM architectures, reducing

computational complexity and memory requirements while maintaining high accuracy. The

proposed PIM architecture achieves up to 131.1× and 46.8× throughput improvement over the

state-of-the-art CPU and GPU implementations, respectively.

RAPIDx delivers high accuracy across various genome analysis tasks, but its substantial

memory consumption makes it unsuitable for latency-sensitive scenarios or resource-constrained

hardware. To address these limitations, this thesis proposes HyperGen, a memory-efficient

genome sketching tool that eliminates the need for the costly alignment. HyperGen leverages

hyperdimensional computing (HDC) to significantly improve runtime performance, memory

efficiency, and accuracy in large-scale genomic analyses, enabling rapid and precise Average

Nucleotide Identity (ANI) estimation. The tool demonstrates superior performance in both

genome sketching and database search tasks.

Proteomics, using mass spectrometry (MS) to analyze proteins, provides deep insights

into cellular functions and disease mechanisms. MS clustering is crucial for organizing and

interpreting these datasets, enabling more efficient identification of proteins and peptides.

However, the demand for accurate, fast, and scalable algorithms presents a significant challenge

for large-scale analyses. To address this, this thesis introduces HyperSpec, a high-performance

tool that accelerates spectral clustering by leveraging the lightweight, parallelizable nature

of HDC. HyperSpec reduces clustering runtime while maintaining high quality, cutting the

processing time of 21 million spectra from 4 hours to just 24 minutes.

Despite HyperSpec’s significant speedup to MS clustering, our profiling analysis reveals

that MS data preprocessing remains the primary bottleneck, due to the inefficient data path of

conventional Von Neumann architecture. To overcome this, a near-storage accelerator, MSAS, is

presented to speed up MS data preprocessing. By processing spectra close to the storage medium,

xxii

MSAS minimizes costly data movement between storage and computation units. Its channel-level

design achieves up to 187× speedup compared to CPU-based preprocessing and outperforms

existing in-storage computing solutions. When integrated into existing MS clustering tools,

MSAS enhances overall system performance, yielding 3.5× to 9.8× improvements in speed and

2.8× to 11.9× gains in energy efficiency.

xxiii

Chapter 1

Introduction

The fields of genomics and proteomics have become foundational pillars in the pursuit of

precision medicine, a discipline that aims to tailor medical treatments to individual genetic profiles

and molecular characteristics [19]. The integration of genomics and proteomics is essential for a

comprehensive understanding of biological systems and the development of effective therapeutic

strategies. While genomics provides the foundational blueprint by identifying the potential

genetic underpinnings of health and disease, proteomics offers critical insights into the actual

biological processes that occur at the protein level. Genomics primarily focuses on the study of

DNA sequences [20], while proteomics depend heavily on mass spectrometry (MS) to decipher

the complex structures of proteins and other molecules within cells [21–23].

The fields of genomics and proteomics have experienced unprecedented growth over the

past few decades. For genomics, the next-generation sequencing (NGS) [24–26] has enabled

researchers to generate vast amounts of genomic data at a pace and scale previously unimaginable.

The applications of NGS are broad and profound, ranging from identifying genetic variants

associated with diseases to understanding the evolutionary history of organisms. Similarly, in

proteomics, mass spectrometry (MS) [22, 23] is a critical tool for analyzing the protein mixtures

present in biological samples, facilitating the identification of biomarkers, drug targets, and

therapeutic proteins. The decreasing cost of MS experiments has fueled the growth of publicly

available MS data [21, 27]. For example, the MassIVE database contains over 600TB MS

1

data [28] for analysis.

These advancements have revolutionized our ability to generate vast amounts of data.

However, this rapid expansion of data brings with it significant computational challenges. High-

throughput sequencing technologies generate billions of reads, requiring analysis algorithms to

process vast amounts of data efficiently. Additionally, the need to perform these computations in

a timely manner, especially in clinical contexts, underscores the necessity for high-performance

software and hardware solutions that can accelerate genome alignment while maintaining accuracy

and scalability. On the other hand, modern MS experiments generate millions of tandem mass

spectra, which are rich in information but also highly redundant [29]. The analysis of these

spectra is crucial for identifying protein structures and understanding biological functions, but

the process is extremely time-consuming. For instance, clustering large-scale proteomic datasets,

such as a draft human proteome dataset containing 25 million spectra and 131 GB of data, can

take several hours to days [12, 13, 15], posing a major bottleneck in research and drug discovery.

There is a need for innovative computational frameworks that can efficiently handle

the large-scale data generated by NGS and MS technologies. These frameworks must not

only accelerate the analysis process but also improve the accuracy and energy efficiency of the

computations involved. This thesis addresses two fundamental problems: 1. efficient sequence

similarity evaluation in genomics and 2. boosted data preprocessing and clustering in proteomics.

These problems are critical for the acceleration of genomics and proteomics because they are not

only central to a wide range of downstream applications but also contribute to significant runtime

overhead. This thesis presents a series of high-performance software and hardware designs aimed

at overcoming these computational hurdles, with the goal of enabling more effective and scalable

analysis in genomics and proteomics. The contributions of this thesis can be summarized as

follows:

2

1.1 Acceleration for Genomics

1.1.1 Processing-in-memory Acceleration for Genome Alignment

Genome alignment is critical for identifying genetic variants, understanding evolutionary

relationships, and many other applications. Traditional methods for sequence alignment [30, 31]

are computation- and memory-intensive because the advancement of sequencing technologies

produces a tremendous amount of data, making sequence alignment a critical bottleneck in

bioinformatics analysis. The existing hardware accelerators for alignment [7, 10, 32] suffer from

limited on-chip memory, costly data movement, and poorly optimized alignment algorithms.

They cannot afford to concurrently process the massive amount of genome data.

In Chapter 2, we propose a ReRAM-based accelerator, RAPIDx, using processing

in-memory (PIM) for sequence alignment. RAPIDx achieves superior efficiency and performance

via software-hardware co-design. First, we propose an adaptive banded parallelism alignment

algorithm suitable for PIM architecture. Compared to the original dynamic programming-based

alignments [30, 31], the proposed algorithm significantly reduces the required complexity, data

bit width, and memory footprint at the cost of negligible accuracy degradation. Then we propose

the efficient PIM architecture that implements the proposed algorithm. The data flow in RAPIDx

achieves four-level parallelism and we design an in-situ alignment computation flow in ReRAM,

delivering 5.5-9.7× efficiency and throughput improvements compared to our previous PIM

design, RAPID. The proposed RAPIDx is reconfigurable to serve as a co-processor integrated into

the existing genome analysis pipeline to boost sequence alignment or edit distance calculation. On

short-read alignment, RAPIDx delivers 131.1× and 46.8× throughput improvements over state-

of-the-art CPU [8] and GPU [7] libraries, respectively. As compared to ASIC accelerators [10]

for long-read alignment, the performance of RAPIDx is 1.8-2.9× higher.

3

1.1.2 High-performance Software for Genome Sketching

Genome alignment is renowned for its high accuracy across a wide range of genome

analysis tasks. However, its substantial memory consumption and computational demands make

it impractical for latency-sensitive scenarios or resource-constrained hardware environments.

To overcome these challenges, in Chapter 3, we present HyperGen that improves accuracy,

runtime performance, and memory efficiency for large-scale ANI estimation. Unlike existing

genome sketching algorithms [33–36] that convert large genome files into discrete 𝑘-mer hashes,

HyperGen leverages the emerging hyperdimensional computing (HDC) to encode genomes into

quasi-orthogonal vectors (Hypervector, HV) in high-dimensional space. HV is compact and

can preserve more information, allowing for accurate ANI estimation while reducing required

sketch sizes. In particular, the HV sketch representation in HyperGen allows efficient ANI

estimation using vector multiplication, which naturally benefits from highly optimized general

matrix multiply (GEMM) routines. As a result, HyperGen enables the efficient sketching and

ANI estimation for massive genome collections. We evaluate HyperGen’s sketching and database

search performance using several genome datasets at various scales. HyperGen is able to achieve

comparable or superior ANI estimation error and linearity compared to other sketch-based

counterparts [33–36]. The measurement results show that HyperGen is one of the fastest tools for

both genome sketching and database search. Meanwhile, HyperGen produces memory-efficient

sketch files while ensuring high ANI estimation accuracy.

1.2 Acceleration for Mass Spectrometry-based Proteomics

1.2.1 High-performance Software for Mass Spectrometry Clustering

As current MS experiments can produce gigabytes to terabytes of data per hour [29],

processing these massive data volumes has become progressively more challenging. Spectral

clustering is an effective approach to speed up downstream data processing by merging highly

similar spectra to minimize data redundancy. However, state-of-the-art MS tools [14, 15] take

4

many hours to run spectrum clustering. In Chapter 4, we present a fast spectral clustering tool

based on HDC, HyperSpec. HDC shows promising clustering capability while only requiring

lightweight binary operations with high parallelism that can be easily accelerated in hardware,

making it possible to run HyperSpec on GPU to achieve extremely efficient spectral clustering

performance. Additionally, HyperSpec includes optimized data preprocessing modules to reduce

the spectrum preprocessing time, which is a critical bottleneck during spectral clustering. Based

on experiments using various mass spectrometry datasets, HyperSpec produces results with

comparable clustering quality as state-of-the-art spectral clustering tools [12–14, 37], while

achieving speedups by orders of magnitude, shortening the clustering runtime of over 21 million

spectra from 4 hours to only 24 minutes.

1.2.2 Near-storage Acceleration for Mass Spectrometry Preprocessing

The previous work demonstrate that spectra data loading and preprocessing consumes

the majority of total execution time and energy during MS analysis [29]. The software-level

optimizations fail to fully exploit the parallelism and memory bandwidth of low-level hardware.

We propose a near-storage framework, MSAS, to further speed up spectrum preprocessing

in Chapter 5. Instead of loading data into host memory and CPU, MSAS processes spectra

near storage, thus reducing the expensive cost of data movement. We present two types of

accelerators that leverage internal bandwidth at two storage levels: SSD and channel. The

accelerators are optimized to match the data rate at each storage level with negligible overhead.

Our results demonstrate that the channel-level design yields the best performance improvement

for preprocessing - it is up to 187× and 1.8× faster than the CPU [13] and the state-of-the-art

in-storage computing solution [18], respectively. After integrating channel-level MSAS into

existing MS clustering tools, we measure system level improvements in speed of 3.5× to 9.8×

with 2.8× to 11.9× better energy efficiency.

5

Chapter 2

Processing In-Memory Acceleration for
Genome Alignment

2.1 Introduction

The high-throughput next-generation sequencing (NGS) technology [38] has led to the

generation of massive amounts of genomic data at an unprecedented rate. The generated genome

data rely on genome alignment, a critical step in genomics [8] to identify genetic variations,

disease associations, and evolutionary relationships. The significance of genome alignment

continues to grow for two reasons. First, various types of sequencing errors can occur when the

genome is read by sequencing machines. Additionally, genetic mutations and variations further

introduce differences in sequences.

Genome alignment is the process of finding the optimal mapping between query and

reference sequences. Needleman–Wunsch (NW) [30] and Smith-Waterman (SW) [31], are the

two most commonly used alignment algorithms for this purpose. Genome alignment has become

a significant bottleneck as it is both computation- and memory-intensive, consuming 60-80% of

the runtime of popular genome analysis tools [7, 8, 11, 39]. This challenge is exacerbated by the

continuous expansion in the size and complexity of genomic datasets. Figure 2.1 shows the unit

cost of genome sequencing has plunged by over 104× during the last decade. As a result, the

genome data volume of whole genome sequencing (WGS) and GenBank [2] have expanded by

102× to 104×.

6

1.E-03

1.E-01

1.E+01

1.E+03

1.E+05

1.E+07

01 03 05 07 09 11 13 15 17 19
U

S
 D

o
lla

r

Year

 Cost per Mb Cost per Genome

(a) Squencing cost.

1.E+08

1.E+10

1.E+12

1.E+14

02 04 06 08 10 12 14 16 18 20

G
e
n
o
m

e
 B

a
s
e
s

Year

WGS GenBank

(b) Genome data volume.

Figure 2.1: Trend of unit sequencing cost [1] and genome data volume [2] over the past decade.

The exponential growth in genomic data has outpaced Moore’s Law as well as the

capabilities of traditional computational methods, necessitating acceleration solutions with orders

of magnitude higher efficiency. Processing in-memory (PIM) is promising to mitigate the data

movement issue and provides massive parallelism. PIM enables in-situ data computation inside

memory, thereby throttling the latency and energy of data movement [40–43]. This chapter

explores emerging resistive random-access memory (ReRAM) and PIM techniques to accelerate

genome sequence alignment. We propose RAPIDx, an algorithm and hardware co-design that

implements an optimized banded alignment algorithm with reduced complexity on ReRAM-based

PIM hardware. RAPIDx fully leverages ReRAM’s internal bandwidth and parallelism to achieve

superior throughput and energy efficiency.

Various algorithmic optimizations have been developed for alignment software [8, 11,

39, 44]. However, the limited computing resources of CPU severely restrict the achievable

7

performance. These works fail to generate satisfactory processing throughput and energy

efficiency. To this end, many efforts have been made to design acceleration solutions on

ASIC [9, 10, 32], GPU [7, 45], or FPGA [46] platforms. Through optimizing algorithm and

hardware architecture, these accelerators have shown significant improvements in terms of

efficiency and processing speed. However, the memory-intensive nature of genome alignment

algorithms makes them suffer from the limited on-chip as well as expensive data movement

between off-chip memory and processing cores, incurring energy overhead caused by data

movement.

Existing PIM-based accelerators for genome analysis [3–5,47–49] take PIM’s advantages

of high data parallelism and low-cost data movement, showing orders of magnitude efficiency

and performance improvements over CPU and GPU. The previous PIM architecture for sequence

alignment, RAPID [3], which computes genome alignment in memory, has the following deficits.

First, the original DP algorithm [30] used by RAPID is sub-optimal since it is unable to measure

the affine gap penalty, which has been widely used in software libraries [7, 8] and shown optimal

alignment quality [50]. Second, RAPID does not consider software-hardware co-optimization,

thereby wasting a large amount of energy and computing resources on redundant computations.

Recent works [39, 51] demonstrate DP alignment algorithm exhibits great redundancy, and most

of computation can be skipped using banded alignment [52] to accelerate the alignment process

at the cost of negligible accuracy degradation.

In this chapter, we propose a software-hardware co-design, RAPIDx, that exploits digital

PIM techniques on ReRAM to enable a highly parallel and more energy-efficient acceleration for

sequence alignment. The key contributions can be summarized as follows:

• PIM-friendly dynamic programming (DP) alignment: We consider the affine gap

penalty to construct more accurate scoring functions. Then we propose the adaptive

banded parallelized DP alignment that is friendly for PIM implementation. The proposed

alignment algorithm reduces the required arithmetic precision from 32-bit to only 5-bit

8

and obtains higher data parallelism. Meanwhile, the adaptive wavefront direction and

bandwidth schemes significantly reduce memory footprint and computational complexity

by over 10× at the cost of < 0.15% accuracy loss.

• High-performance PIM architecture: We propose efficient PIM architecture for RAPIDx,

which achieves four-level data parallelism. RAPIDx leverages in-situ PIM operations [53]

to perform low-energy and row-parallel in-memory alignment. Our peripheral circuits

implement fast traceback as well as complex functions not friendly for PIM. Compared to

previous RAPID [3], RAPIDx shows 5.5× latency reduction and 6.2× energy improvements.

• System optimization and reconfigurable design: We design novel PIM computing

operations that are reconfigurable to support multiple types of alignment scoring as well as

edit distance computation. This makes RAPIDx a multi-purpose accelerator that is flexible

to support alignment and edit distance computations. We also analyze several possible

limiting factors when integrating RAPIDx into existing computing system, including

ReRAM cell’s limited endurance, switching speed, and system considerations.

• Improvements and accelerations: We compare RAPIDx with state-of-the-art CPU

baselines (Minimap2 [8] and Edlib [11]), GPU baseline (GASAL2 [7]), and ASIC baselines

(ABSW [10] and GenASM [9]) on various workloads. For short-read alignment, RAPIDx

delivers an average 131.1× and 46.8× higher throughput compared to Minimap2 [8] and

GASAL2 [7], respectively. For long-read alignment, 1.8× to 2.9× throughput improvements

are observed over ABSW [10] and GenASM [9]. For edit distance calculation, RAPIDx

obtains up to 321× speedup over Edlib [11].

2.2 Related Work

2.2.1 Software for Sequence Alignment

Several software libraries [7, 8, 11, 39] have been developed for boosted genome analysis.

The main point is optimizing the SW algorithm and CPU/GPU datapath to deliver accurate and

9

fast sequence alignment. BWA-MEM [39] is software to map genome sequences against large

reference genomes. BWA-MEM aligns the given sequences using Burrows-Wheeler Transform

(BWT) [54]. However, the memory footprint of aligning long genome is large and the irregular

memory access of BWT limits the processing speed. Edlib [11] is a C++ library that exploits

Myers’s bit-vector algorithm [55] to parallelize the SW-based alignment. To realize more accurate

and efficient alignment, Minimap2 [8] introduces two promising optimization strategies, banded

alignment [52] and difference-based SW [56], which can be fitted into the datapath of single

instruction, multiple data (SIMD). Minimap2 generates over 10× speedup over BWA-MEM.

Even though these software libraries achieve fine-grain optimization, the limited computing

resources on CPU fail to provide opportunities for further acceleration. Some researchers shift

the focus to GPU-based acceleration. CUDAlign 4.0 [45] increases the parallelism by splitting

each SW alignment into multiple GPUs and reducing the data dependency of the traceback

process. GASAL2 [7] optimizes the data organization and develops efficient kernels for multiple

sequence alignment workloads. These libraries exploit the abundant computing resources on

GPU. But the resulted efficiency is not high because optimizations for SW algorithms are lacked

due to the architectural limitations of GPU. RAPIDx is a software and hardware co-design that

realizes algorithm and hardware optimizations at the same time.

2.2.2 Hardware Acceleration for Sequence Alignment

ASIC Accelerator: Various hardware accelerators [5, 9, 10, 32, 47–49, 53] have be

presented to obtain higher energy efficiency and speedup for genome analysis. For ASIC

designs, one challenge is how to realize long-read alignment under the constraints of limited

on-chip memory. Darwin [32] proposes near-optimal tiling methods to align arbitrary sequence

lengths, only requiring constant memory space. ABSW [10] leverages the tiling schemes [32]

and implements an adaptively banded alignment on ASIC, achieving significant efficiency

improvement. GenASM [9] proposes an approximate string matching algorithm and a systolic-

array-based accelerator to increase data parallelism while reducing memory footprint. Although

10

prior works employ a variety of optimizations, the limited on-chip memory is still the bottleneck

when aligning long sequences.

PIM Accelerator: PIM is a promising solution to increase data parallelism and energy

efficiency via computing data in situ [4–6, 42]. The PIM-based alignment designs proposed in

PRINS [47] and BioSEAL [48] accelerate algorithms using resistive content addressable memory

(CAM). But the sequential associative search incurs a large amount of write operation and internal

data movement, degrading efficiency, lifetime, and storage efficiency. Another set of works

accelerates short read alignment, where long sequences are broken down into smaller sequences

and heuristic methods are applied. AlignS [4], AligneR [5] and PIM-Aligner [6] exploit FM-index

algorithm and PIM to realize short-read alignment. However, FM-index incurs irregular memory

access, and is hard to exploit the data parallelism of PIM. RAPID [3] is a ReRAM-based PIM

accelerator to implement in-situ alignment computation in the memory, which drastically reduces

the data movement. However, the adopted algorithm in RAPID is sub-optimal and requires

quadratic complexity, limiting its capability of aligning long sequences. In this chapter, we

present several optimizations for alignment algorithms and hardware architecture to fully leverage

the highly parallel PIM while providing satisfactory alignment quality. Our design, RAPIDx,

delivers up to 9.3× alignment efficiency improvement compared to other PIM baselines.

2.3 Background

2.3.1 Genome Sequence Analysis

Overall Pipeline

A typical pipeline of modern genome sequencing analysis [8, 39, 44] involves indexing,

seeding, filtering, and read alignment steps as shown in Figure 2.2-(a). For the indexing phase, the

entire reference sequence is stored into special data structures, like BWT [54] and FM-indexing.

The indexing is for quickly obtaining the location of query sequence in the reference sequence.

Then, the seeding process uses the indexing information to query the potential mapping locations

11

Q
u

e
ry

Reference

2A
T
G

T
T

A
T

-6 -8 -10

0 -4 -6 -8

2 -2 -6

-2 -4 -12

-2 -8

-4 -4

-6 -6-8 -6 -2 -8

-6-8 -6-10 -8 -4 -10

-8-10 -10-12 -10 -6 -10

-4-12 -6-8 -12 -8 -10

Q
u

e
ry

Reference

A
T
G

T
T

A
T

Optimal
path

A C G T C - -

A - T T A T C

A T C G T C C A T C G T C C

| | |
G

C
-2

-6 -4

-2

G

-
|

gap open gap extension

(b) (c) (d)

match mismatch insertion deletion

Reference

Sequence

Reads

Optimal

Alignment

(a)

Seeding FilteringIndexing
Read

Alignment

Figure 2.2: (a) The pipeline of genome sequence analysis. (b) Alignment example of sequences
ACGTCCG and AGTTATC with affine gap penalties, (c) Score matrix, (d) Traceback matrix.

of genome reads. The filtering step discards invalid candidates or combines nearby candidates

from the seeding step. Finally, the genome reads are aligned against the reference sequence around

the candidate location using the SW algorithm. Among these steps, the most time-consuming

step is read alignment used to determine how the read sequence can be optimally mapped to the

reference sequence.

Sequence Alignment with Affine Gap Penalty

The sequence alignment can be described as finding the maximum alignment score

between the reference sequence 𝑅 = 𝑟1, 𝑟2, ..., 𝑟𝑚 and the query sequence 𝑄 = 𝑞1, 𝑞2, ..., 𝑞𝑛.

Natural evolution and mutation as well as experimental errors during sequencing poses two

types of changes in sequences - substitutions and indels. A substitution changes a base of the

sequence with another, leading to a mismatch whereas an indel either inserts or deletes a base.

Figure 2.2-(b) shows the comparison of two sequences, 𝑅 = ACGTCCG and 𝑄 = AGTTATC.

The left part rigidly compares the 𝑖th base of 𝑄 with 𝑅, where match and mismatch are considered.

The right part assumes a different alignment that involves insertion and deletion. Note that

the notation of dashes (−) is conceptual, and are used to illustrate a potential scenario that one

sequence has been (or can be) evolved to the other.

Most sequence alignments are categorized into global or local alignment. The global

and local alignments can be optimally addressed by NW algorithm [30] and SW algorithm [31],

respectively. NW and SW both build up and compute the optimal alignment sequence based on

DP [57, 58]. DP-based methods involve forming alignment matrices, which are used to compute

12

scores of various alignments based on a pre-defined scoring function. The scoring function is

essential for accurate alignment since it is used to update the scoring matrix in DP. The previous

work [59] mostly uses the scoring function with linear gap penalty, where the penalty is increasing

linearly with the gap length. However, the linear gap penalty is insufficient to accurately evaluate

the alignment scores for those sequences with the same total gap length. The gap-less sequence

is normally more biologically meaningful compared to the sequence with more gaps. In this

chapter, we adopt the scoring function with affine gap penalties [60] that consider the number and

length of gaps. Figure 2.2 shows an example of alignment between sequence 𝑅 = ACGTCCG

and 𝑄 = AGTTATC using affine gap penalties. The updating rules for scoring matrices in DP

with affine gap penalty can be expressed as:

𝐸𝑖, 𝑗 = max


𝐻𝑖−1, 𝑗 − 𝑜

𝐸𝑖−1, 𝑗 − 𝑒
𝐹𝑖, 𝑗 = max


𝐻𝑖, 𝑗−1− 𝑜

𝐹𝑖, 𝑗−1− 𝑒

𝐻𝑖, 𝑗 = max{𝐸𝑖, 𝑗 , 𝐹𝑖, 𝑗 , 𝐻𝑖−1, 𝑗−1− 𝑠(𝑟 𝑗 , 𝑞𝑖)}

(2.1)

where 𝐸 and 𝐹 denote the alignment matrices that store the scores of insertion and deletion,

respectively. 𝐻 is the alignment score matrix that stores the total scores. 𝑠(𝑟 𝑗 , 𝑞𝑖) denotes the

score of match 𝐴 or mismatch 𝐵 by comparing 𝑟 𝑗 and 𝑞𝑖. The gap opening penalty is 𝑜 while 𝑒

denotes the gap extension penalty. Figure 2.2-(c) shows an example of score matrix 𝐻 calculated

using Eq (2.1) with penalties 𝐴 = 2, 𝐵 = 4, 𝑜 = 4, 𝑒 = 2. A traceback phase is required to construct

the optimal alignment path after the computation for all alignment matrices. The traceback matrix

in Figure 2.2-(d) stores the path information. For global alignment, the traceback starts from the

cell at the bottom-right corner while local alignment starts from the cell with the maximum score.

2.3.2 Difference-based Dynamic Programming (DP) Alignment

The updating function in Eq. (2.1) has the following limitations. The maximum value in

the alignment matrix scales up linearly with the matrix dimension. The data bit width needs

13

to be increased as the sequence length increases to avoid computation overflow. Previous

accelerations [10, 32] use a fixed bit width in the worst case, resulting in low computation

efficiency. To resolve this issue, the original DP updating is rewritten into a computation-efficient

form, named the difference-based formulation [56]. The basic idea is to store and compute the

value difference of adjacent elements instead of the full-precision value in the alignment matrix,

thus reducing the required arithmetic precision. As shown in the left side of Eq. (2.2), four

matrices Δ𝐻, Δ𝑉 , Δ𝐸 , and Δ𝐹 are used to store the difference values. After substituting the four

difference matrices into Eq. (2.1), the alignment matrices (𝐻, 𝐸 , and 𝐹) are converted into the

following difference-based formulation:



Δ𝐻𝑖, 𝑗 = 𝐻𝑖, 𝑗 −𝐻𝑖−1, 𝑗

Δ𝑉𝑖, 𝑗 = 𝐻𝑖, 𝑗 −𝐻𝑖, 𝑗−1

Δ𝐸𝑖, 𝑗 = 𝐸𝑖+1, 𝑗 −𝐻𝑖, 𝑗

Δ𝐹𝑖, 𝑗 = 𝐹𝑖, 𝑗+1−𝐻𝑖, 𝑗

⇒



𝐴𝑖, 𝑗 = max



𝑠(𝑖, 𝑗),

Δ𝐸𝑖−1, 𝑗 +Δ𝑉𝑖−1, 𝑗 ,

Δ𝐹𝑖, 𝑗−1 +Δ𝐻𝑖, 𝑗−1

Δ𝐻𝑖, 𝑗 = 𝐴𝑖, 𝑗 −Δ𝑉𝑖−1, 𝑗

Δ𝑉𝑖, 𝑗 = 𝐴𝑖, 𝑗 −Δ𝐻𝑖, 𝑗−1

Δ𝐸𝑖, 𝑗 = max{−𝑜,Δ𝐸𝑖−1, 𝑗 −Δ𝐻𝑖, 𝑗 } − 𝑒

Δ𝐹𝑖, 𝑗 = max{−𝑜,Δ𝐹𝑖, 𝑗−1−Δ𝑉𝑖, 𝑗 } − 𝑒

(2.2)

where an intermediate variable 𝐴𝑖, 𝑗 is added to the computation. It should be noted that Eq. (2.2)

only changes the expression of original DP in Eq. (2.1) while retaining the identical information.

Eq. (2.2) can generate the identical alignment results as Eq. (2.1).

14

There are two benefits of the difference-based alignment in Eq. (2.2). First, the arithmetic

precision requirement is significantly reduced. According to [8, 56], the data range of Δ𝐻𝑖, 𝑗

and Δ𝑉𝑖, 𝑗 are bounded by [−𝑜− 𝑒,−𝑒] while Δ𝐸𝑖, 𝑗 and Δ𝐹𝑖, 𝑗 are bounded by [−𝑜− 𝑒,𝑀 + 𝑜+ 𝑒],

where 𝑀 denotes the maximum value of 𝑠(𝑖, 𝑗). Compared to the full-precision alignment, the

difference-based representations only needs ⌈log2(𝑀 +2𝑜+2𝑒 +1)⌉-bit integer to calculate the

alignment. Second, the required data precision is only determined by the used affine gap scores

while independent with the sequence length. This property allows us to use a unified data bit

width for different sequence lengths. For example, we use 5-bit integer for computing alignment

and 3-bit integer for calculating edit distance as introduced in Section 2.5.4.

2.3.3 Digital Processing In-Memory (PIM)

Various types of memory devices are used for PIM to resolve the “memory wall” problem,

including MRAM [4, 6], PCM, and SRAM [61]. MRAM suffers from severe read disturbance

when the memory density increases [62]. ReRAM has higher memory density than MRAM and

SRAM because the ReRAM cell is much smaller than MRAM and SRAM. Moreover, ReRAM

has lower leakage power compared to other devices, making it an energy-efficient candidate for

PIM. FeFET [63] and NAND flash [64] are the other two potential PIM candidates that are still

in early development phase while ReRAM has been physically verified at scale [65]. ReRAM

has higher error rates, but this is not a significant issue for alignment as alignment algorithms are

already statistical in nature, and can tolerate significant errors at bit level. Considering all these

benefits, we choose ReRAM-based PIM.

Traditionally, PIM with memristors is based on reading currents through different cells.

However, some recent work has demonstrated ways, both in literature [53, 66, 67] and by

fabricating chips [68], to implement logic using memristor switching. Digital PIM exploits

variable switching of memristors. The output device switches whenever the voltage across

it exceeds a threshold [69]. This property can be exploited to implement a variety of logic

functions inside memory [53, 66]. Figure 2.3 shows an example of implementing NOR operation

15

···

ai bi

0

1

1

0

0

1

1

0

oi

1

0

0

0

···

···
ai

bi

oi

a1

b1

o1

Vout

V0

V0

oinit

1

1

1

1

(a) (b)

Figure 2.3: Implementing NOR operation using ReRAM-based digital processing in-memory
(PIM).

using ReRAM-based PIM [53]. A voltage 𝑉0 is in parallel applied to the rows that contain the

operand cells 𝑎𝑖 and 𝑏𝑖. The output cell 𝑜𝑖 switches to low voltage status (logical ‘0’) from initial

logical ‘1’ whenever one or more inputs are ‘1’s, resulting in logical NOR operation. Since NOR

is a functionally complete logic gate, it can be used to implement other logic operations like

addition [66] and multiplication [70]. For example, 1-bit addition (inputs being 𝐴, 𝐵,𝐶) can be

represented in the form of NOR as:

𝐶𝑜𝑢𝑡 = ((𝐴+𝐵)′+ (𝐵+𝐶)′+ (𝐶 + 𝐴)′)′

𝑆 = (((𝐴′+𝐵′+𝐶′)′+ ((𝐴+𝐵+𝐶)′+𝐶𝑜𝑢𝑡)′)′)′
(2.3)

where 𝐶𝑜𝑢𝑡 and 𝑆 are the generated carry and sum bits of addition. (𝐴+𝐵+𝐶)′, (𝐴+𝐵)′, and 𝐴′

represent 𝑁𝑂𝑅(𝐴, 𝐵,𝐶), 𝑁𝑂𝑅(𝐴, 𝐵), and 𝑁𝑂𝑅(𝐴, 𝐴), respectively.

In-memory operations are in general slower than the corresponding CMOS-based

implementations because memristor devices switch slowly. However, PIM architectures can

provide significant speedup when it is exposed massive parallelism. Meanwhile, the long

processing latency is amortized due to the high parallelism. RAPIDx utilizes two types of PIM

operations (XOR and addition) introduced in FELIX [53] to perform in-memory alignment

computation. This is because FELIX’s PIM primitives achieve the same or significantly better

latency, memory consumption, and efficiency than other digital PIM schemes [66, 71]. The other

16

digital PIM scheme [72] for floating-point arithmetic is not suitable for the fixed-point arithmetic

in RAPIDx.

Specifically, the XOR and 1-bit addition are realized through:

• XOR: XOR (⊕) can be expressed by OR (+), AND (.), and NAND ((.)′) as 𝐴 ⊕ 𝐵 =

(𝐴+𝐵).(𝐴.𝐵)′. We first calculate OR and then use its output cell to implement NAND.

This operation is executed in parallel over all the columns of two rows. This logic just

requires 2 cycles and one additional memristor device, which acts as the output cell.

• Addition: Let A, B, and 𝐶𝑖𝑛 be 1-bit inputs of addition, and S and 𝐶𝑜𝑢𝑡 the generated

sum and carry bits respectively. Then, S is implemented as two serial in-memory XOR

operations (A⊕B)⊕C. 𝐶𝑜𝑢𝑡 , on the other hand, can be executed by inverting the output of

the Min function proposed in [53]. Addition takes a total of 6 cycles and similar to XOR,

we parallelize it over all columns in two rows.

2.4 Efficient Alignment in RAPIDx

In this section, we first analyze the challenges of realizing efficient in-memory alignment

using digital PIM. Then we propose the adaptive banded parallelized DP alignment to balance

performance and accuracy loss.

2.4.1 Challenges of Alignment using PIM

Data Bit Width and Latency

Compared to CMOS-based circuits, the slow switching speed of ReRAM cells incurs

long latency when implementing PIM operations in Section 2.3.3. For example, 1-bit PIM

addition takes 6 to 12 clock cycles [53]. As discussed in Section 2.3.2, the data bit width and

range grow linearly with the sequence length. The previous accelerators [3,48] adopt the original

DP algorithm which uses 32-bit integers to guarantee lossless alignment. However, 32-bit integer

is over-designed and incurs long processing latency when aligning short sequences (<1kbp)

17

since the lower 12-bit width is enough to provide sufficient data dynamic range [10]. Therefore,

developing an alignment algorithm using low bit-width data is beneficial to reduce PIM latency.

The difference-based DP alignment in Section 2.3.2 is a potential solution to alleviate this as it

needs fixed data width independent of sequence length.

Data Parallelism

ReRAM-based PIM architectures [3,6,48,49] offer substantial opportunities of extending

the data parallelism. High parallelism amortizes the incurred long latency of PIM operations.

One example is the row-parallel PIM operation [48, 53], where the bit-serial computation

can be performed in the entire memory row simultaneously. How to exploit the architectural

parallelism of ReRAM is key to attaining high alignment throughput. The other challenge from

the algorithm is how to expose enough parallelism to ReRAM. For DP alignment, adjacent cells

in alignment matrices exhibit data dependency. Previous works [8, 10, 32, 48, 56] utilize the

wavefront parallelism based on the fact that cells over anti-diagonal have no data dependency.

Unfortunately, this parallelism is far enough for PIM architecture.

Complexity and Accuracy

Figure 2.4-(a) illustrates the full DP alignment using Eq. (2.1), where all cells in the

matrices with shape 𝑚×𝑛 need to be computed (𝑚 and 𝑛 denote the lengths of reference and

query sequences, respectively). The complexity is prohibitive when aligning long sequences.

Banded alignment [51, 52] is an effective method to reduce the complexity from quadratic to

near-linear. It should be noted that the banded approach is an approximate algorithm that may

introduce accuracy degradation. One simple solution is to use a fixed and wide bandwidth

(𝐵 = 128) as [10]. But this degrades the throughput and performance gain since wider bandwidth

leads to higher complexity. The challenge is how to select narrow bandwidth for various lengths

while ensuring the optimality of results.

18

2.4.2 Adaptive Banded Parallelized DP Alignment

We propose the adaptive banded parallelized DP alignment to resolve the above-mentioned

challenges. The difference-based alignment in Eq. (2.2) relaxes the requirement of data precision

and reduces the bit width for DP alignment. However, the computation of Δ𝐻𝑖, 𝑗 ,Δ𝑉𝑖, 𝑗 ,Δ𝐸𝑖, 𝑗 , and

Δ𝐹𝑖, 𝑗 can only be accomplished in a serial manner. Specifically, 𝐴𝑖, 𝑗 needs to be first computed

before updating Δ𝐻𝑖, 𝑗 and Δ𝑉𝑖, 𝑗 . Then the values of Δ𝑉𝑖, 𝑗 and Δ𝐸𝑖, 𝑗 require the newly updated

Δ𝐻𝑖, 𝑗 and Δ𝑉𝑖, 𝑗 . Consequently, parallelizing the computation for each updating step is difficult

due to the inherent data dependency. We resolve this issue through further transforming Eq. (2.2)

into a parallelized version similar to [56]. The variables in Eq. (2.2) are rewritten as the top

part of Eq. (2.4), where auxiliary 𝑜 and 𝑒 values are added to each variable in Eq. (2.2). After

substituting it into Eq. (2.2), we have the parallelized difference-based alignment as follows:



𝐴′
𝑖, 𝑗

= 𝐴𝑖, 𝑗 +2𝑜+2𝑒

Δ𝐻′
𝑖, 𝑗

= Δ𝐻𝑖, 𝑗 + 𝑜+ 𝑒

Δ𝑉 ′
𝑖, 𝑗

= Δ𝑉𝑖, 𝑗 + 𝑜+ 𝑒

Δ𝐸′
𝑖, 𝑗

= Δ𝐸𝑖−1, 𝑗 +Δ𝑉𝑖−1, 𝑗 +2𝑜+2𝑒

Δ𝐹′
𝑖, 𝑗

= Δ𝐹𝑖, 𝑗−1 +Δ𝐻𝑖, 𝑗−1 +2𝑜+2𝑒

⇒



𝐴′
𝑖, 𝑗

= max{𝑠′(𝑖, 𝑗),Δ𝐸′
𝑖−1, 𝑗 ,Δ𝐹

′
𝑖, 𝑗−1}

Δ𝐻′
𝑖, 𝑗

= 𝐴′
𝑖, 𝑗
−Δ𝑉 ′

𝑖−1, 𝑗

Δ𝑉 ′
𝑖, 𝑗

= 𝐴′
𝑖, 𝑗
−Δ𝐻′

𝑖, 𝑗−1

Δ𝐸′
𝑖, 𝑗

= max{𝐴′
𝑖, 𝑗
,Δ𝐸′

𝑖−1, 𝑗 + 𝑜} −Δ𝐻
′
𝑖, 𝑗−1

Δ𝐹′
𝑖, 𝑗

= max{𝐴′
𝑖, 𝑗
,Δ𝐹′

𝑖, 𝑗−1 + 𝑜} −Δ𝑉
′
𝑖−1, 𝑗

(2.4)

where Δ𝐻′
𝑖, 𝑗

and Δ𝑉 ′
𝑖, 𝑗

only depend on new 𝐴′
𝑖, 𝑗

and previous Δ𝑉 ′
𝑖−1, 𝑗 and Δ𝐻′

𝑖, 𝑗−1, respectively.

Likewise, Δ𝐸′
𝑖, 𝑗

and Δ𝐹′
𝑖, 𝑗

can be calculated by the old Δ𝐻′
𝑖, 𝑗−1 and Δ𝑉 ′

𝑖−1, 𝑗 from the previous

19

Q
u

e
ry S

e
q

.

Ref. Seq.

Updated cells Wavefront cellsInactivated cells Un-updated cells

(a) Original Full DP

Q
u

e
ry S

e
q

.

Ref. Seq.

E, F, H A, ∆H, ∆V, ∆E, ∆F A’, ∆H’, ∆V’, ∆E’, ∆F’
Q

u
e
ry S

e
q

.

Ref. Seq.

(b) Banded Difference-based DP (c) Adaptive Banded Parallelized DP

Optimal path

Hleft > Hright

Hleft < Hright

Figure 2.4: Illustration of three variants of DP alignment algorithms. Bandwidth 𝐵 = 6 in (b)
and 𝐵 = 3 in (c).

iteration. In this case, the relaxed data dependency between four alignment matrices provides

higher computation parallelism. After obtaining 𝐴′
𝑖, 𝑗

, the computation of Δ𝐻′
𝑖, 𝑗

, Δ𝑉 ′
𝑖, 𝑗

, Δ𝐸′
𝑖, 𝑗

, and

Δ𝐹′
𝑖, 𝑗

can be conducted in parallel to shorten the processing latency. We call this the alignment

matrix level parallelism. The data range of four alignment matrices is shifted to [0, 𝑀 +2𝑜+2𝑒]

from [−𝑜− 𝑒,𝑀 + 𝑜+ 𝑒], requiring the same bit width as Eq. (2.2).

The banded alignment [52] significantly reduces the complexity based on the observation

that the optimal alignment path normally locates not far away from the diagonal of alignment

matrices. The reduction is achieved by limiting the cells in alignment matrices that need to be

computed. Figure 2.4-(b) shows the banded DP alignment that only computes the cells located

within a bandwidth 𝐵 = 6 of the diagonal, whereas the rest cells are inactivated. In this way, only

𝐵 wavefront cells (the cells that are updated simultaneously) are computed and moved over the

main diagonal in each iteration. Bandwidth and wavefront direction are the two key factors that

determine the accuracy and efficiency of banded alignment. The adaptive banded parallelized

alignment adopted by RAPIDx is adaptive in the sense of bandwidth and wavefront direction as

follows:

20

Table 2.1: Comparison of DP alignment algorithms in Figure 2.4

Algorithm Complexity Critical AccuracyComputation Memory Path
Full DP O(𝑚𝑛) O(𝑚𝑛) 5×32 bit High

Banded Difference-based DP O(𝑚𝐵) O(𝑚𝐵) 8×5 bit Low
Adaptive Banded Parallelized DP O(𝑚𝐵) O(𝑚𝐵) 4×5 bit High

Adaptive Bandwidth

A narrow bandwidth 𝐵≪𝑚,𝑛 helps to perform a low-complexity alignment as the banded

DP has O(𝑚𝐵) complexity. To balance the algorithm efficiency and accuracy, the bandwidth 𝐵

used in RAPIDx is adaptive based on the processed sequence length. The other factor to consider

when choosing the bandwidth is the inflexibility of ReRAM-based PIM. The proper bandwidth

needs to be determined before alignment computation. To this end, we express the relationship

between bandwidth 𝐵 and sequence length 𝐿 as 𝐵 = min(𝑤 +0.01× 𝐿,100), where 𝑤 denotes

the base bandwidth that determines the narrowest bandwidth while 𝐵 is set to the multiple of 𝑤.

The function limits the maximum bandwidth to 100 because previous BWA-MEM [39] shows

𝐵 = 100 is enough to guarantee optimal alignment for all sequence lengths. On the other hand, a

band with less than 20 is enough for over 99% cases as demonstrated in [51] but a too narrow

band may not guarantee the optimality of alignment for long reads. This is because current

long-read techniques (see Table 2.2) incur much more errors and the narrow band can not fully

cover the optimal path. Thus, we empirically select the 0.01 coefficient to adaptively determine

the minimum bandwidth that provides negligible degradation according to 𝐿. Based on the

length of the given sequences, the bandwidth 𝐵 can be pre-determined before alignment. We

provide detailed experiments in Section 2.6.2 to guide the selection of the 0.01 coefficient and

the best 𝑤 that only introduce negligible accuracy loss.

Adaptive Wavefront Direction

The wavefront cells in Figure 2.4-(b) and (c) can move either rightward or downward

in each iteration. The alignment tools, like Minimap2 [8] and BWA-MEM [39], mostly use a

21

pre-defined direction in Figure 2.4-(b), such that the wavefront moves towards the main diagonal.

When we use narrow bandwidth (𝐵 = 3) in Figure 2.4-(c), simply computing the wavefront over

the main diagonal may not obtain the optimal results because the fixed wavefront direction

lacks flexibility and is unable to cover the optimal path. To this end, we use a simple adaptive

wavefront direction scheme to dynamically adjust the moving direction of wavefront cells as in

Figure 2.4-(c). The direction is decided based on the comparison result of two edge cells in the

band of score matrix. Specifically, if the value of the rightmost cell is greater than the leftmost

cell, this suggests the optimal path is more likely to go rightward [73]. Hence, the current

wavefront is moved rightward. Otherwise, the wavefront is moved downward. The adaptive

wavefront direction scheme only needs one comparison each iteration but effectively improves

the accuracy of long-read alignment according to our test results in Table 2.5.

We conduct an algorithmic analysis for the aforementioned DP algorithms and compare

their complexity, data parallelism, and critical path in Table 2.1. The critical path is defined as the

longest data path needed to accomplish one iteration of cell updating. Thanks to the alignment

matrix parallelism, the proposed adaptive banded parallelized alignment only needs half of the

critical path of Eq. (2.2). More importantly, the adaptive wavefront direction compensates for

the accuracy loss caused by narrow bandwidth, allowing the proposed algorithm to generate

near-optimal results using near-linear complexity.

2.5 In-Memory Architecture of RAPIDx

We propose the PIM-based ReRAM accelerator, RAPIDx to implement the adaptive

banded parallelized DP alignment in Section 2.4. RAPIDx utilizes the in-site PIM-based

alignment algorithm and the efficient data flow with four-level parallelism to boost alignment

process.

22

1 1

1 0

10

Column MUX

SA

Computation Memory

(CM) Traceback Memory

(TBM)

W
D

D Interleaved Bit-serial
Max Finder

Traceback
Logic

MAX

Shifter

SA

TBMWDD

Max

Finder

Max

Finder

Max

Finder
…

…

…

k

1 1 1

SA: Sense Amplifier

WL: Word Line WDD: WL Decoder + Driver

Global I/O Buffer

G
lo

b
a

l R
o

w
 D

riv
e
r

Tile Tile

1 1

1 0

10

1 2 3

4

TileTile

Tile Tile

…

…

…

… … 2KB

Seq. Buffer
Peripheral Circuits

Buf

H-tree Connection

Figure 2.5: RAPIDx architecture. 1 ReRAM memory organization of RAPIDx. 2 Internal
architecture of RAPIDx tile. 3 Peripheral circuits (shifter, interleaved bit-serial max finder, and
traceback logic). 4 Interleaved bit-serial max finder.

2.5.1 Overview

As shown in 1 of Figure 2.5, RAPIDx is a ReRAM-based PIM accelerator for genome

sequence alignment. The algorithm in Section 2.4.2 exhibits various data parallelisms, including

wavefront and alignment matrix levels. RAPIDx is organized in a multi-level hierarchy to extend

the data parallelism. RAPIDx consists of 64 tiles, each RAPIDx tile independently receiving

and transferring genome data through global I/O buffer and global row driver. The read genome

sequences are stored in the sequence buffer within each tile. To minimize the data movement, the

forward DP cells updating and traceback computation happen locally in each tile. There is no

communication between tiles. We conduct design space exploration in Section 2.6.3 to choose

the hardware configurations resulting in the best efficiency.

Figure 2.5- 2 shows the internal structure of RAPIDx tile, where one computation memory

(CMs) and multiple traceback memories (TBMs) are implemented. One CM is connected to 15

TBMs through the H-tree connection, allowing low-latency and high-bandwidth data transfer

between CMs and TBMs. The number of TBM is more than CM because most of the memory is

used for storing traceback information. Each CM fetches the reference and query sequences from

the 2KB sequence buffer. Then CM calculates 𝐴′, Δ𝐻′, Δ𝑉 ′, Δ𝐸′, and Δ𝐹′ matrices in Eq. (2.4)

using PIM-based XOR and addition operations combined with peripheral circuits. Each CM

is able to access TBMs and transfer traceback data through the H-tree routing. Although the

23

ReRAM subarray exhibits high data parallelism, some computations of alignment and traceback

can not be efficiently realized in CM. For example, finding the point-wise maximum values of

two vectors in [3] is complex, requiring both leading one detector and bit-wise logical operations.

PIM operations [53] is unable to support low-latency traceback in Eq. (2.5) as well as the adaptive

wavefront direction scheme. In RAPIDx, we connect peripheral circuits to sense amplifier

(SA) and offload these operations to the peripheral circuits, consisting of the shifter, interleaved

bit-serial max finder, and traceback logic as shown in Figure 2.5- 3 and 4 .

In the peripheral circuits, we identify the max finder accounts for the largest area and

has the most complex structure. The design of max finder faces several challenges. First, the

additional overhead should be as low as possible to ensure not significantly sacrificing ReRAM

memory density. Second, the max finder should match the processing rate of CM while minimally

impacting the overall throughput. The max finding scheme in [3] incurs long latency. We

further reduce the latency by offloading the max finding to the interleaved bit-serial max finder in

Figure 2.5- 4 . The interleaved bit-serial max finder is composed of 𝑘 bit-serial max finders and

the width 𝑘 equals to the SA’s bit width. This is to match the data rate of SA. The classic bit-serial

max finder receives 2-bit input in parallel. However, only 1-bit data of multiple data points

in the same vector can be read from CM through SA due to CM’s bit-serial data organization.

Hence, we add a latch and MUX before the input of bit-serial MAX finder to make it support the

comparison of bit-serial data.

2.5.2 Data Flow with Four-level Data Parallelism

To fully exploit the acceleration opportunities and increase throughput, RAPIDx achieves

four-level parallelism, namely tile level, sequence level, wavefront level, and alignment matrix

level, as illustrated in Figure 2.6. On the host side, query reads are seeded and filtered in a

batched processing manner. Then the resulted 𝑘𝑡 batches of reference and query pairs are sent

to RAPIDx, where 𝑘 denotes the number of memory segments in Figure 2.6-(b) and 𝑡 denotes

the number of tiles. The 𝑘𝑡 batches of reference and query data are evenly distributed to each

24

2-bit

B columns

∆H’

∆V’

∆E’

5-bit

Sequence
Rows

Processing

Rows

R-i Wavefront

Q-i Wavefront

s’(i,j)

A’

∆F’

2-bit

5-bit

5-bit

5-bit

5-bit

5-bit

Intermediate data rows:

Copy

1

2

3

Switches:

...
Memory

Segment

k

Memory

Segment

1

B columns

(b) (c)

Reference Genome

Tile

1 H 32-bit4

B columns

Tile

2

Tile

t
...

Reserved

Rows

R-kR-2R-1 ...

Q-kQ-2Q-1 ...

Ref. Batch:

Query Batch:

(a)

Query Reads

RAPIDx

Host

Seeding &

Filtering

Q-1 Q-ktQ-2 Q-2 ...

R-1..k

Q-1..k

R-k(t-1)..kt

Q-k(t-1)..kt

...

...

Ref. Batches:

Query Batches:

Figure 2.6: Four-level data parallelism and in-memory alignment in RAPIDx: (a) Tile-level
parallelism. (b) Batched alignment in CM using sequence-level parallelism, (c) PIM-based
in-situ banded parallelized alignment in each memory segment of CM.

tile. The tile-level parallelism enables different RAPIDx tiles to process and align 𝑘 independent

sequences in parallel, allowing the performance of RAPIDx to scale almost linearly with the

number of implemented tiles. The CM subarray with size 1024× 1024 used in this chapter

introduces long latency due to the slow PIM operations [53]. The genome sequences in each CM

are processed in batch to amortize the long latency of PIM. As illustrated in Figure 2.6-(b), each

CM processes a reference and a query batch with batch size 𝑘 . The CM is horizontally divided

into 𝑘 memory segments to compute the 𝑘 pairs of reference and query sequences in parallel.

The column width of each memory segment equals the bandwidth 𝐵 of banded alignment. Hence,

there are at most ⌊ 1024
𝐵
⌋ memory segments.

RAPIDx achieves wavefront-level and alignment matrix-level parallelism in the memory

segments of CM. The wavefront-level parallelism is based on the fact that the cells over anti-

diagonal have no data dependency since they only depend on the cells in the previous diagonal.

The row-parallel operations of ReRAM subarray compute and update the 𝐵 wavefront cells over

the anti-diagonal in Figure 2.4-(c) simultaneously. Meanwhile, the relaxed data dependency of

parallelized alignment in Eq. (2.4) provides the alignment matrix-level parallelism, where Δ𝐻′
𝑖, 𝑗

,

25

Δ𝑉 ′
𝑖, 𝑗

, Δ𝐸′
𝑖, 𝑗

, and Δ𝐹′
𝑖, 𝑗

can be computed in parallel.

2.5.3 In-memory Alignment

Forward DP Updating

As shown in Figure 2.6-(c), the data in ReRAM subarray are organized in the bit-serial

manner, where each 𝑏-bit data lies vertically in 𝑏 consecutive rows over the bit line. The rows

of each memory segment are vertically divided into two regions, including sequence rows and

processing rows. The sequence rows are used for storing genome bases of reference and query.

Before starting the wavefront cells updating, the genome bases related to 𝐵 wavefront cells are

fetched from the sequence buffer and written to the sequence rows. Since each genome base,

A,G,C,T, is encoded with 2-bit data, the sequence rows occupy 4 memory rows. The rest of

memory rows work as processing rows and reserved rows, which are responsible for updating

wavefront cells of 𝐴′
𝑖, 𝑗
,Δ𝐻′

𝑖, 𝑗
,Δ𝑉 ′

𝑖, 𝑗
,Δ𝐸′

𝑖, 𝑗
,Δ𝐹′

𝑖, 𝑗
in Eq. (2.4) using PIM operations [53]. The

processing rows are partitioned into five partitions by switches and 𝐴′
𝑖, 𝑗
,Δ𝐻′

𝑖, 𝑗
,Δ𝑉 ′

𝑖, 𝑗
,Δ𝐸′

𝑖, 𝑗
,Δ𝐹′

𝑖, 𝑗

are stored and processed in each partition. Intermediate data rows are inserted into the processing

rows to store constant values and intermediate results during computation. The constants used

for comparison and subtraction when updating the DP alignment include 2𝑜+2𝑒 and 𝑜. These

pre-defined values are replicated and pre-stored in the reserved rows. PIM operations can directly

access these values whenever needed. Specifically, the forward DP updating is computed in the

following orders:

1. First, the 5-bit data 𝑠′(𝑖, 𝑗) are computed by comparing reference and query wavefront

sequences (see 1 of Figure 2.6-(c)). 𝑠′(𝑖, 𝑗) requires one comparison and addition to

generate the match or mismatch score. The comparison between genome bases is done

using 2-bit XOR operations.

2. Second, 𝐴′
𝑖, 𝑗

is obtained from the maximum value of 𝑠′(𝑖, 𝑗), Δ𝐸′
𝑖−1, 𝑗 , and Δ𝐹𝑖, 𝑗−1 as shown

in 2 of Figure 2.6-(c). Two max operations are needed in this step.

26

Sequence Buffer

Shifter

Q
u

e
ry

Reference

2A
T
G

T
T

A
T

0 -4

-2 -4

-2

-4

-6 -8

A T C G T C C

-2

-6 -4

A T C G T C C
A T G TT A T

Score Matrix H

Traceback Matrix

T C G
T G T

-8 -4 -4

A T C
G T A

-4 -2 -4

A T C
T G T

-6 -6 0H

Flags
0

0

0

1

0

0

0

1

1

0

0

0

0

0

0

1

0

0

0

1

0

1

0

0

0

0

0

1

0

1

0

0

1

0

0

0

Traceback Logic

CM

Figure 2.7: Illustration of adaptive wavefront direction and traceback process using peripheral
circuits.

3. Third, four copies of 𝐴′
𝑖, 𝑗

are written to the intermediate data rows with respect to

Δ𝐻′
𝑖, 𝑗
,Δ𝑉 ′

𝑖, 𝑗
,Δ𝐸′

𝑖, 𝑗
, and Δ𝐹′

𝑖, 𝑗
as 3 of Figure 2.6-(c).

4. Third,Δ𝐻′
𝑖, 𝑗

andΔ𝑉 ′
𝑖, 𝑗

are updated in parallel using copied 𝐴𝑖, 𝑗 and previousΔ𝑉 ′
𝑖−1, 𝑗 ,Δ𝐻

′
𝑖, 𝑗−1.

Meanwhile, Δ𝐸′
𝑖, 𝑗

and Δ𝐹′
𝑖, 𝑗

are updated in parallel based on copied 𝐴′
𝑖, 𝑗

and Δ𝐸′
𝑖−1, 𝑗 ,

Δ𝐹′
𝑖, 𝑗−1, Δ𝐻′

𝑖, 𝑗−1, Δ𝑉 ′
𝑖−1, 𝑗 of the previous iteration. This step needs four subtractions, two

additions, and two max operations.

5. Finally, the alignment score matrix 𝐻𝑖, 𝑗 need to be retrieved using the function 𝐻𝑖, 𝑗 =

𝐻𝑖−1, 𝑗 +Δ𝐻𝑖, 𝑗 = Δ𝐻′
𝑖, 𝑗
− (𝑜+𝑒) +𝐻𝑖−1, 𝑗 , which requires one 5-bit subtraction and one 32-bit

addition.

27

Adaptive Wavefront Direction

After wavefront cells are computed, the band will move either downwards or rightwards

by one cell. Figure 2.7 illustrates how the wavefront with bandwidth 𝐵 = 3 is moved using

peripheral circuits, where the wavefront direction is controlled by the shifter and sequence buffer.

The max finder first compares the leftmost and rightmost cells in score matrix 𝐻, determining

the next direction for wavefront. Then, the shifter receives the direction signal and reads the

corresponding genome sequence from the sequence buffer. If the wavefront is moving rightwards,

the shifter fetches reference data. Otherwise, it fetches query data. After shifting to the position

of wavefront cells, the new genome sequence is written to the sequence rows within CM. In this

way, the majority of computation data stay stationary in CM using in-situ PIM-based alignment,

reducing the data movement overhead.

Traceback Process

Each iteration of DP alignment is followed by updating traceback matrix. Eq. (2.1)

can easily compute the traceback matrix through comparing the corresponding values of three

alignment matrices 𝐼, 𝐷, and 𝐻. However, the difference-based DP alignment in Eq. (2.2) and

Eq. (2.4) only store the difference values and do not explicitly give the score matrix 𝐻. Therefore,

we modify the formula of generating traceback information of the original DP to calculate the

traceback matrix 𝑇𝐵 as the following equation:

𝑇𝐵𝑖−1, 𝑗−1 =



00, if 𝑠′
𝑖, 𝑗

== (𝐴+ 𝑜+ 𝑒) or (−𝐵+ 𝑜+ 𝑒)

01, if Δ𝐻′
𝑖, 𝑗

== Δ𝐸′
𝑖−1, 𝑗 −Δ𝑉

′
𝑖−1, 𝑗

10, if Δ𝐻′
𝑖, 𝑗

== Δ𝐹′
𝑖, 𝑗−1−Δ𝐻

′
𝑖, 𝑗−1

11, if others

(2.5)

where two subtractions and four comparisons are needed. 00, 01, and 10 denote the cases of

match or mismatch, deletion, and insertion, respectively.

28

As shown in Figure 2.7, to efficiently implement Eq. (2.5) in memory, the traceback logic

in 4 of Figure 2.5 reads out the 4-bit flags that indicate the traceback information from CM in a

bit-serial order. Then the traceback logic converts the 4-bit flags into 2-bit traceback data and

stores them into TBM. Since there will be only one “1” in the 4-bit flags. The conversion from

4-bit flags to 2-bit data is accomplished by implementing one hot encoders within the traceback

logic.

2.5.4 Reconfigurable Design with Dynamic Precision

The sequence alignment and edit distance calculation follow the same data flow of forward

cell updating. The difference between alignment and edit distance calculation is the used scoring

function. The scoring function of edit distance computation normally requires lower data bit

width than alignment workloads. RAPIDx is reconfigurable to support these two workloads by

adopting two types of PIM precisions. Moreover, we leverage the precision difference to further

improve the performance of edit distance calculation.

Alignment Computation

For different alignment tools and target genomes to be aligned, various scoring functions

with affine gap penalties may be applied. For example, BWA-MEM [39] uses a matching

score 𝐴 = 1, mismatch penalty 𝐵 = 4, gap open penalty 𝑜 = 6, and gap extension penalty

𝑒 = 1. The other popular alignment tool, Minimap2 [8], uses a default scoring function with

𝐴 = 2, 𝐵 = 4, 𝑜 = 4, 𝑒 = 2. According to Section 2.4, the minimum data width should satisfy

⌈log2(𝑀 + 2𝑜 + 2𝑒 + 1)⌉. For most scoring functions with affine gap penalties, a 5-bit PIM

precision is able to realize accurate alignment without overflow.

Edit Distance Calculation

Edit distance (or Levenshtein distance) is a metric to measure the minimum number

of deletion, insertion, and substitution required to transform one string to the other one.

Edit distance calculation can be regarded as a simplified version of sequence alignment,

29

where the matching score is 0 while mismatch/gap opening/gap extension penalties are all

1. ⌈log2(𝑀 + 2𝑜 + 2𝑒 + 1)⌉ = 3-bit data width provides sufficient precision for edit distance

calculation. Therefore, RAPIDx decreases the arithmetic precision from 5-bit to 3-bit when

computing edit distance. This is beneficial to further improve throughput and reduce energy

dissipation.

RAPIDx realizes the switching between the mentioned two types of PIM precisions

through issuing different sets of commands to CMs. The commands for 3-bit and 5-bit precisions

differ in they activate and access different ReRAM rows in CM to realize different computing

precisions. So the overhead of PIM precision switching is negligible.

2.6 Evaluation

2.6.1 Experimental Setup

Methodology: We use VTEAM [69] with 𝑅𝑂𝐹𝐹 = 300𝑘 and 𝑅𝑂𝑁 = 10𝑘 to model

ReRAM cell. The other parameters are same with [66] that align with the practical ReRAM

device [74]. The energy consumption and latency of PIM operations in RAPIDx are measured

based on 10,000 Monte Carlo simulations in SPICE. The operation voltage of PIM is 𝑉0=1V,

and the worst-case switching latency is 2ns. The hardware parameters of ReRAM subarray are

obtained from NVSim [75]. Its peripheral circuits, including shifter, interleaved bit-serial max

finder, and traceback logic, are implemented using Verilog and synthesized by Synopsys Design

Compiler on 45nm process node [76]. The area and energy consumption of sequence buffer are

estimated using CACTI [77]. RAPIDx’s frequency is set to 500MHz, matching the switching

time of ReRAM device. We also develop a in-house simulator to estimate the genome alignment

performance and energy consumption.

RAPIDx Configurations: Total 64 tiles are implemented in RAPIDx and each RAPIDx

tile has 2MB size, containing one CM and 15 TBMs. Each ReRAM subarray consists of

1024×1024 cells and the width of column MUX output is 128-bit. The parameter selection is

30

Table 2.2: Error rates of generated datasets

Type Substitution Insertion Deletion Total
PacBio 1.5% 9.0% 4.5% 15%

ONT 2D 16.5% 5.0% 8.5% 30%
Illumina 3% 1% 1% 5%

Table 2.3: Hardware specifications of CPU and GPU baselines

CPU Intel Xeon E5-2680 GPU Geforce GTX 1080 Ti12 cores / 24 threads / 2.5GHz
Cache L1/L2/L3: 32KB/256KB/30MB Frequency 1582 MHz

Memory 256GB / DDR4-2133MHz Memory 11GB GDDR5X
TDP 120W TDP 250 W

discussed in Section 2.6.3. The arithmetic precision is set to 5-bit for sequence alignment and

3-bit for edit distance calculation, which avoids overflow and maximizes the performance.

Datasets: We test RAPIDx’s performance on both short and long reads. The sequence

length of short reads ranges from 100bp to 500bp while the long reads vary from 2kbp to 10kbp.

We use the homologous chromosomes, GRCh38 [78], from the National Center for Biotechnology

Information (NCBI). The chromosomes, including 1 to 22, X, and Y, are used and the unmapped

contigs are removed. These chromosomes contain 3 billion bp in total. The available memory

space in RAPIDx is not able to store the entire genome. We assume RAPIDx fetches the query

and reference sequences from the host memory for alignment.

As in Table 2.2, we generate the long-read data (PacBio and ONT datasets) using the

sequence read simulator PBSIM [79]. PacBio and ONT have 15% and 30% error rate, respectively.

PBSIM’s default error profile and continuous long read (CLR) mode are used. The short-read

Illumina datasets are produced by Mason [80] with 5% error rate. Both RAPIDx and other

baselines are tested using at least 100,000 reads for each length.

Baselines: We compare the alignment performance of RAPIDx with state-of-the-art

CPU, GPU, PIM, and ASIC accelerators. The CPU baselines include two libraries developed

using C++, Minimap2 [8] and Edlib [11]. Minimap2 utilizes banded DP algorithms with affine

gap penalties and adopts SIMD and multithreading to maximize the performance. Edlib is a C++

31

Table 2.4: Specifications of ASIC baselines

Design ABSW [10] GenASM [10]

Specifications 40nm with 480MHz frequency 28nm with 1GHz frequency
Area: 5.51mm2, Power: 1.2W Area: 10.69mm2, Power: 3.2W

program that makes use of edit distance and Myers’s bit-vector algorithm [55] to parallelize the

alignment and distance computation. The GPU baseline, GASAL2 [7], is optimized for GPU and

delivers high throughput on various alignment workloads. We compile and run the programs

on a server with hardware specifications in Table 2.3. The other parameters are the same as

the original papers [7, 8, 11] without explicit specifications. We compare RAPIDx with four

PIM designs, including RAPID [3], AlignS [4], AligneR [5], and PIM-Aligner [6]. We also

compare RAPIDx with two ASIC accelerators, ABSW [10] and GenASM [9]. ABSW adopts

the adaptive banded DP alignment algorithm with affine gap penalties based on 12-bit integers.

Instead of using the DP-based alignment algorithms, GenASM exploits a modified approximate

string matching algorithm to increase the parallelism and reduce memory footprint. Table 2.4

summarizes the area, frequency, and power consumption of ABSW and GenASM.

2.6.2 Algorithm Validation

The bandwidth of adaptive banded DP alignment is key to the alignment accuracy and

efficiency. The base bandwidth 𝑤 in the bandwidth calculation function 𝐵 = min(𝑤 + 0.01×

𝐿,100) determines the resulted bandwidth for sequence length 𝐿. Large 𝑤 guarantees high

alignment accuracy but increases the required computation and memory complexity.

We perform Monte Carlo simulations to validate the accuracy of adaptive banded

parallelized DP alignment using different parameters. The alignment results of original DP with

affine gap penalty in Eq (2.1) are regarded as the ground truth. Both of the tested algorithm adopt

the identical scoring function 𝐴 = 2, 𝐵 = 4, 𝑜 = 4, 𝑒 = 2 with Minimap2 [8]. We randomly sample

1,000,000 short and long sequence reads from the read simulator. Illumina and ONT 2D in Table

2.2 are adopted as the reading scheme for short reads and long reads, respectively.

32

Table 2.5: Alignment accuracy of banded DP algorithms

Read Type Adaptive Base bandwidth 𝑤

Wavefront 10 20 30 40 50
Short Read No 100.0% 100.0% 100.0% 100.0% 100.0%
(Illumina) Yes 100.0% 100.0% 100.0% 100.0% 100.0%
Long Read No 6.51% 39.69% 31.33% 61.44% 71.13%
(ONT 2D) Yes 99.23% 99.64% 99.85% 99.85% 99.95%

Table 2.5 gives the alignment accuracy, where the base bandwidth 𝑤 is ranging from

10 to 50 and the bandwidth is calculated by 𝐵 = min(𝑤 +0.01× 𝐿,100). We also add another

dimension that enables or disables the adaptive wavefront direction. The results show that the

accuracy for short read is all 100% even without adaptive wavefront direction. This is because

Illumina only incurs 5% error. For long reads, the algorithm without adaptive wavefront direction

yields unsatisfactory accuracy. Increasing 𝑤 to 50 only yields 71.13% accuracy. This is because

ONT 2D has lower reading quality, making the optimal alignment path more likely to be away

from the diagonal. The fixed wavefront direction is unable to track and cover the optimal path.

After enabling adaptive wavefront direction, a base bandwidth 𝑤 of 10 achieves 99.23% accuracy.

It is observed that the optimal 𝑤 varies for reading schemes and sequence lengths. To balance

alignment efficiency and accuracy, we choose 𝑤 = 10 for short reads and 𝑤 = 30 for long reads,

which incurs 0.15% accuracy degradation.

2.6.3 Design Space Exploration

ReRAM Subarray Size

The ReRAM subarray size determines the memory density. The parasitic wire resistance is

a major factor limiting the ReRAM size [66]. To study the impact of non-ideal wire resistance, we

use the same model in [66] and assume the unit wire resistance between row or column is 𝑅𝑤 = 10Ω.

The upper bound and lower bound of three critical voltages (operation voltage 𝑉0, isolation

voltages 𝑉𝐻𝑆 and 𝑉𝑉𝑆) under different ReRAM array size are depicted in Figure 2.8. It shows the

used 𝑉0 = 1.0V falls in the allowed value range when array size is 1024×1024. The effective

33

0 200 400 600 800 1000 1200
Array Size

0.0

0.5

1.0

1.5

Al
lo

w
ed

 V
ol

ta
ge

 V
al

ue
s

(V
)

Upper bound of V0
Lower bound of V0

Upper bound of VHS

Lower bound of VHS

Upper bound of VVS

Lower bound of VVS

Figure 2.8: The lower bound and upper bound of voltages 𝑉0, 𝑉𝐻𝑆, 𝑉𝑉𝑆 under different ReRAM
array sizes.

ranges for voltages 𝑉𝐻𝑆 and 𝑉𝑉𝑆 show we can set the isolation voltages to 𝑉𝐻𝑆 = 0.2𝑉,𝑉𝑉𝑆 = 1.0𝑉

to satisfy the constraints for size 1024× 1024. Given these results, the wire resistance does

not affect the correct functionality of RAPIDx under ReRAM array size 1024×1024. This is

because: 1. RAPIDx uses 2-input PIM operation to perform alignment, reducing the effects of

wire resistance. 2. The 10kΩ 𝑅𝑂𝑁 is 10× larger than [66], making RAPIDx receive less impact

from the wire resistance. Meanwhile, the chip-verified ReRAM [65] with 1024 dimension also

demonstrates that the ReRAM subarray in RAPIDx is practical to manufacture.

Number of TBMs in Each Tile

The memory complexity of alignment is dominated by traceback data storage because the

traceback data for a batch of sequences need to be stored until all DP alignment steps are finished.

Therefore, each CM can access the memory space of 𝑡 TBMs. The number of TBMs in each tile

determines the supported maximum sequence length of RAPIDx. Each TBM is a 1024×1024

ReRAM subarray, thus each TBM can store 10242

2 points of traceback data, where 2 denotes the

2-bit traceback information. Considering the sequence alignment or edit distance calculation has

34

0

5

10

15

20

25

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

P
a
ra

lle
lis

m

Number of TBM

2k 4k 6k 8k 10k

Figure 2.9: Relationship between maximum sequence-level parallelism and number of TBMs
on long reads.

a bandwidth 𝐵 and sequence length 𝑚, the number of TBMs 𝑡 in each tile, satisfies 𝑚 ≤ 10242

2𝐵 𝑡.

However, the memory requirement increases linearly by 𝑘×when each CM processes 𝑘 sequences

in parallel. In this case, the maximum sequence level parallelism (or the memory segment)

becomes 𝑘 ≤ ⌊ 10242

2𝑚·𝐵 𝑡⌋. On the other hand, 𝑘 will not exceed the maximum segment number

in each ReRAM subarray 𝑘 ≤ ⌊ 1024
𝐵
⌋. Therefore, the relationship between number of TBMs 𝑡,

sequence-level parallelism 𝑘 , and sequence length 𝑚 is given by 𝑘 ≤ min(⌊ 1024
𝐵
⌋, ⌊ 10242

2𝑚·𝐵 𝑡⌋).

The sequence-level parallelism under various sequence lengths and TBM numbers is

given in Figure 2.9. Shorter sequences require less TBMs to achieve the maximum parallelism.

The 𝑘max of sequences longer than 8kbp is limited by ⌊ 1024
𝐵
⌋. As the maximum value of 𝐵 is 100,

⌊ 1024
𝐵
⌋ ≤ 10 for sequences over 8kbp. In this case, the number of TBMs 𝑡, making ⌊ 10242

2𝑚·𝐵 𝑡⌋ > 10,

can not further improve the performance. We implement 𝑡 = 15 TBMs to ensure sufficient

sequence-level parallelism for 10kbp while balancing area overhead. Thus, each RAPIDx tile

consists of 16 ReRAM subarrays.

Column Width of Peripheral Circuits

The peripheral circuits of CM are connected to the column MUX of SA and have the same

width as column MUX. The column width of peripheral circuits is a design parameter affecting

the overall throughput, power, and area. Figure 2.10 shows the comparison of performance for

different widths (from 16 to 256) of peripheral circuits. As shown in Figure 2.10-(a), wider

35

0%

10%

20%

30%

40%

0

2

4

6

8

16 32 64 128 256

N
o

rm
a

liz
e

d
 R

a
ti
o

Column Width

Throughput Area

Power Overhead (%)

(a) Throughput, area, power, and overhead.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

16 32 64 128 256

N
o
rm

a
liz

e
d
 R

a
ti
o

Column Width

Area Efficiency Power Efficiency

(b) Area efficiency and power efficiency.

Figure 2.10: Performance comparison for different column widths of peripheral circuits.

column width leads to higher throughput and the increasing trend of throughput is slightly more

significant than area and power when the width is between 16 and 128. The overhead here

denotes the percentage of peripheral circuits area to single ReRAM subarray. We depict the

area efficiency and power efficiency in Figure 2.10-(b) to understand the relationship between

efficiency and column width. Area efficiency and power efficiency peak at width 128 and 256,

respectively. However, wider width introduces larger area overhead to CM. We choose the column

width of 128 to achieve good tradeoff between efficiency and overhead.

2.6.4 Area and Power Results

The area and power breakdown of RAPIDx is summarized in Table 2.6. The bit-serial

max finder takes up 62.3% area and 61.6% power of the peripheral circuits, respectively. About

16% area of CM is consumed by peripheral circuits. Each RAPIDx tile is composed of 1 CM

and 15 TBMs, consuming 0.637mm2 area and 0.16W power. We measure the power dissipation

of RAPIDx under sequence alignments for long sequence lengths (2kbp to 10kbp) with enabling

the traceback procedure. As a result, the area and power of RAPIDx with 64 tiles in total are

40.8mm2 and 10.3W, respectively.

2.6.5 Performance Evaluation

We measure the performance of RAPIDx on various sequence lengths and compare

with state-of-the-art acceleration solutions for genome sequence analysis. The sequences are

36

Table 2.6: Area and power breakdown of RAPIDx

Peripheral Circuits Area Power
(um2) (mW)

Shifter 542.6 0.03
Max Finder 4, 520.8 2.05

Traceback Logic 1, 872,4 1.21
Others 325.2 0.03
Total 7, 260.9 3.32

Seq. Buffer 8, 492.6 1.5
ReRAM Subarray 38, 395.0 9.76

RAPIDx Area Power
Per tile 637,334.4um2 0.16W
Total 40.8mm2 10.3W

divided into short reads (<1kbp) and long reads (>1kbp). Two types of workloads are considered,

including sequence alignment and edit distance calculations. RAPIDx uses 5-bit integer for

alignment and 3-bit integer for edit distance calculation.

Comparison with PIM Designs

Our previous work, RAPID [3], is also a ReRAM-based PIM design for sequence

alignment. First, we evaluate the reduction of processing latency and energy by adopting the

parallelized DP alignment. The comparison of latency and energy with the original DP alignment

for a single step of cells updating is shown in Figure 2.11-(a). RAPID uses the unoptimized

DP alignment with 32-bit precision. The used PIM operations are the same as RAPIDx. As

a result, the parallelized DP alignment based on difference presentation yields 5.5× latency

reduction and 6.2× energy reduction over the original DP alignment. The latency and energy

consumed by forward DP computation are reduced by 82% and 84% over the previous RAPID,

respectively. The gain comes from the reduced arithmetic precision from 32-bit to 5-bit as well as

the parallelized computation. On the other hand, the reduction of latency and energy for traceback

is less significant. Although the parallelized DP alignment requires less bit width, its traceback is

more complicated and involves more computations than the original DP algorithm. The longest

sequence support by RAPIDx is 10kbp so we test the throughput of RAPID and RAPIDx on

37

5.5

1.0

6.2

1.0 1.0

9.7

0

2

4

6

8

10

12

RAPID RAPIDx RAPID RAPIDx RAPID RAPIDx

Latency Energy Throughput

N
o

rm
a

liz
e

d
 R

a
ti
o

DP Traceback Throughput

(a) Latency, energy, and throughput comparison.

1.00
1.58

1.02

9.30

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

AlignR AlignS PIM-Aligner RAPIDx

T
h
ro

u
g
h
p
u
t
/
W

a
tt

(b) Energy efficiency comparison (in log scale).

Figure 2.11: Performance comparison for PIM designs, including RAPIDx, RAPID [3],
AlignS [4], AligneR [5], and PIM-Aligner [6].

this length in Figure 2.11-(a). RAPIDx yields 9.7× throughput improvement over RAPID due

to the low complexity and high data parallelism provided by adaptive banded parallelized DP

alignment.

In Figure 2.11-(b), we compare the energy efficiency with the other three PIM designs

for short-read alignment, including AlignS [4], AligneR [5], and PIM-Aligner [6]. The read

length is 100bp and the alignment efficiency is measured by the alignment throughput (reads per

second) divided by the power dissipation. RAPIDx delivers 5.9× to 9.3× alignment efficiency

compared to other PIM designs. It should be also noted that the area of mentioned PIM designs is:

RAPIDx (40.8mm2), AlignR (36.1mm2), AlignS (62.5mm2), and PIM-Aligner (59.3mm2). This

shows that RAPIDx achieves 8.4× to 13.3× throughput/W/mm2 efficiency compared to other

designs. This is because the optimized adaptive banded parallelized DP alignment in RAPIDx

38

DP Traceback Throughput

1.0 1.0
1.0

1.0

3.6
2.4

2.5
2.8

128.9 128.9 135.5
131.1

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

100bp 150bp 250bp Average

Sequence Length

T
h
ro

u
g
h
p
u
t
(r

e
a
d
s
/s

)

Minimap2 GASAL2 RAPIDx

Figure 2.12: Alignment throughput comparison of RAPIDx, GASAL2 [7], and Minimap2 [8]
for short reads.

significantly reduces computational complexity over the original full DP algorithm and allows

to fully exploit the internal data parallelism of ReRAM. In comparison, AlignS, AligneR, and

PIM-Aligner realize alignment based on FM-index algorithm, which requires multiple steps of

computation and incurs data dependency [81]. AlignS, AligneR, and PIM-Aligner only support

fixed read length while RAPIDx supports both short reads and long reads, making RAPIDx more

scalable and reconfigurable.

Performance Comparison on Short-read Alignment

For alignment tasks on short reads, the length ranges from 100bp to 250bp and we use

Minimap2 [8] as the CPU baseline and GASAL2 [7] as the GPU baseline. Figure 2.12 depicts

the alignment throughput of RAPIDx, Minimap2, and GASAL2 for short reads in log scale.

The alignment throughputs for three tested accelerators slightly decrease as the sequence length

grows. RAPIDx on average delivers 131.1× and 46.8× throughput over Minimap2 and GASAL2,

respectively. The processing latency of RAPIDx is longer than the other two counterparts due

to the fact that a single PIM operation of RAPIDx requires longer latency than CPU and GPU.

However, the row-parallel PIM operations provide higher computation parallelism. The proposed

multi-level parallelism scheme ensures multiple reference and query sequences can be aligned in

parallel, significantly increasing the data parallelism and PIM utilization. As a result, RAPIDx

39

1.0
1.0

1.0 1.0 1.0

1.0

1.6

1.6
1.5 1.5 1.5

1.6

5.3

3.6

2.5
1.9

1.4

2.9

1.E+03

1.E+04

1.E+05

1.E+06

2kbp 4kbp 6kbp 8kbp 10kbp Average

Sequence Length

T
h
ro

u
g
h
p
u
t
(r

e
a
d
s
/s

) ABSW GenASM RAPIDx

Figure 2.13: Alignment throughput comparison of GenASM [9], ABSW [10], and RAPIDx for
long reads.

achieves an average throughput of 13.9M reads/s for short-read alignment.

DP alignment is computation-intensive and the bottleneck of CPU is the limited computing

cores. Even though GPU has much more computing capabilities than CPU, we observe that

GASAL2 only yields 2.4× to 3.6× speedup over Minimap2 because Minimap2 uses a banded DP

algorithm and multi-threading to reduce the complexity, thus improving the overall throughput.

In comparison, GASAL2 requires more computing resources since it does not finely optimize the

original DP alignment. RAPIDx is an algorithm and hardware co-optimization that addresses the

deficits of Minimap2 and GASAL2.

Performance Comparison on Long-read Alignment

For long reads from 2kbp to 10kbp, ABSW [10] and GenASM [9], are adopted as the

two ASIC baselines. The throughput comparison with ASIC for long-read alignment is shown

in Figure 2.13, where the performance of ASIC baselines is scaled to 45nm process for the fair

comparison. RAPIDx achieves the highest throughput with an average speedup of 2.9× and 1.8×

over ABSW and GenASM, respectively. Due to the limited on-chip memory space, both ABSW

and GenASM are not able to store the entire traceback matrix for long reads. They rely on large

off-chip memory to store the intermediate data. To realize alignment for long sequences, they

use the overlapping scheme [32] to divide the long sequence into short chunks and the neighbor

chunks are overlapped. ABSW and GenASM need to consecutively process the short chunks. As

40

1

1

1

3

4

5

321

301

141

449

421

281

1.E+02

1.E+04

1.E+06

1.E+08

100bp 1kbp 10kbp

Sequence Length

T
h
ro

u
g
h
p
u
t
(r

e
a
d
s
/s

)

Edlib w/ TB Edlib w/o TB RAPIDx w/ TB RAPIDx w/o TB

Figure 2.14: Throughput and latency comparison of RAPIDx and Edlib [11] for edit distance
computation.

a result, the overlapping area incurs additional computational complexity, which degrades the

performance.

ABSW and RAPIDx are based on banded DP algorithms. The difference is that RAPIDx

adopts the optimized 5-bit parallelized DP alignment based on difference representations. ABSW

uses 12-bit precision to ensure arithmetic precision for DP alignment. RAPIDx’s lower bit width

reduces both the complexity and the memory footprint of DP alignment compared to ABSW.

The other limitation of ABSW is it can only process a fixed bandwidth of 128 since a total of 128

processing elements (PEs) are implemented and dedicated to updating the wavefront of banded

alignment. This means ABSW is only able to align one sequence at a time. In contrast, RAPIDx

accepts a batch of sequences and distributes them into different tiles to perform alignment in

parallel.

Performance Comparison on Edit Distance Computation

To evaluate the performance of edit distance calculation, we compare RAPIDx with

Edlib [11] on three lengths (100bp, 1kbp, and 10kbp). Figure 2.14 shows the throughput of

RAPIDx and Edlib with or without traceback process. Knowing the edit distance of two sequences

is enough for some scenarios, without the need for traceback process. So we test the cases

with or without traceback. The throughput of RAPIDx with traceback is 141× to 321× over

Edlib. After disabling the traceback, the speedup of RAPIDx is less significant. 56× to 149×

41

improvements of RAPIDx are observed compared to Edlib. Although Edlib adopts optimized

Myers’s bit-vector algorithm [55] with banded alignment to increase computation efficient, it is

a single-thread program only able to access limited computing resources of CPU. Hence, the

performance dramatically decreases after enabling traceback.

2.6.6 Discussions

Host-RAPIDx System Design

RAPIDx is a PIM-based domain-specific accelerator and works as the domain-specific

co-processor for speeding up computation-intensive genome sequence alignments. We consider a

system that transfers data between RAPIDx and the host. The sequencing and configuration data

are sent from the host to RAPIDx. We estimate the memory bandwidth required by RAPIDx and

the results show that required memory bandwidth decreases when sequence length grows. The

required peak memory bandwidth is 1.41GB/s at 100bp. For the host side, the popular DDR4

Dual-Inline Memory Module (DIMM) that provides over 12.8GB/s data rate can easily satisfy

the bandwidth requirement. The other consideration is the processing latency. As pointed out in

Section 2.6.5, RAPIDx requires longer latency than CPU. Considering that genome sequence

alignment is not a latency-sensitive task, the long latency will not become a major factor that

limits system performance. Hence, RAPIDx can be integrated into existing computer machines

with negligible hardware modifications.

Flexible Scoring Functions

The affine gap penalty of DP alignment will be changed according to different application

scenarios. RAPIDx is able to flexibly support various scoring functions. When the gap open

penalty 𝑜 equals the gap extension penalty 𝑒, the affine gap penalty becomes a linear gap penalty

scoring. If 𝑒 = 0, RAPIDx implements a constant gap penalty where only opening a gap leads to

a penalty, discouraging the number of gaps but tends to result in long gaps. Whereas, if 𝑜 ≠ 𝑒

and both of 𝑜 and 𝑒 are non-zero values, we have affine gap penalty, which is the widely used gap

42

penalty model for genome alignment. The affine gap penalty tries to align the given sequences

with fewer and smaller gaps as compared to the constant gap penalty. No architectural and data

flow modifications need to be made to RAPIDx if we want to switch between different scoring

functions. The support for flexible scoring is realized by setting associated constant values into

the intermediate data rows of CM before alignment.

ReRAM’s Write Endurance

ReRAM cell has limited write endurance, so RAPIDx will fail after exceeding the

endurance limit. As shown in Figure 2.6-(c), the wavefront alignment at each iteration needs to

write the rows in the computing region once. Figure 2.4 shows the required number of iterations

equals to the sum of reference and query sequences’ lengths. We can apply wear leveling

techniques to reduce the imbalance effect, thus extending the write endurance of ReRAM. The

wear leveling is realized via moving the computing region over the row dimension. Specifically,

this can be done through changing the writing address without additional overhead. Moreover,

we observe some ReRAM devices [82] provide 1012 write endurance. In this case, RAPIDx

can align over 1014 sequences with length 150bp. We notice that one of the most advanced

next-generation sequencing (NGS) platforms from Illumina, NextSeq 1000 & 2000, generates a

maximum 1.2 billion reads (each has a length of 150bp) in 11 to 48 hours [24]. Therefore, each

RAPIDx is able to support the alignment task of each NGS sequencer for at least 100 years.

2.7 Conclusion

Chapter 2 presents a novel PIM accelerator, RAPIDx, for sequence alignment. We

leverage the parallelized DP algorithm using difference representation to reduce the required data

width from 32-bit to 5-bit integers. Based on this, we propose adaptive banded parallelized DP

alignment to adaptively adjust the bandwidth and wavefront direction, reducing the quadratic

complexity to near-linear complexity while only incurring 0.15% accuracy degradation. Then

we present the PIM architecture on ReRAM that exploits four-level data parallelism to efficiently

43

implement the proposed algorithm. We develop peripheral circuits and row-parallel PIM data

flow to support in-situ alignment with low latency. The evaluation results demonstrate that

RAPIDx provides 131.1× and 46.8× better short-read alignment throughput compared to CPU

and GPU baselines, respectively. For long-read alignment, RAPIDx delivers up to 2.9× and 9.3×

throughput improvements compared to state-of-the-art ASIC and PIM accelerators.

Genome alignment demonstrates high accuracy across various genome analysis tasks.

However, its substantial memory consumption makes it unsuitable for latency-sensitive scenarios

or resource-constrained hardware. To address these challenges, the next chapter introduces

genome sketching, a more lightweight and memory-efficient approach that enables rapid similarity

estimation without the need for alignment.

This chapter contains material from “RAPIDx: High-performance ReRAM Processing

in-Memory Accelerator for DNA Alignment”, by Weihong Xu, Saransh Gupta, Niema Moshiri,

and Tajana Rosing, which appears in IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 2023. The dissertation author was the primary investigator and author of

this paper.

44

Chapter 3

Memory-efficient Sketching for Genomics

3.1 Introduction

Calculating the Average Nucleotide Identity (ANI) similarity of genome files is the

key step for various downstream workloads in genome analysis, such as large-scale database

search [83], clustering [84], and taxonomy analysis [85]. The ReRAM-based PIM hardware

design, RAPIDx, presented in the previous chapter, can be integrated into traditional BLAST-

based methods [86, 87] that rely on base-level alignment to perform accurate ANI calculations.

However, the alignment process is computationally expensive and requires hours to calculate

ANIs. The slow speed of alignment-based approaches has become a major bottleneck for

large-scale genome analysis.

Several state-of-the-art works have tried to speed up large-scale genome analysis by

approximating the genome similarity using more efficient data structures. These works can be

categorized into two types: mapping-based and sketch-based approaches as follows. FastANI [88]

and Skani [89] are two representative mapping-based algorithms that leverage 𝑘-mer-based align-

ment for ANI estimation. FastANI is built upon the Mashmap sequence mapping algorithm [90]

and achieves a significant speedup compared to the alignment-based baseline [86]. Skani uses

the sparse chaining to increase the sensitivity of the mapping, further improving accuracy and

efficiency of ANI estimation. However, both FastANI and Skani suffer from high memory

consumption. For example, Skani needs to store indexing files with a storage size comparable

45

to the original dataset. FastANI encounters out-of-memory issues on large datasets as reported

in [89].

This chapter presents a more lightweight method, called genome sketching, to address

the aforementioned challenges because it significantly reduces storage size while providing

satisfactory accuracy of estimation [85]. Unlike alignment-based or mapping-based tools [86–89]

that require expensive computation or large memory space, sketch-based approaches [33,34,36,91]

only preserve the most essential features of the genome (called the “sketch”). The sketch’s compact

representation enables rapid and efficient ANI approximation for genome files. Mash [33] and

Sourmash [36] represent groundbreaking efforts to use MinHash [92] and FracMinHash [93,94] to

estimate genomic similarity, respectively. Bindash [35] improves the accuracy of ANI estimation

over Mash by adopting the one-permutation rolling MinHash with optimal densification [95].

Dashing 2 [34] utilizes the SetSketch data structure [96] and incorporates multiplicities to produce

memory-efficient genome sketches and accurate estimation of ANI.

3.1.1 Motivation

By transforming raw genome data into more compact data structures, genome sketching

represents a paradigm shift in bioinformatics, paving the way for more scalable and rapid genomic

analyses in the era of big data. Recent studies on hyperdimensional computing (HDC) have

demonstrated the effectiveness of using HDC to accelerate bioinformatics workloads, such as

pattern matching [97–100] and spectral clustering [101].

Limitations of existing HDC/SimHash-related search algorithms.

Table 3.1 summarizes the key features of state-of-the-art tools that utilize HDC or

SimHash algorithms. GenieHD [99], BioHD [97], and Demeter [100] are three representative

HDC-based tools. Due to the limitation of 𝑁-gram binding-based encoding, existing HDC

tools for genome search only supports short genomes sequences with length ≤ 200. However,

they require very large sketch HV dimension (10k to 100k) to achieve good accuracy, which

46

Table 3.1: Comparison for related work for genome search and seed matching

Algorithm / Tool GenieHD BioHD Demeter BLEND HyperGen
[99] [97] [100] [102] (Proposed)

Encoding method 𝑁-gram 𝑁-gram 𝑁-gram SimHash FracMinHash
HDC binding HDC binding HDC binding HDC

Supported sequence length ≤200 ≤200 ≈150 150-20k Arbitrary
Sketch dimension 100k 10k-40k 40k 30-50∗ 2k-8k
Support ANI estimation? No No No No Yes

Supported Application Containment search Containment search Containment search Seed matching ANI-based search
and clustering

∗ Sketch dimension for each seed.

degradates the overall efficiency. The 𝑁-gram binding-based encoding shows high computational

complexity. In comparison, HyperGen adopts a more efficiency encoding method that combines

FracMinHash and HDC aggregation.

Meanwhile, existing HDC-based tools do not support ANI estimation and ANI-based

search. They can only check the containment of given query. These drawbacks limit their

downstream applications. The other related work is BLEND [102] that uses SimHash to encode

genome seeds. The difference includes: 1. HyperGen and BLEND are for different tasks.

BLEND is used for seed matching while HyperGen is for more general-purpose ANI estimation

and database search, 2. Compared to HyperGen, BLEND uses much smaller sketch dimension

for each seed.

Opportunities and Limitations of DotHash

Recent DotHash [103] shows superior space and computational efficiency for the Jaccard

similarity estimation. DotHash leverages the HDC-based random indexing [104, 105] and is

originally designed for fast set intersection estimation. The main difference between DotHash

and MinHash lies in the format of generated sketch: MinHash represents a sketch as a hash

set with discrete values, while DotHash represents a sketch with a nonbinary vector of high

dimension. DotHash’s vector representation of the sketch achieves faster processing speed since

it can fully exploit the low-level hardware parallelism (such as CPU’s Single Instruction Multiple

Data (SIMD) and GPU) optimized for vector processing.

However, DotHash still suffers from two major limitations that hinder its application

47

to genome sketching. First, DotHash is only applicable to non-genome data since it lacks an

effective 𝑘-mer sampling strategy to generate genomic sketches. Second, DotHash uses high-

precision floating point numbers to represent random vectors, exhibiting large runtime overhead

and slow speed. Our goal is using HDC [103, 106] to achieve better tradeoffs between ANI

estimation accuracy, runtime performance, and memory efficiency over previous sketch-based

tools [33, 34, 36].

3.1.2 Contributions

In this chapter, we propose HyperGen, a novel tool for efficient genome sketching and

ANI estimation. HyperGen exploits the emerging HDC (similar to DotHash [103]) to boost

genomic ANI calculation. Specifically, we optimize DotHash’s efficiency by converting the

sketch generation process into a low bit-width integer domain. This allows us to represent the

genome sketch using the high-dimensional vector (HV) at the cost of negligible runtime overhead.

Based on the HV sketch, we propose an approach to estimate the Jaccard similarity using vector

matrix multiplication. We also introduce a lossless compression scheme using bit-packing to

further reduce the sketch size.

We benchmark HyperGen against several state-of-the-art tools [33, 34, 86, 88]. For ANI

estimation, HyperGen demonstrates comparable or lower ANI estimation errors compared to

other baselines across different datasets. For generated sketch size, HyperGen achieves 1.8× to

2.7× sketch size reduction as compared to Mash [33] and Dashing 2 [34], respectively. HyperGen

also enjoys the benefits of the modern hardware architecture optimized for vector processing.

HyperGen shows about 1.7× sketch generation speedup over Mash and up to 4.3× search speedup

over Dashing 2. To the best of our knowledge, HyperGen offers the optimal trade-off between

speed, accuracy, and memory efficiency for ANI estimation.

48

3.2 Preliminaries

Fast computation of Average Nucleotide Identity (ANI) is pivotal in genomic data analysis

(microbial genomics to delineate species), as ANI serves as a standardized and genome-wide

measure of similarity that helps facilitate genomic data analysis. Popular approaches to calculate

ANI include: alignment [86, 87], mapping [88, 89], and sketch [33, 34, 36, 91]. However, base-

level alignment-based and 𝑘-mer-level mapping-based methods involve either time-consuming

pairwise alignments or memory-intensive mappings. In the following sections, we focus on the

sketch-based ANI estimation with significantly better efficiency.

3.2.1 MinHash and Jaccard Similarity

Existing sketh-based approaches [33, 34, 36, 91] do not directly compute ANI. Instead,

they compute the Jaccard similarity [33], which is used to measure the similarity of two given

𝑘-mer sets. Then the Jaccard similarity is converted to ANI as shown in Eq. (3.8). The

conversion between Jaccard similarity and ANI is computationally trivial, so most efforts in

previous works [33, 34, 36, 91] are to find more efficient and accurate ways to estimate Jaccard

similarity.

Without loss of generality, we denote 𝑘-mer as consecutive substrings with length 𝑘 of

the nucleotide alphabet, e.g.
∑𝑘 = {𝐴,𝐺,𝐶,𝑇}𝑘 . S𝑘 (𝑋) denotes the set of 𝑘-mers sampled

from genome sequence 𝑋 based on a given condition. HyperGen uses 𝑘-mer’s hash to represent

S𝑘 (𝑋) for better efficiency. Therefore, the Jaccard similarity for two sequences, 𝐴 and 𝐵, can be

computed as follows:

𝐽𝑘 (𝐴, 𝐵) =
|S𝑘 (𝐴) ∩S𝑘 (𝐵) |
|S𝑘 (𝐴) ∪S𝑘 (𝐵) |

, (3.1)

where 𝐽𝑘 (𝐴, 𝐵) ∈ [0,1] is the Jaccard similarity indicating the overlap between 𝑘-mer sets of

two sequences. Note that HyperGen uses canonical 𝑘-mers by default.

A straightforward idea to sample 𝑘-mer sets in Eq. (3.1) is to keep all 𝑘-mers. However,

this incurs prohibitive complexity since all unique 𝑘-mers need to be stored. The resulting

49

complexity is O(𝐿) for a sequence of length 𝐿. To alleviate the complexity issue, Mash [33] and

its variants [90, 107] use MinHash [92] to approximate the Jaccard similarity by only preserving

a tiny subset of 𝑘-mers. In particular, Mash keeps 𝑁 𝑘-mers that have the smallest hash values

ℎ(·). In this case, the Jaccard similarity is estimated as:

𝐽 (𝐴, 𝐵) = P(min
𝑎∈𝐴

ℎ(𝑎) = min
𝑏∈𝐵

ℎ(𝑏)). (3.2)

Here, using MinHash helps to reduce the sketch complexity from O(𝐿) to a constant O(𝑁). The

sampled 𝑘-mer set S𝑘 (𝑋) that stores 𝑁 smallest 𝑘-mer hash values is regarded as the genome

file sketch required for ANI estimation.

3.2.2 Jaccard Similarity using DotHash

A recent work [103] demonstrates that the speed and memory efficiency of Jaccard

similarity approximation can be improved by using the DotHash based on Random Indexing [104].

The key step to compute Jaccard similarity in Eq. (3.1) is computing the cardinality of set

intersection |𝐴∩ 𝐵| while the cardinality of set union can be calculated through |𝐴∪ 𝐵| =

|𝐴| + |𝐵 | − |𝐴∩𝐵 |.

In DotHash, each element of the set is mapped to a unique 𝐷-dimensional vector in real

number using the mapping function 𝜙(𝑥). Each set is expressed as an aggregation vector a ∈ R𝐷

such that

a =
∑︁
𝑎∈𝐴

𝜙(𝑎), (3.3)

where the aggregation vector sums all the elements’ vectors generated by the mapping function

𝜙(𝑥). One necessary constraint for function 𝜙(𝑥) is: the generated vectors should satisfy the

quasi-orthogonal properties:

𝜙(𝑎) · 𝜙(𝑏) =


0, if 𝑎 ≠ 𝑏,

1, if 𝑎 == 𝑏.

(3.4)

50

DotHash [103] uses a pseudo random number generator (RNG) as the mapping function

𝜙(𝑥) because the RNG can generate uniform and quasi-orthogonal vectors in an efficient manner.

Using the quasi-orthogonal properties, the cardinality approximation for set intersection

is transformed into the dot product of two aggregation vectors:

|𝐴∩𝐵 | = E[a ·b]

= E

[∑︁
𝑎∈𝐴

∑︁
𝑏∈𝐵

𝜙(𝑎) · 𝜙(𝑏)
]

=
∑︁
𝑎∈𝐴

∑︁
𝑏∈𝐵

1(𝑎 == 𝑏)

=
∑︁

𝑥∈𝐴∩𝐵
1,

(3.5)

where those vectors not in the set intersection (𝑎 ≠ 𝑏) have no contribution to the inner product

due to their quasi-orthogonality as in Eq. (3.4). DotHash effectively aggregates all elements in a

set to form an aggregation vector with 𝐷 dimension. The space and computational complexity of

set cardinality estimation is O(𝐷). Moreover, the computation process of DotHash is highly

vectorized and can be easily boosted by existing hardware architecture optimized for general

matrix multiply (GEMM).

3.3 HyperGen: Memory-efficient Genome Sketching Tool

The aforementioned DotHash provides both good accuracy and runtime performance [103].

However, we observe two major limitations of DotHash: 1. Although DotHash can be used to

calculate the cardinality of set intersection, it cannot be applied to genomic sketching because

DotHash lacks a 𝑘-mer sampling module that identifies the useful 𝑘-mers; 2. The computation and

space efficiency can be further optimized because the previous DotHash manages and processes

all vectors in floating-point (FP) numbers. The mapping function 𝜙(𝑥) incurs significantly

overhead.

51

Hash

RNGBinary
Hypervectors

-mer
Hash Set

Seed

Aggregate

Hash

-mer
Hash Set

-mers Sketch

(a)

(b)

Sketch
Hypervector

-mers

Set Size =

Hypervector dim. =

Set Size =

Figure 3.1: Algorithmic overview for (a) Mash-like sketching, and (b) HyperGen sketching for
genome sequences. Mash stores the genome sketch in a 𝑘-mer hash set with O(𝑁) complexity
while HyperGen aggregates 𝑁 𝑘-mer hashes into a 𝐷-dimensional sketch HV with O(𝐷)
complexity.

We present HyperGen for genomic sketching applications that addresses the limitations

of DotHash. Figure 3.1 shows the algorithmic overview for (a) Mash-like sketching and (b)

HyperGen sketching schemes. The first step of HyperGen is similar to Mash, where both

Mash and HyperGen extract 𝑘-mers by sliding a window through given genome sequences.

The extracted 𝑘-mers are uniformly hashed into the corresponding numerical values by a hash

function ℎ(𝑥). To ensure low memory complexity, most 𝑘-mer hashes are filtered and only a

small portion of them are preserved in the 𝑘-mer hash set to work as the sketch (or signature)

52

Algorithm 1: Generation of sketch hypervector in HyperGen
Input: Genome sequence 𝑋 , Scaled factor 𝑆, Maximum hash value 𝑀 , HV

dimension 𝐷, Pseudo random number generator RNG
Output: Sketch HV H for sequence 𝑋

/* Sampling 𝑘-mers using FracMinHash */

1 S𝑘 ← {}
2 for 𝑘-mer 𝑥 ∈ 𝑋 do
3 if ℎ(𝑥) < 𝑀

𝑆
then

4 S𝑘 ← ℎ(𝑥) ∪S𝑘
/* Hyperdimensional encoding for 𝑘-mer hash */

5 H← 0
6 for 𝑠𝑒𝑒𝑑 ∈ S𝑘 do

// Binary HV encoding for 𝑘-mer hash

7 ℎ𝑣← 0
8 for 𝑖← 1 to 𝐷/64 do
9 𝑟𝑛𝑑← RNG(𝑠𝑒𝑒𝑑)

10 𝑠𝑒𝑒𝑑← 𝑟𝑛𝑑

11 ℎ𝑣𝑖∗64...(𝑖+1)∗64← 𝑟𝑛𝑑

// Binary HV aggregation

12 for 𝑖← 1 to 𝐷 do
13 H𝑖←H𝑖 + (ℎ𝑣𝑖 ×2−1)

of the associative genome sequence. The key difference is that HyperGen adds a key step,

called Hyperdimensional Encoding for 𝑘-mer Hash, to convert 𝑘-mer hash values into binary

hypervectors (HVs) and aggregate to form the 𝐷-dimensional sketch HV. To distinguish itself

from DotHash, the random vector in HyperGen is named HV. Algorithm 1 summarizes the flow

of generating sketch hypervector in HyperGen. In the following sections, we explain the details

of HyperGen.

3.3.1 Step 1: k-mer Hashing and Sampling

Mash uses MinHash that keeps the smallest 𝑁 hash values as the genome sketch. In

comparison, HyperGen adopts a different 𝑘-mer hashing and sampling scheme. Specifically,

HyperGen performs a sparse 𝑘-mer sampling using FracMinHash [93, 94] (instead of MinHash

in Mash). Given a hash function ℎ :
∑𝑘 ↦→ [0, 𝑀] that maps 𝑘-mers into the corresponding

53

nonnegative integer, the sampled 𝑘-mer hash set is expressed as Line 2-4 in Algorithm 1:

S𝑘 (𝐴) = {ℎ(𝑥) | ∀𝑥 ∈ 𝐴 : ℎ(𝑥) ≤ 𝑀

𝑆
}, (3.6)

where 𝑀 is the maximum hash value while 𝑆 denotes the scaled factor that determines the

density of sampled 𝑘-mers in the set. FracMinHash has been widely adopted in other tools,

such as Sourmash [36] and Skani [89], due to its excellent performance. The advantage of

using FracMinHash over MinHash [92] is that it ensures an unbiased estimation of the Jaccard

similarity of 𝑘-mer sets with very dissimilar sizes [93], providing better approximation quality

than MinHash and its variants [33, 90]. However, FracMinHash usually produces a larger hash

set compared to Mash [93], requiring more memory space. Step 2 in HyperGen alleviates the

increased memory issue.

3.3.2 Step 2: Hyperdimensional Encoding for k-mer Hash

In Figure 3.1-(a), after the 𝑘-mer hashing and sampling process, Mash-like sketching

algorithms (such as Mash [33], Sourmash [36], and Mash Screen [108]) directly use the sampled

𝑘-mer hash set as the sketch to compute the Jaccard similarity for given sequences.

In Figure 3.1-(b), HyperGen adds an additional step, called Hyperdimensional Encoding

for 𝑘-mer Hash (Line 5-13 in Algorithm 1), before the sketch is generated. This step essentially

converts the discrete and numerical hashes in the 𝑘-mer hash set to a 𝐷-dimensional and

nonbinary vector, called sketch hypervector. The hypervector dimension 𝐷 is normally large

(1024 to 8192) to ensure good accuracy. In particular, each hash value in the 𝑘-mer hash set

is uniquely mapped to the associated binary HV ℎ𝑣 as Line 6-11 of Algorithm 1. HyperGen

relied on recursive random bit generation to produce binary HVs of arbitrary length: the 𝑘-mer

hash value is set as the initial seed of the pseudo RNG(𝑠𝑒𝑒𝑑) ↦→ 𝑟𝑛𝑑 function. For each iterative

step, a 64b random integer 𝑟𝑛𝑑 is generated using 𝑠𝑒𝑒𝑑. The generated integer 𝑟𝑛𝑑 is not only

assigned to the corresponding bits in ℎ𝑣, but is also set as the next 𝑠𝑒𝑒𝑑.

54

AGACTT

Binary
Hypervectors-mer

Hash Set 0 1 1 0 1 0

1 0 1 0 1 1

0 0 0 1 1 1

1 0 1 1 1 0

-mers

2

1 0

0 0

1 0

1 1

-2 0 -2 2 0 4 0

Sketch
Hypervector

AGACTC

0 1 1 0 1 0

1 0 1 0 1 1

0 0 0 1 1 1

1 1 0 1 1 0

0

1 0

0 0

1 0

0 0

-4 0 0 0 0 4 0

AGA
GAC
ACT
CTT

CTC

AGA
GAC
ACT

Step 1: -mer
Hashing and Sampling

Step 2: Hyperdimensional
Encoding for -mer Hash

Figure 3.2: Sketch hypervector generation and set intersection computation in HyperGen. Each
𝑘-mer with size 𝑘 = 3 first passes through a hash function ℎ(𝑥). The 𝑘-mers (𝐴 = 𝐴𝐺𝐴𝐶𝑇𝑇

and 𝐵 = 𝐴𝐺𝐴𝐶𝑇𝐶) are hashed to hash set. Then each 𝑘-mer hash value is converted into the
associated orthogonal binary HV. The set intersection between two 𝑘-mer hash sets is computed
using Eq. (3.11).

The hash function RNG(·) that maps the 𝑘-mer hash value to the binary HV ℎ𝑣 is the

key component of HyperGen because it determines the speed and quality of genome sketch

generation. The following factors should be considered when selecting a good RNG(·) function:

1. The function needs to be fast enough to reduce the additional overhead for sketch generation.

2. The generated random binary HVs need to be able to provide enough randomness (i.e., the

binary HVs are as orthogonal as possible). This is because binary HVs are essentially random

binary bit streams that need to be nearly orthogonal to each other to satisfy the quasi-orthogonal

requirements. 3. The sketches results should be reproducible (i.e., the identical bit streams

can be generated using the same seed). We adopt a fast and high-quality pseudo RNG1 in Rust

language [109], which passes two randomness tests: TestU01 and Practrand [110]. In this case,

we can use the pseudo RNG to stably generate high-quality and reproducible binary HVs.
1https://github.com/wangyi-fudan/wyhash

55

https://github.com/wangyi-fudan/wyhash

Figure 3.2 shows an example of generating the sketch HVs with dimension 𝐷 = 8 for

two genome sequences based on 𝑘-mer size 𝑘 = 3 and 𝑘-mer hash set size 𝑁 = 4. Each sampled

𝑘-mer hash value in the hash set is converted to the corresponding binary HV ℎ𝑣 ∈ {0,1}𝐷 using

the function RNG(𝑥). Then, all 𝑁 binary HVs are aggregated into a single sketch HV H ∈ Z𝐷

based on the following point-wise vector addition:

H =

𝑁∑︁
𝑖=1

ℎ𝑣𝑖 ×2−1, (3.7)

where the binary HV ℎ𝑣 ∈ {0,1}𝐷 is first converted to {−1,+1}𝐷 . ℎ𝑣𝑖 denotes the 𝑖-th binary

HV in the set. Then all binary HVs in the set are aggregated together to create the corresponding

sketch HV. Compared to Mash-liked sketching approaches [33, 36, 93], HyperGen is more

memory efficient because the sketch HV format is more compact with O(𝐷) space complexity,

which is independent of the 𝑘-mer hash set size 𝑁 . Meanwhile, HyperGen’s hyperdimensional

encoding step helps to achieve better ANI similarity estimation quality (see Section 3.4).

3.3.3 Step 3: ANI Estimation using Sketch Hypervector

The generated sketch hypervector can be used to efficiently estimate the ANI similarity.

HyperGen estimates ANI value using the same approach in [33]. The ANI under the Poisson

distribution is estimated as:

ANI(𝐴, 𝐵) =
(
1+ 1

𝑘
· log

2 · 𝐽𝑘 (𝐴, 𝐵)
1+ 𝐽𝑘 (𝐴, 𝐵)

)
×100, (3.8)

where 𝐽𝑘 (𝐴, 𝐵) denotes the Jaccard similarity between genome sequence 𝐴 and sequence 𝐵

while 𝑘 is the 𝑘-mer size.

Therefore, ANI estimation in HyperGen becomes calculating Jaccard similarity based on

sketch HVs. Eq. (3.1) shows that the intersection size and the set size of two 𝑘-mer hash sets are

the keys to calculating the Jaccard similarity. For ℎ𝑣𝑖 ∈ {−1,+1}𝐷 , the cardinality of a set S𝑘 (𝐴)

56

is computed as follows:

|S𝑘 (𝐴) | =
∥H𝐴∥22
𝐷

=

∑𝑁
𝑖=1∥ℎ𝑣𝑖∥22

𝐷
=
𝑁 ·𝐷
𝐷

= 𝑁, (3.9)

which shows the set cardinality can be computed based on the 𝐿2 norm of sketch HV. The

computation of set intersection in HyperGen is similar to DotHash [103]’s Eq. (3.5) because HVs

in HyperGen share the same quasi-orthogonal properties as DotHash. Then, Eq. (3.5) becomes:

|S𝑘 (𝐴) ∩S𝑘 (𝐵) | =
H𝐴 ·H𝑇

𝐵

𝐷

=

∑
𝑖 (ℎ𝑣𝑖 ×2−1) ·∑ 𝑗 (ℎ𝑣 𝑗 ×2−1)𝑇

𝐷

=

∑
𝑖

∑
𝑗 𝐷 ·1(ℎ𝑣𝑖 == ℎ𝑣 𝑗)

𝐷

=
∑︁
𝑖

∑︁
𝑗

1(ℎ𝑣𝑖 == ℎ𝑣 𝑗)

=
∑︁

𝑥∈S𝑘 (𝐴)∩S𝑘 (𝐵)
1.

(3.10)

With Eq. (3.9) and Eq. (3.10), HyperGen first estimates the following Jaccard similarity

using the derived sketch HVs:

𝐽𝑘 (𝐴, 𝐵) =
|S𝑘 (𝐴) ∩S𝑘 (𝐵) |

|S𝑘 (𝐴) | + |S𝑘 (𝐵) | − |S𝑘 (𝐴) ∩S𝑘 (𝐵) |

=
H𝐴 ·H𝑇

𝐵

∥H𝐴∥22 + ∥H𝐵∥22−H𝐴 ·H𝑇
𝐵

.

(3.11)

Then ANI in Eq. (3.8) can be easily calculated.

3.3.4 Software Implementation and Optimization

HyperGen is developed using the Rust language, and the code is available at https:

//github.com/wh-xu/Hyper-Gen. We present the following optimizations to improve the speed

and efficiency of HyperGen.

57

https://github.com/wh-xu/Hyper-Gen
https://github.com/wh-xu/Hyper-Gen

512 256 0 256 512
0.000

0.004

0.008

0.012
D

en
si

ty
S = 800

512 256 0 256 512
0.000

0.004

0.008

0.012
S = 1000

512 256 0 256 512
0.000

0.004

0.008

0.012
S = 1500

512 256 0 256 512
0.000

0.004

0.008

0.012
S = 2000

(a) Dataset: Bacillus cereus

512 256 0 256 512
0.000

0.004

0.008

0.012

D
en

si
ty

S = 800

512 256 0 256 512
0.000

0.004

0.008

0.012
S = 1000

512 256 0 256 512
0.000

0.004

0.008

0.012
S = 1500

512 256 0 256 512
0.000

0.004

0.008

0.012
S = 2000

(b) Dataset: Escherichia coli

512 256 0 256 512
0.000

0.004

0.008

0.012

D
en

si
ty

S = 800

512 256 0 256 512
0.000

0.004

0.008

0.012
S = 1000

512 256 0 256 512
0.000

0.004

0.008

0.012
S = 1500

512 256 0 256 512
0.000

0.004

0.008

0.012
S = 2000

(c) Dataset: NCBI RefSeq

512 256 0 256 512
0.000

0.004

0.008

0.012

D
en

si
ty

S = 800

512 256 0 256 512
0.000

0.004

0.008

0.012
S = 1000

512 256 0 256 512
0.000

0.004

0.008

0.012
S = 1500

512 256 0 256 512
0.000

0.004

0.008

0.012
S = 2000

(d) Dataset: Parks MAGs

512 256 0 256 512
0.000

0.004

0.008

0.012

D
en

si
ty

S = 800

512 256 0 256 512
0.000

0.004

0.008

0.012
S = 1000

512 256 0 256 512
0.000

0.004

0.008

0.012
S = 1500

512 256 0 256 512
0.000

0.004

0.008

0.012
S = 2000

(e) Dataset: GTDB MAGs

Figure 3.3: The value distribution of sketch hypervectors (HVs) generated by HyperGen when
using various scaled factor 𝑆 = 800 to 2000.

Sketch Quantization and Compression

Although the sketch HV has a compact data format with high memory efficiency, there

still exists data redundancy in sketch HVs that can be utilized for further sketch compression.

Our experimental observation is that the value range of sketch HVs is distributed within a bell

curve as shown in Figure 3.3. HV values exhibit a bell curve distribution, where the majority of

58

values locate within the range −300 to 300. Sketch HVs can be effectively quantized to about 10

bits without precision loss. Rather than store the full-precision sketch hypervector (e.g., INT32),

we perform lossless compression by quantizing the HV to a lower bit width. The quantized bits

are concatenated together using bit-packing.

Fast HV Aggregation using SIMD

The inner loop of binary HV aggregation step in Algorithm 1 incurs significant runtime

overhead when a large HV dimension 𝐷 is applied. We develop a parallelized HV aggregation

using single instruction, multiple data (SIMD) instruction to reduce the impact of increased HV

aggregation time.

Parallel Sketching

HyperGen provides two sketching modes: 1. normal mode and 2. fast mode. The

normal mode sketches genome files on CPU with multithreading. The fast mode offloads genome

sketching to GPU with better computing capabilities. The fast mode can be widely supported

by commodity GPUs. Our measurement results in Figure 3.7 show that HyperGen’s fast mode

further improves the sketching speed by 1.8× to 2.7× over normal mode. The results produced

by these two modes are identical.

Pre-computation for HV Sketch Norm

The 𝐿2 norm of each sketch hypervector, ∥H∥2, is precomputed during sketch generation

phase. The 𝐿2 norm value is stored along with the sketch hypervector to reduce redundant

computations for the ANI calculation phase.

59

Table 3.2: Specifications for the evaluated genome datasets

Dataset Name Description Size Query Genome Source

Bacillus cereus Draft genome assemblies of Bacil-
lus cereus s.l. from the prokary-
ote section of the NCBI Genome
database.

3.1GB Bacillus anthracis
(NZ CM002395)

Dataset 2 at http://enve-
omics.ce.gatech.edu/data/fastani

Escherichia coli Draft genome assemblies of Es-
cherichia coli from the prokary-
ote section of the NCBI Genome
database.

22GB Escherichia coli
(GCA 000303255)

Dataset 3 at http://enve-
omics.ce.gatech.edu/data/fastani

NCBI RefSeq Prokaryotic genomes downloaded
from RefSeq database.

5.6GB Escherichia coli K12 W3110
(NC 007779)

Dataset 1 at http://enve-
omics.ce.gatech.edu/data/fastani

Parks MAGs A large collection of metagenome-
assembled genomes.

20GB Pseudomonas stutzeri (Parks
GCA 002292085 1)

Dataset 5 at http://enve-
omics.ce.gatech.edu/data/fastani

GTDB MAGs A phylogenetically consistent
and rank normalized genome-
based taxonomy for prokaryotic
genomes sourced from the NCBI
Assembly database.

203GB Escherichia coli K12 W3110
(NC 007779)

Release r207 at
https://gtdb.ecogenomic.org/

3.4 Evaluation and Results

3.4.1 Evaluation Methodology

Genome Dataset and Hardware Setting

The evaluation is conducted on a machine with a 16-core Intel i7-11700K CPU with

up to 5.0GHz frequency, 2TB NVMe PCIe 4.0 storage, and 64GB of DDR4 memory. Unless

otherwise specified, all programs are allowed to use 16 threads with their default parameters.

Five genome datasets in Table 3.2 are adopted for benchmarking. The datasets include: Bacillus

cereus, Escherichia coli, NCBI RefSeq [88], Parks MAGs [111], and GTDB MAGs [112]. These

datasets vary in terms of number of genomes, lengths, and sizes.

Benchmarking Tools

We compare HyperGen to five state-of-the-art tools, including Mash [33], Bindash [35],

Sourmash [36], Dashing 2 [34], FastANI [88], Skani [89], and ANIm [86]. Mash, Bindash,

Sourmash, and Dashing 2 are sketch-based tools for ANI estimation. In comparison, FastANI and

Skani use mapping-based methods while ANIm adopts the most accurate base-level alignment-

60

http://enve-omics.ce.gatech.edu/data/fastani
http://enve-omics.ce.gatech.edu/data/fastani
http://enve-omics.ce.gatech.edu/data/fastani
http://enve-omics.ce.gatech.edu/data/fastani
http://enve-omics.ce.gatech.edu/data/fastani
http://enve-omics.ce.gatech.edu/data/fastani
http://enve-omics.ce.gatech.edu/data/fastani
http://enve-omics.ce.gatech.edu/data/fastani
https://gtdb.ecogenomic.org/

Table 3.3: Names, versions, and commands of benchmarked genome tools for ANI calculation.
The sketch-based tools include: Mash, Dashing 2, and HyperGen. The mapping-based tool is
FastANI. The alignment-based tool is ANIm.

Tool Version Commands and arguments

HyperGen v0.2.2
hyper-gen sketch -D cpu -t 16 -k 21 -s 1500 -d 4096 -p (fna path) -o (file out)
hyper-gen sketch -D gpu -t 16 -k 21 -s 1500 -d 4096 -p (fna path) -o (file out)
hyper-gen dist -t 16 -r (ref sketch) -q (query sketch) -o (dist file)

Mash v2.3 mash sketch (data set) -o (sketches) -p 16
mash dist (query genome) (sketches) -p 16

Bindash v1.0 bindash sketch –nthreads=16 –listfname=(genome list) –outfname=(sketch)
bindash dist (query sketch) (ref sketch) –nthreads=16 –outfname=(dist out)

Sourmash v4.5 sourmash sketch dna –output-dir (sketches) (data set)
sourmash compare (sketches)/*.sig -k 21 –max-containment –ani

Dashing 2 v2.1.19
dashing2 sketch –bagminhash -k 21 -S (sketch size) -p 16 -F (file list)
dashing2 sketch –bagminhash –cache -k 21 -S (sketch size) -p 16 -F (ref file) -Q
(query file)
dashing2 sketch –set –cache -k 21 -p 16 -F (file list) –cmpout (file out)

Skani v0.2.1 skani sketch -t 16 -c 70 -m 1000 -l (genome list) -o (sketches)
skani dist -t 16 -q (query sketches) -r (ref sketches) -o (file out)

FastANI v1.33 fastANI –rl (genome list) -q (query genome) -t 16

ANIm (nucmer) v0.2.12 average nucleotide identity.py -m ANIm –workers 16 -i (genomes) -o (out-
put folder)

based method to calculate the ANIs. ANIm results are regarded as the ground truth. Specifically,

we use NUCleotide MUMmer [86] to generate the alignment results and then convert the alignment

data into the corresponding ground-truth ANIs. Dashing 2 uses its weighted bagminhash mode.

HyperGen (similar to Mash, Bindash, Sourmash, and Dashing 2) is an ANI approximation tool

for the high ANI regime. We follow the previous work [33] and only preserve ANI values

> 85. The versions and commands used are summarized in Table 3.3. HyperGen uses 𝑘-mer

size 𝑘 = 21, scaled factor 𝑆 = 1500 as suggested in previous works [36, 89, 93]. Our analysis in

Section 3.4.2 shows that the HV dimension 𝐷 = 4096 achieves a good balance between ANI

estimation error and sketching complexity. So we set it as the default parameter. HyperGen also

supports the fast mode which accelerates the sketching process on GPU.

61

Evaluation Metrics

ANI Precision. One of the critical metrics for evaluating the effectiveness of a genome

sketching tool is the precision of ANI estimation. We use three metrics to evaluate the ANI

approximation errors: 1. mean absolute error (MAE), 2. root mean squared error (RMSE), and

3. mean percentage absolute error (MPAE). We also adopt the Pearson correlation coefficient to

assess the linearity of the ANI estimate with respect to ground truth.

Computation and Memory Efficiency. An ideal genome sketching scheme should

be able to generate compact sketch files at the cost of short runtime, especially for large-scale

genomic analysis. To compare the computation and memory efficiency of evaluated tools, we

measure and report the wall-clock runtime and sketch sizes during database search.

3.4.2 ANI Estimation Quality

In this section, we study the quality of ANI estimation by performing the following

pairwise ANI experiment. First, the largest 100 genome files are collected from each dataset.

Then, each batch of 100 genome files is used to calculate the pairwise and symmetric 100×100

ANI matrix.

HyperGen ANI Quality using Different Parameters

We first evaluate the impact of HyperGen’s two algorithmic parameters: scaled factor

𝑆 and HV dimension 𝐷 on the final ANI estimation errors and linearity. The experimental

results are depicted in Figure 3.4, where the scaled factor 𝑆 and the HV dimension 𝐷 vary

from 800 to 2000 and from 256 to 16384, respectively. It shows that: for all scaled factors,

the ANI approximation errors decrease significantly as 𝐷 increases from 256 to 4096. This is

because a larger HV dimension can produce better orthogonality, which is helpful to reduce

the approximation error of the set intersection according to the theory in [103]. But increasing

the HV dimension larger than 𝐷 = 4096 does not yield a significant error reduction or linearity

improvement.

62

2
8

2
9

2
10

2
11

2
12

2
13

2
14

D

0.2

0.4

0.6

0.8

1.0
M

AE

2
8

2
9

2
10

2
11

2
12

2
13

2
14

D

0.6

0.8

1.0

1.2

1.4

R
M

SE

2
8

2
9

2
10

2
11

2
12

2
13

2
14

D

0.2

0.4

0.6

0.8

1.0

M
PA

E

2
8

2
9

2
10

2
11

2
12

2
13

2
14

D

0.90

0.95

1.00

Pe
ar

so
n

S 800 1000 1200 1500 2000S 800 1000 1200 1500 2000

Dataset Bacillus cereus Escherichia coli

Figure 3.4: Error metrics (MAE, RMSE, MPAE) and ANI linearity (Pearson coefficient) as a
function of scaled factor 𝑆 and HV dimension 𝐷.

It is also observed that a smaller scaled factor 𝑆 generally leads to a worse ANI

approximation error when using the same HV dimension 𝐷. The reason behind this is: a smaller

𝑆 that produces a larger hash threshold value as in Eq. (3.2), will generate a denser sampling

of 𝑘-mers. This increases the size of sampled 𝑘-mer hash set. As a result, more binary HVs

need to be aggregated to the sketch HV. The excessive number of binary HVs degrades the

orthogonality between binary HVs, reducing the approximation accuracy for set cardinality. To

balance between the quality and complexity of the ANI approximation, we choose 𝑆 = 1500 and

𝐷 = 4096 as the default scaled factor and HV dimension, respectively.

63

Table 3.4: Error metrics for the 100× 100 pairwise Jaccard estimation. HyperGen-2048
and HyperGen-4096 use 𝐷 = 2048 and 𝐷 = 4096, respectively. Other tools use their default
parameters. The ground truth values of Jaccard index are calculated using Dashing 2’s exact
mode. The command is given in Table 3.3 (The 3rd line of Dashing 2’s commands).

Dataset: Bacillus cereus

Tool MAE ↓ RMSE ↓ MPAE ↓

Mash 0.008 0.011 3.860
Bindash 0.007 0.010 3.748
Dashing 2 0.011 0.016 6.458
Sourmash 0.004 0.005 3.123
HyperGen-2048 0.010 0.013 5.815
HyperGen-4096 0.007 0.009 4.274

Dataset: Escherichia coli

Tool MAE ↓ RMSE ↓ MPAE ↓

Mash 0.009 0.011 3.500
Bindash 0.007 0.009 2.498
Dashing 2 0.032 0.051 8.709
Sourmash 0.013 0.014 4.394
HyperGen-2048 0.010 0.013 3.267
HyperGen-4096 0.009 0.011 2.641

Comparison with Other Sketching Tools

We also compare the quality of the ANI estimation for various tools, including Mash,

Bindash, Dashing 2, Sourmash, FastANI and Skani. For fair comparison, the sketch-based

tools (HyperGen, Mash, Bindash, Sourmash, and Dashing 2) use the same sketch size. Other

parameters are the same as their default parameters. Specifically, HyperGen uses 𝐷 = 4096,

while Mash and Dashing 2 use a sketch size of 1024.

HyperGen can be used to estimate the Jaccard index. First we perform Jaccard estimation

experiment and compare HyperGen to Mash, Bindash, Dashing 2, and Sourmash. Table 3.4

shows the error metrics with respect to the true Jaccard results. The 100×100 Jaccard matrix

for Bacillus cereus and Escherichia coli datasets is computed. HyperGen achieves competitive

Jaccard estimation accuracy with other baseline tools.

64

Table 3.5: Error and linearity metrics for pairwise ANI estimation. (Underline: the best among
sketch-based algorithms. Bold: the best among all algorithms.)

Dataset: Bacillus cereus

Tool 𝑘 Sketch Size MAE ↓ RMSE ↓ MPAE ↓ Pearson ↑

FastANI 16 - 0.312 0.368 0.334 0.999
Skani - 198MB (850×) 0.354 0.422 0.377 0.996
Mash 21 830KB (3.6×) 0.399 0.591 0.430 0.981
Bindash 21 351KB (1.5×) 0.360 0.530 0.385 0.986
Dashing 2 21 1.2MB (5.2×) 0.500 0.650 0.537 0.981
Sourmash 21 11MB (47×) 0.415 0.558 0.449 0.986
HyperGen-2048 21 233KB (1.0×) 0.411 0.707 0.442 0.975
HyperGen-4096 21 459KB (2.0×) 0.372 0.522 0.400 0.986

Dataset: Escherichia coli

Tool 𝑘 Sketch Size MAE ↓ RMSE ↓ MPAE ↓ Pearson ↑

FastANI 16 - 0.680 1.152 0.705 0.899
Skani - 200MB (855×) 0.403 0.572 0.419 0.956
Mash 21 831KB (3.6×) 0.456 0.686 0.470 0.930
Bindash 21 351KB (1.5×) 0.442 0.658 0.456 0.936
Dashing 2 21 1.2MB (5.1×) 0.464 0.704 0.479 0.930
Sourmash 21 9.6MB (41×) 0.381 0.565 0.393 0.944
HyperGen-2048 21 234KB (1.0×) 0.449 0.644 0.464 0.942
HyperGen-4096 21 460KB (2.0×) 0.368 0.565 0.381 0.952

Table 3.5 summarizes the ANI error and linearity metrics with respect to the ground

truth values on Bacillus cereus and Escherichia coli datasets. For the Bacillus cereus dataset,

HyperGen is slightly inferior to Bindash, FastANI and Skani, which yields a comparable Pearson

correlation coefficient compared to the other sketch-based tools (Mash and Dashing 2). In the

Escherichia coli dataset, HyperGen consistently surpasses all other sketch-based tools, providing

both lower ANI approximation errors and better linearity. Meanwhile, HyperGen’s sketch size

is over 800× smaller than Skani. These experiments demonstrate that HyperGen is capable of

delivering a high quality of ANI estimation.

3.4.3 Genome Database Search

One critical workload that genome sketching tools can accelerate is the genome database

search. Meanwhile, the genome database search can be extended to multiple downstream

65

94 95 96 97 98 99 100
Ground Truth from ANIm

94

95

96

97

98

99

100

Es
tim

at
ed

 A
N

I
NCBI RefSeq

FastANI
MASH
Dashing2
HyperGen

85 88 91 94 97 100
Ground Truth from ANIm

85

88

91

94

97

100

Es
tim

at
ed

 A
N

I

Parks MAGs

FastANI
MASH
Dashing2
HyperGen

87 90 93 96 99
Ground Truth from ANIm

87

90

93

96

99

Es
tim

at
ed

 A
N

I

GTDB MAGs

FastANI
MASH
Dashing2
HyperGen

Figure 3.5: Database search ANI comparison for FastANI, Mash, Dashing 2, HyperGen, and
ground-truth ANIm on NCBI RefSeq, Parks MAGs, and GTDB MAGs datasets.

applications.

ANI Linearity and Quality

We extensively consider the five evaluated datasets as reference databases. We run

FastANI, Skani, Mash, Bindash, Dashing 2, and HyperGen using the commands and queries

listed in Table 3.3. Sourmash is not considered because it does not support multi-thread execution.

The execution consists of two steps: 1. All tools first generate reference sketches for the target

database, 2. The second step is to search for the query genomes against the built reference

sketches. Note that FastANI and Skani were unable to complete the database search on the Parks

MAGs and GTDB datasets in one shot because it requires more memory than the available 64GB

and experienced out of memory issues. We divided FastANI and Skani executions into smaller

batches and measured the accumulative runtime.

The estimated ANI values generated in Table 3.6 by each tool in the NCBI RefSeq,

Parks MAGs, and GTDB MAGs datasets are depicted in Figure 3.5 with their corresponding

ground truth values from ANIm. Data points with ANI< 85 are filtered. It shows that HyperGen

produces good ANI linearity compared to the ground truth results.

Quantitative results in terms of numerical error and linearity metrics are summarized in

Table 3.6. The ANI error distribution for each tool can be seen in Figure 3.6. In datasets Bacillus

cereus, Escherichia coli, and NCBI RefSeq, HyperGen achieves the lowest ANI errors among all

66

Table 3.6: Sketch size, error, and linearity metrics for database search. (Underline: the best
among sketch-based algorithms. bold: the best among all algorithms.)

Dataset: Bacillus cereus

Tool 𝑘 Sketch Size MAE ↓ RMSE ↓ MPAE ↓ Pearson ↑

FastANI 16 - 0.218 0.296 0.235 0.999
Skani 15 1.0GB (714×) 0.299 0.378 0.320 0.998
Mash 21 4.7MB (3.4×) 0.542 0.678 0.586 0.996
Bindash 21 2.0MB (1.4×) 0.467 0.579 0.502 0.994
Dashing 2 21 6.7MB (4.8×) 0.576 0.715 0.622 0.993
HyperGen-2048 21 1.4MB (1.0×) 0.355 0.480 0.382 0.994
HyperGen-4096 21 2.6MB (1.9×) 0.318 0.424 0.342 0.996

Dataset: Escherichia coli

Tool 𝑘 Sketch Size MAE ↓ RMSE ↓ MPAE ↓ Pearson ↑

FastANI 16 - 0.215 0.391 0.221 0.950
Skani 15 6.9GB (697×) 0.198 0.277 0.203 0.983
Mash 21 36MB (3.6×) 0.226 0.529 0.231 0.877
Bindash 21 16MB (1.6×) 0.206 0.514 0.210 0.870
Dashing 2 21 51MB (2.6×) 0.234 0.536 0.239 0.873
HyperGen-2048 21 9.9MB (1.0×) 0.178 0.502 0.182 0.833
HyperGen-4096 21 20MB (2.0×) 0.153 0.491 0.156 0.851

Dataset: NCBI RefSeq

Tool 𝑘 Sketch Size MAE ↓ RMSE ↓ MPAE ↓ Pearson ↑

FastANI 16 - 0.443 0.522 0.452 0.968
Skani 15 1.8GB (486×) 0.266 0.292 0.272 0.997
Mash 21 14MB (3.8×) 0.204 0.251 0.208 0.983
Bindash 21 5.9MB (1.6×) 0.238 0.269 0.243 0.988
Dashing 2 21 20MB (5.4×) 0.167 0.189 0.171 0.972
HyperGen-2048 21 3.7MB (1.0×) 0.216 0.304 0.234 0.991
HyperGen-4096 21 7.4MB (2.0×) 0.135 0.164 0.138 0.991

Dataset: Parks MAGs

Tool 𝑘 Sketch Size MAE ↓ RMSE ↓ MPAE ↓ Pearson ↑

FastANI 16 - 0.457 0.551 0.490 0.998
Skani 15 6.6GB (367×) 0.310 0.456 0.335 0.997
Mash 21 65MB (1.9×) 1.090 1.298 1.137 0.990
Bindash 21 29MB (1.6×) 1.096 1.308 1.140 0.991
Dashing 2 21 93MB (5.2×) 2.163 2.466 2.251 0.921
HyperGen-2048 21 18MB (1.0×) 1.291 1.448 1.374 0.975
HyperGen-4096 21 35MB (1.9×) 1.146 1.297 1.211 0.983

Dataset: GTDB MAGs

Tool 𝑘 Sketch Size MAE ↓ RMSE ↓ MPAE ↓ Pearson ↑

FastANI 16 - 0.436 0.592 0.469 0.976
Skani 15 66GB (458×) 0.466 0.630 0.500 0.969
Mash 21 533MB (3.7×) 0.584 0.668 0.632 0.980
Bindash 21 231MB (1.6×) 0.772 0.837 0.835 0.971
Dashing 2 21 770MB (5.3×) 0.994 1.283 1.078 0.892
HyperGen-2048 21 144MB (1.0×) 1.098 1.409 1.250 0.904
HyperGen-4096 21 287MB (2.0×) 0.982 1.138 1.094 0.974

sketch-based tools, delivering more accurate ANI estimations as compared to Mash, Bindash,

and Dashing 2. HyperGen still shows competitive accuracy over mapping-based FastANI and

67

HyperGen MASH Bindash Dashing2 FastANI Skani
2

1

0

1

2

AN
I D

iff
er

en
ce

Bacillus cereus

HyperGen MASH Bindash Dashing2 FastANI Skani
2

1

0

1

2

AN
I D

iff
er

en
ce

Escherichia coli

HyperGen MASH Bindash Dashing2 FastANI Skani
2

1

0

1

2

AN
I D

iff
er

en
ce

NCBI RefSeq

HyperGen MASH Bindash Dashing2 FastANI Skani
4

2

0

2

4

AN
I D

iff
er

en
ce

Parks MAGs

HyperGen MASH Bindash Dashing2 FastANI Skani
4

2

0

2

4

AN
I D

iff
er

en
ce

GTDB MAGs

Figure 3.6: The ANI estimation error distribution of database search for all benchmarking tools
(HyperGen, Mash, Bindash, Dashing 2, FastANI, and Skani). Data points with ANI > 85 are
considered here.

Skani. In Escherichia coli and NCBI RefSeq, HyperGen outperforms FastANI and Skani in

terms of most error metrics and produces comparable Pearson coefficients. HyperGen is capable

of achieving state-of-the-art error and linearity for large-scale genome search. Meanwhile, the

required sketch size is two orders of magnitude smaller than Skani.

68

Bacillus cereus Escherichia coli NCBI RefSeq Parks MAGs GTDB MAGs
10

0

10
1

10
2

10
3

10
4

W
al

l-c
lo

ck
 T

im
e

(s
ec

)

15
.5

10
0.

6

46
.8

15
1.

1

16
38

.9

2.
6

17
.1

5.
3 13

.1

14
9.

6

6.
9

44
.6

11
.9

43
.9

43
7.

0

5.
6

41
.8

10
.3

39
.6

40
6.

0

83
.3

53
0.

3

15
8.

1 56
1.

5

56
32

.2

3.
7

27
.0

6.
6

25
.4

26
8.

0

1.
5

10
.1

3.
4

14
.5

13
0.

4

(a) Sketching Time

Bacillus cereus Escherichia coli NCBI RefSeq Parks MAGs GTDB MAGs
10

3

10
2

10
1

10
0

10
1

10
2

W
al

l-c
lo

ck
 T

im
e

(s
ec

)

1.
9e

+0
1 1.

5e
+0

2

2.
1e

+0
1

1.
8e

+0
1

2.
9e

+0
1

2.
3e

+0
0 1.
7e

+0
1

2.
2e

+0
0

6.
9e

+0
0 7.

0e
+0

1

1.
0e

-0
2

4.
9e

-0
2

2.
3e

-0
2

9.
1e

-0
2 7.

0e
-0

1

8.
2e

-0
3

3.
3e

-0
2

1.
7e

-0
2

5.
2e

-0
2 3.

9e
-0

1

8.
3e

-0
3

2.
9e

-0
2

2.
0e

-0
2

6.
6e

-0
2 6.

5e
-0

1

8.
6e

-0
3 4.
4e

-0
2

2.
0e

-0
2

7.
6e

-0
2

3.
2e

-0
1

9.
0e

-0
3 4.
5e

-0
2

1.
9e

-0
2

7.
6e

-0
2

3.
2e

-0
1

FastANI
Skani

MASH
Bindash

Dashing2
HyperGen

HyperGen-Fast

(b) Search Time

Figure 3.7: Runtime performance comparison for genome search in Table 3.6. (a) Reference
sketching time and (b) Query search time.

Runtime Performance

The wall-clock time spent on two major steps during database search: reference sketch

generation and query search, is illustrated in Figure 3.7. HyperGen-Fast means using the

fast sketching mode on GPU. The reference sketching step is mainly bounded by the sketch

generation process, while the search step is bounded by the sketch file loading and ANI calculation.

HyperGen without fast mode achieves the 2nd fastest sketching speed, slightly slower than Skani.

After enabling fast mode, HyperGen is the fastest sketching tool for most evaluated datasets. The

sketching speed of HyperGen is 2.7× to 4.1× faster than Bindash. HyperGen is significantly

faster (10× to 13×) than the mapping-based FastANI.

69

Table 3.7: Benchmarking peak memory consumption and runtime for single-query search on
GTDB MAGs dataset. OOM: out of memory.

Tool Sketch Phase Search Phase
Peak Memory Runtime Peak Memory Runtime

FastANI OOM 1,638.9s OOM 28.8s
Skani 5.3GB 149.6s OOM 70.2s
Mash 1.9GB 437.0s 1.0GB 0.7s
Bindash 0.3GB 406.0s 0.2GB 0.4s
Dashing 2 8.9GB 5,632.2s 0.6GB 0.7s
HyperGen 1.0GB 130.4s 0.9GB 0.3s

For query search, HyperGen is also one of the fastest tools. The search speedup of

HyperGen over FastANI and Skani is 100× to > 3000× because FastANI and Skani require slow

sequence mapping and large index file loading processes. Moreover, the speedup of HyperGen

is more significant for larger datasets. Dashing 2 sketch size is about 2.6× of HyperGen so it

takes more time to load sketch files. The reduced sketch size helps to save sketch loading time.

Meanwhile, the HV sketch format of HyperGen allows us to adopt highly vectorized programs to

compute ANI with a short processing latency.

Memory Efficiency

The file sizes of the reference sketches generated by Mash, Dashing 2, and HyperGen, are

listed in Table 3.6. We apply the Sketch Quantization and Compression technique to HyperGen.

As a result, HyperGen consumes the smallest memory space among the three sketch-based

tools. The sketch sizes produced by Mash and Dashing 2 are 1.8× to 2.6× of HyperGen’s sketch

sizes. This suggests that HyperGen is the most space-efficient sketching algorithm. Compared to

original datasets with GB sizes, a compression ratio of 600−1200× can be achieved by only

processing the sketch files. This enables the large-scale genome search on portable devices

with memory constraints. HyperGen’s memory efficiency comes from two factors. First, the

Hyperdimensional Encoding for 𝑘-mer Hash step converts discrete hash values into continuous

high-dimensional sketch HVs, which are more compact than hash values. Second, HyperGen’s

70

Sketch Quantization and Compression provides additional 1.3× compression through further

removing redundant information in sketch HVs.

Table 3.7 summarizes performance metrics in terms of peak memory consumption and

runtime for the GTDB MAG dataset search. HyperGen achieve both the fastest sketching and

search speed due to the efficient HDC algorithm as well as software optimizations. FastANI and

Skani experience OOM (out of memory) issues because they require a large memory space to

store intermediate data for sequence mapping. In comparison, HyperGen consumes about 1GB

of memory for the sketching or searching phase, significantly lower than FastANI and Skani.

This indicates that HyperGen is friendly to run on memory-limited device, such as laptop.

3.4.4 Discussion

Future directions of HyperGen include the following aspects:

Further Compression and Faster Large-scale Search: The vector representation of

sketch HVs allows us to apply more optimizations on the top of HyperGen. For instance, we

can employ lossy vector compression techniques, such as product quantization [113,114] and

residual quantization [115], to reduce sketch size and memory footprint. This is advantageous

for achieving rapid genome database search on embedded or mobile devices.

On the other hand, the search step in HyperGen requires intensive GEMM operations to

obtain ANI values between genomes. The large-scale database search can be further accelerated

using advanced hardware architectures with high data parallelism and optimized interfaces.

Previous work [101] demonstrates that deploying HDC-based bioinformatics analysis on GPU

exhibits at least one order of magnitude speedup over CPU.

More genome workloads: HyperGen can be extended to support a wider range of

genomic applications. For example, in metagenome analysis, we can utilize HyperGen to perform

the containment analysis for genome files such as [108]. To realize this, the sketch HVs generated

by HyperGen can be used to calculate the max-containment index instead of ANI. The ANI

estimation error and memory requirements of HyperGen can be reduced by considering the more

71

accurate ANI estimation based on multi-resolution 𝑘-mers [107].

3.5 Conclusion

In this chapter, we present HyperGen, a genome sketching tool based on hyperdimensional

computing (HDC) [103,106] that improves accuracy, runtime performance, and memory efficiency

for large-scale genomic analysis. HyperGen avoids the expensive alignment process and realizes

fast and accurate estimation for ANI, a standardized measure of genome file similarity. HyperGen

inherits the advantages of both FracMinHash-based sketching [93, 94] and DotHash [103].

HyperGen first samples the 𝑘-mer set using FracMinHash. Then, the discrete 𝑘-mer hash set is

encoded into the corresponding sketch HV in hyperdimensional space. This allows the genome

sketch to be presented in compact vectors without sacrificing accuracy. HyperGen software

implemented in Rust language deploys vectorized routines for both sketch and search steps. The

evaluation results show that HyperGen offers superior ANI estimation quality over state-of-the-art

sketch-based tools [33, 34]. HyperGen delivers not only the fastest sketch and search speed, but

also the best memory efficiency in terms of the sketch file size.

HDC is a versatile and efficient computing paradigm that significantly enhances a

wide range of bioinformatics workloads beyond genomics. In the next chapter, we apply the

HDC approach to develop a high-performance clustering tool for mass spectrometry. Our work

demonstrates that HDC offers a unified computing framework, serving as a foundational technique

to accelerate genomics and proteomics.

This chapter contains material from “HyperGen: Compact and Efficient Genome

Sketching using Hyperdimensional Vectors”, by Weihong Xu, Po-kai Hsu, Niema Moshiri,

Shimeng Yu, and Tajana Rosing, which appears in Bioinformatics, 2024. The dissertation author

was the primary investigator and author of this paper.

72

Chapter 4

High-performance Clustering for Mass
Spectrometry

4.1 Introduction

The previous chapter shows the effectiveness of applying hyperdimensional computing

(HDC) to genome sketching. In this chapter, we show that HDC is a versatile computing approach

that can be also used to develop high-performance tool for spectral clustering. Spectral clustering

is an effective approach to shortening the spectral identification runtime by reducing the search

space [12–16, 116]. Prior to peptide identification, highly similar MS/MS spectra are first

clustered together, and each cluster is represented by a consensus spectrum. The benefits of

this approach are threefold. First, clustering minimizes data redundancy by grouping repeated

MS/MS spectra and representing them as a single consensus spectrum. Second, rather than

having to analyze all raw spectra, downstream tools only need to process a smaller number of

consensus spectra. For example, the authors in [13] report using spectral clustering to reduce the

runtime of subsequent peptide identification by over 50%. Third, the downstream analysis can

achieve better results by operating on high-quality consensus spectra with a higher signal-to-noise

ratio compared to the raw spectra [117].

Previous spectral clustering tools have focused on optimizing clustering quality and

clustering speed. For example, MS-Cluster [16] and spectra-cluster [15] use an iterative greedy

approach to efficiently merge similar spectra. spectra-cluster has been utilized for large-scale

73

clustering of public MS data in the PRoteomics IDEntifications (PRIDE) database [118] to

build the PRIDE-Cluster spectral libraries. MaRaCluster [14] proposed an optimized similarity

metric that relies on the rarity of fragment peaks to compare MS/MS spectra. Based on the

intuition that peaks shared by only a few spectra offer more evidence than peaks shared by a large

number of spectra, relative to a background frequency of fragment peaks with specific m/z values,

matches of frequent fragment peaks contribute less to the spectrum similarity than matches of

rare peaks. Next, MaRaCluster performs hierarchical clustering with complete linkage to group

similar spectra in clusters. However, the clustering speed of MS-Cluster, spectra-cluster, and

MaRaCluster can be extremely slow on large datasets as they run on CPU hardware only, which

lacks massive parallelism. For example, [12] report that these tools took 8 to 30 hours to cluster a

draft human proteome dataset consisting of 25 million MS/MS spectra [119]. Unfortunately, such

long clustering runtime negates any potential benefits of shortened runtime from downstream

applications. Additionally, as current MS data repositories contain orders of magnitude more

data, with several billions of MS/MS spectra currently available, performing spectral clustering

at the repository scale becomes increasingly challenging and computationally infeasible.

Several other spectral clustering tools have tried to address this issue by focusing on

processing speed. msCRUSH [13] utilizes locality-sensitive hashing (LSH) to achieve fast

clustering speeds by projecting similar spectra into shared LSH buckets to avoid unnecessary

pairwise spectrum comparisons. Within each bucket, msCRUSH then uses a greedy spectrum

merging strategy similar to MS-Cluster and spectra-cluster to cluster the spectra. falcon [12]

first converts spectra to low-dimensional vectors using a hashing strategy. It uses approximate

nearest neighbor searching [120] to construct a sparse pairwise distance matrix, which helps

to shorten the required runtime. ClusterSheep [116] further optimizes the spectral clustering

runtime by offloading computations to a graphics processing unit (GPU). Compared to falcon,

ClusterSheep implements function kernels on GPU to speed up further. Unfortunately, however,

despite their efficient runtimes, falcon and ClusterSheep exhibit some reduction in clustering

quality compared to MaRaCluster and msCRUSH. Consequently, existing spectral clustering

74

tools still lack the ability to yield high clustering quality within a short runtime when processing

large-scale datasets.

In this chapter, we present HyperSpec, a GPU-accelerated spectral clustering library using

brain-inspired HDC [106]. Unlike previous hashing-based methods that project spectra into a

low-dimensional space, HDC instead encodes spectra into binary high-dimensional vectors, called

hypervectors (HVs). Compared to the low-dimensional embeddings used by msCRUSH [13]

and falcon [12], HVs are superior in the sense that spectra can be encoded as compact, binary

vector representations with a minimal loss of information. Additionally, binary HDC operation in

HyperSpec offers high data parallelism for low-level hardware architecture, which we leveraged

by developing fast Python kernels tailored for exploiting GPU resources. By operating on spectra

represented as HVs, HyperSpec achieves state-of-the-art clustering quality and clustering speed.

Our experiments show that HyperSpec is scalable to different dataset sizes and significantly

accelerates spectral clustering up to 15× compared to alternative clustering tools. As an example,

clustering of a large draft human proteome dataset [119] was reduced from over 4 hours (using

MaRaCluster) to only 24 minutes. Meanwhile, the peptide identification quality using clustered

consensuses generated by HyperSpec is comparable with state-of-the-art tools. HyperSpec is

freely available as open source on GitHub at https://github.com/wh-xu/Hyper-Spec under the

BSD license.

4.2 HyperSpec: Fast Clustering Software for Mass Spec-
trometry

4.2.1 Overall Flow

HyperSpec is a Python library for spectral clustering, that optimally makes use of both

CPU and GPU hardware resources (Figure 4.1-(a)). The overall data processing flow of HyperSpec

consists of five main steps, including spectrum preprocessing, bucket division, hyperdimensional

(HD) encoding, HD distance computation, and clustering. The first two steps, namely spectrum

75

https://github.com/wh-xu/Hyper-Spec

HyperSpec

...

MGF
File 1

MGF
File N

MGF
File 2

...

Multiprocessing

Bucket 1

Bucket 2

Bucket B

...

CPU
Core 1

Spectra
Preprocessing

CPU
Core k

CPU
Core 2

...

S
o
rte

d
 p

re
c
u
rso

r m
/z

Clustering
HD Distance
Computation

Bucket
Division

HD
Encoding

Spectra
Preprocessing

CPU GPU CPU/GPU

(a)

(b)

Figure 4.1: (a) Overall diagram of HyperSpec. (b) HyperSpec’s spectrum preprocessing and
bucket division flow. HyperSpec’s spectra preprocessing and bucket division are optimized using
multiprocessing on CPU. HD encoding and distance computation are offloaded to highly parallel
GPU.

preprocessing and bucket division, are executed on CPU, while the HD encoding and distance

computation are accelerated using GPUs. This allows HyperSpec to fully utilize both CPU and

GPU computing resources for optimized preprocessing and clustering speed.

4.2.2 Efficient Spectrum Preprocessing

Prior to spectral clustering, the raw spectra need to be loaded and preprocessed. This

is one of the bottlenecks during spectral clustering, contributing 20% to 90% of the overall

runtime for several state-of-the-art spectral clustering tools (Figure 4.2). There are several reasons

contributing to the slow preprocessing step: 1. During preprocessing, raw spectra are loaded and

parsed from the storage device, after which the parsed spectra are processed to remove noise.

The parsing phase is bounded by the speed of parsing spectral data into a numerical format, since

76

Dataset-A Dataset-B Dataset-C Dataset-D
Dataset

0%

20%

40%

60%

80%

100%

Ru
nt

im
e

Pe
rc

en
ta

ge

preprocess_time cluster_time

falcon
MSCluster

MaRaCluster
msCRUSH

spectra-cluster

Figure 4.2: Runtime profiling for five clustering tools (falcon [12], msCRUSH [13], MaRaClus-
ter [14], spectra-cluster [15], and MS-Cluster [16]). The runtimes were evaluated in terms of the
time required for spectrum preprocessing and the time required for spectral clustering.

the peak information takes up over 95% of the data volume in raw files. 2. Processing the parsed

spectra is computation-bounded, because it requires sorting, computing, and data manipulation

for high-dimensional peak vectors. 3. Another crucial factor limiting the preprocessing speed of

existing clustering tools is the underutilization of storage I/O bandwidth. Specifically, modern

solid-state drives (SSD) provide GB/s sequential access speeds, but most clustering tools cannot

provide sufficient preprocessing speed to match the I/O bandwidth. To this end, HyperSpec

optimizes spectrum preprocessing as follows:

Multiprocessing. HyperSpec uses the commonly used Mascot Generic Format (MGF)

as an input. HyperSpec utilizes multiprocessing to read each file in parallel and distribute the

computation to 𝑘 independent CPU cores (Figure 4.1-(b)). Spectrum preprocessing is composed

of two phases: spectrum parsing and preprocessing. We implemented an optimized spectrum

data parser and a parallelized preprocessor, which are executed independently on 𝑘

CPU cores to increase data parallelism.

Spectrum data parser. Rather than using standalone C++ or Python parsing [12, 13, 16],

77

HyperSpec uses a hybrid C++-Python program, which balances Python’s convenience of code

extension and C++’s performance. The low-level spectrum data parser is built using the

Spirit X3 parser in Boost C++ [121] to convert MGF data to numerical arrays. After being

compiled, the spectrum data parser is invoked by the high-level Python interface using

multiprocessing.

Parallelized preprocessor. HyperSpec’s parallelized preprocessor reduces the

preprocessing time by vectorizing the computation. Specifically, the preprocessing operations

are parallelized to multiple CPU cores using just-in-time (JIT) compilation by Numba [122].

The JIT compilation requires negligible human intervention while providing great portability for

code extension and modification.

These modules are used to preprocess the spectra as follows. First, peaks related to the

precursor ion or with < 1% intensity than the base peak intensity are removed. Second, spectra

with < 5 valid peaks or with a < 250 Da mass range between their minimum and maximum peak

are removed. Third, at most 50 peaks with the highest intensities are retained, and the peak

intensities are normalized to [0,1] using their L2 norm.

4.2.3 Bucket Division

An important challenge while clustering large datasets, with 𝑛 spectra, is that performing

all pairwise spectrum comparisons results in a dense pairwise distance matrix with quadratic

O(𝑛2) complexity, which is prohibitive for large 𝑛. To reduce this requirement, we follow a

simple and effective strategy by dividing spectra into buckets [12, 116]. After all MGF files have

been processed by the spectrum preprocessingmodule, the spectra are sorted and organized

by ascending precursor m/z order (Figure 4.1-(b)). Instead of having to cluster an entire dataset,

the spectra are divided into smaller buckets as follows:

𝑏𝑢𝑐𝑘𝑒𝑡𝑖 = ⌊
(m/z𝑖 −1.00794) ×𝐶𝑖

1.0005079
⌋, (4.1)

78

where 𝐶𝑖 is the precursor charge and m/z𝑖 is the precursor m/z associated with the 𝑖th spectrum,

1.00794 is the mass of the charge, and 1.0005079 corresponds to the distance between the centers

of two adjacent clusters of physically possible peptide masses [123]. Each bucket is represented

using an integer.

This bucket division scheme significantly reduces the memory usage and runtime by only

comparing spectra within the same bucket to compute distance matrices for each bucket, instead

of having to perform all pairwise spectrum comparisons for the full dataset.

4.2.4 GPU-accelerated Spectral Clustering in Hyperdimensional Space

HyperSpec exploits emerging HDC techniques [106, 124] to convert the preprocessed

spectra into hyperdimensional space, where data are expressed as high-dimensional vectors with

binary values. An important advantage of such HDC encoding is that the transformed data

preserve features of the original space while exhibiting opportunities for data parallelism that

can be leveraged by parallel GPU architectures [124]. Due to this reason, the final three steps

of HyperSpec (HD encoding, HD distance computation, and clustering) can be significantly

accelerated using GPU or CPU. HyperSpec clusters spectra by bucket granularity, meaning that

one bucket is encoded, computed, and clustered at a time.

HD Encoding for Spectra

Whereas previous works [13, 14] directly compute spectrum similarities and perform

clustering using the peak vectors, HyperSpec first uses HD encoding to project spectra to binary

hypervectors (HVs) in the hyperdimensional space before performing the distance calculations

(Figure 4.3). The HD encoding models the locality of the peak m/z and intensity values using two

sets of encoding HVs (ID HVs I and level HVs L), respectively. The ID HVs I ∈ {I1, I2, . . . , I 𝑓 }

reflect the spatial locality of m/z values, while the level HVs L ∈ {L1,L2, . . . ,L𝑄} reflect the

intensity of peaks, where 𝑓 and 𝑄 are the maximum peak index range and intensity quantization

levels, respectively. Both I𝑖 and L 𝑗 are 𝐷-dimensional binary HVs, such that I𝑖,L 𝑗 ∈ {0,1}𝐷 .

79

m/z

In
te

n
s
ity

BEGIN IONS
PEPMASS=482.565826
CHARGE=3+
TITLE=SARS-CoV-2
SCANS=9481
RTINSECONDS=1063.207

104.40397 804.910644
401.07154 2936.69824
602.05508 34657.82128
703.05452 160803.8906
904.05318 75956.40136
1310.0715 705.271258

END IONS

// Preprocessing Phase
while(mgf_spectra not empty)
{
 read_lines(mgf_spectra); // Storage to DRAM
 for(spectra_i in mgf_spectra)
 {
 result = Filter(spectra_i);
 result = Topk(result);
 result = Normalization(result);
 if(result != NULL)
 valid_spectra_list.add(result);
 }
}
save_spectra(valid_spectra_list); // DRAM to Storage

// Clustering Phase
spectra = load(valid_spectra_list); // Storage to DRAM
run_cluster(spectra); // DRAM to CPU

 DRAM to CPU

(b)

(c)

 Host

CPU DRAM

Spectra Data

Spectra Data

SSD Storage

MSAS-enabled SSD

Reserved data after
preprocessing

1

2

3

4

MSAS
Accelerator

2

PCIe / NVMe

PCIe / NVMe

1
Near-storage
Preprocessing

Load raw spectra

2

2 3

Store processed spectra

: Clustering/Search

: Preprocess on CPU

MSAS Datapath

CPU Datapath Raw Spectra:

Processed Spectra:

Preprocessing

Clustering

Database Search

Raw MS Data

MSFragger

Ann-SoLo

Mascot

...

(a)

...

...

Clustered
Consensus

Processed Spectra

...

...

>60% Runtime

>50% Energy

m/z

In
te

n
s
ity

BEGIN IONS
PEPMASS=482.565826
CHARGE=3+
TITLE=SARS-CoV-2
SCANS=9481
RTINSECONDS=1063.207

104.40397 804.910644
401.07154 2936.69824
602.05508 34657.82128
703.05452 160803.8906
904.05318 75956.40136
1310.0715 705.271258

END IONS

(a)
1. Filter

m/z

In
te

n
s
ity

m/z

In
te

n
s
ity

In
te

n
s
ity

2. TopK

3. Norm.
+ Scale

HD Encoded Spectra

...

...

Bucket separation

using precursor m/z

Bucket 0 Bucket 1 Bucket k...

 GPU

Multi-processing

Dense

distance matrix

Bucket

distance matrix

Optimized HD

CUDA Kernel

Distance matrix

DBSCAN

clustering

Clustered Consensus

 GPU

HyperSpec

...

MGF
File 1

MGF
File N

MGF
File 2

...

Multiprocessing

Bucket 1

Bucket 2

Bucket B

...

CPU
Core 1

Spectra
Preprocessing

CPU
Core k

CPU
Core 2

...

S
o
rte

d
 p

re
c
u
rso

r m
/z

DBSCAN
Clustering

HD Distance
Computation

Bucket
Division

HD
Encoding

Spectra
Preprocessing

CPU GPU

 GPU

Multi-processing
Bucket

distance matrix

Optimized HD

CUDA Kernel

Distance matrix

DBSCAN

clustering

Clustered Consensus

 GPU

Preprocessed Spectra Bucket i

...

Peak intensity vectorPeak m/z vector

ID HVs

I1 0 1 01

1 0 10

...

...

...

D

Vectorization

If

Level HVs

L1 1 1 00

1 1 10

...

...

...

D

Lq

Σ I ⊕ L

···
...

Quantization

···
...

Majority

h1

Encoded Spectra Bucket i

...0 1 00 ...
D

hb

1 1 01 ...
D

s1 sb

H
D

 E
n
c
o
d

in
g

H
D

 D
ista

n
ce

C

o
m

p
u
ta

tio
nBucket

Distance Matrix

d(hi, hj)

b

b

Figure 4.3: HD encoding and distance computation on GPU. Each preprocessed spectrum’s
m/zand intensity after vectorization and quantization are encoded into single hypervector (HV).
Then the bucket distance matrix is computed.

The two sets of encoding HVs, I and L, are iteratively generated in a stochastic manner.

For ID HVs I, first a random HV is generated and regarded as I1. Next, the 𝑖th HV I𝑖 is generated

by randomly flipping a specific number of bits from its preceding HV I𝑖−1. The default number

of flipped bits is 𝐷
2 . For level HVs L, the generation process of first HV L1 is identical to I. The

difference is that level HVs generate the 𝑖th HV L𝑖 by flipping 𝐷
𝑄

bits compared to the preceding

80

HV L𝑖−1. The impact of the generation parameters on the clustering quality is discussed in

Section 4.3.

In the HD spectrum encoding process, the spectra in each bucket are first converted and

quantized to two sparse vectors: peak m/z and peak intensity vectors. Based on the m/z and

intensity pairs (𝑖, 𝑗) in the peak m/z and peak intensity vectors, HyperSpec’s HD encoder finds

the associated ID HV 𝐼𝑖 and level HV 𝐿 𝑗 in the encoding HV sets. The fetched ID HV 𝐼𝑖 and level

HV 𝐿 𝑗 are then point-wise XORed by 𝐼𝑖 ⊕ 𝐿 𝑗 . After all (𝑖, 𝑗) ∈ P, where P denotes the set of

peak m/z and intensity vectors, are computed, the HD encoded spectrum is generated as follows:

h = Majority©­«
∑︁
(𝑖, 𝑗)∈P

I𝑖 ⊕L 𝑗
ª®¬ , (4.2)

where Majority(·) denotes the point-wise majority function that generates the binarized spectrum

HV h ∈ {0,1}𝐷 .

The HD dimension 𝐷 needs to be large (normally > 1000) to guarantee representation

capability [124]. However, because such a large dimension incurs an expensive encoding cost,

we have made two optimizations to reduce the encoding overhead:

Bit-packing. By default, existing CPU or GPU architectures have a byte-level data

granularity. However, storing a binary HV as a byte array needs 8× larger space than the

theoretical number of bits 𝐷. To increase the memory efficiency of HyperSpec, HVs are stored

in a bit-packed data structure, where every 32 bits of a HV h are packed into a 32-bit integer and

each HV is stored in an integer array with length 𝐷
32 , which reduces the memory requirements to

store a HV 8-fold.

Batched GPU parallel encoding. The HD encoding is a bit-parallel algorithm, such

that each bit of h can be computed independently. We have implemented the HD encoding

modules using the CUDA platform [125] and the HDC-specialized GPU memory optimization

scheme [126] to exploit this parallelism on GPUs. Before starting the HD encoding process, ID

HVs I and level HVs L are transferred to the GPU memory. We found that data transfer of the

81

HVs incurs a large overhead, since the size of the ID HVs I is much larger than the size of a

single encoded spectrum. To reduce this overhead, the GPU parallel encoding in HyperSpec is

performed in a batch-wise manner, where the HV data are transferred while a batch of spectra

are processed.

HD Distance Computation

The clustering step of HyperSpec operates on the pairwise distance matrix of each bucket

(also called bucket distance matrix). We use a normalized Hamming distance to measure the

similarity between spectrum HVs. For two binary encoded spectra h𝑖 and h 𝑗 , the Hamming

distance is first computed by counting the set bits of their XOR result h𝑖 ⊕h 𝑗 . Then the Hamming

distance is normalized to [0,1] by dividing 𝐷. Consequently, the pairwise distance 𝑑 (h𝑖,h 𝑗) is

computed as:

𝑑 (h𝑖,h 𝑗) =
popcount

(
h𝑖 ⊕ h 𝑗

)
𝐷

, (4.3)

where popcount(·) denotes the operation that obtains the number of set bits in a binary vector.

The HDC-based distance computation is lightweight because the computation of Eq. (4.3)

only needs XOR and ones-counting operations. Our efficient implementation of these distance

calculations leverages two CUDA integer intrinsics, XOR and popc. Additionally, by operating

on bit-packed HVs, the time complexity to calculate each value in the pairwise distance matrix is

reduced from 𝐷 to 𝐷
32 .

Clustering Algorithms

HyperSpec supports two popular clustering algorithms—DBSCAN [127] and hierarchical

clustering [128] — to cluster each spectra bucket based on the bucket distance matrix. HyperSpec

implements these two clustering algorithms due to their three common benefits:

1. DBSCAN and hierarchical clustering have been previously demonstrated effective to gen-

erate satisfactory quality for spectral clustering [12, 37, 129]. The analysis in Section 4.3.2

82

shows DBSCAN and hierarchical clustering yield various trade-offs between runtime and

clustering quality. Supporting both of them allows the users to have more flexible choices.

2. DBSCAN and hierarchical clustering require minimal efforts to tune the algorithmic

hyperparameters, as the number of clusters does not need to be specified explicitly.

3. From the perspective of runtime performance, the off-the-shelf fast DBSCAN and hierar-

chical clustering implementations [128, 130] are available and the clustering speed scales

well to million or even billion-scale scenarios.

4.2.5 Software Development and Code Availability

HyperSpec was implemented in Python 3.8. The MGF loading and parsing functions

were written in C++ and compiled to Cython interfaces [131] that can be invoked by Python.

The spectrum preprocessing functionality was parallelized using the JIT compilation library

Numba (version 1.20.2) [122]. The HD encoding and distance computation functions on GPU

were implemented using Numba and CuPy. We used the DBSCAN available in the cuML

library (version 22.04) [130] of the RAPIDS [132] framework and fast hierarchical clustering

with complete linkage in fastcluster [128] to perform clustering on GPU and CPU, respectively.

HyperSpec is publicly available as open source at https://github.com/wh-xu/Hyper-Spec under

the BSD license.

4.3 Evaluation

4.3.1 Evaluation Methodology

Clustering Quality Metrics

We used the following metrics to evaluate the clustering quality and runtime performance:

• Clustered spectra ratio. The clustered spectra ratio equals the number of clustered spectra

divided by the total number of spectra. This metric evaluates the clustering capability of

the corresponding clustering tool.

83

https://github.com/wh-xu/Hyper-Spec

• Incorrect clustering ratio. Incorrectly clustered spectra are those spectra whose peptide

labels deviate from the most frequent peptide label in their clusters. The incorrect clustering

ratio is the number of incorrectly clustered spectra divided by the total number of clustered

and identified spectra.

• Completeness. Completeness measures the fragmentation of spectra corresponding to the

same peptide across multiple clusters and is based on the notion of entropy in information

theory. A clustering result that perfectly satisfies the completeness criterium (value “1”)

assigns all PSMs with an identical peptide label to a single cluster. Completeness is

computed as one minus the conditional entropy of the cluster distribution given the peptide

assignments divided by the maximum reduction in entropy the peptide assignments could

provide [133].

• Runtime. The runtime is defined as the wall clock time between the start of spectrum

preprocessing and the finish of the clustering procedure. We use the Linux system command

to measure the wall clock time. The time for generating cluster consensus spectra was

excluded since the overhead hereof is small.

Hardware Configurations

The runtime performance of all clustering libraries was measured on a server with a

12-core CPU, 128GB DDR4 memory, and a 2TB NVMe solid-state drive (SSD). The equipped

GPU card was an NVIDIA GeForce RTX 3090 GPU with 24GB RAM. All tools were allowed to

use all available processor cores and threads.

Benchmarks

We compared HyperSpec to six state-of-the-art spectral clustering libraries, including

GLEAMS [37], falcon [12], msCRUSH [13], MaRaCluster [14], spectra-cluster [15], and

MS-Cluster [16]. The clustering quality was controlled by varying the spectrum similarity

threshold values, while the other configurations were set to the default values without explicit

84

Table 4.1: Properties of the evaluated MS datasets

Dataset Sample Type PRIDE ID # of SizeSpectra
Dataset-A Kidney cell [134] PXD001468 1.1M 5.6GB
Dataset-B Kidney cell [135] PXD001197 1.1M 25GB
Dataset-C HeLa proteins [137] PXD003258 4.1M 54GB
Dataset-D HEK293 cell [136] PXD001511 4.2M 87GB
Dataset-E Human proteome draft [119] PXD000561 21.1M 131GB

specifications. The distance threshold during clustering in HyperSpec was from 0.2 to 0.45.

GLEAMS’ distance threshold for agglomerative clustering with complete linkage was 0.2 to 0.7.

The cosine distance threshold of falcon was 0.05 to 0.25. msCRUSH’s cosine similarity threshold

was varied from 0.3 to 0.8. MaRaCluster’s 𝑃-value was -30 to -3. The clustering threshold for

spectra-cluster was 0.8 to 0.99999. MS-Cluster’s mixture probability was from 0.00001 to 0.1.

Dataset

We used five MS datasets at different scales for evaluation (Table 4.1). These datasets

consist of various human proteomics data, such as the HEK293 cell line [134–136], HeLa [137],

and a draft map of the human proteome [119]. For all datasets, raw files were downloaded from

PRIDE [138] and converted to MGF files using ThermoRawFileParser [139].

For each dataset, spectra with precursor charge 2 and precursor charge 3 were considered.

The largest dataset, PXD000561 [119], was used for runtime and clustering quality evalua-

tion. The corresponding spectrum identifications were downloaded from MassIVE reanalysis

RMSV000000091.3. These identifications were obtained via automatic reanalysis of public data

on MassIVE using MS-GF+ [140]. Spectra were searched against the UniProtKB/Swiss-Prot

human reference proteome (downloaded 2016/05/23) [141] augmented with common contam-

inants. Search settings included a 50 ppm precursor mass tolerance, trypsin cleavage with

maximum one non-enzymatic peptide terminus, and cysteine carbamidomethylation as a static

modification. Methionine oxidation, formation of pyroglutamate from N-terminal glutamine,

N-terminal carbamylation, N-terminal acetylation, and deamidation of asparagine and glutamine

85

Table 4.2: Clustering quality on Dataset-E for different clustering algorithms and values of HD
dimension 𝐷

Algorithm HD Dimension 𝐷 Quantization Level 𝑄 Clustered Spectra Incorrect Clustered Spectra Completeness
DBSCAN 𝐷 = 128 𝑄 = 16 8 001 982 (37.89%) 2.17% 0.8979
DBSCAN 𝐷 = 256 𝑄 = 16 7 107 355 (33.66%) 1.62% 0.8829
DBSCAN 𝐷 = 512 𝑄 = 16 6 365 562 (30.14%) 1.40% 0.8693
DBSCAN 𝐷 = 1024 𝑄 = 16 5 985 007 (28.34%) 1.34% 0.8656
DBSCAN 𝐷 = 2048 𝑄 = 16 5 958 478 (28.20%) 1.30% 0.8638
DBSCAN 𝐷 = 4096 𝑄 = 16 5 847 470 (27.67%) 1.28% 0.8615

Hierarchical 𝐷 = 128 𝑄 = 16 14 809 404 (70.09%) 2.16% 0.8071
Hierarchical 𝐷 = 256 𝑄 = 16 13 643 733 (64.57%) 1.67% 0.8154
Hierarchical 𝐷 = 512 𝑄 = 16 13 266 246 (62.78%) 1.57% 0.8242
Hierarchical 𝐷 = 1024 𝑄 = 16 13 301 599 (62.95%) 1.58% 0.8331
Hierarchical 𝐷 = 2048 𝑄 = 16 13 289 980 (62.90%) 1.59% 0.8377
Hierarchical 𝐷 = 4096 𝑄 = 16 13 292 059 (62.90%) 1.59% 0.8406

were specified as variable modifications, with maximum one modification per peptide. The

remaining four datasets were used for runtime evaluation only.

4.3.2 Clustering Quality Comparison

HyperSpec Clustering Quality using Different Parameters

We studied the impact of HD parameters and clustering algorithms on HyperSpec’s

clustering quality to select the optimal parameter combination. For HD, the two hyperparameters

that influence the capability to represent spectra as HVs, and thus impact the spectrum clustering

quality, are the HV dimension 𝐷 and quantization level 𝑄. Using the draft human proteome

Dataset-E, we examined the clustering quality using different combinations of clustering

algorithms (DBSCAN or hierarchical clustering with complete linkage), HV dimension 𝐷

(Table 4.2), and quantization level 𝑄 (Table 4.3), fixing the clustering distance threshold.

DBSCAN and hierarchical clustering with complete linkage were used. The default distance

threshold was 𝑒𝑝𝑠 = 0.2 for DBSCAN and 𝑒𝑝𝑠 = 0.3 for hierarchical clustering with complete

linkage, respectively.

As in Table 4.2, the HV dimension 𝐷 was varied between 128 and 8192 and three

clustering quality metrics (clustered spectra ratio, incorrect clustering ratio, and completeness)

were computed for each combination of clustering algorithm and 𝐷 value. This evaluation showed

that as the HV dimension 𝐷 increases, the incorrect clustering ratio and the clustered spectra

86

Table 4.3: Clustering quality on Dataset-E for different clustering algorithms and values of HD
quantization level 𝑄

Algorithm HD Dimension 𝐷 Quantization Level 𝑄 Clustered Spectra Incorrect Clustering Ratio Completeness
DBSCAN 𝐷 = 2048 𝑄 = 4 6 278 284 (29.73%) 1.41% 0.8644
DBSCAN 𝐷 = 2048 𝑄 = 8 6 092 636 (28.85%) 1.33% 0.8621
DBSCAN 𝐷 = 2048 𝑄 = 16 5 958 478 (28.20%) 1.30% 0.8638
DBSCAN 𝐷 = 2048 𝑄 = 32 5 931 716 (28.09%) 1.29% 0.8596
DBSCAN 𝐷 = 2048 𝑄 = 64 5 930 616 (28.08%) 1.29% 0.8595

Hierarchical 𝐷 = 2048 𝑄 = 4 13 543 166 (64.10%) 1.66% 0.8415
Hierarchical 𝐷 = 2048 𝑄 = 8 13 362 120 (63.24%) 1.60% 0.8389
Hierarchical 𝐷 = 2048 𝑄 = 16 13 289 980 (62.90%) 1.59% 0.8377
Hierarchical 𝐷 = 2048 𝑄 = 32 13 301 802 (62.95%) 1.59% 0.8378
Hierarchical 𝐷 = 2048 𝑄 = 64 13 302 179 (62.96%) 1.59% 0.8378

ratio for both two clustering algorithms decreased. However, the completeness of DBSCAN

decreases from 0.8979 to 0.8615 while hierarchical clustering’s completeness is improved from

0.8071 to 0.8406. This is because a larger 𝐷 allows the HVs to more granularly represent the

spectra after encoding, their corresponding similarities will more accurately reflect the true

spectral similarities and avoid that spectra corresponding to different peptides are incorrectly

grouped together. The clustering results become less complete for DBSCAN as the density-based

DBSCAN is unable to form large clusters when the spectral similarities are more accurate. Larger

𝐷 also increases the memory usage for HV encoding and storing. The HV dimension 𝐷 = 2048

balances well between clustering quality and memory consumption. We used 𝐷 = 2048 as the

default value for HV dimension.

In Table 4.3, we fixed 𝐷 = 2048 and then varied the quantization level 𝑄 from 4 to 64 and

calculated the corresponding clustering quality metrics for each quantization level. Increasing

quantization level 𝑄 reduced the clustered spectra ratio as well as completeness while slightly

improving the incorrect clustering ratio for both two clustering algorithms. For DBSCAN, the

incorrect clustering ratio dropped from 1.41% to 1.29% while completeness dropped from 0.8644

to 0.8595 as 𝑄 is increasing from 4 to 64. Overall, the clustering quality is less sensitive to the

change of quantization level 𝑄. We choose 𝑄 = 16 as the default value for quantization level.

We find hierarchical clustering with complete linkage achieves better clustering spectra

ratio and lower incorrect clustering ratio as compared to DBSCAN. In the following sections, we

87

0% 1% 2% 3% 4% 5%
Incorrect Clustering Ratio

(a)

20%

40%

60%

80%

100%

Cl
us

te
re

d
Sp

ec
tra

 R
at

io

0% 1% 2% 3% 4% 5%
Incorrect Clustering Ratio

(b)

0.7

0.8

0.9

1.0

Co
m

pl
et

en
es

s

HyperSpec
GLEAMS
falcon

msCRUSH
MaRaCluster

spectra-cluster
MSCluster

Figure 4.4: Clustering quality comparison for seven clustering tools: (a) clustered spectra ratio
vs incorrect clustering ratio, (a) clustering completeness vs incorrect clustering ratio.

use hierarchical clustering as the default clustering algorithm without explicit specifications.

Comparison with Existing Tools

Using the draft human proteome Dataset-E, we also compared the clustering quality of

HyperSpec to six alternative spectral clustering tools (Figure 4.4). As suggested previously [15,

129], a high clustered spectra ratio at a low incorrect clustering ratio indicates a better clustering

capability for a specific tool. Additionally, completeness measures fragmentation of the same

88

peptide over multiple clusters, and an ideal clustering result should be as complete as possible to

ensure that spectra originating from the same peptide are more likely to be grouped into a single

cluster.

For clustered spectra ratio shown in Figure 4.4-(a), HyperSpec is significantly higher

than falcon and MS-Cluster across different incorrect clustering ratio. Meanwhile, HyperSpec

consistently clusters more spectra than MaRaCluster, and is slightly inferior to GLEAMS,

achieving the second best result at the region with low incorrect clustering ratio.

In terms of completeness, HyperSpec outperforms spectra-cluster, MS-Cluster, and

falcon, achieving top-3 completeness among the six clustering tools according to Figure 4.4-(b).

In contrast to falcon and spectra-cluster, which reach a plateau in terms of completeness as the

incorrect clustering ratio increases, HyperSpec is able to trade off a small amount of incorrect

clustering ratio for more complete clustering results. HyperSpec also maintains high completeness

values as the incorrect clustering ratio increases. For the region with incorrect clustering ratio

> 3%, HyperSpec surpasses other counterparts except for MaRaCluster, suggesting that the

clusters produced by HyperSpec are generally less fragmented. This can be especially beneficial

for downstream analysis tasks, since more complete clustering results can be represented by a

smaller number of consensus spectra to optimally minimize data redundancy.

To intuitively understand the clustering results, we studied the distribution of cluster

sizes for the most frequently identified peptide sequence VATVSIPR with precursor charge 2 for

different spectral clustering tools (Figure 4.5). Here, HyperSpec used a threshold of 𝑒𝑝𝑠 = 0.25,

HD dimension of 𝐷 = 2048, and quantization level of 𝑄 = 16 to achieve a clustering with a ratio

of incorrectly clustered spectra < 1.2%. The other spectral clustering tools use configurations as

listed in Table 4.4. We can see that HyperSpec mostly forms medium-size clusters with size 5 to

500 as compared to falcon and msCRUSH which tend to generate large clusters (size> 500). The

majority of clusters produced by MaRaCluster and spectra-cluster contain less than 100 spectra,

which indicates that these two tools are more likely to group spectra corresponding to the same

peptide into multiple small and fragmented clusters. In comparison, falcon and msCRUSH group

89

2-5 5-20 20-100 100-500 500-5000 5000+
Cluster Size

0

5000

10000

15000

Cl
us

te
re

d
Sp

ec
tra

HyperSpec
GLEAMS

falcon
msCRUSH

MaRaCluster
spectra-cluster

MS-Cluster

Figure 4.5: Distribution of cluster sizes for the most frequently identified peptide sequence
VATVSIPR with precursor charge 2.

these spectra into a limited number of large clusters that contain at least 5000 spectra. We also

add the six most frequent peptide sequences on Dataset-E with charge 2 and charge 3 as shown in

Figure 4.6 to illustrate the distribution of the cluster sizes. The incorrect clustering ratios for

all clustering results were controlled at around 1.0%. HyperSpec tends to form medium-size

clusters from size 5 to 500.

4.3.3 Spectra Database Searching Comparison

The generated consensuses from spectra clustering tools can be used for the downstream

spectra database search to identify peptide sequences. We compared the spectra searching

performance on the Human proteome draft Dataset-E in Table 4.1 for three clustering tools,

including HyperSpec, GLEAMS, and falcon. The clustering results generated by these tools

were controlled to have clustered spectra ratio around 60%. We use the default parameters

provided by the software except for the distance thresholds. Specifically, HyperSpec uses a

distance threshold value=0.3 and produces 62.9% clustered ratio with 1.58% incorrect clustering

ratio. GLEAMS uses a distance threshold value=0.25 and produces 59.1% clustered ratio with

1.14% incorrect clustering ratio. falcon uses a distance threshold value=0.2 and produces 61.1%

90

2-5 5-20 20-100 100-500 500-5000 5000+
Cluster Size

(a) VATVSIPR with Charge 2

0

5000

10000

15000
Cl

us
te

re
d

Sp
ec

tra

2-5 5-20 20-100 100-500 500-5000 5000+
Cluster Size

(b) SYEIPDGQVITIGNER with Charge 2

0

2000

4000

6000

8000

Cl
us

te
re

d
Sp

ec
tra

2-5 5-20 20-100 100-500 500-5000 5000+
Cluster Size

(c) IGEHNIDVIEGNEQFINAAK with Charge 3

0

2000

4000

6000

Cl
us

te
re

d
Sp

ec
tra

2-5 5-20 20-100 100-500 500-5000 5000+
Cluster Size

(d) ISSPATINSR with Charge 2

0

1000

2000

3000

4000

Cl
us

te
re

d
Sp

ec
tra

2-5 5-20 20-100 100-500 500-5000 5000+
Cluster Size

(e) VAPEEHPVIITEAPINPK with Charge 3

0

1000

2000

3000

4000

Cl
us

te
re

d
Sp

ec
tra

2-5 5-20 20-100 100-500 500-5000 5000+
Cluster Size

(f) FIASVSTVITSK with Charge 2

0

2000

4000

Cl
us

te
re

d
Sp

ec
tra

HyperSpec GLEAMS falcon msCRUSH MaRaCluster spectra-cluster MS-Cluster

Figure 4.6: Distribution of cluster sizes for the six most frequently identified peptide sequences
on Dataset-E with precursor charge 2 and charge 3.

3374 1276124585

2389

2067 30433
398522

HyperSpec GLEAMS

falcon

(a) Charge 2

816 43376797

966

797 16018
211782

HyperSpec GLEAMS

falcon

(b) Charge 3

Figure 4.7: Venn diagrams that depict the overlap of identified unique peptides using consensus
spectra generated by HyperSpec, GLEAMS, and falcon, respectively. The precursor charges
include charge 2 in (a) and charge 3 in (b). Identified peptides from HyperSpec are highly
overlapped with the results generated by GLEAMS and falcon.

clustered ratio with 4.27% incorrect clustering ratio. The clustering consensuses were searched

using MSGF+ [140] with the same parameters given in Section 4.3.1.

91

Table 4.4: Key performance metrics of HyperSpec, GLEAMS, falcon, msCRUSH, and MaRa-
Cluster on the draft human proteome Dataset-E.

Tool Parameters Runtime Peak Memory Clustered Spectra Incorrect Clustering Ratio Completeness

HyperSpec 𝑒𝑝𝑠 = 0.25, 𝐷 = 2048, 𝑄 = 16 24min 54GB 10 290 245 (48.70%) 1.08% 0.7885

GLEAMS threshold=0.25 217min 34GB 12 392 427 (59.06%) 1.14% 0.8251

falcon 𝑒𝑝𝑠 = 0.05 161min 87GB 5 675 468 (27.42 %) 1.11% 0.8438

msCRUSH similarity=0.8 55min 91GB 4 397 921 (22.34 %) 1.16 % 0.8418

MaRaCluster pvalThreshold = -30.0 251min 19GB 9 305 471 (43.20 %) 1.07% 0.7911

Figure 4.7 illustrates the Venn diagrams that depict the overlap relationship of identi-

fied unique peptides using consensus spectra clustered by HyperSpec, GLEAMS, and falcon.

GLEAMS identifies the largest number of unique peptides. HyperSpec identifies 8.1% and

1.1% less unique peptides for charge 2 and identifies 7.8% and 4.1% less unique peptides for

charge 3 as compared to GLEAMS and falcon, respectively. It should be noted that HyperSpec

achieves much lower incorrect clustering ratio than falcon (1.58% v.s. 4.27%). Considering that

HyperSpec is significantly faster than GLEAMS and falcon, we believe its slight degradation

of spectra searching quality is acceptable. Furthermore, HyperSpec not only boosts the spectra

clustering procedure but also reduces the search time of spectra database search. HyperSpec

yields about 2.7× speedup over the spectra searching using raw spectra because the redundant

searching process for those similar spectra are skipped.

4.3.4 Runtime Performance Comparison

Runtime is a crucial metric to evaluate the efficiency of spectral clustering tools. Especially

to be able to perform spectral clustering at the repository scale, tools have to be fast to handle the

ever-growing amount of MS data that is available in public data resources.

We first compared the total clustering time of HyperSpec using DBSCAN or hierarchical

clustering with complete linkage on five datasets. Figure 4.8 shows that hierarchical clustering

was ≈ 29% faster than DBSCAN on the small-size and medium-size Dataset-A to Dataset-D.

However, HyperSpec using DBSCAN generated more complete results with 38% shorter runtime

than hierarchical clustering on large-scale dataset Dataset-E. The shorter runtime on large-scale

92

Dataset-A Dataset-B Dataset-C Dataset-D Dataset-E
Datasets

0

250

500

750

1000

1250

1500

To
ta

l R
un

tim
e

(s
ec

)

HyperSpec + DBSCAN
HyperSpec + Complete Linkage

Figure 4.8: Runtime comparison for HyperSpec with DBSCAN and hierarchical clustering with
complete linkage on five datasets.

Dataset-A Dataset-B Dataset-C Dataset-D Dataset-E
Datasets

0

5

10

15

20

To
ta

l R
un

tim
e

Sp
ee

du
p

12
.4 15

.0

14
.9

13
.1

10
.8

4.
9

1.
0

1.
0

1.
0

1.
2

1.
0

1.
3

1.
5

1.
3

1.
6

7.
3

2.
9 3.
5

2.
3 4.

6

3.
0

2.
4

1.
2 1.
8

1.
0

HyperSpec GLEAMS falcon msCRUSH MaRaCluster

Figure 4.9: Total clustering runtime speedup of HyperSpec compared to alternative clustering
tools. The tool with the slowest runtime on each dataset was normalized to 1.

datasets comes from the optimized DBSCAN routines on parallel GPU devices.

We extensively measured the runtime performance of HyperSpec hierarchical clustering

with complete linkage compared to three fast spectral clustering tools on five datasets with a

varying number of spectra in Table 4.1. falcon and GLEAMS are Python-based libraries that

both use optimized JIT compilation and multiprocessing, while msCRUSH and MaRaCluster

were written in high-performance C++ and optimized using multithreading. spectra-cluster

and MS-Cluster were not considered here since they are significantly (> 5×) slower than other

tools. Our evaluation results in Figure 4.9 indicate that HyperSpec consistently outperforms all

93

0 20 40 60 80 100 120 140
Data Size (GB)

(a)

0

250

500

750

1000

1250

1500

1750

Pr
ep

ro
ce

ss
in

g
Ti

m
e

(s
ec

s)

HyperSpec
falcon
msCRUSH

5 10 15 20
Spectrum Number

(b)
1e6

0

2000

4000

6000

8000

10000

To
ta

l R
un

tim
e

(s
ec

s)

HyperSpec
falcon
msCRUSH

Figure 4.10: Runtime performance of msCRUSH [13], falcon [12], and HyperSpec when scaling
to different dataset sizes and number of spectra.

other tools in terms of runtime. 10.8× to 15.0× speedup was observed across different datasets.

HyperSpec’s speed advantage for spectra preprocessing progressively grows for larger datasets

(Figure 4.10-(a)). We further investigated the runtime scalability when processing an increasing

number of spectra (Figure 4.10-(b)). Our analysis shows HyperSpec’s excellent scalability and

performance advantages over alternative tools for increasingly large MS datasets.

We also studied detailed performance metrics (runtime, peak memory consumption, and

clustering quality) when running HyperSpec, GLEAMS, falcon, msCRUSH, and MaRaCluster on

94

the draft human proteome Dataset-E (Table 4.4). All tools were allowed to use all available CPU

cores to obtain the fastest clustering speed and were configured to produce a clustering result with

a ratio of incorrect clustered spectra around 1.0%. HyperSpec was able to process the full draft

human proteome dataset, amounting to 131GB of MS data, in a mere 24 minutes, which is by far

the fastest speed among the four spectral clustering tools considered. This runtime is 2.3× faster

than the second-fastest tool, msCRUSH, while achieving a higher clustered spectra ratio and

smaller peak memory usage. Although GLEAMS produced the highest ratio of correctly clustered

spectra, it required 217 minutes of processing time, which is 9.0× slower than HyperSpec. This is

because > 90% of GLEAMS’ runtime is consumed by the spectra preprocessing and embedding

steps. MaRaCluster obtained the lowest ratio of incorrectly clustered spectra among all tools and

a comparable completeness value with HyperSpec. Finally, with a peak memory consumption of

54GB, HyperSpec was more memory-efficient than msCRUSH and falcon. To sum up, because

HyperSpec achieves an optimal trade-off between clustering quality and runtime efficiency, it is

an especially appealing option to process the quickly growing volumes of MS data.

4.3.5 Discussion

HyperSpec is extensible to plug in and support other MS workloads. For example,

spectrum preprocessing is a common step during various MS data analysis tasks, such as

sequence database searching [142] and spectral library searching [143, 144]. The spectrum

preprocessing routines in HyperSpec are highly modularized, so that users can easily integrate

these optimized routines into other workloads to take advantage of their efficient implementations.

Another potential application of HyperSpec is to utilize the compact binary HV represen-

tation to compress MS data. We have demonstrated that the original spectra in floating-point

format can be encoded into binary HVs with 𝐷 = 1024 to 4096 bits with minimal loss of

information to maintain a high-quality clustering quality. In this case, the original spectrum

with 50 to 100 peaks in 32-bit or 64-bit floating-point number can be compressed by a factor

of 3.1× to 12.5×. Moreover, HV encoding could be convenient for the subsequent downstream

95

MS workloads, such as spectrum identification. Specifically, off-the-shelf HDC-based pattern

matching algorithms [99,145,146] could be leveraged to match spectra against a peptide database.

There are still several opportunities to improve upon HyperSpec’s clustering quality

and runtime performance. Similar to MaRaCluster and spectra-cluster [14, 143], one possible

approach could be to derive an optimized distance function to compare spectrum HVs and improve

the clustering quality, since finding similar spectra is an essential task during spectral clustering.

Another strategy could be to adopt a post-processing scheme after clustering to split up invalid

clusters [116, 129]. To further shorten the clustering runtime, the HV distance computations and

the clustering step can be parallelized over multiple GPU cards. Because the bucket division

mechanism relaxes data dependencies between different buckets of spectra, and the clustering

implementations in cuML [130] natively support multiple GPUs, a multi-GPU mode could

be integrated in HyperSpec at minimal efforts to achieve a near-linear speedup. The other

possible speedup opportunity is combining HyperSpec with the emerging near-storage spectrum

processing hardware [147] that can generate higher energy efficiency for repository-scale data

processing.

4.4 Conclusion

In this chapter, we present a HDC-based spectral clustering tool, HyperSpec, to achieve

both excellent clustering quality and runtime. Instead of clustering raw spectra directly, HyperSpec

leverages HDC [124] to convert spectra to hyperdimensional space. Specifically, the spectra are

first encoded into binary HVs that have high dimensionality but simpler representation format.

Our evaluations show that HyperSpec achieves a comparable clustering quality as state-of-the-art

spectral clustering tools [12–14, 16, 143]. Furthermore, we profiled and analyzed the bottlenecks

of existing clustering tools. We develop optimized spectra preprocessing routines and an efficient

clustering flow by addressing bottleneck components. As a result, HyperSpec is orders of

magnitude faster than alternative spectral clustering tools [12–14, 37].

96

Profiling analysis, as shown in Figure 4.2, identifies the preprocessing step as another

significant bottleneck, contributing to considerable overhead in terms of runtime and energy

consumption. Although this chapter introduces software optimizations that partially mitigate

the issue, preprocessing remains limited by the bandwidth between CPU and solid-state drive

(SSD) storage. To address this from a hardware perspective, the next chapter explores the use of

near-storage processing (NSP) techniques. Our NSP design offloads the preprocessing step onto

the SSD, reducing data redundancy and movement costs, ultimately delivering improved speed

and energy efficiency.

This chapter contains material from “HyperSpec: Fast Mass Spectra Clustering in

Hyperdimensional Space”, by Weihong Xu, Jaeyoung Kang, Wout Bittremieux, Niema Moshiri,

and Tajana Rosing, which appears in Journal of Proteome Research, 2023. The dissertation

author was the primary investigator and author of this paper.

97

Chapter 5

Near-storage Acceleration for Preprocess-
ing for Mass Spectrometry

5.1 Introduction

The previous chapter demonstrates that raw data preprocessing is a significant bottleneck

in mass spectrometry clustering. To mitigate this overhead, various parallel processing techniques

and programming optimizations were proposed. Accelerating the preprocessing step yields

substantial speedups across the entire analysis pipeline, including database search [98] and

clustering [101]. However, these software-level optimizations fall short of fully exploiting the

low-level data parallelism and internal bandwidth available in solid-state drive (SSD) storage.

In this chapter, we introduce a near-storage accelerator designed to enhance data prepro-

cessing in mass spectrometry analysis. A popular approach to obtain spectra data is shotgun

proteomics [119], where mass spectrometers analyze samples and acquire millions of fragment

spectra in hours. Processing spectra data is the most time-consuming part during experiments [17]

since the same molecules may be scanned by mass spectrometer many times, creating many

similar and redundant spectra fragments. The high data redundancy severely degrades the

efficiency of the MS analysis pipeline, such as open search [134]. Various clustering algorithms

and tools [13, 15–17] have been developed to reduce the data redundancy through clustering

similar spectra and selecting representatives of each cluster for protein and peptide identification.

The clustering step not only decreases the overall analysis time but also improves the identification

98

0%

20%

40%

60%

80%

100%

Time Energy Time Energy Time Energy Time Energy

msCRUSH MS-Cluster maracluster Average

P
e

rc
e

n
ta

g
e

Loading Computing Clustering

Figure 5.1: Execution time and energy breakdown for various mass spectrum clustering tools,
msCRUSH [13], MS-Cluster [16], and MaRaCluster [17]. Preprocessing = Loading + Computing.

quality [13, 16].

However, state-of-the-art MS clustering tools are too slow to tackle the exponential

growth of MS data. MS-Cluster [16] and spectra-cluster [15] take nearly 30 hours to cluster

a dataset with 25M spectra [12], far behind the over-gigabyte hourly data generation speed of

modern mass spectrometers [17]. The number of spectra data submission to one of the largest

public mass spectra datasets, PRIDE [148], has increased over 10× during the past ten years. The

MassIVE [28] database has stored 4×109 publicly accessible spectra with over 600 terabytes

(TB). Due to the enormous size of these datasets, clustering is done only a few times a year,

resulting in less accurate search results. To this end, new tools are essential for both clustering

and search of mass spectrometry data to accelerate the identification of proteins, which are

critical for the development of new medicines.

Our profiling in Figure 5.1 shows that the spectra preprocessing step (includes loading

and computing) is the major bottlenecks that account on average 82% of execution time and

energy of the clustering pipeline. The speed of spectra loading and computing is restricted by the

costly data movement and limited bandwidth between host memory and storage. MS tools need

to fetch the bulky spectra data from storage devices to the host memory before performing the

computing step on the CPU. Even with PCIe and NVMe [149] techniques, the peak read speed of

99

commercial SSD storage [150] (3.2GB/s) is insufficient compared to spectra data over tens of

GBs. The other issue is that only a tiny portion of spectra are preserved after preprocessing. The

current pipeline still loads the entire unprocessed dataset into memory, leading to unnecessary

time and data movement overhead. Unfortunately, existing DRAM-based accelerators, such as

MEDAL [81] and RAPID [3], are not suitable for MS preprocessing because they are optimized

for reducing data movement cost near DRAM. They are unsuitable to efficiently process spectra

and remove the inherent redundancy before fetching data from the storage without dramatically

increasing the DRAM capacity and cost. Thus, MS preprocessing should be accelerated in

storage as it has the low cost and high capacity needed to prepare the MS data.

In this chapter, we propose a near-storage architecture, MSAS, to accelerate MS prepro-

cessing. The key contributions can be summarized as follows:

• To the best of our knowledge, MSAS is the first near-storage design to boost MS spectra

preprocessing. We exploit the internal bandwidth of SSD by conducting a design space

exploration at the SSD level and channel level. The results indicate that the channel-level

acceleration yields the best hardware and energy efficiency.

• We develop a fully pipelined accelerator with scalable performance for each storage level.

We identify the top-k selector as the bottleneck of MSAS and develop an efficient top-k

selector based on modified Bitonic algorithms to match the internal bandwidths.

• We extensively compare MSAS with state-of-the-art MS clustering tools on various datasets.

We obtain up to 187× speedup on spectra preprocessing tasks. Furthermore, as compared to

the state-of-the-art in-storage computing prototype [18], MSAS is up to 1.8× faster. After

integrating MSAS into state-of-the-art clustering tools, 2.8× to 11.9× energy efficiency

and 3.5× to 9.8× speedup are achieved on clustering workloads.

100

m/z

In
te

n
s
ity

BEGIN IONS
PEPMASS=482.565826
CHARGE=3+
TITLE=SARS-CoV-2
SCANS=9481
RTINSECONDS=1063.207

104.40397 804.910644
401.07154 2936.69824
602.05508 34657.82128
703.05452 160803.8906
904.05318 75956.40136
1310.0715 705.271258

END IONS

// Preprocessing Phase
while(mgf_spectra not empty)
{
 read_lines(mgf_spectra); // Storage to DRAM
 for(spectra_i in mgf_spectra)
 {
 result = Filter(spectra_i);
 result = Topk(result);
 result = Normalization(result);
 if(result != NULL)
 valid_spectra_list.add(result);
 }
}
save_spectra(valid_spectra_list); // DRAM to Storage

// Clustering Phase
spectra = load(valid_spectra_list); // Storage to DRAM
run_cluster(spectra); // DRAM to CPU

 DRAM to CPU

(b)

(c)

Q1

Q2

Q3

Bank 0

WQ,K,V

Input Tokens

I1

I2

I3

Q

K1

K2

K3

K

Attention MatrixBank 1 Bank 2

WQ,K,V WQ,K,V

Q1 Q2 Q3K1 K2 K3V1 V2 V3

S1,1

Q1 Q2 Q3K1 K2 K3V1 V2 V3

S2,2 S3,3

V

O1

O2

O3

Attention Out

Fully Connected Layers

Bank 0 Bank 1 Bank 2

Attention

V1

V2

V3

V1 V2 V3S1,1-3

Ring Broadcast & Compute

S2,1-3 S3,1-3

PSum1 PSum2 PSum3

1

2

1

2

3

4

Intra-shard Local Attention

Fully Connected Layers

Inter-shard Cross Attention

Output Calculation
2 3 41

I1 I2 I3

S3,3

S1,1

S2,2

S3,3

S1,1

S2,2

S3,3

S1,1

S2,2

S3,3

S1,1

S2,2

head

head

Q K
Softmax() V =

T

D




 Host

CPU DRAM

Spectra Data

Spectra Data

SSD Storage

MSAS-enabled SSD

Reserved data after
preprocessing

1

2

3

4

MSAS
Accelerator

2

PCIe / NVMe

PCIe / NVMe

1
Near-storage
Preprocessing

Load raw spectra

2

2 3

Store processed spectra

: Clustering/Search

: Preprocess on CPU

MSAS Datapath

CPU Datapath Raw Spectra:

Processed Spectra:

Preprocessing

Clustering

Database Search

Raw MS Data

MSFragger

Ann-SoLo

Mascot

...

(a)

...

...

Consensus

Processed Spectra

...

...

>60% Runtime

>50% Energy

m/z

In
te

n
s
ity

BEGIN IONS
PEPMASS=482.565826
CHARGE=3+
TITLE=SARS-CoV-2
SCANS=9481
RTINSECONDS=1063.207

104.40397 804.910644
401.07154 2936.69824
602.05508 34657.82128
703.05452 160803.8906
904.05318 75956.40136
1310.0715 705.271258

END IONS

(a)
1. Filter

m/z

In
te

n
s
ity

m/z

In
te

n
s
ity

In
te

n
s
ity

2. TopK

3. Norm.
+ Scale

Figure 5.2: (a) Pipeline of data analysis for MS, (b) A spectrum example in MGF format.

5.2 Background

5.2.1 Mass Spectrometry

A wide variety of fields, such as analytical chemistry and large-scale proteomics, have

adopted MS as a powerful tool to identify biological structures or chemical compounds. A mass

spectrometer is used to generate spectra data containing the mass-to-charge ratio (m/z) and ion

signal intensity of molecules. As depicted in Figure 5.2-(b), a mass spectrum can be considered

as a plot of ion signal intensity and mass-to-charge ratio [151], where the ion strength is expressed

as its intensity in y-axis against their m/z in the x-axis. Each peak in a spectrum stands for a

component with unique m/z in the tested sample. Throughout this thesis, we adopt the commonly

used Mascot generic format (MGF) [152] as the storage format of spectra. MGF consists of

metadata and spectra data, such that metadata record the precursor m/z, peptide charge, query

101

title, and other information. In contrast, the spectra data we use consists of the peak intensity and

m/z pairs. Figure 5.2-(b) shows a spectrum with total six intensity and m/z pairs.

Figure 5.2-(a) illustrates the data analysis pipeline for MS. Researchers can leverage

the spectra data to identify molecules and analyze inherent properties through matching the

discovered spectra against all the peptides in sequence databases using search engines, like

Mascot [152]. Preprocessing step, including filtering, intensity selection, and data normalization,

is essential for the subsequent processes since it improves the quality of the results. The filtering

step filters the precursor-related peaks and peaks out of the target range, thus reducing noise

interference. After the filtration, the intensity selection step finds and preserves the 𝑘 most

intensive peaks. It further reduces the impact of trivial peaks. The typical 𝑘 value is from 30

to 50 [13, 16]. Data normalization is the final step to lessen the dominant effects of excessive

values through additional transformations. The spectra preprocessing is critical for the final

analysis quality as demonstrated in [153]. The above three steps are widely used in clustering

and search tools [13, 15, 16]. Moreover, the preprocessing compresses spectra size and reduces

data redundancy.

5.2.2 Modern SSD

The architecture of modern SSDs [150,154,155] is shown in Figure 5.3. The internal SSD

is organized into multiple-level hierarchies, such as channels, chips, planes, to name a few. The

most frequently used non-volatile storage elements in SSDs are NAND flash memory [156]. The

NAND flash chips are organized into 4 to 32 channels, and each channel operates independently

and simultaneously [155]. The flash memory controller (FMC) is implemented to perform

dedicated data access and error correction for each channel. Several NAND flash chips share

one channel, and these NAND flash chips can issue I/O requests independently. Normally 4

to 8 chips are connected to single-channel [154]. Each NAND chip consists of multiple dies,

where each die contains multiple planes, blocks, and pages [155]. Page with 4 to 16KB size is the

smallest unit that can be accessed and indexed in SSDs. The embedded cores are responsible for

102

MSAS-Enabled StorageP
C

Ie
 / N

V
M

e
 In

te
rfa

c
e

SSD
DRAM

On-chip Bus

Embedded CoresEmbedded CoresEmbedded Cores

… NAND
Flash C

 Buffer Manager

DMA

. . .

3.2 GB/s

(a)

NAND
Flash 1

… NAND
Flash C

Channel 1

Channel Nch
. . .

FMC

800MB/s

(b)

Ctrl

P
H

Y

SSD-level
MSAS

Channel 1

ECC

FMC

Channel 2

FMC

Channel Nch

. . .

Channel-level
MSAS

To DRAM

: Output Datapath

: Input Datapath

: Raw Spectra

: Preprocessed Spectra

MSAS Accelerator

FMC

NAND
Flash 1

Buffer
Manager

C
h
a
n

n
e

l
S

p
litte

r

Figure 5.3: Overall diagram of MSAS accelerators embedded in regular SSD, including two
types of designs in different storage levels: (a) SSD-level design, (b) Channel-level design in the
buffer manager.

SSD control, including issuing I/O commands from the external interface and data scheduling.

Modern SSDs normally adopt the high-speed NVMe [149] interface to ensure over GB/s external

data rate. However, the internal multiple-level hierarchy provides significantly higher data

parallelism [155, 157].

5.3 MSAS Near-storage Architecture

5.3.1 Overview

Figure 5.3 illustrates the overall architecture of MSAS in generic SSDs. MSAS-enabled

SSD storage preserves the regular SSD datapath and can additionally boost MS data processing.

103

The limited external bandwidth of SSD may become the bottleneck for data-intensive workloads.

However, the highly parallelized SSD internal architecture provides opportunities to alleviate

the bandwidth bottleneck [155]. To this end, we create and evaluate two independent designs,

namely SSD-level and channel-level MSAS accelerators, to exploit the internal bandwidth of

SSD. Accelerators in different storage levels use scalable hardware configurations to provide

sufficient throughput at the cost of reasonable overhead. For the two designs in Figure 5.3,

they follow a similar execution flow: the raw spectra are fetched from NAND flash through

the input datapath and then computed in MSAS accelerators. The preprocessed spectra results

are temporarily cached in the buffers. When the buffers are full or ready, the output datapath

transfers processed spectra in buffers through the regular SSD read datapath to host memory.

The difference between the two designs is they are exposed to different internal bandwidths and

physical address space.

SSD-level Design: Figure 5.3-(a) shows the topmost SSD-level MSAS accelerator that

resides in the SSD. The SSD-level accelerator is implemented using CMOS technology on the

same die of SSD’s embedded cores. It is connected to the global on-chip bus and fetches data

from the NAND flashes through the regular SSD datapath. Thus it can access the entire physical

address space of back-end NAND flashes and enjoy a peak bandwidth that equals to the external

SSD bandwidth (e.g. 3.2GB/s [150]). The SSD-level accelerator helps to save over 95% SSD’s

external bandwidth through the NVMe interface; over 95% of data after preprocessing step are

discarded due to the redundancy of spectra data.

Channel-level Design: To improve the overall efficiency, the channel-level accelerator in

MSAS aggregates the bandwidth of multiple channels as shown in Figure 5.3-(b). In contrast,

DeepStore [154] extends the internal bandwidth by implementing accelerators in each channel.

However, this approach has two defects. First, only 800MB/s rate can be exposed to the accelerator

in each channel. Second, implementing accelerators in every channel incurs a large hardware

overhead. Our channel-level design resides between FMC and DMA engine, where each channel

has 800MB/s bandwidth [158]. In generic SSD architecture, the buffer manager is connected

104

NAND Flash

Top-k

Selector

NAND Flash Package

MSAS-Enabled Storage

F
la

sh
 In

te
rfa

c
e

P
C

Ie
 /N

V
M

e
 In

te
rfa

ce

Host

SSD
DRAM

SSD-level
MSAS

On-chip Bus
SQSQ

Embedded CoresEmbedded CoresEmbedded Cores

F
la

sh
 In

te
rfa

c
e

F
la

sh
 In

te
rfa

c
e

CH0

NAND
Flash #0

…
NAND

Flash #nChannel-0

Channel-1

Channel-n

… ...

NAND Flash

Package

MSAS-Enabled Storage

F
la

sh
 In

te
rfa

c
e

P
C

Ie
 / N

V
M

e
 In

te
rfa

c
e

SSD
DRAM

SSD-level
MSAS

On-chip Bus

Embedded CoresEmbedded CoresEmbedded Cores

F
la

sh
 In

te
rfa

c
e

F
la

sh
 In

te
rfa

c
e

NAND
Flash #0 …

NAND
Flash #k

NAND Flash

Package
NAND Flash

Package

Channel-0

… ...

Channel-1

Channel-n

800MB/s

3.2GB/s

800MB/s

Host

CPU

DRAMDRAMDRAM

Spectra
Filter

Scale and
Norm.

(a)

(d)

++ ++ ++

++ ++

...

...

++

...PE PE PE

From Top-k Selector

...

...

CMP

CMP

1

2
3

m/z thres.

CMP

prec. thres.

intesity thres.

CMPCMP

÷÷ log

intensity

m/z

(c)

(b)

acc.

acc.

intensity

0

normalized intensity

FIFO

FIFO

Phase 3

Stage

1 2

1 1 2 2 31

31 2

1 1 2 2 31

3

7

4

8

6

2

1

5

6

5

7

8

3

4

Bitonic

Top-k Selector

P
ip

. R
e
g

S
/P

P
ip

. R
e
g

From
Spectra Filter

Last top-k
results

Final Top-k
results

(a) (b)

(c)

Data from

NAND flash

Data to

DRAM

Data BufferData Buffer

MSAS-Enabled StorageP
C

Ie
 / N

V
M

e
 In

te
rfa

c
e

SSD
DRAM

On-chip Bus

Embedded CoresEmbedded CoresEmbedded Cores

… NAND
Flash C

 Buffer Manager

DMA

. . .

3.2 GB/s

(a)

Die 0

Plane 1

REG

Plane P

…

Die D

Plane 1

REG

Plane P

…

Flash-level
MSAS

. . .

NAND
Flash 1

… NAND
Flash C

Channel 1

Channel Nch

. . .

FMC

800MB/s

(c)(b)

Ctrl

P
H

Y

SSD-level
MSAS

Channel 1

ECC

FMC

Channel 2

FMC

Channel Nch

. . .

Channel-level
MSAS

To DRAM

: Output Datapath

: Input Datapath : Raw Spectra
: Preprocessed Spectra MSAS Accelerator

FMC

NAND
Flash 1

Buffer
Manager

C
h
a
n

n
e

l
S

p
litte

r

sqrt

Figure 5.4: (a) Architectures of MSAS accelerator, 1 : regular SSD read datapath, 2 : metadata
loading, 3 datapath for m/z and intensity preprocessing, (b) Spectra filter, (c) Scale and
normalization module, (d) Processing element (PE).

to all 𝑁ch channels, and it is responsible for transporting data from channel bus to DRAM

buffer [157]. We add a channel splitter [159] between FMC and DMA engine to multiplex the

channel data bus. The channel-level MSAS accelerator is implemented within the buffer manager,

and it receives data from the channel splitter and sends processed results to DMA. We can tune

the internal bandwidth exposed to the channel-level design by choosing different splitting factors

of the channel splitter. Assume each accelerator shares 𝐶share channel buses, the highest available

bandwidth to each accelerator is (800 ·𝐶share)MB/s. In this case, total (𝑁ch/𝐶share) channel-level

accelerators need to be implemented. Meanwhile, the physical address space of shared 𝐶share

channels is accessible for each accelerator. Section 5.4.1 gives the chosen parameter 𝐶share.

105

5.3.2 MSAS Accelerator

Figure 5.4-(a) gives the architecture of MSAS accelerator for performing spectra loading

and preprocessing. We use 32-bit single floating-point as the spectra data format processed by

MSAS accelerators. The original data reading of SSD is preserved in datapath 1 . Datapath

2 and datapath 3 are used for spectra loading and preprocessing. When a new spectrum is

coming, the metadata is first cached into the data buffer through datapath 2 . The processing

for m/z and intensity are performed in datapath 3 after the metadata loading is finished. Three

processing modules, including spectra filter, top-k selector, and scale and normalization module,

are implemented over 3 . These modules are executed in a fully pipelined manner to ensure high

throughput.

Data Buffer: Multiple data buffers are implemented in each MSAS accelerator, and

each data buffer has the same size as SSD’s page (8KB). After the preprocessing steps, data

buffers work as plane registers to transfer data to SSD DRAM. The page-size data buffers align

with SSD’s physical addresses since the page is the minimum data chunk that can be indexed.

Moreover, we implement double data buffers and interleave the data access of data buffers to

avoid clock stalls caused by pipelining.

Spectra Filter: m/z and intensity pairs are fed into the spectra filter in Figure 5.4-(b).

The spectra filter requires only a single clock cycle to perform a total of five comparisons. The

first two comparators determine whether the given m/z value is located within the range of m/z

threshold. The third and fourth comparisons with the precursor threshold are performed to

discard those spectra near the precursor peptide. The last comparison is for filtering the spectra

with peak intensity less than the intensity threshold. Finally, the m/z and intensity pairs that

satisfy all the comparison criteria are allowed to pass to the top-k selector.

Top-k Selector: The top-k selector finds the 𝑘 most intensive peaks of the streaming

m/z and intensity pairs from the spectra filter. Classic sorting algorithms like Bitonic sort and

quick sort can solve the top-k problem by (1) sorting all the data and then (2) selecting the 𝑘

106

NAND Flash

Top-k

Selector

NAND Flash Package

MSAS-Enabled Storage

F
la

sh
 In

te
rfa

c
e

P
C

Ie
 /N

V
M

e
 In

te
rfa

ce

Host

SSD
DRAM

SSD-level
MSAS

On-chip Bus
SQSQ

Embedded CoresEmbedded CoresEmbedded Cores

F
la

sh
 In

te
rfa

c
e

F
la

sh
 In

te
rfa

c
e

CH0

NAND
Flash #0

…
NAND

Flash #nChannel-0

Channel-1

Channel-n

… ...

NAND Flash

Package

MSAS-Enabled Storage

F
la

sh
 In

te
rfa

c
e

P
C

Ie
 / N

V
M

e
 In

te
rfa

c
e

SSD
DRAM

SSD-level
MSAS

On-chip Bus

Embedded CoresEmbedded CoresEmbedded Cores

F
la

sh
 In

te
rfa

c
e

F
la

sh
 In

te
rfa

c
e

NAND
Flash #0 …

NAND
Flash #k

NAND Flash

Package
NAND Flash

Package

Channel-0

… ...

Channel-1

Channel-n

800MB/s

3.2GB/s

800MB/s

Host

CPU

DRAMDRAMDRAM

Spectra

Filter
Scale and

Norm.

(a)

(d)

++ ++ ++

++ ++

...

...

++

...PE PE PE

From Top-k Selector

...

...

CMP

CMP

1

2
3

m/z thres.

CMP

prec. thres.

intesity thres.

CMPCMP

÷÷ log

intensity

m/z

(c)

(b)

acc.

acc.

intensity

0

normalized intensity

FIFO

FIFO

Phase 3

Stage

1 2

1 1 2 2 31

31 2

1 1 2 2 31

3

7

4

8

6

2

1

5

6

5

7

8

3

4

Stage-folded Bitonic

P
ip

. R
e
g

S
/P

P
ip

. R
e
g

From
Spectra Filter

Last top-k
results

Final Top-k
results

(a) (b)

(c)

Data from

NAND flash

Data to

DRAM

Data BufferData Buffer

MSAS-Enabled StorageP
C

Ie
 / N

V
M

e
 In

te
rfa

c
e

SSD
DRAM

On-chip Bus

Embedded CoresEmbedded CoresEmbedded Cores

… NAND
Flash C

 Buffer Manager

DMA

. . .

3.2 GB/s

(a)

Die 0

Plane 1

REG

Plane P

…

Die D

Plane 1

REG

Plane P

…

Flash-level
MSAS

. . .

NAND
Flash 1

… NAND
Flash C

Channel 1

Channel Nch

. . .

FMC

800MB/s

(c)(b)

Ctrl

P
H

Y

SSD-level
MSAS

Channel 1

ECC

FMC

Channel 2

FMC

Channel Nch

. . .

Channel-level
MSAS

To DRAM

: Output Datapath

: Input Datapath : Raw Spectra
: Preprocessed Spectra MSAS Accelerator

FMC

NAND
Flash 1

Buffer
Manager

C
h
a
n

n
e

l
S

p
litte

r

sqrt

Figure 5.5: (a) Full Bitonic sorting network with 𝑁 = 8, (b) Simplified Bitonic network for
Top-k selection (𝑁 = 8 and 𝑘 = 6), (c) Iterative Top-k selector for streaming data.

largest values. However, the straightforward Bitonic or quick sort is inefficient and superfluous in

practical use since the top-k selector does not require strict sorting. Moreover, the number of

streaming intensities could be over hundreds, thus finding the top-k values in such data volume

would incur huge hardware overhead.

We simplify the original Bitonic algorithms for efficient top-k selection. Figure 5.5-(a)

illustrates an example of 8-point Bitonic sorting network composed of log2 𝑁 phases where the

𝑖-th phase contains 𝑖 stages. The last phase is called merge phase. There are 𝑁/2 compare

and swap (CS) in each stage. The required number of CS units is O(𝑁 log2 𝑁) with O(log2 𝑁)

latency. We would obtain sorted results after the data pass through the whole network. The

original Bitonic network can be simplified to efficiently support top-k selection [160] as shown

in Figure 5.5-(b). The basic idea is the remove those CS units in the merge phase that will not

impact the top-k results. Assuming a top-k problem 𝑘 = 6 with Bitonic network 𝑁 = 8, the last

stage together with the upper part of the second stage in the merge phase can be removed to

107

obtain correct top-k results. In this case, the latency is reduced from 6 to 5 and the required CS

units decrease from 24 to 18.

Using a fully parallel Bitonic network would introduce prohibitive hardware overhead.

Instead, we construct a stage-folded iterative Top-k selector in Figure 5.5-(c). A single Bitonic

stage is reused, and the top-k results are computed iteratively. Specifically, the generated top-k

results will be latched in the output pipeline register. Then 𝑘 inputs are reserved for the last

top-k results while the rest 𝑁 − 𝑘 inputs are used to receive new input from the spectra filter. The

last top-k results and the new data from the spectra filter are sent to the next round of selection.

During the period of top-k computation, the serial to parallel register (S/P) is continuously

caching new m/z and intensity pairs. The new top-k results are sent to the next computation

with new cached data in the S/P register. Considering the typical 𝑘 value is 30 up to 100 for

MS preprocessing [12, 16], we choose 𝑁 = 128 for channel-level and SSD-level accelerators to

support these 𝑘 values. This configuration delivers a peak throughput of 5.8GB/s for 𝑘 = 100.

Scale and Normalization Module: The 𝑘 most intensive peaks from the top-k selector

need to be scaled and normalized to eliminate the dominant effect of large intensity. The scale

and normalization module supports three commonly used functions, including log scaling, square

root scaling, and unit normalization. For unit normalization, the 𝑘 peak intensities are scaled to

(0,1] with the accumulation value of peaks. The accumulation of all 𝑘 intensities are computed

in the stage-pipelined adder tree in Figure 5.4-(c). In turn, the normalized values are computed by

the divider in the processing elements (PE). The log and square root normalizations are computed

by the PE in Figure 5.4-(d).

5.3.3 Data Mapping Scheme in MSAS

The available physical address space varies for different MSAS accelerators. There are

two basic requirements for spectra data mapping to maximize bandwidth and hardware utilization.

First, they need to be stored in a page-aligned manner. Second, the data of continuous spectrum

should be stored in continuous space. For the SSD-level accelerator, the entire SSD address space

108

Table 5.1: Spectra datasets for evaluation

MS Spectra Datasets
Class Sample Type PRIDE ID # Spectra Avg. Len. Size

PXD-Tiny Kidney cell [134] PXD001468 1.1×106 ≈181 5.6GB
PXD-Small Kidney cell [135] PXD001197 1.1×106 ≈816 25GB

PXD-Medium HeLa proteins [137] PXD003258 4.1×106 ≈509 54GB
PXD-Large HEK293 cell [136] PXD001511 4.2×106 ≈798 87GB

is accessible. Thus, the generic SSD page allocation scheme can work as the SSD-level data

mapping scheme. Each channel-level design is exposed to the address space of continuous 𝐶share

channels. Thus, the spectra data should be evenly allocated to each channel group composed of

𝐶share channels.

5.4 Evaluation

5.4.1 Methodology

Baselines: We evaluate four state-of-the-art spectrum clustering tools, including MS-

Cluster [16], spectra-cluster [15], MaRaCluster [17] and msCRUSH [13]. The fragment mass

tolerance and precursor mass tolerance are set to 0.05 Da and 20 ppm, respectively. The most

50 intensive peaks are preserved. We filter those peaks whose m/z is out of range 200 to

2000. MS-Cluster is set to run three rounds of clustering and uses the integrated LTQ TRYP

model. spectra-cluster is tested under its fast mode. The other options and parameters are set to

default. On top of the comparison to the CPU-based implementation, we show the performance

improvement of MSAS over the state-of-the-art in-storage computing solution INSIDER [18].

Spectra Datasets: Table 5.1 summarizes the used datasets at different data scales and

average lengths. We classify the datasets into four categories based on their size. The data are

publicly available and downloaded from the PRIDE repository [161]. All raw data are converted

into MGF format using ThermoRawFileParser [139] with release version 1.3.4.

Area and Power Modeling: The baseline MS clustering tools were evaluated on a

server with Intel Xeon E5-2680 CPU, 64GB DDR4-2133MHz memory, and a 2TB commercial

109

Table 5.2: MSAS implementation and area breakdown

Design SSD-Level Channel-Level
Frequency 800MHz

Bitonic Top-K 𝑁 = 128 (0.09mm2)
Norm. Scale 0.27mm2 0.27mm2

FIFO 32b×64
Buffer 256KB (0.36mm2) 64KB (0.09mm2)
Area 0.72mm2 0.45mm2

Number 1 4
Total Area 0.72mm2 1.81mm2

Average Power 2.22W 8.06W

PCIe-based SSD. The maximum read speed is 3.2GB/s. The energy consumption of CPU

baselines is measured using CPU Energy Meter [162]. MSAS accelerators are implemented

using Verilog and synthesized by Synopsys Design Compiler on TSMC 28nm process. The clock

frequency is set to 800MHz. The area and energy consumption of FIFO and buffer are estimated

using CACTI [77].

MSAS is evaluated on 1TB Intel DC P4500 SSD, providing a sequential read bandwidth

of 3.2GB/s and sequential write bandwidth of 600MB/s [150]. The active power under sequential

access mode is 11W and 9.6W for write and read, respectively. We assume each flash array

has a read latency of 64us, 16 channels, 4 flash chips per channel, 2 dies per chip, 2 planes per

die, 512 blocks per plane, and 1024 pages per block. Each flash page is 8KB, and each channel

using ONFI [158] has a bandwidth of 800MB/s. We combine performance data obtained via

SSD simulation with the SSD power model in [163] to estimate the energy consumption. The

configurations and area breakdown of MSAS accelerator in three storage levels are summarized

in Table 5.2. We let each channel-level accelerator share 𝐶share = 4 channels, requiring 16/4 = 4

channel-level accelerators. The flash-level design contains a total of 16×4 = 64 accelerators.

110

3.3

1.0

3.8

1.0

3.7

1.0

3.8

1.0

0

1

2

3

4

SSD Channel SSD Channel SSD Channel SSD Channel

PXD-Tiny PXD-Small PXD-Medium PXD-LargeN
o

rm
a

liz
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

Compute Data Transfer

Figure 5.6: Execution time comparison for SSD-level and channel-level designs.

5.4.2 Performance and Energy Evaluation

Comparison of SSD and channel-level designs. We first compare the preprocessing

speed of MSAS accelerators at different storage levels. The configurations of SSD-level and

channel-level designs are shown in Table 5.2. The spectra data are pre-stored in SSD before

the preprocessing starts. Figure 5.6 illustrates the execution time on four MS datasets, where

the channel-level execution time is normalized to 1. Channel-level design is 3.3× to 3.8×

faster vs. SSD-level design. The gain comes from two aspects. First, spectra preprocessing

is data-intensive rather than computation-intensive workload. In this case, higher bandwidth

brings about more significant speedup. Second, each channel-level accelerator is connected to 4

channel buses and enjoys 3.2GB/s bandwidth. As discussed in Section 5.3.2, each fully pipelined

channel-level accelerator can fulfill 4.8GB/s data rate. The four channel-level accelerators are

able to fully exploit the aggregate 12.8GB/s internal bandwidth of 16 channels. In comparison,

the performance of SSD-level design is restricted by the limited 3.2GB/s bandwidth of the on-chip

bus.

Spectra preprocessing speedup. In Figure 5.7, we compare the performance of channel-

level design and the in-storage computing prototype, INSIDER [18], over CPU on spectra

preprocessing workload. We use msCRUSH as the CPU baselines as it yields the fastest speed.

111

91

165

100

183

111

187

108

182

0

50

100

150

200

INSIDER MSAS INSIDER MSAS INSIDER MSAS INSIDER MSAS

PXD-Tiny PXD-Small PXD-Medium PXD-Large

S
p

e
e

d
u

p

Figure 5.7: Preprocessing speedup of INSIDER [18] and MSAS over CPU baselines.

INSIDER uses 8-lane PCIe, which delivers 8GB/s peak bandwidth, and the spectra preprocessing

is computed using FPGA in SSD. The channel-level MSAS achieves 165× to 187× speedup over

CPU. Moreover, MSAS is 1.7× to 1.8× faster than INSIDER. The speedup is derived from two

aspects. First, INSIDER needs to load raw spectrum data from SSD into FPGA and then transfer

processed data back to SSD, incurring redundant data movement. MSAS only fetches data from

NAND flash once. Second, the internal bandwidth of MSAS is 60% higher than INSIDER’s

PCIe bandwidth.

System-level improvements after integration. We integrate the channel-level design

into the existing MS clustering tools (msCRUSH, MS-Cluster, and MaRaCluster) by replacing the

preprocessing part with MSAS framework. This offloads the preprocessing into MSAS-enabled

SSD. The clustering part is executed on the CPU. For CPU baselines, the entire preprocessing

and clustering process is computed by CPU. Figure 5.8 gives the speedup and energy efficiency

of MSAS over CPU baselines after integration. The channel-level MSAS achieves 3.5× to 9.8×

speedup and 2.8× to 11.9× energy efficiency on four datasets. The preprocessing steps are

dominant the runtime and energy of clustering workloads, as shown in Figure 5.1. Accelerating

preprocessing provides significant overall speedup for clustering tools.

Comparing the performance gain within each clustering tool, we observe that the gain

is more significant on datasets with longer average spectrum length (e.g. PXD-Small and

112

3
.5

8
.6

5
.9

8
.5

3
.6

6
.0

3
.6

3
.6

6
.7

7
.4 5

.6

9
.8

2
.8

6
.6

4
.5

6
.5

4
.1

7
.1

4
.1

6
.5

8
.0

8
.9

6
.6

1
1

.9

0

2

4

6

8

10

12

14

T S M L T S M L T S M L

msCRUSH MS-Cluster maracluster

N
o
rm

a
liz

e
d
 R

a
ti
o

Speedup Energy Efficiency

Figure 5.8: Speedup and energy efficiency over CPU after integrating MSAS into clustering
tools.

PXD-Large). This is due to the fact that the average spectra length of PXD-Tiny is close to the

top-k value (𝑘 = 50). The data size of preprocessed spectra is not greatly reduced compared

to the raw spectra, leading to 3.5× to 6.7× with 2.8× to 8.0× lower energy consumption. The

difference in performance gain between the three clustering tools is mainly benefitted from the

code optimization.

5.4.3 Overhead Analysis

The channel-level design consumes the largest area among the proposed designs. Consid-

ering that the TLC NAND flash chip [156] has a die size over 100mm2, the largest channel-level

design only incurs 0.03% area overhead, which is negligible. SSD’s 50W power budget [154] is

more than sufficient for the added MSAS accelerators. The channel-level design, with the highest

8.06W power dissipation, meets the power supply constraints.

5.5 Conclusion

Chapter 5 presents MSAS, the near-storage computing framework that efficiently acceler-

ates the mass spectrum data preprocessing. Based on the observation that preprocessing takes

nearly 82% of the overall execution time and energy consumption for MS analysis, MSAS tackles

113

the challenge by performing the preprocessing in SSD. We present two types of accelerator

designs to exploit the internal storage bandwidth at different levels of the storage hierarchy. Then

we design scalable and energy-efficient accelerators to satisfy the data rate for each storage level.

The channel-level MSAS generates the best efficiency with 1.81mm2 area and 8.06W power. The

experiments show that the channel-level MSAS is able to boost spectra preprocessing by up to

187× compared to the fastest MS analysis tool. Moreover, MSAS reduces the execution time up

to 1.8× compared to in-storage computing prototype, INSIDER [18]. We show that the proposed

solution can improve the clustering speed and energy efficiency of the overall MS clustering

pipeline by 3.5× to 9.8× and 2.8× to 11.9×, respectively.

This chapter contains material from “A Near-Storage Framework for Boosted Data

Preprocessing of Mass Spectrum Clustering”, by Weihong Xu, Jaeyoung Kang, and Tajana

Rosing, which appears in IEEE/ACM Design Automation Conference (DAC), 2022. The

dissertation author was the primary investigator and author of this paper.

114

Chapter 6

Summary and Future Work

6.1 Thesis Summary

Over the past few decades, the fields of genomics and proteomics have undergone

unprecedented expansion, driven by technological advancements in high-throughput sequencing

and mass spectrometry (MS). This rapid growth has not only increased our understanding of

biological processes at the molecular level but also transformed these disciplines into data-

intensive sciences, where the sheer volume and complexity of the generated data present significant

challenges in analysis and interpretation. This necessitates the development of high-performance

software and hardware designs to handle increasingly large and complex datasets. This thesis

systematically explores the benefits of software and hardware optimizations. At the software

level, we develop more optimal kernels on CPU and GPU to mitigate major bottlenecks in

data analysis. At the hardware level we use PIM and near-storage processing (NSP) to design

data-centric hardware for the computation-intensive and IO-bound tasks, respectively. These

designs together provide scalable and efficient solutions that pave the way for more effective data

analysis for genomics and proteomics.

Chapter 2 and Chapter 3 discuss how to develop efficient hardware and software solutions

for genome similarity computation aim for different application scenarios. For the accurate and

computation-intensive genome alignemnt, Chapter 2 presents a novel Processing-in-Memory

(PIM) accelerator, RAPIDx, which significantly enhances the performance. By employing a

115

parallelized dynamic programming (DP) algorithm with difference representation, RAPIDx

reduces the required data width from 32-bit to 5-bit integers, thereby achieving near-linear

complexity with minimal accuracy degradation. The ReRAM-based PIM architecture exploits

four levels of data parallelism to implement this optimized algorithm efficiently. Our evaluation

demonstrates that RAPIDx offers 131.1× and 46.8× better throughput for short-read alignment

compared to CPU [8] and GPU [7] baselines, respectively. For long-read alignment, RAPIDx

achieves 2.9× and 9.3× throughput improvements over state-of-the-art ASIC [10] and PIM [3–5]

accelerators.

RAPIDx is accurate but not well-suited for latency-sensitive tasks and memory-constrained

hardware. To address these limitations, Chapter 3 presents a memory-efficient tool, HyperGen, for

genome similarity estimation. HyperGen is a genome sketching tool based on hyperdimensional

computing (HDC) [104, 106] to enhance the accuracy, runtime performance, and memory

efficiency in large-scale genomic analysis. By avoiding the costly alignment process and utilizing

a combination of FracMinHash sampling and hyperdimensional vector encoding, HyperGen

achieves superior accuracy in estimating Average Nucleotide Identity (ANI) while maintaining

compact sketch file sizes. The tool, implemented in Rust, outperforms existing sketch-based

tools [33–36] in both speed and memory efficiency.

Chapter 4 extends the application of HDC to MS clustering. HyperSpec, a HDC-based

spectral clustering tool is presented to achieve both high clustering quality and runtime efficiency.

HyperSpec encodes spectra into binary hypervectors, which simplifies their representation

while maintaining high dimensionality. Our optimized preprocessing routines and efficient

clustering flow enable HyperSpec to achieve the fastest clustering speed among all tools evaluated,

outperforming existing spectral clustering tools [12–14, 37] by orders of magnitude in terms of

runtime while maintaining comparable clustering quality.

To mitigate the significant overhead caused by MS data preprocessing, Chapter 5 presents

MSAS, a near-storage computing framework aimed at accelerating the preprocessing of MS

data. Given that preprocessing accounts for nearly 82% of the total execution time and energy

116

consumption in MS analysis, MSAS addresses this bottleneck by performing the preprocessing

directly within the SSD. We develop scalable and energy-efficient accelerators that leverage

internal storage bandwidth at various levels of the storage hierarchy. Our results show that the

channel-level MSAS delivers up to 187× speedup in spectra preprocessing compared to the

fastest MS analysis tools [13] and reduces execution time by 1.8× compared to the INSIDER

in-storage computing prototype [18]. When integrated into existing MS clustering pipelines,

MSAS enhances clustering speed by 3.5× to 9.8× and improves energy efficiency by 2.8× to

11.9×.

6.2 Future Work

The research presented in this thesis opens up several avenues for further exploration

and enhancement in the domains of genomic and proteomic data analysis. These future work

directions have the potential to enable more efficient, scalable, and accurate analysis.

The next step for RAPIDx in Chapter 2 is to develop comprehensive host-system

integration. As a PIM-based domain-specific accelerator, RAPIDx functions as a co-processor

for genome sequence alignment, with the potential to be integrated into existing computing

systems with minimal hardware modifications. Future studies could explore optimizing data

transfer mechanisms between RAPIDx and the host, particularly to minimize processing latency.

Additionally, RAPIDx’s capability to support flexible scoring functions without architectural

modifications opens up the possibility of extending its application to a broader range of genomic

alignment tasks. Exploring various scoring functions under different application scenarios could

further enhance RAPIDx’s versatility and performance.

The future work for HyperGen in Chapter 3 should focus on optimizing the vector repre-

sentation of sketch hypervectors (HVs) for even better memory efficiency and faster large-scale

genomic searches. Techniques such as lossy vector compression, including product quantization

and residual quantization, could be employed to further reduce sketch size and memory footprint,

117

making HyperGen more suitable for embedded and mobile devices. Additionally, accelerating the

search step, which involves intensive General Matrix Multiply (GEMM) operations, by leveraging

advanced hardware architectures with high data parallelism, could yield significant performance

gains. Extending HyperGen to support a wider range of genomic workloads, such as metagenome

analysis and containment analysis, could also broaden its applicability in bioinformatics.

Several future research directions could be pursued to enhance both clustering quality and

runtime performance for HyperSpec in Chapter 4 and MSAS in Chapter 5. HyperSpec should be

integrated with the near-storage MSAS preprocessing hardware, which would provide higher

energy efficiency and performance, particularly for repository-scale data processing. Furthermore,

HyperSpec’s runtime could be shortened by parallelizing HV distance computations and the

clustering step across multiple GPU cards, potentially achieving near-linear speedup with minimal

effort. Lastly, expanding HyperSpec to support other MS workloads, such as sequence database

searching and spectral library searching, presents a promising direction. The modular design of

HyperSpec’s spectrum preprocessing routines allows for easy integration into other workflows,

potentially benefiting a wider range of MS data analysis tasks. Additionally, the compact binary

HV representation developed in HyperSpec could be leveraged to compress MS data, with

significant reductions in data size while maintaining high clustering quality. Exploring the use of

HDC-based pattern matching algorithms for spectrum identification could further enhance the

utility of HyperSpec in downstream MS applications.

118

Bibliography

[1] Dna sequencing costs: Data from the nhgri genome sequencing program (gsp). www.ge
nome.gov/sequencingcostsdata, 2022.

[2] Genbank and wgs statistics. https://www.ncbi.nlm.nih.gov/genbank/statistics/, 2023.

[3] Saransh Gupta, Mohsen Imani, Behnam Khaleghi, Venkatesh Kumar, and Tajana Rosing.
Rapid: A ReRAM processing in-memory architecture for DNA sequence alignment. In
IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED),
pages 1–6, 2019.

[4] Shaahin Angizi, Jiao Sun, Wei Zhang, and Deliang Fan. Aligns: A processing-in-memory
accelerator for dna short read alignment leveraging sot-mram. In ACM/IEEE Design
Automation Conference (DAC), pages 1–6, 2019.

[5] Farzaneh Zokaee, Hamid R Zarandi, and Lei Jiang. AligneR: A process-in-memory
architecture for short read alignment in rerams. IEEE Computer Architecture Letters,
17(2):237–240, 2018.

[6] Shaahin Angizi, Jiao Sun, Wei Zhang, and Deliang Fan. Pim-aligner: A processing-
in-mram platform for biological sequence alignment. In Design, Automation & Test in
Europe Conference & Exhibition (DATE), pages 1265–1270, 2020.

[7] Nauman Ahmed, Jonathan Lévy, Shanshan Ren, Hamid Mushtaq, Koen Bertels, and Zaid
Al-Ars. Gasal2: a gpu accelerated sequence alignment library for high-throughput ngs
data. BMC Bioinformatics, 20:1–20, 2019.

[8] Heng Li. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics,
34(18):3094–3100, 2018.

[9] Damla Senol Cali, Gurpreet S. Kalsi, Zülal Bingöl, Can Firtina, Lavanya Subramanian,
Jeremie S. Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali
Boroumand, Anant Norion, Allison Scibisz, Sreenivas Subramoneyon, Can Alkan,
Saugata Ghose, and Onur Mutlu. GenASM: A high-performance, low-power approximate
string matching acceleration framework for genome sequence analysis. In IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 951–966, 2020.

119

www.genome.gov/sequencingcostsdata
www.genome.gov/sequencingcostsdata
https://www.ncbi.nlm.nih.gov/genbank/statistics/

[10] Yi-Lun Liao, Yu-Cheng Li, Nae-Chyun Chen, and Yi-Chang Lu. Adaptively banded smith-
waterman algorithm for long reads and its hardware accelerator. In IEEE International
Conference on Application-specific Systems, Architectures and Processors (ASAP), pages
1–9, 2018.

[11] Martin Šošić and Mile Šikić. Edlib: a c/c++ library for fast, exact sequence alignment
using edit distance. Bioinformatics, 33(9):1394–1395, 2017.

[12] Wout Bittremieux, Kris Laukens, William Stafford Noble, and Pieter C Dorrestein. Large-
scale tandem mass spectrum clustering using fast nearest neighbor searching. Rapid
Communications in Mass Spectrometry, page e9153, 2021.

[13] Lei Wang, Sujun Li, and Haixu Tang. mscrush: fast tandem mass spectral clustering using
locality sensitive hashing. Journal of Proteome Research, 18(1):147–158, 2018.

[14] Matthew The and Lukas Käll. Maracluster: A fragment rarity metric for clustering
fragment spectra in shotgun proteomics. Journal of Proteome Research, 15(3):713–720,
2016.

[15] Johannes Griss, Yasset Perez-Riverol, Steve Lewis, David L Tabb, José A Dianes, Noemi
Del-Toro, Marc Rurik, Mathias Walzer, Oliver Kohlbacher, Henning Hermjakob, Rui
Wang, and Juan Antonio Vizcaı́no. Recognizing millions of consistently unidentified
spectra across hundreds of shotgun proteomics datasets. Nature Methods, 13(8):651–656,
2016.

[16] Ari M Frank, Nuno Bandeira, Zhouxin Shen, Stephen Tanner, Steven P Briggs, Richard D
Smith, and Pavel A Pevzner. Clustering millions of tandem mass spectra. Journal of
Proteome Research, 7(01):113–122, 2008.

[17] Matthew The and Lukas Kall. Maracluster: A fragment rarity metric for clustering
fragment spectra in shotgun proteomics. Journal of Proteome Research, 15(3):713–720,
2016.

[18] Zhenyuan Ruan, Tong He, and Jason Cong. INSIDER: Designing in-storage computing
system for emerging high-performance drive. In USENIX Annual Technical Conference
(ATC), pages 379–394, 2019.

[19] Devon M Cayer, Kristopher L Nazor, and Nicholas J Schork. Mission critical: the need
for proteomics in the era of next-generation sequencing and precision medicine. Human
Molecular Genetics, 25(R2):R182–R189, 2016.

[20] Carlos D Bustamante, Francisco M De La Vega, and Esteban G Burchard. Genomics for
the world. Nature, 475(7355):163–165, 2011.

[21] Benjamin S Frey, Deidre E Damon, and Abraham K Badu-Tawiah. Emerging trends in
paper spray mass spectrometry: Microsampling, storage, direct analysis, and applications.
Mass Spectrometry Reviews, 39(4):336–370, 2020.

120

[22] Ruedi Aebersold and Matthias Mann. Mass spectrometry-based proteomics. Nature,
422(6928):198–207, 2003.

[23] Zainab Noor, Seong Beom Ahn, Mark S Baker, Shoba Ranganathan, and Abidali
Mohamedali. Mass spectrometry–based protein identification in proteomics—a review.
Briefings in Bioinformatics, 22(2):1620–1638, 2021.

[24] Illumina sequencing platforms. https://www.illumina.com/systems/sequencing-platforms
.html, 2023.

[25] Wendy Weijia Soon, Manoj Hariharan, and Michael P Snyder. High-throughput sequencing
for biology and medicine. Molecular Systems Biology, 9(1):640, 2013.

[26] Jay Shendure and Hanlee Ji. Next-generation dna sequencing. Nature Biotechnology,
26(10):1135–1145, 2008.

[27] Bonnie Berger and Yun William Yu. Navigating bottlenecks and trade-offs in genomic
data analysis. Nature Reviews Genetics, 24(4):235–250, 2023.

[28] UCSD. MassIVE: Mass Spectrometry Interactive Virtual Environment. https://massive.
ucsd.edu/, 2022.

[29] Muaaz Gul Awan and Fahad Saeed. Ms-reduce: an ultrafast technique for reduction of big
mass spectrometry data for high-throughput processing. Bioinformatics, 32(10):1518–1526,
2016.

[30] Saul B Needleman and Christian D Wunsch. A general method applicable to the search
for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology,
48(3):443–453, 1970.

[31] Temple F Smith and Michael S Waterman. Identification of common molecular subse-
quences. Journal of Molecular Biology, 147(1):195–197, 1981.

[32] Yatish Turakhia, Gill Bejerano, and William J Dally. Darwin: A genomics co-processor
provides up to 15,000× acceleration on long read assembly. In International Conference
on Architectural Support for Programming Languages and Operating Systems (ASPLOS),
pages 199–213, 2018.

[33] Brian D Ondov, Todd J Treangen, Páll Melsted, Adam B Mallonee, Nicholas H Bergman,
Sergey Koren, and Adam M Phillippy. Mash: fast genome and metagenome distance
estimation using minhash. Genome Biology, 17(1):1–14, 2016.

[34] Daniel N Baker and Ben Langmead. Genomic sketching with multiplicities and locality-
sensitive hashing using dashing 2. Genome Research, 33(7):1218–1227, 2023.

[35] XiaoFei Zhao. Bindash, software for fast genome distance estimation on a typical personal
laptop. Bioinformatics, 35(4):671–673, 2019.

121

https://www.illumina.com/systems/sequencing-platforms.html
https://www.illumina.com/systems/sequencing-platforms.html
https://massive.ucsd.edu/
https://massive.ucsd.edu/

[36] C Titus Brown and Luiz Irber. sourmash: a library for MinHash sketching of DNA.
Journal of Open Source Software, 1(5):27, 2016.

[37] Wout Bittremieux, Damon H May, Jeffrey Bilmes, and William Stafford Noble. A learned
embedding for efficient joint analysis of millions of mass spectra. Nature Methods,
19(6):675–678, 2022.

[38] Aaron M. Wenger, Paul Peluso, William J. Rowell, Pi-Chuan Chang, Richard J. Hall,
Gregory T. Concepcion, Jana Ebler, Arkarachai Fungtammasan, Alexey Kolesnikov,
Nathan D. Olson, Armin Töpfer, Michael Alonge, Medhat Mahmoud, Yufeng Qian,
Chen-Shan Chin, Adam M. Phillippy, Michael C. Schatz, Gene Myers, Mark A. DePristo,
Jue Ruan, Tobias Marschall, Fritz J. Sedlazeck, Justin M. Zook, Heng Li, Sergey Koren,
Andrew Carroll, David R. Rank, and Michael W. Hunkapiller. Accurate circular consensus
long-read sequencing improves variant detection and assembly of a human genome. Nature
Biotechnology, 37(10):1155–1162, 2019.

[39] Heng Li and Richard Durbin. Fast and accurate long-read alignment with burrows–wheeler
transform. Bioinformatics, 26(5):589–595, 2010.

[40] M. Gokhale, B. Holmes, and K. Iobst. Processing in memory: the terasys massively
parallel pim array. Computer, 28(4):23–31, 1995.

[41] Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. Pim-enabled instructions:
A low-overhead, locality-aware processing-in-memory architecture. In ACM/IEEE Annual
International Symposium on Computer Architecture (ISCA), pages 336–348, 2015.

[42] Shuangchen Li, Cong Xu, Qiaosha Zou, Jishen Zhao, Yu Lu, and Yuan Xie. Pinatubo: A
processing-in-memory architecture for bulk bitwise operations in emerging non-volatile
memories. In ACM/IEEE Design Automation Conference (DAC), pages 1–6, 2016.

[43] Saransh Gupta, Mohsen Imani, Harveen Kaur, and Tajana Rosing. Nnpim: A processing
in-memory architecture for neural network acceleration. IEEE Transactions on Computers,
68(9):1325–1337, 2019.

[44] Ben Langmead and Steven L Salzberg. Fast gapped-read alignment with Bowtie 2. Nature
Methods, 9(4):357–359, 2012.

[45] Edans Flavius de Oliveira Sandes, Guillermo Miranda, Xavier Martorell, Eduard Ayguade,
George Teodoro, and Alba Cristina Magalhaes Melo. CUDAlign 4.0: Incremental
speculative traceback for exact chromosome-wide alignment in GPU clusters. IEEE
Transactions on Parallel and Distributed Systems, 27(10):2838–2850, 2016.

[46] James Arram, Thomas Kaplan, Wayne Luk, and Peiyong Jiang. Leveraging fpgas for
accelerating short read alignment. IEEE/ACM Transactions on Computational Biology
and Bioinformatics, 14(3):668–677, 2016.

[47] Roman Kaplan, Leonid Yavits, Ran Ginosar, and Uri Weiser. A resistive CAM processing-
in-storage architecture for DNA sequence alignment. IEEE Micro, 37(4):20–28, 2017.

122

[48] Roman Kaplan, Leonid Yavits, and Ran Ginosasr. BioSEAL: In-memory biological
sequence alignment accelerator for large-scale genomic data. In ACM International
Systems and Storage Conference, pages 36–48, 2020.

[49] Wenqin Huangfu, Shuangchen Li, Xing Hu, and Yuan Xie. Radar: A 3D-ReRAM based
DNA alignment accelerator architecture. In ACM/IEEE Design Automation Conference
(DAC), pages 1–6, 2018.

[50] Kevin Liu, Serita Nelesen, Sindhu Raghavan, C Randal Linder, and Tandy Warnow.
Barking up the wrong treelength: the impact of gap penalty on alignment and tree accuracy.
IEEE/ACM Transactions on Computational Biology and Bioinformatics, 6(1):7–21, 2008.

[51] Daichi Fujiki, Shunhao Wu, Nathan Ozog, Kush Goliya, David Blaauw, Satish
Narayanasamy, and Reetuparna Das. SeedEx: A genome sequencing accelerator for
optimal alignments in subminimal space. In IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 937–950, 2020.

[52] Kun-Mao Chao, William R Pearson, and Webb Miller. Aligning two sequences within a
specified diagonal band. Bioinformatics, 8(5):481–487, 1992.

[53] Saransh Gupta, Mohsen Imani, and Tajana Rosing. Felix: Fast and energy-efficient logic
in memory. In IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
pages 1–7, 2018.

[54] Michael Burrows and David Wheeler. A block-sorting lossless data compression algorithm.
In Digital SRC Research Report, 1994.

[55] Gene Myers. A fast bit-vector algorithm for approximate string matching based on dynamic
programming. Journal of the ACM (JACM), 46(3):395–415, 1999.

[56] Hajime Suzuki and Masahiro Kasahara. Introducing difference recurrence relations for
faster semi-global alignment of long sequences. Bioinformatics, 19(1):33–47, 2018.

[57] Stephen F Altschul, Warren Gish, Webb Miller, Eugene W Myers, and David J Lipman.
Basic local alignment search tool. Journal of Molecular Biology, 215(3):403–410, 1990.

[58] David J Lipman and William R Pearson. Rapid and sensitive protein similarity searches.
Science, 227(4693):1435–1441, 1985.

[59] Subho Sankar Banerjee, Mohamed El-Hadedy, Jong Bin Lim, Zbigniew T Kalbarczyk,
Deming Chen, Steven S Lumetta, and Ravishankar K Iyer. Asap: Accelerated short-read
alignment on programmable hardware. IEEE Transactions on Computers, 68(3):331–346,
2018.

[60] Osamu Gotoh. An improved algorithm for matching biological sequences. Journal of
Molecular Biology, 162(3):705–708, 1982.

123

[61] Kyeongho Lee, Jinho Jeong, Sungsoo Cheon, Woong Choi, and Jongsun Park. Bit parallel
6T SRAM in-memory computing with reconfigurable bit-precision. In ACM/IEEE Design
Automation Conference (DAC), pages 1–6, 2020.

[62] Jalil Boukhobza, Stéphane Rubini, Renhai Chen, and Zili Shao. Emerging nvm: A
survey on architectural integration and research challenges. ACM Transactions on Design
Automation of Electronic Systems (TODAES), 23(2):1–32, 2017.

[63] Dayane Reis, Michael Niemier, and X Sharon Hu. Computing in memory with FeFETs.
In International Symposium on Low Power Electronics and Design (ISLPED), pages 1–6,
2018.

[64] Minsu Kim, Muqing Liu, Luke R Everson, and Chris H Kim. An embedded NAND
flash-based compute-in-memory array demonstrated in a standard logic process. IEEE
Journal of Solid-State Circuits (JSSC), 57(2):625–638, 2021.

[65] Cheng-Xin Xue, Je-Min Hung, Hui-Yao Kao, Yen-Hsiang Huang, Sheng-Po Huang,
Fu-Chun Chang, Peng Chen, Ta-Wei Liu, Chuan-Jia Jhang, Chin-I Su, Win-San Khwa,
Chung-Chuan Lo, Ren-Shuo Liu, Chih-Cheng Hsieh, Kea-Tiong Tang, Yu-Der Chih,
Tsung-Yung Jonathan Chang, and Meng-Fan Chang. A 22nm 4Mb 8b-precision ReRAM
computing-in-memory macro with 11.91 to 195.7 TOPS/W for tiny AI edge devices. In
IEEE International Solid-State Circuits Conference (ISSCC), volume 64, pages 245–247,
2021.

[66] Nishil Talati, Saransh Gupta, Pravin Mane, and Shahar Kvatinsky. Logic design within
memristive memories using memristor-aided loGIC (MAGIC). IEEE Transactions on
Nanotechnology, 15(4):635–650, 2016.

[67] Julien Borghetti, Gregory S Snider, Philip J Kuekes, J Joshua Yang, Duncan R Stewart, and
R Stanley Williams. ‘memristive’switches enable ‘stateful’logic operations via material
implication. Nature, 464(7290):873–876, 2010.

[68] Byung Chul Jang, Yunyong Nam, Beom Jun Koo, Junhwan Choi, Sung Gap Im, Sang-
Hee Ko Park, and Sung-Yool Choi. Memristive logic-in-memory integrated circuits for
energy-efficient flexible electronics. Advanced Functional Materials, 28(2):1704725,
2018.

[69] Shahar Kvatinsky, Misbah Ramadan, Eby G Friedman, and Avinoam Kolodny. VTEAM:
A general model for voltage-controlled memristors. IEEE Transactions on Circuits and
Systems II: Express Briefs, 62(8):786–790, 2015.

[70] Ameer Haj-Ali, Rotem Ben-Hur, Nimrod Wald, and Shahar Kvatinsky. Efficient algorithms
for in-memory fixed point multiplication using magic. In IEEE International Symposium
on Circuits and Systems (ISCAS), pages 1–5, 2018.

[71] Shahar Kvatinsky, Dmitry Belousov, Slavik Liman, Guy Satat, Nimrod Wald, Eby G
Friedman, Avinoam Kolodny, and Uri C Weiser. MAGIC—memristor-aided logic. IEEE
Transactions on Circuits and Systems II: Express Briefs, 61(11):895–899, 2014.

124

[72] Mohsen Imani, Saransh Gupta, Yeseong Kim, and Tajana Rosing. Floatpim: In-memory
acceleration of deep neural network training with high precision. In International
Symposium on Computer Architecture (ISCA), pages 802–815, 2019.

[73] Hajime Suzuki and Masahiro Kasahara. Acceleration of nucleotide semi-global alignment
with adaptive banded dynamic programming. BioRxiv, page 130633, 2017.

[74] J Joshua Yang, Dmitri B Strukov, and Duncan R Stewart. Memristive devices for computing.
Nature Nanotechnology, 8(1):13–24, 2013.

[75] Xiangyu Dong, Cong Xu, Yuan Xie, and Norman P Jouppi. Nvsim: A circuit-level
performance, energy, and area model for emerging nonvolatile memory. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 31(7):994–1007, 2012.

[76] James E. Stine, Ivan Castellanos, Michael Wood, Jeff Henson, Fred Love, W. Rhett
Davis, Paul D. Franzon, Michael Bucher, Sunil Basavarajaiah, Julie Oh, and Ravi Jenkal.
FreePDK: An open-source variation-aware design kit. In IEEE international conference
on Microelectronic Systems Education, pages 173–174, 2007.

[77] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P Jouppi. CACTI 6.0: A
tool to model large caches. HP laboratories, 27:28, 2009.

[78] National Center for Biotechnology Information. Genome reference consortium human
build 38. https://www.ncbi.nlm.nih.gov/assembly/GCF 000001405.26, 2013.

[79] Yukiteru Ono, Kiyoshi Asai, and Michiaki Hamada. PBSIM: PacBio reads simula-
tor—toward accurate genome assembly. Bioinformatics, 29(1):119–121, 2013.

[80] M Holtgrewe. Mason–a read simulator for second generation sequencing data. Technical
Report FU Berlin, 2010.

[81] Wenqin Huangfu, Xueqi Li, Shuangchen Li, Xing Hu, Peng Gu, and Yuan Xie. Medal:
Scalable dimm based near data processing accelerator for dna seeding algorithm. In
IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 587–599,
2019.

[82] Qing Luo, Jie Yu, Xumeng Zhang, Kan-Hao Xue, Jun-Hui Yuan, Yan Cheng, Tiancheng
Gong, Hangbing Lv, Xiaoxin Xu, Peng Yuan, Jiahao Yin, Lu Tai, Shibing Long, Qi Liu,
Xiangshui Miao, Jing Li, and Ming Liu. Nb1−𝑥 o2 based universal selector with ultra-high
endurance (> 1012), high speed (10ns) and excellent v𝑡ℎ stability. In Symposium on VLSI
Technology, pages T236–T237, 2019.

[83] Pierre-Alain Chaumeil, Aaron J Mussig, Philip Hugenholtz, and Donovan H Parks. Gtdb-tk
v2: memory friendly classification with the genome taxonomy database. Bioinformatics,
38(23):5315–5316, 2022.

125

https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.26

[84] Donovan H Parks, Maria Chuvochina, Pierre-Alain Chaumeil, Christian Rinke, Aaron J
Mussig, and Philip Hugenholtz. A complete domain-to-species taxonomy for bacteria and
archaea. Nature Biotechnology, 38(9):1079–1086, 2020.

[85] Julie E Hernández-Salmerón, Tanya Irani, and Gabriel Moreno-Hagelsieb. Fast genome-
based delimitation of enterobacterales species. Plos One, 18(9):e0291492, 2023.

[86] Stefan Kurtz, Adam Phillippy, Arthur L Delcher, Michael Smoot, Martin Shumway, Corina
Antonescu, and Steven L Salzberg. Versatile and open software for comparing large
genomes. Genome Biology, 5:1–9, 2004.

[87] Imchang Lee, Yeong Ouk Kim, Sang-Cheol Park, and Jongsik Chun. OrthoANI: an
improved algorithm and software for calculating average nucleotide identity. International
Journal of Systematic and Evolutionary Microbiology, 66(2):1100–1103, 2016.

[88] Chirag Jain, Luis M Rodriguez-R, Adam M Phillippy, Konstantinos T Konstantinidis, and
Srinivas Aluru. High throughput ani analysis of 90k prokaryotic genomes reveals clear
species boundaries. Nature Communications, 9(1):5114, 2018.

[89] Jim Shaw and Yun William Yu. Fast and robust metagenomic sequence comparison
through sparse chaining with skani. Nature Methods, 20:1661–1665, 2023.

[90] Chirag Jain, Alexander Dilthey, Sergey Koren, Srinivas Aluru, and Adam M Phillippy.
A fast approximate algorithm for mapping long reads to large reference databases. In
International Conference on Research in Computational Molecular Biology, pages 66–81,
2017.

[91] Daniel N Baker and Ben Langmead. Dashing: fast and accurate genomic distances with
hyperloglog. Genome Biology, 20:1–12, 2019.

[92] Andrei Z Broder. On the resemblance and containment of documents. In Proceedings.
Compression and Complexity of SEQUENCES 1997 (Cat. No. 97TB100171), pages 21–29,
1997.

[93] Mahmudur Rahman Hera, N Tessa Pierce-Ward, and David Koslicki. Deriving confidence
intervals for mutation rates across a wide range of evolutionary distances using fracminhash.
Genome Research, pages gr–277651, 2023.

[94] Luiz Irber, Phillip T Brooks, Taylor Reiter, N Tessa Pierce-Ward, Mahmudur Rahman Hera,
David Koslicki, and C Titus Brown. Lightweight compositional analysis of metagenomes
with fracminhash and minimum metagenome covers. BioRxiv, pages 2022–01, 2022.

[95] Anshumali Shrivastava. Optimal densification for fast and accurate minwise hashing. In
International Conference on Machine Learning (ICML), pages 3154–3163, 2017.

[96] Otmar Ertl. Setsketch: filling the gap between minhash and hyperloglog. Proceedings of
the VLDB Endowment, 14(11):2244–2257, 2021.

126

[97] Zhuowen Zou, Hanning Chen, Prathyush Poduval, Yeseong Kim, Mahdi Imani, Elaheh
Sadredini, Rosario Cammarota, and Mohsen Imani. Biohd: an efficient genome sequence
search platform using hyperdimensional memorization. In International Symposium on
Computer Architecture (ISCA), pages 656–669, 2022.

[98] Jaeyoung Kang, Weihong Xu, Wout Bittremieux, Niema Moshiri, and Tajana Rosing. Ac-
celerating open modification spectral library searching on tensor core in high-dimensional
space. Bioinformatics, 39(7):btad404, 2023.

[99] Yeseong Kim, Mohsen Imani, Niema Moshiri, and Tajana Rosing. Geniehd: Efficient dna
pattern matching accelerator using hyperdimensional computing. In Design, Automation
& Test in Europe Conference & Exhibition (DATE), pages 115–120, 2020.

[100] Taha Shahroodi, Mahdi Zahedi, Can Firtina, Mohammed Alser, Stephan Wong, Onur
Mutlu, and Said Hamdioui. Demeter: A fast and energy-efficient food profiler using
hyperdimensional computing in memory. IEEE Access, 10:82493–82510, 2022.

[101] Weihong Xu, Jaeyoung Kang, Wout Bittremieux, Niema Moshiri, and Tajana Rosing.
Hyperspec: Ultrafast mass spectra clustering in hyperdimensional space. Journal of
Proteome Research, 2023.

[102] Can Firtina, Jisung Park, Mohammed Alser, Jeremie S Kim, Damla Senol Cali, Taha
Shahroodi, Nika Mansouri Ghiasi, Gagandeep Singh, Konstantinos Kanellopoulos, Can
Alkan, and Onur Mutlu. Blend: a fast, memory-efficient and accurate mechanism to find
fuzzy seed matches in genome analysis. NAR Genomics and Bioinformatics, 5(1):lqad004,
2023.

[103] Igor Nunes, Mike Heddes, Pere Vergés, Danny Abraham, Alex Veidenbaum, Alex Nicolau,
and Tony Givargis. DotHash: Estimating Set Similarity Metrics for Link Prediction and
Document Deduplication. In ACM SIGKDD Conference on Knowledge Discovery and
Data Mining (KDD), pages 1758–1769, 2023.

[104] Magnus Sahlgren. An introduction to random indexing. In International Conference on
Terminology and Knowledge Engineering, 2005.

[105] Pentii Kanerva, Jan Kristoferson, and Anders Holst. Random indexing of text samples for
latent semantic analysis. In Proceedings of the Annual Meeting of the Cognitive Science
Society, volume 22, 2000.

[106] Pentti Kanerva. Hyperdimensional computing: An introduction to computing in distributed
representation with high-dimensional random vectors. Cognitive computation, 1:139–159,
2009.

[107] Shaopeng Liu and David Koslicki. Cmash: fast, multi-resolution estimation of k-mer-based
jaccard and containment indices. Bioinformatics, 38:i28–i35, 2022.

127

[108] Brian D Ondov, Gabriel J Starrett, Anna Sappington, Aleksandra Kostic, Sergey Koren,
Christopher B Buck, and Adam M Phillippy. Mash screen: high-throughput sequence
containment estimation for genome discovery. Genome Biology, 20:1–13, 2019.

[109] Nicholas D Matsakis and Felix S Klock. The rust language. ACM SIGAda Ada Letters,
34(3):103–104, 2014.

[110] Lama Sleem and Raphaël Couturier. Testu01 and practrand: Tools for a randomness
evaluation for famous multimedia ciphers. Multimedia Tools and Applications, 79:24075–
24088, 2020.

[111] Donovan H Parks, Christian Rinke, Maria Chuvochina, Pierre-Alain Chaumeil, Ben J
Woodcroft, Paul N Evans, Philip Hugenholtz, and Gene W Tyson. Recovery of nearly
8,000 metagenome-assembled genomes substantially expands the tree of life. Nature
Microbiology, 2(11):1533–1542, 2017.

[112] Donovan H Parks, Maria Chuvochina, David W Waite, Christian Rinke, Adam Skarshewski,
Pierre-Alain Chaumeil, and Philip Hugenholtz. A standardized bacterial taxonomy based on
genome phylogeny substantially revises the tree of life. Nature Biotechnology, 36(10):996–
1004, 2018.

[113] Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest
neighbor search. IEEE Transactions on Pattern Analysis and Machine Intelligence,
33(1):117–128, 2010.

[114] Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern, and
Sanjiv Kumar. Accelerating large-scale inference with anisotropic vector quantization. In
International Conference on Machine Learning (ICML), pages 3887–3896, 2020.

[115] Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and Wook-Shin Han. Autoregressive
image generation using residual quantization. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 11523–11532, 2022.

[116] Paul Ka Po To, Long Wu, Chak Ming Chan, Ayman Hoque, and Henry Lam. Clustersheep:
A graphics processing unit-accelerated software tool for large-scale clustering of tandem
mass spectra from shotgun proteomics. Journal of Proteome Research, 20(12):5359–5367,
2021.

[117] Xiyang Luo, Wout Bittremieux, Johannes Griss, Eric W. Deutsch, Timo Sachsenberg,
Lev I. Levitsky, Mark V. Ivanov, Julia A. Bubis, Ralf Gabriels, Henry Webel, Aniel
Sanchez, Mingze Bai, Lukas Käll, and Yasset Perez-Riverol. A comprehensive evaluation
of consensus spectrum generation methods in proteomics. Journal of Proteome Research,
21(6):1566–1574, May 2022.

[118] Yasset Perez-Riverol, Jingwen Bai, Chakradhar Bandla, David Garcı́a-Seisdedos, Suresh
Hewapathirana, Selvakumar Kamatchinathan, Deepti J Kundu, Ananth Prakash, Anika
Frericks-Zipper, Martin Eisenacher, Mathias Walzer, Shengbo Wang, Alvis Brazma,

128

and Juan Antonio Vizcaı́no. The pride database resources in 2022: a hub for mass
spectrometry-based proteomics evidences. Nucleic Acids Research, 50(D1):D543–D552,
2022.

[119] Min-Sik Kim, Sneha M. Pinto, Derese Getnet, Raja Sekhar Nirujogi, Srikanth S. Manda,
Raghothama Chaerkady, Anil K. Madugundu, Dhanashree S. Kelkar, Ruth Isserlin,
Shobhit Jain, Joji K. Thomas, Babylakshmi Muthusamy, Pamela Leal-Rojas, Praveen
Kumar, Nandini A. Sahasrabuddhe, Lavanya Balakrishnan, Jayshree Advani, Bijesh
George, Santosh Renuse, Lakshmi Dhevi N. Selvan, Arun H. Patil, Vishalakshi Nanjappa,
Aneesha Radhakrishnan, Samarjeet Prasad, Tejaswini Subbannayya, Rajesh Raju, Manish
Kumar, Sreelakshmi K. Sreenivasamurthy, Arivusudar Marimuthu, Gajanan J. Sathe,
Sandip Chavan, Keshava K. Datta, Yashwanth Subbannayya, Apeksha Sahu, Soujanya D.
Yelamanchi, Savita Jayaram, Pavithra Rajagopalan, Jyoti Sharma, Krishna R. Murthy,
Nazia Syed, Renu Goel, Aafaque A. Khan, Sartaj Ahmad, Gourav Dey, Keshav Mudgal,
Aditi Chatterjee, Tai-Chung Huang, Jun Zhong, Xinyan Wu, Patrick G. Shaw, Donald
Freed, Muhammad S. Zahari, Kanchan K. Mukherjee, Subramanian Shankar, Anita
Mahadevan, Henry Lam, Christopher J. Mitchell, Susarla Krishna Shankar, Parthasarathy
Satishchandra, John T. Schroeder, Ravi Sirdeshmukh, Anirban Maitra, Steven D. Leach,
Charles G. Drake, Marc K. Halushka, T. S. Keshava Prasad, Ralph H. Hruban, Candace L.
Kerr, Gary D. Bader, Christine A. Iacobuzio-Donahue, Harsha Gowda, and Akhilesh
Pandey. A draft map of the human proteome. Nature, 509(7502):575–581, 2014.

[120] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with GPUs.
IEEE Transactions on Big Data, 7(3):535–547, 2019.

[121] Sergei Nakariakov. The Boost C++ Libraries: Generic Programming. 2013.

[122] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: A llvm-based python jit
compiler. In Proceedings of the Second Workshop on the LLVM Compiler Infrastructure
in HPC, pages 1–6, 2015.

[123] Witold E Wolski, Malcolm Farrow, Anne-Katrin Emde, Hans Lehrach, Maciej Lalowski,
and Knut Reinert. Analytical model of peptide mass cluster centres with applications.
Proteome Science, 4:1–19, 2006.

[124] Anthony Thomas, Sanjoy Dasgupta, and Tajana Rosing. Theoretical foundations of
hyperdimensional computing. Journal of Artificial Intelligence Research, 72:215–249,
2021.

[125] NVIDIA. Cuda, release: 11.6, 2022.

[126] Jaeyoung Kang, Behnam Khaleghi, Yeseong Kim, and Tajana Rosing. Xcelhd: An efficient
gpu-powered hyperdimensional computing with parallelized training. In Asia and South
Pacific Design Automation Conference (ASP-DAC), pages 220–225, 2022.

129

[127] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based algorithm
for discovering clusters in large spatial databases with noise. In International Conference
on Knowledge Discovery and Data Mining (KDD), volume 96, pages 226–231, 1996.

[128] Daniel Müllner. fastcluster: Fast hierarchical, agglomerative clustering routines for R and
Python. Journal of Statistical Software, 53:1–18, 2013.

[129] Vera Rieder, Karin U Schork, Laura Kerschke, Bernhard Blank-Landeshammer, Albert
Sickmann, and Jorg Rahnenfuherer. Comparison and evaluation of clustering algorithms
for tandem mass spectra. Journal of Proteome Research, 16(11):4035–4044, 2017.

[130] Sebastian Raschka, Joshua Patterson, and Corey Nolet. Machine learning in python: Main
developments and technology trends in data science, machine learning, and artificial
intelligence. Information, 11(4):193, 2020.

[131] Stefan Behnel, Robert Bradshaw, Craig Citro, Lisandro Dalcin, Dag Sverre Seljebotn,
and Kurt Smith. Cython: The best of both worlds. Computing in Science & Engineering,
13(2):31–39, 2011.

[132] RAPIDS Development Team. RAPIDS: Collection of Libraries for End to End GPU Data
Science, 2018.

[133] Andrew Rosenberg and Julia Hirschberg. V-measure: A conditional entropy-based
external cluster evaluation measure. In Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language Learning (EMNLP-CoNLL),
pages 410–420, 2007.

[134] Joel M Chick, Deepak Kolippakkam, David P Nusinow, Bo Zhai, Ramin Rad, Edward L
Huttlin, and Steven P Gygi. A mass-tolerant database search identifies a large proportion
of unassigned spectra in shotgun proteomics as modified peptides. Nature Biotechnology,
33(7):743–749, 2015.

[135] Andreas Roos, Laxmikanth Kollipara, Stephan Buchkremer, Thomas Labisch, Eva Brauers,
Christian Gatz, Chris Lentz, José Gerardo-Nava, Joachim Weis, and René P Zahedi. Cellular
signature of sil1 depletion: disease pathogenesis due to alterations in protein composition
beyond the er machinery. Molecular Neurobiology, 53(8):5527–5541, 2016.

[136] Timo Glatter, Erik Ahrné, and Alexander Schmidt. Comparison of different sample
preparation protocols reveals lysis buffer-specific extraction biases in gram-negative
bacteria and human cells. Journal of Proteome Research, 14(11):4472–4485, 2015.

[137] François-Michel Boisvert, Yasmeen Ahmad, Marek Gierliński, Fabien Charrière, Douglas
Lamont, Michelle Scott, Geoff Barton, and Angus I Lamond. A quantitative spatial
proteomics analysis of proteome turnover in human cells. Molecular & Cellular Proteomics,
11(3), 2012.

130

[138] Yasset Perez-Riverol, Attila Csordas, Jingwen Bai, Manuel Bernal-Llinares, Suresh
Hewapathirana, Deepti J Kundu, Avinash Inuganti, Johannes Griss, Gerhard Mayer,
Martin Eisenacher, Enrique Pérez, Julian Uszkoreit, Julianus Pfeuffer, Timo Sachsenberg,
Şule Yılmaz, Shivani Tiwary, Jürgen Cox, Enrique Audain, Mathias Walzer, Andrew F
Jarnuczak, Tobias Ternent, Alvis Brazma, and Juan Antonio Vizcaı́no. The pride database
and related tools and resources in 2019: improving support for quantification data. Nucleic
Acids Research, 47(D1):D442–D450, 2019.

[139] Niels Hulstaert, Jim Shofstahl, Timo Sachsenberg, Mathias Walzer, Harald Barsnes,
Lennart Martens, and Yasset Perez-Riverol. ThermoRawFileParser: modular, scalable,
and cross-platform RAW file conversion. Journal of Proteome Research, 19(1):537–542,
2019.

[140] Sangtae Kim and Pavel A Pevzner. MS-GF+ makes progress towards a universal database
search tool for proteomics. Nature Communications, 5(1):1–10, 2014.

[141] Lionel Breuza, Sylvain Poux, Anne Estreicher, Maria Livia Famiglietti, Michele Ma-
grane, Michael Tognolli, Alan Bridge, Delphine Baratin, Nicole Redaschi, and UniProt
Consortium. The UniProtKB guide to the human proteome. Database, 2016:bav120,
2016.

[142] Jimmy K. Eng, Brian C. Searle, Karl R. Clauser, and David L. Tabb. A face in the
crowd: Recognizing peptides through database search. Molecular & Cellular Proteomics,
10(11):R111.009522, November 2011.

[143] Henry Lam, Eric W. Deutsch, James S. Eddes, Jimmy K. Eng, Nichole King, Stephen E.
Stein, and Ruedi Aebersold. Development and validation of a spectral library searching
method for peptide identification from MS/MS. Proteomics, 7(5):655–667, March 2007.

[144] Wout Bittremieux, Kris Laukens, and William Stafford Noble. Extremely fast and accurate
open modification spectral library searching of high-resolution mass spectra using feature
hashing and graphics processing units. Journal of Proteome Research, 18(10):3792–3799,
August 2019.

[145] Mohsen Imani, Tarek Nassar, Abbas Rahimi, and Tajana Rosing. Hdna: Energy-efficient
dna sequencing using hyperdimensional computing. In IEEE EMBS International Confer-
ence on Biomedical & Health Informatics (BHI), pages 271–274, 2018.

[146] Jaeyoung Kang, Weihong Xu, Wout Bittremieux, and Tajana Rosing. Massively parallel
open modification spectral library searching with hyperdimensional computing. In
International Conference on Parallel Architectures and Compilation Techniques (PACT),
pages 536–537, 2022.

[147] Weihong Xu, Jaeyoung Kang, and Tajana Rosing. A near-storage framework for boosted
data preprocessing of mass spectrum clustering. In ACM/IEEE Design Automation
Conference (DAC), pages 313–318, 2022.

131

[148] Lennart Martens, Henning Hermjakob, Philip Jones, Marcin Adamski, Chris Taylor, David
States, Kris Gevaert, Joël Vandekerckhove, and Rolf Apweiler. PRIDE: the proteomics
identifications database. Proteomics, 5(13):3537–3545, 2005.

[149] NVM Express Base Specification 2.0. https://nvmexpress.org/developers/nvme-specificat
ion/, 2022.

[150] Intel SSD DC P4500 Series. https://ark.intel.com/content/www/us/en/ark/products/series/
96935/intel-ssd-dc-p4500-series.html, 2017.

[151] Wikipedia. Mass Spectrometry. https://en.wikipedia.org/wiki/Mass spectrometry, 2022.

[152] David N Perkins, Darryl JC Pappin, David M Creasy, and John S Cottrell. Probability-based
protein identification by searching sequence databases using mass spectrometry data.
Electrophoresis, 20(18):3551–3567, 1999.

[153] Şule Yilmaz, Elien Vandermarliere, and Lennart Martens. Methods to calculate spectrum
similarity. Proteome Bioinformatics, pages 75–100, 2017.

[154] Vikram Sharma Mailthody, Zaid Qureshi, Weixin Liang, Ziyan Feng, Simon Garcia
De Gonzalo, Youjie Li, Hubertus Franke, Jinjun Xiong, Jian Huang, and Wen-mei Hwu.
Deepstore: In-storage acceleration for intelligent queries. In IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 224–238, 2019.

[155] Feng Chen, Binbing Hou, and Rubao Lee. Internal parallelism of flash memory-based
solid-state drives. ACM Transactions on Storage (TOS), 12(3):1–39, 2016.

[156] Ryuji Yamashita, Sagar Magia, Tsutomu Higuchi, Kazuhide Yoneya, Toshio Yamamura,
Hiroyuki Mizukoshi, Shingo Zaitsu, Minoru Yamashita, Shunichi Toyama, Norihiro
Kamae, Juan Lee, Shuo Chen, Jiawei Tao, William Mak, Xiaohua Zhang, Ying Yu, Yuko
Utsunomiya, Yosuke Kato, Manabu Sakai, Masahide Matsumoto, Hardwell Chibvongodze,
Naoki Ookuma, Hiroki Yabe, Subodh Taigor, Rangarao Samineni, Takuyo Kodama,
Yoshihiko Kamata, Yuzuru Namai, Jonathan Huynh, Sung-En Wang, Yankang He, Trung
Pham, Vivek Saraf, Akshay Petkar, Mitsuyuki Watanabe, Koichiro Hayashi, Prashant
Swarnkar, Hitoshi Miwa, Aditya Pradhan, Sulagna Dey, Debasish Dwibedy, Thushara
Xavier, Muralikrishna Balaga, Samiksha Agarwal, Swaroop Kulkarni, Zameer Papasaheb,
Sahil Deora, Patrick Hong, Meiling Wei, Gopinath Balakrishnan, Takuya Ariki, Kapil
Verma, Chang Siau, Yingda Dong, Ching-Huang Lu, Toru Miwa, and Farookh Moogat. A
512Gb 3b/cell flash memory on 64-word-line-layer BiCS technology. In IEEE International
Solid-State Circuits Conference (ISSCC), pages 196–197, 2017.

[157] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D Davis, Mark Manasse, and
Rina Panigrahy. Design tradeoffs for SSD performance. In USENIX Annual Technical
Conference (ATC), 2008.

[158] Open NAND Flash Interface Specification. http://www.onfi.org/specifications, 2021.

132

https://nvmexpress.org/developers/nvme-specification/
https://nvmexpress.org/developers/nvme-specification/
https://ark.intel.com/content/www/us/en/ark/products/series/96935/intel-ssd-dc-p4500-series.html
https://ark.intel.com/content/www/us/en/ark/products/series/96935/intel-ssd-dc-p4500-series.html
https://en.wikipedia.org/wiki/Mass_spectrometry
http://www.onfi.org/specifications

[159] Wooseong Cheong, Chanho Yoon, Seonghoon Woo, Kyuwook Han, Daehyun Kim,
Chulseung Lee, Youra Choi, Shine Kim, Dongku Kang, Geunyeong Yu, Jaehong Kim,
Jaechun Park, Ki-Whan Song, Ki-Tae Park, Sangyeun Cho, Hwaseok Oh, Daniel D.G. Lee,
Jin-Hyeok Choi, and Jaeheon Jeong. A flash memory controller for 15𝜇s ultra-low-latency
SSD using high-speed 3D NAND flash with 3𝜇s read time. In IEEE International
Solid-State Circuits Conference (ISSCC), pages 338–340, 2018.

[160] Anil Shanbhag, Holger Pirk, and Samuel Madden. Efficient top-k query processing on
massively parallel hardware. In International Conference on Management of Data, pages
1557–1570, 2018.

[161] Juan A Vizcaı́no, Eric W Deutsch, Rui Wang, Attila Csordas, Florian Reisinger, Daniel Rı́os,
José A Dianes, Zhi Sun, Terry Farrah, Nuno Bandeira, Pierre-Alain Binz, Ioannis Xenarios,
Martin Eisenacher, Gerhard Mayer, Laurent Gatto, Alex Campos, Robert J Chalkley, Hans-
Joachim Kraus, Juan Pablo Albar, Salvador Martinez-Bartolomé, Rolf Apweiler, Gilbert S
Omenn, Lennart Martens, Andrew R Jones, and Henning Hermjakob. Proteomexchange
provides globally coordinated proteomics data submission and dissemination. Nature
Biotechnology, 32(3):223–226, 2014.

[162] Dirk Beyer and Philipp Wendler. Cpu energy meter: A tool for energy-aware algorithms
engineering. Tools and Algorithms for the Construction and Analysis of Systems, 12079:126,
2020.

[163] Myoungsoo Jung, Wonil Choi, Shuwen Gao, Ellis Herbert Wilson III, David Donofrio, John
Shalf, and Mahmut Taylan Kandemir. NANDFlashSim: High-fidelity, microarchitecture-
aware NAND flash memory simulation. ACM Transactions on Storage (TOS), 12(2):1–32,
2016.

133

	Dissertation Approval Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Acceleration for Genomics
	Processing-in-memory Acceleration for Genome Alignment
	High-performance Software for Genome Sketching

	Acceleration for Mass Spectrometry-based Proteomics
	High-performance Software for Mass Spectrometry Clustering
	Near-storage Acceleration for Mass Spectrometry Preprocessing

	Processing In-Memory Acceleration for Genome Alignment
	Introduction
	Related Work
	Software for Sequence Alignment
	Hardware Acceleration for Sequence Alignment

	Background
	Genome Sequence Analysis
	Difference-based Dynamic Programming (DP) Alignment
	Digital Processing In-Memory (PIM)

	Efficient Alignment in RAPIDx
	Challenges of Alignment using PIM
	Adaptive Banded Parallelized DP Alignment

	In-Memory Architecture of RAPIDx
	Overview
	Data Flow with Four-level Data Parallelism
	In-memory Alignment
	Reconfigurable Design with Dynamic Precision

	Evaluation
	Experimental Setup
	Algorithm Validation
	Design Space Exploration
	Area and Power Results
	Performance Evaluation
	Discussions

	Conclusion

	Memory-efficient Sketching for Genomics
	Introduction
	Motivation
	Contributions

	Preliminaries
	MinHash and Jaccard Similarity
	Jaccard Similarity using DotHash

	HyperGen: Memory-efficient Genome Sketching Tool
	Step 1: k-mer Hashing and Sampling
	Step 2: Hyperdimensional Encoding for k-mer Hash
	Step 3: ANI Estimation using Sketch Hypervector
	Software Implementation and Optimization

	Evaluation and Results
	Evaluation Methodology
	ANI Estimation Quality
	Genome Database Search
	Discussion

	Conclusion

	High-performance Clustering for Mass Spectrometry
	Introduction
	HyperSpec: Fast Clustering Software for Mass Spectrometry
	Overall Flow
	Efficient Spectrum Preprocessing
	Bucket Division
	GPU-accelerated Spectral Clustering in Hyperdimensional Space
	Software Development and Code Availability

	Evaluation
	Evaluation Methodology
	Clustering Quality Comparison
	Spectra Database Searching Comparison
	Runtime Performance Comparison
	Discussion

	Conclusion

	Near-storage Acceleration for Preprocessing for Mass Spectrometry
	Introduction
	Background
	Mass Spectrometry
	Modern SSD

	MSAS Near-storage Architecture
	Overview
	MSAS Accelerator
	Data Mapping Scheme in MSAS

	Evaluation
	Methodology
	Performance and Energy Evaluation
	Overhead Analysis

	Conclusion

	Summary and Future Work
	Thesis Summary
	Future Work

	Bibliography

