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ABSTRACT 

Transportation electrification is playing an increasingly essential role in mitigating climate 

change, especially coupled with a sustainable energy system. However, proper placement of 

charging infrastructures and management of charging activities is the key to ensuring the 

environmental benefits from the widespread adoption of electric vehicles. Existing literature on 

the emissions implications of vehicle electrification is often limited by neglecting the spatial and 

temporal diversity of the electricity grid, or by failing to respect individual heterogeneity. This 

dissertation research demonstrates the importance of assessing BEV charging infrastructure in 

an integrated perspective, focusing on key interactions between transportation, energy, and 

economy across individual patterns of travel behavior, dwelling constraints, pricing elasticity of 

consumers with regards to charging, and the temporal and spatial diversity in price and GHG 

intensity of electricity through three studies. Results from the charging infrastructure 

optimization study show that higher non-home charging opportunity informed by the empirical 

travel and dwelling patterns offers more potentials for a shared public charging system in San 

Diego, resulting in 14% - 30% lower in total system cost and 21% - 25% lower in emissions. This 

indicates that the heterogeneity in spatial and temporal travel and dwelling patterns substantially 

affect the design of the charging infrastructure system, and substantially change the energy, 

economic and environmental impacts of the system. The charging price strategies study 

considers the price elasticity of charging demand while investigating how different charging price 

strategies can affect the spatial and temporal distribution of charging activities and their energy, 

environmental and economic impacts. The results show that the ability of changing charging 

behavior to obtain environmental benefits depends on charging price strategies largely and the 
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charging load profile is the result of various determinants including the dynamic electricity price, 

travel, and dwelling constraints, carbon price clustering effect, as well as exclusive home and 

shared non-home charging patterns. Lastly, results from the shared autonomous electric vehicle 

study indicate that SAEVs with exogenous charging would reduce GHG emissions by at least 75% 

compared to the internal combustion vehicles fleet in 2030, and the advantage expands to 97% 

if charging activities can interact with the grid when smart charging is available. The emission 

benefits of SAEVs are mainly dominated by vehicle electrification and grid development.  
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Chapter 1. Introduction 

The transportation sector accounted for 28.5% of total greenhouse gas (GHG) emissions in the 

United States in 2016, overtaking electricity generation as the largest source of emissions. The 

majority of GHGs in transportation came from light-duty vehicles, which includes passenger cars 

(42.0%) and light-duty trucks (17.3%)1. The 2017 US National Household Travel Survey shows that 

78.1% of US daily passenger miles of travel takes place in private vehicles for purposes such as 

commuting to or from work (16.9%), driving to shopping and errands (24.7%), and going to social 

and recreational activities (24.5%)2. Transportation electrification is playing an increasingly 

important role in dealing with climate change mitigation, especially considering that electricity 

GHG intensity has dropped significantly in recent years due to fuel switching to lower emitting 

sources of electricity production1,3–6.  Widespread adoption of plug-in electric vehicles (PEVs), 

which include both battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs), 

dominates the emerging revolutions in passenger transportation’s transition to sustainable 

mobility7. 

 

However, there are several challenges to realize widespread electrification of passenger vehicles, 

including the availability of electric vehicle supply equipment (EVSE, in other words charging 

infrastructure)8,9.  The battery range constraints, both real and imagined, are identified as one of 

the most significant barriers to the large-scale acceptation of BEVs in the market10–12. Developing 

dedicated recharging infrastructure, may facilitate a release from ‘range anxiety’ and encourage 

more consumers to purchase electric vehicles13,14. Another potential barrier to widespread 
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adoption of BEVs is its relatively high cost10. Incentives, such as the federal tax credits and state 

tax incentives15 and manufacturer rebates, may be most effective to facilitate EV market16 while 

environmental, performance and technological motivations are alternative motivations for 

adopting the high-end BEVs17. 

 

PEV charging increases demand to the electric grid and adds challenges for managing electric 

generation, transmission, and distribution18. However, they simultaneously bring market 

opportunities and facilitate the integration of non-dispatchable renewable energy sources for 

utilities since PEVs can operate as distributed storage technology or provide flexible loads19,20. 

Individual travel and charging patterns determine not only how much electricity is used, but the 

timing of the charging determines whether base or peak electricity will be used to charge the 

battery. Some studies find that PEV charging will not impact the generation and transmission of 

the electric grid in the short term but may need to be managed when the vehicles are deployed 

in greater numbers21. However, other studies show uncoordinated PEV charging could 

significantly change the shape of the aggregate residential demand, with impacts for electricity 

infrastructure, even at low adoption levels22. Proper management is critical because charging 

strategies may also significantly impact the environmental outcome of charging electric 

vehicles23,24. 

 

This research examines a large-scale, activity-based travel survey data in California25 containing 

the mobility and dwelling information of 10,913 residents for one day. Dwelling, in this research, 
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refers to the time a vehicle parks or “dwells” at a certain place. I explore the benefits of a 

comprehensive spatial and temporal optimization model to devise the best strategy for BEV 

infrastructure placement and charging management while minimizing the total system cost, 

investigating environmental outcomes of various charging price strategies, and informing the 

emissions benefits of a shared autonomous electric vehicle fleet. We show the importance of 

assessing BEV charging infrastructure in an integrated perspective, focusing on key interactions 

between transportation, energy, and economy across individual patterns of travel behavior, 

dwelling constraints, pricing elasticity of consumers with regards to charging, and the temporal 

and spatial diversity in price and GHG intensity of electricity. 
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Chapter 2. Research Objectives 

In general, my dissertation research focuses on electric vehicle charging infrastructure spatial 

modeling, and consists of three major phases: first, building an optimization model to identify 

the optimal EV charger placement and charging management while respecting individual mobility 

requirements and electricity diversity; second, investigating the energy and environmental 

implications of individual behavior under various charging strategies; finally, assessing the near-

term emission benefits of SAEVs with EV-Grid Integration. Figure 1. The three phases of the 

research algorithm. shows the overall research algorithm. 

 

Figure 1. The three phases of the research algorithm. 

 

An Integrated Optimization Platform for Spatial-Temporal Modeling of Electric Vehicle 

Charging Infrastructure (Chapter 3); 

This section investigates how individual travel and dwelling patterns can affect the distribution 

of spatial and temporal charging opportunities as well as charging facility allocation to different 

locations. I design an optimization platform which takes into consideration the disconnect 

EV charging 
infrastructure placement 

optimization

• Charging Opportunity Distribution

• GAMS Mix-integer Optimization Modeling

Charging management 
through the optimal 

charging price stratety

• Dynamic pricing

• Price elasticity

Near-term SAEV 
emission benefits

• SAEV load forcast

• Charging behaviors
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between electricity pricing and GHG intensity. Specifically, I address the following questions 

covering aspects of technology, environment, and policy: 

1. Based on the individual travel and dwelling patterns, what locations have the best 

opportunities for charging infrastructure installation? 

2. What is the best strategy for the government to allocate incentives to support of home 

versus non-home charging? 

3. How many EV chargers of different types are required to support current PEV charging 

demand, and how do they compare with the existing ones? 

4. What are the associated environmental impacts of the optimal charging strategy in 

California? 

 

Energy, Environmental, and Economic Impacts of Pricing on Charging Strategies for Electric 

Vehicles (Chapter 4); 

In this section, I will assess the impacts of various pricing strategies for charging on the grid and 

the environment. Then, I will optimize a charging pricing strategy that aligns with objectives of 

minimum GHG emissions without decreasing the profit to the charging suppliers (or electricity 

retailers depending on the business modes). Regional tier one flat rate of electricity will be used 

as a baseline and price elasticity will be considered in this study to answer the following questions: 

1. What is the optimal dynamic pricing policy for the government to employ, so as to realize 

the maximum GHG mitigation? 



 

6 
 

2. What is the environmental implication of the dynamic pricing policy compared with the 

baseline flat rate one as it relates to the charging behave or policy? 

3. To realize maximum GHG mitigation, how will the fuel cost to EV drivers change? 

4. What are the energy and economic impacts of this pricing strategy? (Maximum GHG 

reduction while not decreasing profit to retailers)? 

 

Emissions Implications of Shared, Autonomous, and Electric Vehicle Fleets: A Case Study of 

California’s Near Future (Chapter 5); 

The final section of my research is to estimate the impacts of a centrally operated, all-electric 

autonomous rideshare service on transportation emissions, climate change impacts and grid 

efficiencies in the Bay Area. In particular, we will answer the questions below: 

1. What are the emissions benefits for a SAEV fleet at different rates of carbon intensity for 

electricity? 

2. How do emissions benefits shift based on different vehicle occupancy rates (up to a 

maximum of 4)? 

3. What are the emissions benefits of different levels of SAEV adoption compared to other 

modes? 

4. What are policy recommendations that city and state officials can consider to support 

electrification of shared AV fleet? 
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Chapter 3. An Integrated Optimization Platform for Spatial-Temporal 

Modeling of Electric Vehicle Charging Infrastructure 

 

Abstract 

Vehicle electrification has been identified as one of the most important roles in decreasing 

greenhouse gas (GHG) emissions in transportation. Proper placement of charging infrastructures 

and management of charging activities is the key to ensuring the environmental benefits from 

the widespread adoption of electric vehicles (EVs). By employing empirical travel trajectory data, 

this paper investigates how individual travel and dwelling patterns can affect the distribution of 

spatial and temporal opportunities for electric vehicle charging, as well as charging infrastructure 

installation across regions. We formulate an integrated optimization platform for estimating 

electric vehicle charging infrastructure placement in home and non-home locations 

simultaneously that include infrastructure costs and dynamic electricity prices with a mixed-

integer linear programming. We provide two case studies in the Great Sacramento Area and San 

Diego, California. The results show that higher non-home charging opportunity informed by the 

empirical travel and dwelling patterns offers more potentials for a shared public charging system 

in San Diego, resulting in 14% - 30% lower in total system cost and 21% - 25% lower in emissions. 

This indicates that the heterogeneity in spatial and temporal travel and dwelling patterns 

substantially affect the design of the charging infrastructure system, and substantially change the 

energy, economic and environmental impacts of the system. We also observe sensible timing of 

charging in non-home locations that correspond to daytime hours and a secondary peak in 
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charging at home locations during nighttime hours in both regions, emphasizing the importance 

of integrating grid dynamics into EV charging infrastructures planning process. Our model 

platform provides new insights on how to properly allocate EV charging infrastructures and 

manage charging activities from a comprehensive and disaggregated perspective combined with 

power grid smoothing. 

 

1 Introduction 

In 2019 the transportation sector accounted for 28.6% of total greenhouse gas (GHG) emissions 

in the United States, overtaking electricity generation as the largest source of emissions since 

2017. The majority of GHGs in transportation comes from light-duty vehicles, which include 

passenger cars (40.5%) and freight trucks (23.6%) 26. Transportation electrification is playing an 

increasingly important role in dealing with climate change mitigation, especially considering that 

electricity GHG intensity has dropped substantially in recent years due to fuel switching to lower-

carbon sources of electricity production and increasing energy end-use efficiency 26. Widespread 

adoption of plug-in electric vehicles (PEVs), which include both battery electric vehicles (BEVs) 

and plug-in hybrid electric vehicles (PHEVs), dominates the emerging revolutions in passenger 

transportation’s transition to sustainable mobility 7. 

 

However, there are several challenges to the widespread electrification of passenger vehicles, 

including the availability of electric vehicle supply equipment (EVSE, commonly known as 

charging infrastructure) 9,27–29.  Battery range constraints, both real and imagined, are one of the 
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most significant barriers to large-scale acceptance of BEVs in the market 30. Developing a 

dedicated recharging infrastructure system may alleviate range anxiety and encourage more 

consumers to purchase electric vehicles 14,31. California is leading the revolution towards 

transportation electrification in the US and the world, and Governor Jerry Brown signed Executive 

Order B-48-18 in January 2018 setting a state target of having 5 million ZEVs on California roads 

by 2030 and deploying 250,000 charging stations, including 10,000 fast-charging stations, by 

2025 32. 

 

The topic of EVSE deployment attracts research interest from a variety of fields. Studies stemming 

from traditional transportation disciplines often use methodologies such as facility location 

optimization and consider the placement of electric vehicle charging infrastructure as a location-

allocation problem, which determines a set of new facilities from candidate sets 33–37. Charging 

demand analysis is often the first and main step in existing studies. Some study is based on simple 

assumptions for travel distances, such as average annual or daily vehicle miles traveled (VMT), 

and defines various scenarios in charging behaviors 38. Some utilize GPS travel survey data 39, or 

empirical trip trajectory data from portable devices 40,41. Many other studies capture charging 

behavior and charging demand through constructing simulation models. For example, agent-

based simulations are often constructed to model charging demand considering the empirically 

charging patterns 42, vehicle attributes such as the initial state of charge variations, range anxiety, 

charging delay and queuing delay 37, or a more nuanced model of the decision to charge that 

balances tradeoffs people make with regards to time, cost, convenience, and range anxiety 43. 

Other types of simulation include accounting for  temporal utilizations of charging stations, such 
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as the start time and duration of charging events during a discrete event simulation for different 

expansion strategies of public charging infrastructure 44; identifying the optimal number of fast 

charging stations and the corresponding fleet vehicle downtime through simulating the fleet 

operations for free floating shared electric vehicles 36 or minimizing greenhouse gas emissions of 

electric delivery vehicles based on charging profiles simulations. These studies are limited 

because the transportation models are either unable to consider the energy, cost, or 

environmental impacts of the proposed deployment strategy for charging or simply assume 

constant electricity rates and uniform grid patterns. However, the operational costs and 

emissions of electric vehicles largely depend on the electricity they use, which is sensitive to both 

time and location. Studies based on empirical data show that differences in charging cost play an 

important role in the demand for charging location 45. Electrical engineering studies are primarily 

concerned with finding the optimal location of the charging stations in the distribution network 

such that the impacts on the operation (e.g., voltage stability, reliability, and power losses) of the 

power network are minimized, but typically do not consider behavioral elements of EV owners 

46–48 Therefore, it is very important to design a more comprehensive optimization model for 

electric vehicle charging infrastructure planning that combines strengths from transportation 

modeling approach while considering the dynamics of the grid. A review on the problem of 

charging infrastructure planning for EVs compares the scenarios of charging infrastructure 

development across countries and different approaches adopted in recent studies with a focus 

on optimization formation and the algorithms for solving the problem, emphasizing that the 

complexity and dynamics of the problem calls for extending existing models in the literature 49.  
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Past studies on PEV charging infrastructure placement are often limited to a set of select 

candidate sites, which are often assumed to be identical. Some studies choose existing gasoline 

stations as the candidate sites 41,42,50, but they neglect the behavioral implications of expecting 

drivers to wait at the gasoline station for a long time to charge their vehicles. Other studies using 

highway rest areas as candidate sites 35,51 suffer from the same problem. Some studies find that 

PEV drivers are more likely to charge their vehicles at the end of a trip rather than in the middle 

39,52,53, and the most common location for PEV charging is at home, followed by work, and then 

public locations 21. Our research is based on a more general assumption that people are more 

likely to charge their vehicles at the locations where they stay or dwell for a longer time, and our 

research contribute to the existing literature by considering how the distribution of dwelling 

times at different locations might affect the decision of how many, where, and what kind of 

chargers should be installed, as well as when and where BEV drivers should charge their vehicles. 

 

Another limitation of previous studies is that they separate charging demand by either the type 

of location (e.g. home, work, or public charging) or based on the purpose of a trip (e.g. commute 

trips, long-distant trips or ride-share trips) and design the charging infrastructure system 

accordingly. For example, a study from 33 only considered long-distance intercity trips; 54 

designed an optimization model only for workplace charging; and some other studies only 

optimized fast charging system 37,55. In another study, a simulation model was proposed to 

analyze the charging demand distribution across residential area, working area, shopping 

entertainment area, social rest area and other functional areas 56 However, all of these studies 

fail to respect a simple fact that individuals may dwell and charge vehicles at the same place for 
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different trip purposes. In other words, chargers at a certain location can be employed to satisfy 

various types of trips. For example, chargers placed at Walmart parking lots support both the 

staff and customers, but their trip purpose and dwelling time patterns are quite different. 

Sometimes it is hard to define whether or not a charging location belongs to “workplace 

charging” or “public charging", since users may park and charge at public parking lots near their 

office while working. Therefore, it can be inaccurate to separate the designation of non-home 

charging infrastructure into types of workplace and public charging. To our best knowledge, there 

is no existing study that comprehensively considers charging demand of all kinds and 

simultaneously optimizes the placement of charging infrastructures of all levels. Lastly, many 

existing models simply assume that vehicles are fully charged when leaving for work 33,41,57, but 

in reality, this is not always the case and  BEV owners may have more complex charging behaviors 

58. 

 

To address these research gaps, we design an agent-based optimization model platform to 

identify the optimal EV charger placement of home and non-home charging across regions and 

charging management strategy at individual level while integrating grid dynamics. Compared to 

previous studies, our paper makes several unique contributions to the literature: 1) it 

demonstrates the importance of spatial distribution of dwelling times and the corresponding 

limits to charging opportunities by employing large-scale activity-based travel diary data, 2) it 

accounts for the spatial and temporal differences in prices and carbon intensity of the electricity, 

3) it optimizes charging loads of a system comprehensively by considering four types of chargers 

while respecting the heterogeneity in home and non-home charging, and 4) it provides a higher 
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level of resolution for charging infrastructure planning and management. This study is based on 

the mobility patterns of current vehicle drivers in California, but it may apply to other regions for 

which similar data are available and can be easily converted to new mobility with changing 

vehicle occupation rates under different scenarios such as shared mobility and/or medium and 

heavy-duty electrification. 

 

The rest of the paper is organized as follows: Section 2 explains the methodology and data used 

in this research. Section 3 presents our results of the spatial-temporal charging opportunity 

distribution across California and compares case studies of optimal charging infrastructure 

system in San Diego and Great Sacramento Area. And in section 4, we conclude with a discussion 

of the major implications and outlook of our work. 

  

2 Materials and method 

We outline our study’s approach as follows:  

1) We assess the spatial-temporal distribution of ‘charging opportunity’ (defined in section 2.1) 

at the census tract level in California; 

 

2) We construct an optimization model to investigate the optimal locations for PEV charging 

installation and the charging strategy of individual drivers by minimizing system cost. 
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Our integrated electric vehicle charging optimization (IEVCO) is able to demonstrate the optimal 

time and location to charge for each individual, and the number of EV chargers to install in each 

region. The overall modeling framework is shown in Figure 2. Data inputs include 1) spatial-

temporal charging demand and availability (daily travel distance, vehicle energy efficiency, and 

dwelling time for each individual at each stop of a day) is based on a high-resolution individual 

activity-based travel diary data 25; 2) available charging infrastructure characteristics (equipment 

and installation costs, power of the chargers) is cited from a study by the U.S. Department of 

Energy’s National Renewable Energy Laboratory 59; 3) charging cost (the price of charging at each 

hour of a day) refers to the dynamic locational marginal price reported by local transmission 

system operator 60. The raw output of the optimization model is the assignment of charging time 

slots and locations for each individual included in the inputs, as well as the number of chargers 

required for each region.  

 

Figure 2. A modeling framework for the Integrated Electric Vehicle Charging Optimization. 
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2.1 Assessing the distribution of charging opportunity 

Understanding spatial-temporal distributions of PEV owners’ charging opportunities (CO) in the 

study area is the first step of modeling. We define the charging opportunity of an individual at a 

certain place as the time period they stay or dwell at that location, and define charging 

opportunity of a location as the sum-product of the number of people and their respective 

dwelling times at that location within a day. This definition is based on the general assumption 

that people are more likely to charge at places where they stay longer. Locations with more 

visitors also have a higher chance to support more charging activities than those with few visitors. 

Figure 3 depicts an example of the charging opportunity of an individual as it relates to his/her 

daily activity. Vertical bars on the left graph represent activities and the dwelling time duration 

is the charging opportunity at that location. The disconnection between bars means the 

individual is traveling on the road. We separate charging opportunities into the home and non-

home categories because the home charger is exclusive to EV owners, but chargers at non-home 

locations are shared by all users. Therefore, the model optimizes the time and location of each 

individuals’ available charging time slots according to the cost associated with that time and 

location (shown by the color on the right graph: red means high cost while green means low cost). 
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Figure 3. An illustration of charging opportunity 

 

The left graph depicts a typical travel and dwelling time pattern of the sampled individual, who 

starts the commute trip at 7:00 am and arrives at the workplace at 8:00 am. His/her charging 

opportunity at that workplace is from 8:00 am - 5:00 am except for one hour at the restaurant 

during 12:00 pm -1:00 pm and the time for driving. After work, the driver spends one hour doing 

grocery shopping, leaving the charging opportunity at the market’s parking lot from 5:30 pm - 

6:30 pm. All the remaining time spent at home is the driver’s home charging opportunity. 

Accordingly, the right image illustrates the basic logic of our IEVCO model: figuring out the 

optimal time slots and locations to charge within all the available charging opportunities for each 

sampled individual included in the inputs.  
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Our approach is advantageous for several reasons. First, it quantifies the charging opportunity of 

all locations (home or non-home) uniformly, allowing for all locations to be modeled 

simultaneously. Second, it enables us to analyze the available charging patterns of any possible 

locations based on the dwelling patterns of all the people who visit that location. For example, 

by measuring the distribution of daily dwelling times among all customers and workers in a 

shopping plaza, we are able to determine how many, and which level of chargers are suitable to 

install in its parking lot. Thirdly, since we only indicate the optimal charging strategy for BEV 

drivers within their charging opportunity, the model inherently avoids the problem of detouring 

to visit charging stations that commonly appear in other models.  
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2.2 Formulation of EV charging optimization  

 

Our IEVCO model is formulated as a mixed-integer optimization problem as follows: there are n 

EV drivers (i = {1, 2, 3, …, n}), each deciding the amount of time to recharge the vehicle in each of 

their available time slots t among m regions (r = {1, 2, …, m}), based on their daily activity patterns. 

The objective is to minimize total costs 𝑦𝑡𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡  with respect to the home and non-home 

charging time,  𝑥𝑖𝑟𝑡𝑙
ℎ𝑜𝑚𝑒𝑇𝑖𝑚𝑒 and 𝑥𝑖𝑟𝑡𝑙

𝑛𝑜𝑛ℎ𝑜𝑚𝑒𝑇𝑖𝑚𝑒, during a specific time slots t, in region r with level 

l charger for BEV driver i, as well as the number of home and non-home chargers, 

𝑥𝑟𝑙
ℎ𝑜𝑚𝑒𝐶ℎ𝑎𝑟𝑔𝑒𝑟

and 𝑥𝑟𝑙
𝑛𝑜𝑛ℎ𝑜𝑚𝑒𝐶ℎ𝑎𝑟𝑔𝑒𝑟

, being built at level l within in region r. The total system cost, 

NOMENCLATURE

Sets

i individual within the study region, i  = {1, 2, 3, …, n}

r region, at census track level, r = {1, 2, …, m}

t time slot, refering to each hour of a day, t  = {1, 2, …, 24}

l level of chargers, l  = 1, 2 for home chargers and l  = 2, 3 for non-home chargers

Variables

y
totalCost

total system costs [$]

x
homeTime

irtl home charging time during time slot t  in region r  with level l  charger for driver i  [h]

x
nonhomeTime

irtl non-home charging time during time slot t in region r with level l charger for driver i [h]

x
homeCharger

rl number of home charger at level l  within in region r , integer variable

x
nonhomeCharger

rl number of non-home charger at level l  within in region r , integer variable

x
chosenCharger

irl a binary variable indicating if a level l  home charger being installed for individual i  at home 

location in region r (=1) or not (=0)

Parameters

e
Demand

i daily total energy demand for individual i [kWh]

w i weight of sample individual i

c
homeChargingPrice

trl home charging price at level l  charger in region r  during time t  [$/kWh]

c
nonhomeChargingPrice

trl non-home charging price at level l  charger in region r  during time t  [$/kWh]

p
homePower

l power of level l  chargers at home locations [kW]

p
nonhomePower

l power of level l  chargers at non-home locations [kW]

c
homeCharger

l equipment and installation cost for level l  home chargers [$/yr]

c
nonhomeCharger

l equipment and installation cost for level l  non-home chargers [$/yr]

d
homeDwellingTime

itr home dwelling time for individual i  during time slot t  in region r  [hr]

d
nonhomeDwellingTime

itr non-home dwelling time for individual i  during time slot t  in region r  [hr]



 

19 
 

which is the sum of costs from fulfilling the charging demand of BEV owners and building the 

charging stations in the study domain, can reflect the expenditure that the society or system need 

at least to afford in building and running their charging infrastructure system. The model 

assumes: 1) individuals are rational price actors when they make the decision on where and how 

long to charge their vehicles and 2) their choice of PEV is sufficient to cover their average daily 

travel distances, and thus day-ahead charging is sufficient to support the next-day energy 

demand on average. Since our research focuses on the investigation of the optimal strategy to 

distribute charging stations in both home and non-home locations at all levels within the study 

area, as well as indicate the right time and location for each individual to charge their electric 

vehicles, we also assume instantaneous station installation and possible discontinuous charging 

with smart charging technology.  

 

The mathematical formulation of the optimization model is as follows: 

Equation 1 

Min
𝑤𝑟𝑡 𝑥𝑖𝑟𝑡𝑙

ℎ𝑜𝑚𝑒𝑇𝑖𝑚𝑒,𝑥𝑖𝑟𝑡𝑙
𝑛𝑜𝑛ℎ𝑜𝑚𝑒𝑇𝑖𝑚𝑒,𝑥𝑟𝑙

ℎ𝑜𝑚𝑒𝐶ℎ𝑎𝑟𝑔𝑒𝑟
,𝑥𝑟𝑙

𝑛𝑜𝑛ℎ𝑜𝑚𝑒𝐶ℎ𝑎𝑟𝑔𝑒𝑟 𝑦𝑡𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡 

= (∑ 𝑐𝑡𝑟𝑙
ℎ𝑜𝑚𝑒𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑃𝑟𝑖𝑐𝑒

𝑥𝑖𝑡𝑟𝑙
ℎ𝑜𝑚𝑒𝑇𝑖𝑚𝑒𝑝𝑙

ℎ𝑜𝑚𝑒𝑃𝑜𝑤𝑒𝑟𝑤𝑖

𝑖𝑟𝑡𝑙

 

+ ∑ 𝑐𝑡𝑟𝑙
𝑛𝑜𝑛ℎ𝑜𝑚𝑒𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑃𝑟𝑖𝑐𝑒

𝑥𝑖𝑡𝑟𝑙
𝑛𝑜𝑛ℎ𝑜𝑚𝑒𝑇𝑖𝑚𝑒𝑝𝑙

𝑛𝑜𝑛ℎ𝑜𝑚𝑒𝑃𝑜𝑤𝑒𝑟𝑤𝑖) ∗ 365

𝑖𝑟𝑡𝑙

 

+ ∑ 𝑐𝑙
ℎ𝑜𝑚𝑒𝐶ℎ𝑎𝑟𝑔𝑒𝑟

𝑥𝑟𝑙
ℎ𝑜𝑚𝑒𝐶ℎ𝑎𝑟𝑔𝑒𝑟

𝑟𝑙

+ ∑ 𝑐𝑙
𝑛𝑜𝑛ℎ𝑜𝑚𝑒𝐶ℎ𝑎𝑟𝑔𝑒𝑟

𝑥𝑟𝑙
𝑛𝑜𝑛ℎ𝑜𝑚𝑒𝐶ℎ𝑎𝑟𝑔𝑒𝑟

𝑟𝑙
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To make the two cost components – capital cost for building charging stations and the electricity 

costs for charging electric vehicles, consistent and comparable, we define the objective total cost 

on an annual basis. The optimization model subject to a series of constraints: 

1) Energy demand requirement and power constraint: the charging activities happening both at 

home and non-home locations should meet the average daily energy demand of EV driver i.  

Equation 2 

∑(𝑥𝑖𝑡𝑟𝑙
ℎ𝑜𝑚𝑒𝑇𝑖𝑚𝑒𝑝𝑙

ℎ𝑜𝑚𝑒𝑃𝑜𝑤𝑒𝑟 + 𝑥𝑖𝑡𝑟𝑙
𝑛𝑜𝑛ℎ𝑜𝑚𝑒𝑇𝑖𝑚𝑒𝑝𝑙

𝑛𝑜𝑛ℎ𝑜𝑚𝑒𝑃𝑜𝑤𝑒𝑟)

𝑡𝑟𝑙

≥ 𝑒𝑖
𝐷𝑒𝑚𝑎𝑛𝑑 , ∀𝑖 

 

2) Charging time constraints: charging time should not exceed one time slot, which is defined as 

one hour.  

Equation 3 

0 ≤ 𝑥𝑖𝑡𝑟𝑙
ℎ𝑜𝑚𝑒𝑇𝑖𝑚𝑒 ≤ 1, 0 ≤ 𝑥𝑖𝑡𝑟𝑙

𝑛𝑜𝑛ℎ𝑜𝑚𝑒𝑇𝑖𝑚𝑒 ≤ 1 

 

3) Dwelling time constraints: charging time should be within the available dwelling constraint. 

Equation 4 

𝑥𝑖𝑡𝑟𝑙
ℎ𝑜𝑚𝑒𝑇𝑖𝑚𝑒 ≤ 𝑑𝑖𝑡𝑟

ℎ𝑜𝑚𝑒𝐷𝑤𝑒𝑙𝑙𝑖𝑛𝑔𝑇𝑖𝑚𝑒
, 𝑥𝑖𝑡𝑟𝑙

𝑛𝑜𝑛ℎ𝑜𝑚𝑒𝑇𝑖𝑚𝑒 ≤ 𝑑𝑖𝑡𝑟
𝑛𝑜𝑛ℎ𝑜𝑚𝑒𝐷𝑤𝑒𝑙𝑙𝑖𝑛𝑔𝑇𝑖𝑚𝑒

, ∀𝑖𝑡𝑟 

 

4) Forcing constraints: non-home chargers are shared among users at non-home locations while 

each home charger is exclusive to an individual, which is specified in Equation 5-7. Specifically, 

forcing constraint Eq.5 ensures that during each hour t, the total number of installed level l 
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non-home charger in region r will be at least larger than the number of level l non-home 

charger being used in that hour. Therefore, charging activities will be optimally arranged and 

charging station queueing problem can be avoided endogenously by our model. 

Equation 5 

∑ 𝑥𝑖𝑡𝑟𝑙
𝑛𝑜𝑛ℎ𝑜𝑚𝑒𝑇𝑖𝑚𝑒𝑤𝑖 ≤ 𝑥𝑟𝑙

𝑛𝑜𝑛ℎ𝑜𝑚𝑒𝐶ℎ𝑎𝑟𝑔𝑒𝑟
, ∀𝑟𝑡𝑙 𝑖   

Equation 6 

𝑥𝑖𝑡𝑟𝑙
ℎ𝑜𝑚𝑒𝑇𝑖𝑚𝑒 ≤ 𝑥𝑖𝑟𝑙

ℎ𝑜𝑚𝑒𝐶ℎ𝑎𝑟𝑔𝑒𝑟
, ∀𝑖𝑟𝑙 

Equation 7 

𝑥𝑟𝑙
ℎ𝑜𝑚𝑒𝐶ℎ𝑎𝑟𝑔𝑒𝑟

= ∑ 𝑥𝑖𝑟𝑙
𝑐ℎ𝑜𝑠𝑒𝑛𝐶ℎ𝑎𝑟𝑔𝑒𝑟

𝑤𝑖

𝑖

 

 

The model employs the activity-based travel diary data from the 2010-2012 California Household 

Travel Survey (CHTS) to simulate individuals’ daily travel patterns and the travel information was 

collected every day for a full year 25. The travel diary data provides the start and end times of 

trips as well as the location of individuals’ daily activities taken by a sample of individuals across 

California (also implying the dwelling patterns of all sampled individuals). CHTS provides an 

“Expanded Person Weight” for each record of activity data to represent the total 36,969,200 

persons residing in California. However, CHTS collects personal activity information from many 

travel modes and the weights in CHTS are calculated based on demographic attributes such as 

household size, income, age, number of household vehicles, and County of residents, but the 

weights in CHTS are not an accurate representation of BEV owners even if we only look at the 
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driver trips. To address this issue, we use regional BEV ownership density from the Rebate 

Statistics of Clean Vehicle Rebate Project (CVRP) 61 to adjust the Expanded Person Weight in 

CHTS. Population data for the study area are employed from the US Census Bureau 62. CVRP 

records the home address of the owners of alternative vehicles in California, and we subset the 

information of BEV drivers by 2019. As a result, the adjusted BEV weight is the number of BEVs 

that each sampled individual represents, and can be calculated as follows: 

Equation 8 

𝐴𝐵𝑊𝑖,𝑟 =  𝐸𝑃𝑊𝑖,𝑟 ×
𝐵𝐸𝑉𝑟

𝑃𝑜𝑝𝑟
 

where: 

𝐴𝐵𝑊𝑖,𝑟 : The adjusted BEV weight for sampled individual i with a home location belonging to 

region r, and the region here is defined at the census tract level. 

𝐸𝑃𝑊𝑖,𝑟: The Expanded Person Weight in CHTS for sample individual i with home location belong 

to region r 

𝐵𝐸𝑉𝑟: Total number of BEVs in region r 

𝑃𝑜𝑝𝑟: The total population of region r.  

 

We also use other resources to capture information on travel demand, the electric grid, and 

infrastructure costs in this study. Travel distance is calculated as the shortest driving distance 

between origins and destinations using Google API. We assume an average efficiency of 33.3 

kWh per 100 miles for electric vehicles based on fuel economy data from FuelEconomy.gov 63 
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and EV sales data reported by the Transportation Research Center at Argonne National 

Laboratory 64. To capture the temporal variation of electricity, we employ electricity generation 

costs as a proxy for charging price, which is based on the average real-time dispatch locational 

marginal price (LMP) over the entire year of 2017 in California ISO 60. We do not estimate the 

electricity distribution and transmission costs and therefore underestimate real charging costs 

to some degree. We use LMP for both home and non-home charging prices since the model is 

focused on the outcome of social welfare as opposed to the benefits to customers or charging 

suppliers, and the LMP is a good representation of the marginal cost of the electricity at a 

specific time and location. The GHG impacts of charging use the average hour-of-day marginal 

emissions factors for CAISO in 2018 65. Parameters and costs of charging infrastructures are 

obtained from the U.S. Department of Energy’s National Renewable Energy Laboratory’s 

analysis on the refilling infrastructures for electric light-duty vehicles, which aggregates data for 

equipment and installation costs from various sources 59. We levelize the charging station's 

capital and installation costs on an annual basis with a lifespan estimated as 10 years and an 

interest rate of 3%. Based on the costs and power of existing chargers, we define three 

scenarios. Table 1 shows the assumptions for each type of charging infrastructures for the high, 

medium and low costs scenarios. Power of level 2 chargers in the low-cost scenario smaller 

than 6 kW is not sufficient for the model platform to achieve a feasible solution. 

Table 1. Assumptions on the costs and power for chargers 

 
Level 1 
Home 

Level 2 
Home 

Level 2 Non-
home 

DC Fast 

Annual equipment 
and installation 

cost ($/unit/year) 

High $112 $378 $729 $11,958 

Medium $98 $224 $630 $5,480 

Low $66 $172 $544 $1,993 
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Power (kw) 
High 1.9 19.2 19.2 90 

Medium 1.7 7.0 7.0 50 
Low 1.4 6.0 6.0 20 

Charging price ($/kWh) LMP 

Note: 10-year lifespan with 3% discount rate. 

 

Our optimization model is a Mixed Integer Linear Programming (MILP) problem, which we solve 

in GAMS with the Cplex solver. Although only private vehicle charging demand is evaluated in 

this study, shared mobility charging demand can be exogenously added to this optimization 

platform. 

 

3 Results 

3.1 Spatial-temporal Distribution of EV Charging Opportunity in California 

Figure 4 (top left) shows the timeshare for BEV owners in the whole state of California over the 

course of a day. Home dwelling time accounts for around 74% of the day on average and dwelling 

at non-home locations makes up 19%. On-road travel accounts for the remaining 7.3% of total 

time representing an average time of fewer than 2 hours. This result is consistent with other 

studies based on the National Household Travel Survey (NHTS) 24. Non-home dwelling time 

durations are relatively short but vary from person to person. Non-home dwelling patterns of 

BEV owners are also shown in Figure 4 (top right). The average BEV in California is parked 92.7% 

at either home or non-home locations of the time, which means there are lots of opportunities 

for BEV drivers to choose for charging the vehicle to fulfill their daily travel needs. Although the 

home charging opportunity is 54.3% higher than the non-home one, we still see the potential for 



 

25 
 

charging demand management by shifting EV charging loads to cheaper and cleaner time periods 

during the daytime at non-home locations. We also observe that nearly 50% of the time durations 

in non-home locations are less than 40 min, indicating a large potential for fast charging facilities 

being used at non-home locations, which typically add 50 to 90 miles in 30 min for EVs. The other 

half of the non-home dwelling time durations are distributed from 60 min up to 10 hr. These 

properties of dwelling time patterns in non-home locations demonstrate the importance of 

considering dwelling patterns in designing the EV charging infrastructure system.  

 

Figure 4. Timeshare and temporal charging opportunity distributions. 
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Investigating the charging opportunities distribution over the day is also important when 

considering the temporal change in price and GHG intensity of electricity. As seen in Figure 4 

(bottom), home locations have more charging opportunities in the off-peak period, running from 

20:00 to 7:00 (next day), but charging opportunities at non-home locations are mostly distributed 

during the daytime period when the GHG impact and generation costs are pretty low in CAISO 

service territory. While we expect that home charging should still be the dominant charging 

pattern, there is potential for charging demand management by optimally scheduling charging 

activities into the charging opportunities—especially when considering the price differences of 

electricity at on- and off-peak hours.  

 

3.2 Optimized Spatial Charging Infrastructure Platform  

We conduct two case studies of the Greater Sacramento Area and San Diego, California to 

illustrate the outputs of our IEVCO platform. We choose these two areas because they are 

comparable in the amount of BEV drivers but with different spatial and temporal travel and 

dwelling patterns. We subset sample individuals with trip destinations in the study areas from 

CHTS: 2,452 sampled individuals, representing 15,789 BEV drivers in the CVRP dataset, with daily 

travel and dwelling patterns across 614 census tracts of San Diego, and 5,241 sample individuals, 

corresponding to 10,600 BEV drivers, representing 536 census tracts in the Greater Sacramento 

Area. Figure 5 shows the daily dwelling locations of those BEV drivers. We observe that BEV 

drivers in the Greater Sacramento Area mostly stay near the center of the study domain and 

along the freeways of I-80 and US-50, but those in San Diego cluster along the coast since the 
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eastern area is covered by the Santa Rosa Mountains. In aggregation, charging opportunity in 

home locations occupies 71.4% of the total among all locations in the Great Sacramento Area 

and the portion of home charging opportunity in San Diego is 68.8%. 

 

Figure 5. Daily dwelling locations of BEV drivers in the study areas: Greater Sacramento Area 

(left) and San Diego (right). 

 

We display the optimal number of charging stations required under each cost scenario for both 

study domains in Figure 6. The high, medium, and low scenarios are corresponding to different 

levels of infrastructure equipment and installation costs and charging speed as seen in Table 1. 

We find that even though level 1 home charging dominates the charging patterns in both study 

domains, the components of charging stations are quite sensitive to the costs and efficiency of 

the charging infrastructures. The shares of level 1 chargers are 60.8%, 71.6%, and 79.4% for the 

high, medium, and low scenarios in the Great Sacramento Area, and 77.0%, 80.1%, and 82.2% in 

San Diego respectively. Generally, home charging (level 1 and level 2) is the dominant charging 

pattern, accounting for at least 70% of the total required chargers in all cost scenarios - despite 
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the fact that many BEV drivers can fulfill their charging needs with only non-home chargers. The 

share of home chargers decreases as the infrastructure costs become higher. When the higher 

efficient but more expensive chargers are offered to the system, the optimal strategy would 

promote shared level 2 non-home charging. Comparing the two regions, we find that the share 

of level 1 home chargers in the Great Sacramento Area is much lower, accounting for 83.4% - 

86.1% of all chargers at home, but 92.5% - 97.4% in San Diego.  

 

Figure 6. The optimal number of charging stations required under each scenario for both study 

domains. 

 

3.2.1 Costs and environmental impacts 

The total annual system costs and the GHG impacts for both study areas are compared in Figure 

7. Dots represent GHG emissions (right axis), and bars refer to the total system costs (left axis). 

The annual system cost and GHG impacts of the charging infrastructure system in Great 

Sacramento Area are substantially higher than those in San Diego even if the number of BEV 

drivers in San Diego is higher, indicating that our general results are robust in that the spatial and 

2332

5426

7921

376

1079

1347

1128

1060

673

0

10

30

HIGH MEDIUM LOW

GREAT SACRAMENTO AREA

2830

5722
6982

76

233

565

770

1180

912

0

5

31

HIGH MEDIUM LOW

SAN DIEGO

DC Fast

Level 2 Non-home

Level 2 Home

Level 1 Home



 

29 
 

temporal travel and dwelling patterns of BEV drivers substantially alter the economic and 

environmental impacts of the charging infrastructure system. While increasing the cost of 

charging infrastructure decreases the total number of charging stations required (regardless of 

charging speed), we find that the annual system cost is not necessarily highest in the high-cost 

scenario since our IEVCO platform will balance between charging cost and infrastructure 

installation cost in the system. 

 

The constraints of spatial and temporal travel and dwelling patterns of BEV drivers also play an 

important role in determining the local charging system. Although the number of BEV drivers in 

San Diego is 48.9% higher than that in the Great Sacramento Area, the total economic and 

environmental impacts of the optimized charging infrastructure system are lower in San Diego. 

The annual system cost in the Great Sacramento Area ranges from $2,048,682 to $2,506,536, and 

the total GHG emissions from 14,709 tCO2e to 17,390 tCO2e due to different estimations of 

infrastructure costs and charging efficiency. In comparison, the annual system cost is 13.9% - 

30.1% lower, and annual GHG emissions from the extra EV charging loads are 21.3% - 25.0% lower 

in San Diego County. The reason comes from the difference in the spatial and temporal travel 

and dwelling patterns of BEV drivers in two places. Due to a lower portion of charging opportunity 

in home locations, charging patterns in San Diego are more shared in public locations during the 

daytime when the cost and GHG intensity of electricity is lower. Therefore, the total cost and 

environmental impacts of charging system in San Diego is lower. 
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Figure 7. A comparison of charging infrastructure systems in total annual system costs (bars) 

and the GHG emissions (dots) between Great Sacramento Area and San Diego. 

 

3.2.2 Optimal locations of chargers 

To show the relative locations of the optimal distribution of charging stations, we show the 

results of the medium-cost scenario. As seen in Figure 8, the distributions of home and non-home 

charging stations are quite different. Non-home level 2 chargers are mainly located in Yolo 

County, Sacramento County, west of El Dorado County, and some regions in Placer County. DC 

fast chargers are mostly distributed in some small regions in south Sacramento and southeast 

Yolo County. Level 1 home chargers are distributed in all counties, except the southwest region 

of Sacramento County. Similar to level 1 home chargers, level 2 home chargers cover all counties, 

except the southwest region of Sacramento County and northwest of Yolo County. Interestingly, 

the region between highways in southwest Sacramento County does not necessitate investment 

of charging stations.  
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For chargers in San Diego County, level 1 home chargers cover most regions, while level 2 home 

chargers are distributed on the west side of the county and in some discrete regions along with 

the coast and download areas. Non-home level 2 chargers cover similar regions as level 1 home 

chargers, except it does not cover the center of San Diego County and most regions in the 

downtown area but shows up in the eastern part of the county.  

 

Figure 8. Distribution of chargers in the Great Sacramento Area (top) and San Diego (bottom), 

medium cost scenario. 
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3.2.3 EV charging grid impacts 

Figure 9 compares the distribution of the aggregate energy demand for each of the census tracts 

in both study areas for the medium-cost scenario. Most census tracts in both study domains will 

afford very low charging loads per day, but more census tracts in San Diego County will see the 

EV charging load as high as over 100 kWh per day. In other words, the energy impact from EV 

charging in San Diego is substantially different across census tracts and identifying those “hotspot” 

areas is very important especially as the electric vehicle fleet expands. Additionally, the source of 

charging loads is also quite different in the two study domains. In the median cost scenario, 

residential charging loads in San Diego are only 49.9%. But in the Great Sacramento Area, extra 

charging loads from home chargers contribute 63.1%. This finding is also consistent with our 

observations on charging opportunity of the two regions: the Great Sacramento Area has higher 

portion of home charging opportunity than that in San Diego. 
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Figure 9. Total extra charging loads impact at census tract level, medium cost scenario. 

 

To evaluate the impact of EV charging loads on the grid, we are also able to estimate the power 

requirement from charging in each time period. Figure 10 shows the timing of charging across 

different power levels. We find that charging is concentrated over two time periods that align 

with off-peak periods on the grid under the optimized strategy in both regions. There are two 

peaks from EV charging: the first peak occurs between 11:00 pm to 4:00 am and the second peak 

corresponds to non-home charging between 8:00 am to 2:00 pm. We also find the distinction of 

the peak demand component between the two study domains. The grid in the Greater 

Sacramento Area (Figure 10, top) is affected most with concurrent charging loads as high as 17.7 

MW in the early morning from 3:00 am - 4:00 am (mainly for home charging). In San Diego County 
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(Figure 10, bottom), the electricity grid experiences extra charging loads as high as 10.7 MW in 

the morning from 9:00 am - 10:00 am with the biggest contribution from level 2 non-home 

charging. Additionally, DC fast charging appears between 9:00 am to 12:00 pm in the Greater 

Sacramento Area, while in San Diego County, DC fast charging only appears at 9:00 am.  

 

Although the Greater Sacramento Area and San Diego County share similar temporal charging 

patterns, the contributions from different charger levels vary. Overall, the share of non-home 

charging in San Diego is higher than that in the Great Sacramento Area. Non-home level 2 

charging has a similar contribution with level 1 home charging during the nighttime peak in the 

Great Sacramento Area, while level 1 home chargers contribute to charging load the most during 

the nighttime peak in San Diego County. But during the daytime peak, non-home level 2 charging 

accounts for the highest share of EV charging load in both regions. The results indicate again that 

higher non-home charging opportunity informed by the empirical travel and dwelling patterns 

offers more potentials for a shared public charging system.    
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Figure 10. EV charging power demands in the Great Sacramento Area (top) and San Diego 

(bottom), medium cost scenario. 

 



 

36 
 

4 Conclusions and discussion 

In this study, we formulate an optimization model to explore how many of which type charging 

stations should be installed at which locations and to determine the optimal charging strategies 

for BEV drivers within the system that minimize total system costs based on their travel and 

dwelling behavior, as well as dynamic electricity price of the study domain. The high-resolution 

individual activity-based travel diary data provides empirical information on travel and dwelling 

behavior, which offers opportunities to develop new spatial and temporal optimization models 

for EV charging infrastructure planning and charging management. We also introduce the 

concept of “charging opportunity” to represent the potential of charging availability. Charging 

opportunity distributions in California demonstrate the dominance of home charging but reveal 

the importance of dwelling patterns in designing the EV charging infrastructure system as well as 

the potential for fast-charging facilities at non-home locations. 

 

Our IEVCO model platform is implemented for the Greater Sacramento Area and San Diego 

County in California as case studies to illustrate the energy, economic and environmental impacts 

of the optimized EV charging infrastructure systems with sensitivity to high, medium, and low 

scenarios of infrastructure equipment and installation cost, as well as charging efficiency. We find 

that we are able to determine the optimal distribution of charging activities and the number of 

chargers of different levels in the study regions at the census tract level. The results show that 

home charging accounts for over 70% of EV charger types in both study regions. Compared with 

the Great Sacramento Area, the annual system cost of the charging infrastructure system is 14% 
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- 30% lower, and annual GHG emissions from the extra EV charging loads is 21% - 25% lower even 

if the number of BEV drivers is 48.9% higher in San Diego. In terms of energy impact, charging is 

concentrated over two time periods that align with off-peak periods on the electric grid, but the 

grid in San Diego County will be less impacted by the extra EV charging loads due to more shared 

public charging among BEV drivers. Spatially, the energy impact from EV charging in San Diego is 

more diverse such that the number of census tracts with high extra charging load is higher, 

emphasizing the importance of identifying those “hotspot” areas, especially with electric vehicles 

fleet expansion.  

 

Our work affirms that the spatial and temporal travel and dwelling patterns of BEV drivers 

substantially affect the design of the EV charging infrastructure system.  The majority of charging 

infrastructure planning focuses primarily on origin-destination trip data for locating chargers.  

However, we show the importance of including dwelling patterns of individuals on the decision-

making process of optimal charger placement.  These considerations will be critical moving into 

the future, as an improper framework may prevent the system from adequately reducing costs 

to users or integrating with the electricity grid. 

 

The optimization model results may underestimate the number of non-home chargers because 

we assume all BEV drivers are completely responsive to charging price and turnovers are assumed 

to happen with perfect efficiency. However, the case studies demonstrate the minimum 

requirements of the local charging infrastructure system to meet the current EV load demand. 
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The optimal solution may not represent what is happening in practice due to factors such as land-

use constraints, grid availability, and financial subsidies, which can play a vital role in charging 

infrastructure investment. However, the optimal charging strategy from our model combines 

power grid smoothing, charging management, and avoiding unnecessary grid upgrades. The 

modeling platform developed in this paper provides new insights to both policymakers and 

researchers on how to properly allocate electric vehicle charging infrastructure and manage 

charging activities with the least total system cost. Future work will consider factors that may 

affect BEV drivers charging behavior by introducing the price elasticity of charging demand into 

our model platform and investigate the potential to use price signals to manage EV owners’ 

charging loads. 
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Chapter 4. Energy, Environmental, and Economic Impacts of Pricing on 

Charging Strategies for Electric Vehicles 

 

Abstract 

While utilizing price signals to affect charging behaviors has been identified as a promising 

strategy to manage charging loads as needed, few studies discuss their impacts comprehensively. 

In this paper, we investigate how different charging price strategies can affect the spatial and 

temporal distribution of charging activities at the individual level, as well as the required charging 

infrastructure system, to evaluate their energy, environmental and economic impacts. We utilize 

an integrated optimization platform for EV charging management and infrastructure placement 

in home and non-home locations in San Diego, California that include charging price strategies, 

infrastructure costs, and mobility demand patterns. Three pricing scenarios are evaluated: flat 

rate scenario, real-time pricing scenario, and existing EV time of use residential rates plus public 

EV charging rates scenario. Considering the price elasticity of charging demand, our model 

indicates the charging behaviors with respect to different pricing strategies. Our results show 

that the ability of changing charging behavior to obtain environmental benefits depends on 

charging price strategies largely. The charging load profile with our optimized charging platform 

is the result of various determinants including the dynamic electricity price, travel, and dwelling 

constraints, carbon price clustering effect, as well as exclusive home and shared non-home 

charging patterns.  
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SYNOPSIS: Our research shows that the ability of changing charging behavior to obtain 

environmental benefits depends largely on charging price strategies, indicating the importance 

of considering EV charging price when making climate policies. 

 

1 Introduction 

The transportation sector is the largest source of emissions in the United States, accounting for 

28.6% of total greenhouse gas (GHG) emissions in the year of 2019. The majority of GHGs in 

transportation comes from light-duty vehicles, which includes passenger cars (40.5%) and freight 

trucks (23.6%)26. Vehicle electrification has identified as one of the most important way to reduce 

transport related GHG emissions due to higher efficiency of electrified powertrains and lower 

emission rate of electricity66,67. Individual travel and charging patterns not only determine how 

much electricity is used, but the timing of the charging decides whether base or peak electricity 

will be used to charge the battery. Some studies find that plug-in electric vehicle (PEV) charging 

will not impact the generation and transmission of the electric grid in the short term but may 

need to be managed when the vehicles are deployed in greater numbers21. However, other 

studies show uncoordinated PEV charging could significantly change the shape of the aggregate 

residential demand, with impacts for electricity infrastructure, even at low adoption levels22. 

Proper management is critical because charging strategies may also significantly impact the 

environmental outcome of charging electric vehicles23,24. 
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Previous research points to the promising prospect of managing EV charging load through price 

mechanisms to act as a flexible demand response resource. Using price signals to manage 

charging is one of the cheapest strategies to implement in order to achieve the traditional 

regulatory goals of a safe, reliable, and affordable service while advancing system efficiency, 

enhancing environmental sustainability, and facilitating renewable resources integration68,69. 

Some studies have demonstrated the benefits of dynamic pricing for EV charging to decrease the 

expenditure of distribution grid operators and/or the charging cost of  EV owners70–73, or to 

reduce the overlaps between residential and EV charging loads74. Dong et al. developed a 

charging price strategy of EV fast charging stations to minimize the total voltage magnitude 

deviation of distribution networks75. Dutta et al. proposed a new energy pricing controlled EV 

charging and discharging strategy in home energy management system to acquire maximum 

financial benefit of EV owners using real load profile of a house in Melbourne and associated 

electricity rates76. 

 

Recent studies discussed the EV driver’s response to the charging price in order to shift the 

charging loads to the off-peak time period77–80, or to reduce the charging costs71,81,82. Although 

there has been substantial work investigating the economic or operational benefits of optimizing 

EV charging loads with an appropriate price strategy, few studies have been explicitly designed 

to explore the environmental benefit of shifting consumers’ charging loads with various price 

signals. Previous studies examined the GHG emissions of several charging strategies considering 

the variation in electricity emissions factors but ignored the impact of electricity prices on 

charging behaviors83,84. Additionally, many EV charging optimization models do not consider the 
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travel and dwelling constraints of EV drivers70,71. It is unrealistic to expect the EV drivers to charge 

the vehicles during the time when they are not available or at the places where they are not there 

only to accommodate with the grid needs. Moreover, managing EV charging loads without 

considering the availability of electric vehicle charging infrastructure is also inappropriate. We 

develop a unique approach that simulates EV charging behavior to internalize environmental 

damages (across diverse sets of electricity rates and GHG intensities) while simultaneously 

optimizing for electric vehicle charging infrastructure planning and respecting the dynamics of 

individual mobility demand. 

 

Many studies take a naive approach in assuming that EV owners are completely rational in 

changing their charging behaviors in response to price changes69,70,81. While some studies have 

shown that electricity consumption is relatively inelastic85–87, there are studies demonstrating 

that the availability of smart technology can increase price elasticity and grid efficiency88,89. Since 

the price elasticity of EV charging demand is rarely estimated using empirical data, price elasticity 

of residential electricity demand is often used as a proxy in previous studies. Ding et al estimated 

the dynamic price elasticity for PHEV charging demand from the literature and applied to three 

price response patterns90.  

 

Our study employs estimated pricing elasticity of charging demand from a recent empirical study 

by San Diego Gas & Electric Company (SDG&E)91. The authors conducted a randomized control 

trial experimental study on estimating the effect of time-of-use (TOU) price signals on the home 



 

43 
 

charging behavior of early BEV adopters in San Diego. 430 BEV consumers were randomly 

assigned to the three experimental TOU rates, each of which has three periods: peak, off-peak 

and super off-peak. The results showed that EV consumers are responsive to price signals, 

especially the on-peak and off-peak prices. Their own-price elasticities were estimated in the 

range of -0.3 to -0.5. Our work improves upon a large body of literature that treats charging 

behavior independent from electricity pricing and employ price elasticities with respect to 

charging behavior to analyze response to a carbon tax price signal. 

 

The purpose of this study is to understand the energy, economic and environmental performance 

of various pricing scenarios based on data from San Diego, California in controlling the charging 

behavior of consumers and designing the appropriate charging infrastructure system. Our paper 

is unique in the literature because it 1) utilizes a comprehensive optimization model platform to 

identify optimal EV charger placement while managing charging activities, and by 2) considers 

price elasticity of charging demand into the optimization model.  

 

2 Method and materials 

We utilize an electric vehicle infrastructure planning and charging management model platform 

to investigate the implications of charging price strategies when integrating climate damage and 

price elasticity of charging demand in emission reductions, grid impacts, infrastructure 

deployment as well as costs breakdown. The optimization model platform was designed based 

on a previous study92 to determine the optimal strategy for electric vehicle charging 
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infrastructure placement at different levels for both home and non-home locations, as well as 

the optimal charging time slots and locations for each BEV drivers within the study domain given 

a set of constraints such as travel demand and dwelling patterns of each driver.  

 

We propose three default charging pricing scenarios and apply three carbon prices for each. The 

overall flow of our study’s approach is as follows: 

1. We assess the optimal charger distribution and charging time under an objective of the 

minimal total system cost based on the tier-two flat rate (FR) of the electricity, real-time (RT) 

price of the grid, as well as the existing residential EV time-of-use (TOU) rates and public 

charging rates in San Diego. 

2. We analyze the environmental benefits of the charging system when we internalize the 

climate damage by applying different carbon prices to each default pricing scenarios. 

3. We evaluate the grid and cost impacts of the nine scenarios: three default charging 

price each with three carbon price levels. 

 

As shown in Figure 11, the overall modeling framework consists of four modules: travel 

demand, charge pricing, infrastructure characteristics, and impacts evaluation. Charge pricing 

and impacts evaluation are the core modules of this model. The charge pricing is determined by 

a specific pricing scenario that is related to the electricity price at charging stations during each 

time period, and the carbon price internalized. According to different charging prices, the 

optimization model platform indicates the optimal time, location and charging power for each 
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EV drivers in the system. According to the outputs of the optimization platform, we calculate 

the GHG emissions, total costs and impacts to the regional distribution system through the GHG 

intensity, the charge pricing, and the energy consumption of EVs during each time period.  

 

 

Figure 11. Modeling framework for the integrated pricing strategy analysis.  

Note: Three charging pricing scenarios are proposed, and we outline our study’s approach as 

follows: 1) based on the tier two flat rate (FR), real-time (RT) price of electricity, as well as the 

existing residential EV time-of-use (TOU) rates and public pricing rates in San Diego, we identify 

the optimal charger locations and charging time for the least total system cost; 2) we analyze 

the environmental impacts of the charging system when we minimize the total social cost, 

which incorporates the carbon prices into the total system cost; 3) we evaluate the energy and 

economic impacts of the three default charging price scenarios with various carbon prices. 

 

EV charging demand. We simulate individuals’ daily travel and dwelling patterns by employing 

the activity-based travel diary data from the 2010-2012 California Household Travel Survey 



 

46 
 

(CHTS)25, which provides the start and end times, as well as the location of individuals’ daily 

activities taken by a sample of individuals across California. Based on that, we figure out the dwell 

time of each sampled individual at each stop. CHTS provides an Expanded Person Weight for each 

record of activity data to represent the total 36,969,200 persons residing in the State of 

California. However, CHTS collects personal activity information from many travel modes and the 

weights in CHTS are calculated based on demographic attributes such as household size, income, 

age, number of household vehicles, and county of residents, but unfortunately the weights in 

CHTS are not a good representation of BEV owners. To address this issue, we first subsample 

individuals with travel model of driving and then use regional BEV ownership density from the 

Rebate Statistics of Clean Vehicle Rebate Project (CVRP) 61 to adjust the Expanded Person Weight 

in CHTS. Population data for the study area are employed from the US Census Bureau 62. We 

subset sample individuals with trip destinations in San Diego, California from CHTS: 2,452 

sampled individuals, representing 15,789 BEV drivers in CVRP dataset, with daily travel and 

dwelling patterns across 614 census tracts of San Diego. 

 

Travel distance is calculated as the shortest driving distance between origins and destinations 

using Google API. Electric vehicle efficiencies are from FuelEconomy.gov 63 and we assume the 

average efficiency as 33.3 kWh per 100 miles for electric vehicles based on fuel economy data 

from FuelEconomy.gov63 and EV sales data reported by Transportation Research Center at 

Argonne National Laboratory93. Daily dwelling locations and travel distance of those BEV drivers 

within the study area are shown in Supporting Information Figures S1. We observe that BEV 
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drivers in San Diego cluster along the coast, and their daily travel distance is mostly below 100 

miles with an average value of 22 miles. 

 

Charging Price Scenarios. We define three default pricing scenarios. In the first, charging cost 

refers to the tier two flat price of electricity in San Diego Gas & Electric (SDG&E). The tier two flat 

rate will be charged when the energy in each billing period hits 130% of the baseline allowance 

(234 kWh during summer and 343 kWh during winter in San Diego). The second default pricing 

scenario is real-time pricing, which is estimated based on the daily average real-time dispatch 

locational marginal price (LMP) over the entire year of 2018 in California ISO60. Because the LMP 

does not include upstream electricity distribution and transmission costs, it is an underestimate 

of retail rates and ultimately real charging costs and cannot be directly compared with other 

pricing scenarios which are based on retail rates.  Therefore, we estimate real-time pricing (RTP) 

by using a price*quantity approach such that the sum of RTP*electricity quantity would equal to 

the total energy demand multiplied by the default tier two flat rates to ensure that the utility 

would net revenue at whatever the RTP would be compared to the flat rate.  

Equation 9 

∑ (𝑅𝑇𝑃𝑡 × 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦𝑡) = 𝐹𝑅 × ∑ 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦𝑡

24

𝑡

24

𝑡
 

In this way, our RTP both reflects the price of electricity generation in the system while 

maintaining identical level of revenue for the operating utility. The last scenario is constructed to 

evaluate the existing charging price strategy in San Diego. Residential charging is based on the EV 

TOU rates of SDG&E company94. Charging rates at the public level 2 stations is based on the 
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electricity rates for small business set by SDG&E Company. DC fast charging rates refers to the 

“Pay As You Go” rates of EVGo (a charging network provider) for the San Diego area95. We note 

this scenario as “TOU” for short. 

 

To capture the charging behaviors of BEV drivers more precisely, we also consider the pricing 

elasticity of charging demand of BEV drivers. A study from D. Chakraborty, D. Bunch, J. Lee et al45 

calculated the elasticity of choosing each alternative charging type with respect to the cost of 

charging at home based on a cohort survey of PEV owners in California conducted in the years 

2016 and 2017. They observed that a 10% increase in the cost of charging at home yields a 3.6% 

decrease in probability of home charging for BEV owners while the probability of workplace 

charging goes up by 1.5%. We choose to use -0.36 and 0.15 as the pricing elasticities of charging 

demand for home and non-home charging, respectively in our model and the tier two flat rate of 

SDG&E as the baseline. Then the new charging demand for each BEV driver in each region 

𝑥𝑖𝑟
𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝐷𝑒𝑚𝑎𝑛𝑑

 under each alternative pricing scenario could be expressed in the following 

equation: 

Equation 10 

𝑥𝑖𝑟
𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝐷𝑒𝑚𝑎𝑛𝑑

  

= ∑ 𝑥𝑖𝑡𝑙
𝑛𝑜𝑛ℎ𝑜𝑚𝑒𝑇𝑖𝑚𝑒,𝑓𝑙𝑎𝑡𝑅𝑎𝑡𝑒

𝑝𝑙
𝑛𝑜𝑛ℎ𝑜𝑚𝑒𝑃𝑜𝑤𝑒𝑟

𝑡𝑙

[1 +
𝛽𝑛𝑜𝑛ℎ𝑜𝑚𝑒(𝑐𝑡𝑙

ℎ𝑜𝑚𝑒𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑃𝑟𝑖𝑐𝑒
− 𝑐𝑡𝑙

𝑓𝑙𝑎𝑡𝑅𝑎𝑡𝑒
)

𝑐𝑡𝑙
𝑓𝑙𝑎𝑡𝑅𝑎𝑡𝑒 ] 

+ ∑ 𝑥𝑖𝑡𝑙
ℎ𝑜𝑚𝑒𝑇𝑖𝑚𝑒,𝑓𝑙𝑎𝑡𝑅𝑎𝑡𝑒

𝑝𝑙
ℎ𝑜𝑚𝑒𝑃𝑜𝑤𝑒𝑟

𝑡𝑙

[1 +
𝛽ℎ𝑜𝑚𝑒(𝑐𝑡𝑙

ℎ𝑜𝑚𝑒𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑃𝑟𝑖𝑐𝑒
− 𝑐𝑡𝑙

𝑓𝑙𝑎𝑡𝑅𝑎𝑡𝑒
)

𝑐
𝑡𝑙
𝑓𝑙𝑎𝑡𝑅𝑎𝑡𝑒 ] , ∀𝑖𝑟 
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where 𝑥𝑖𝑡𝑙
𝑛𝑜𝑛ℎ𝑜𝑚𝑒𝑇𝑖𝑚𝑒,𝑓𝑙𝑎𝑡𝑅𝑎𝑡𝑒

 and 𝑥𝑖𝑡𝑙
ℎ𝑜𝑚𝑒𝑇𝑖𝑚𝑒,𝑓𝑙𝑎𝑡𝑅𝑎𝑡𝑒

 are the non-home and home charging 

time for individual i during time t at level l charger under the baseline tier two flat rate scenario; 

𝑝𝑙
𝑛𝑜𝑛ℎ𝑜𝑚𝑒𝑃𝑜𝑤𝑒𝑟  and 𝑝𝑙

ℎ𝑜𝑚𝑒𝑃𝑜𝑤𝑒𝑟  are the non-home and home charging power at level l charger; 

𝛽ℎ𝑜𝑚𝑒  and 𝛽𝑛𝑜𝑛ℎ𝑜𝑚𝑒  are the pricing elasticity of charging demand for home and non-home 

locations; 𝑐𝑡𝑙
ℎ𝑜𝑚𝑒𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑃𝑟𝑖𝑐𝑒

 and 𝑐𝑡𝑙
𝑓𝑙𝑎𝑡𝑅𝑎𝑡𝑒

 are the customers’ alternative home charging price 

and the tier two flat rate during time t with level l charger, respectively. 

 

To investigate the environmental, energy and economic impacts of internalizing the climate 

damage, we incorporate two carbon prices into the total cost. We utilize a social cost of carbon 

(SCC) of $50/ton CO2
96 (in 2020 dollars) and a carbon price of $1000/ton CO2 for calculating 

climate change damages. Such a high pricing level of carbon does not indicate any realistic policy 

implementation, but we just want to show the effect of the extreme case as well as the trend of 

potential change of charging behavior. Therefore, the total social cost, which is the sum of 

charging cost, infrastructure cost and environmental damage, indicates the total cost that the 

whole society need to pay for the charging system. 

 

Figure 12 compares all the default pricing strategies for charging in our model. Real-time pricing 

reflects the temporal change of electricity with trend aligning with its generation and 

transmission costs. DCFC has the highest pricing most of the day except during 16:00 to 20:00, 

when residential TOU reaches the peak pricing. During the lowest pricing period of residential 

TOU, which is between midnight and 5:00, charging at home is $0.1/kWh cheaper than the public 
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level 2 pricing. Overall, joining the residential EV-TOU plan of SDG&E is more economical if 

avoiding home charging during 16:00 to 20:00, when tier two flat rate is lower, for BEV drivers.   

 

Figure 12. Pricing strategies for charging in the hourly manner.  

Note: Real time rate mostly aligns with the GHG intensity of the grid. DCFC has the highest 

pricing most of the day except during 16:00 to 20:00, when residential TOU reaches the peak 

pricing. During the lowest pricing period of residential TOU, which is between midnight and 

5:00, charging at home is $0.1/kWh cheaper than the public level 2 pricing. Overall, joining the 

residential EV-TOU plan of SDG&E is more economical if avoiding home charging during 16:00 

to 20:00, when tier two flat rate is lower, for BEV drivers.   

 

Infrastructure characteristics. We obtain the equipment and installation costs of charging 

infrastructures from the medium cost scenario of U.S. Department of Energy’s National 

Renewable Energy Laboratory (NREL) analysis on the refilling infrastructures for electric light-
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duty vehicles 59. We annualized the charging stations capital costs assuming a lifespan of 10 years 

and a discount rate of 3%. We assume the charging stations have no maintenance cost. 

Level 2 and DC fast chargers (DCFC) are potentially available at all non-home locations while 

home chargers are restricted to level 1 and 2. Table 2 shows the assumptions for each type of 

charging infrastructures in our model.  

Table 2. Assumptions on the costs and power for chargers 

 

Level 1 
Home 

(𝒑𝒍=𝟏
𝒉𝒐𝒎𝒆𝑷𝒐𝒘𝒆𝒓) 

Level 2 
Home 

(𝒑𝒍=𝟐
𝒉𝒐𝒎𝒆𝑷𝒐𝒘𝒆𝒓) 

Level 2 Non-
home 

(𝒑𝒍=𝟏
𝒏𝒐𝒏𝒉𝒐𝒎𝒆𝑷𝒐𝒘𝒆𝒓) 

DC Fast 

charger 

(𝒑𝒍=𝟐
𝒏𝒐𝒏𝒉𝒐𝒎𝒆𝑷𝒐𝒘𝒆𝒓) 

Annualized equipment 
and installation cost 

($/unit/year) 
$98 $224 $630 $5,480 

Power (kW) 1.7 7 7 50 

Note: 10-year lifespan with 3% discount rate. 

 

EV charging optimization. The EV charging optimization platform is based on our IEVCO model92, 

which is formulated as follows: there are n EV drivers (i = {1, 2, 3, …, n}), each deciding the amount 

of time to recharge the vehicle in each of their available time slots t among m regions (r = {1, 2, 

…, m}), based on their daily activity patterns. The objective is to minimize total costs 𝑦𝑡𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡 

with respect to the home and non-home charging time,  𝑥𝑖𝑟𝑡𝑙
ℎ𝑜𝑚𝑒𝑇𝑖𝑚𝑒 and 𝑥𝑖𝑟𝑡𝑙

𝑛𝑜𝑛ℎ𝑜𝑚𝑒𝑇𝑖𝑚𝑒, during a 

specific time slots t, in region r with level l charger for BEV driver i, as well as the number of home 

and non-home chargers, 𝑥𝑟𝑙
ℎ𝑜𝑚𝑒𝐶ℎ𝑎𝑟𝑔𝑒𝑟

and  𝑥𝑟𝑙
𝑛𝑜𝑛ℎ𝑜𝑚𝑒𝐶ℎ𝑎𝑟𝑔𝑒𝑟

, being built at level l. The total 

system cost, which, in the default pricing scenarios, is the sum of costs from fulfilling the charging 

demand of BEV owners and building the charging stations in the study domain, can reflects the 
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expenditure that we need at least to afford in building and running their charging infrastructure 

system. When internalizing the climate damage, the total cost should also include the associated 

carbon cost and the total cost becomes the total social cost, which indicates the total cost that 

the whole society need to pay for the charging system. The objective function for our model is 

provided in the Equation 11 below: 

Equation 11 

Min
𝑤𝑟𝑡 𝑥𝑖𝑟𝑡𝑙

ℎ𝑜𝑚𝑒𝑇𝑖𝑚𝑒,𝑥𝑖𝑟𝑡𝑙
𝑛𝑜𝑛ℎ𝑜𝑚𝑒𝑇𝑖𝑚𝑒,𝑥𝑟𝑙

ℎ𝑜𝑚𝑒𝐶ℎ𝑎𝑟𝑔𝑒𝑟
,𝑥𝑟𝑙

𝑛𝑜𝑛ℎ𝑜𝑚𝑒𝐶ℎ𝑎𝑟𝑔𝑒𝑟 𝑦𝑡𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡 

= (∑ 𝑐𝑡𝑟𝑙
ℎ𝑜𝑚𝑒𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑃𝑟𝑖𝑐𝑒

𝑥𝑖𝑡𝑟𝑙
ℎ𝑜𝑚𝑒𝑇𝑖𝑚𝑒𝑝𝑙

ℎ𝑜𝑚𝑒𝑃𝑜𝑤𝑒𝑟𝑤𝑖

𝑖𝑟𝑡𝑙

 

+ ∑ 𝑐𝑡𝑟𝑙
𝑛𝑜𝑛ℎ𝑜𝑚𝑒𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑃𝑟𝑖𝑐𝑒

𝑥𝑖𝑡𝑟𝑙
𝑛𝑜𝑛ℎ𝑜𝑚𝑒𝑇𝑖𝑚𝑒𝑝𝑙

𝑛𝑜𝑛ℎ𝑜𝑚𝑒𝑃𝑜𝑤𝑒𝑟𝑤𝑖) ∗ 365

𝑖𝑟𝑡𝑙

 

+ ∑ 𝑐𝑙
ℎ𝑜𝑚𝑒𝐶ℎ𝑎𝑟𝑔𝑒𝑟

𝑥𝑟𝑙
ℎ𝑜𝑚𝑒𝐶ℎ𝑎𝑟𝑔𝑒𝑟

𝑟𝑙

+ ∑ 𝑐𝑙
𝑛𝑜𝑛ℎ𝑜𝑚𝑒𝐶ℎ𝑎𝑟𝑔𝑒𝑟

𝑥𝑟𝑙
𝑛𝑜𝑛ℎ𝑜𝑚𝑒𝐶ℎ𝑎𝑟𝑔𝑒𝑟

𝑟𝑙

 

+[∑(𝑥𝑖𝑡𝑟𝑙
ℎ𝑜𝑚𝑒𝑇𝑖𝑚𝑒𝑝𝑙

ℎ𝑜𝑚𝑒𝑃𝑜𝑤𝑒𝑟 + 𝑥𝑖𝑡𝑟𝑙
𝑛𝑜𝑛ℎ𝑜𝑚𝑒𝑇𝑖𝑚𝑒𝑝𝑙

𝑛𝑜𝑛ℎ𝑜𝑚𝑒𝑃𝑜𝑤𝑒𝑟)𝑔𝑡𝑤𝑖]𝑐𝑐𝑎𝑟𝑏𝑜𝑛𝑃𝑟𝑖𝑐𝑒

𝑖𝑟𝑡𝑙

∗ 365 

where 𝑔𝑡 is the average GHG intensity of electricity in CAISO97 and 𝑤𝑖 is the weight of sample 

individual i. The total cost is on an annual base to make the three cost components consistent. 

 

The model is subject to major constraints: first, charging activities happening both at home and 

non-home locations should meet the average daily energy demand of BEV driver i; second, 

charging time should within the available dwelling constraint; finally, non-home chargers are 
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shared among users while each home charger is exclusive to an individual. Major constraints for 

the optimization model can be found in Table 3. 

Table 3. Major constraints and parameters for the optimization model 

Constraints Descriptions 

∑(𝒙𝒊𝒕𝒓𝒍
𝒉𝒐𝒎𝒆𝑻𝒊𝒎𝒆𝒑𝒍

𝒉𝒐𝒎𝒆𝑷𝒐𝒘𝒆𝒓

𝒕𝒓𝒍

 

+𝒙𝒊𝒕𝒓𝒍
𝒏𝒐𝒏𝒉𝒐𝒎𝒆𝑻𝒊𝒎𝒆𝒑𝒍

𝒏𝒐𝒏𝒉𝒐𝒎𝒆𝑷𝒐𝒘𝒆𝒓) 

≥ ∑ 𝒙𝒊𝒓
𝒄𝒉𝒂𝒓𝒈𝒊𝒏𝒈𝑫𝒆𝒎𝒂𝒏𝒅

, ∀𝒊

𝒓

 

Charging activities happening both at home 
and non-home locations should meet the 

average daily charging demand of BEV driver 
i. 

𝒙𝒊𝒕𝒓𝒍
𝒉𝒐𝒎𝒆𝑻𝒊𝒎𝒆 ≤ 𝒅𝒊𝒕𝒓

𝒉𝒐𝒎𝒆𝑫𝒘𝒆𝒍𝒍𝒊𝒏𝒈𝑻𝒊𝒎𝒆
, 

𝒙𝒊𝒕𝒓𝒍
𝒏𝒐𝒏𝒉𝒐𝒎𝒆𝑻𝒊𝒎𝒆 ≤ 𝒅𝒊𝒕𝒓

𝒏𝒐𝒏𝒉𝒐𝒎𝒆𝑫𝒘𝒆𝒍𝒍𝒊𝒏𝒈𝑻𝒊𝒎𝒆
, ∀𝒊𝒕𝒓 

𝑑𝑖𝑡𝑟
ℎ𝑜𝑚𝑒𝐷𝑤𝑒𝑙𝑙𝑖𝑛𝑔𝑇𝑖𝑚𝑒

 is the home dwelling time 

for individual i during time slot t in region r, 

and 𝑑𝑖𝑡𝑟
𝑛𝑜𝑛ℎ𝑜𝑚𝑒𝐷𝑤𝑒𝑙𝑙𝑖𝑛𝑔𝑇𝑖𝑚𝑒

 is the non-home 

dwelling time. 

∑ 𝒙𝒊𝒕𝒓𝒍
𝒏𝒐𝒏𝒉𝒐𝒎𝒆𝑻𝒊𝒎𝒆𝒘𝒊 ≤ 𝒙𝒓𝒍

𝒏𝒐𝒏𝒉𝒐𝒎𝒆𝑪𝒉𝒂𝒓𝒈𝒆𝒓
, ∀𝒓𝒕𝒍 

𝒊

 

𝒙𝒊𝒕𝒓𝒍
𝒉𝒐𝒎𝒆𝑻𝒊𝒎𝒆 ≤ 𝒙𝒊𝒓𝒍

𝒉𝒐𝒎𝒆𝑪𝒉𝒂𝒓𝒈𝒆𝒓
, ∀𝒊𝒓𝒍 

𝒙𝒓𝒍
𝒉𝒐𝒎𝒆𝑪𝒉𝒂𝒓𝒈𝒆𝒓

= ∑ 𝒙𝒊𝒓𝒍
𝒉𝒐𝒎𝒆𝑪𝒉𝒂𝒓𝒈𝒆𝒓

𝒘𝒊

𝒊

 

Non-home chargers are shared among users 
while each home charger is exclusive to an 

individual. 𝑥𝑖𝑟𝑙
ℎ𝑜𝑚𝑒𝐶ℎ𝑎𝑟𝑔𝑒𝑟

is a binary variable 

indicating if a level l home charger being 
installed for individual i at the home location 

in region r (𝑥𝑖𝑟𝑙
ℎ𝑜𝑚𝑒𝐶ℎ𝑎𝑟𝑔𝑒𝑟

=1) or not 

(𝑥𝑖𝑟𝑙
ℎ𝑜𝑚𝑒𝐶ℎ𝑎𝑟𝑔𝑒𝑟

=0). 

 

We also use other resources to capture information on some constraints of this model, 

including travel distance and vehicle efficiency. Travel distance is calculated as the shortest 

driving distance between origins and destinations using Google API. We assume an average 

efficiency of 33.3 kWh per 100 miles for electric vehicles based on fuel economy data from 

FuelEconomy.gov63 and EV sales data reported by Transportation Research Center at Argonne 

National Laboratory93. More details including the remaining equations of the optimization 
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platform could be find in the working paper92. The optimization model is a Mixed Integer Linear 

Programming (MILP) problem, which we solve in GAMS with the Cplex solver.  

 

Impact evaluation. Evaluating the impacts of various charging pricing strategies relies on other 

resources to provide information on the cost and GHG intensity of electric grid, as well as 

infrastructure costs. Specifically, the GHG impacts of charging is based on the hour-of-day 

average emissions factors for CAISO in 201897. The average GHG emissions factor in CAISO, 

compared with the net load profile of the grid in SDG&E service territory in the year of 2018 can 

be find in Supporting Information Figure S2. We notice a green period of time from 7am to 5pm 

during the day for using the electricity, and this green period aligns with the second off-peak 

period in net load of the grid, indicating a “double-win” of reducing the risk of the grid and GHG 

impacts of charging together with appropriate charging management strategy through pricing. 

 

3 Results 

We organize our results into four sections, each corresponding to the impacts of various pricing 

strategies on the energy and electricity grid, environmental benefits, costs components, and 

infrastructure deployment.  

3.1 Energy impact 

The energy impacts provide insights into how the pricing mechanism affects the energy and 

electricity grid. We investigate how different charging pricing scenarios may change the mix of 

energy required for different levels of home and non-home charging, as well as the temporal 
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impacts to the electricity grid. Figure 13 shows the results of our analysis for the energy 

requirement from BEV drivers under the three default pricing scenarios with a comparison of 

carbon price changes in San Diego. The total amount of energy demand is fixed (determined by 

the total travel distance of all drivers in the study domain), but the distribution of charging load 

over time across the four categories – level 1 home, level 2 home, level 2 non-home, and DCFC, 

are totally different according to pricing scenarios. In general, level 2 non-home charging is the 

largest contributor in all nine scenarios. Among the three default pricing scenarios, the baseline 

tier two flat rate shares similar proportions of home and non-home charging loads, while the 

time-of-use strategy has higher share of non-home charging loads and the real time pricing 

scenario even higher. 

 

After internalizing climate change damages by applying various carbon rates, the share of non-

home charging increases due to the low carbon intensity of the electricity during the daytime 

from 6am to 6pm. A carbon price of $50/tons CO2 leads to 8.7%, 0.2% and 15.4% increase of non-

home charging compared to the default flat rate, real-time and time-of-use scenarios 

respectively, and an extremely high carbon price of $1000/tons CO2 results in 41.9%, 5.6% and 

59.9% increase. In the flat rate scenarios, level 1 and level 2 home charging decrease while level 

2 non-home charging and DC fast charging increase as carbon price increases. However, only the 

share of DC fast charging increases with the carbon price change in the real time pricing scenario, 

and only level 2 non-home charging increases in the time-of-use scenario.      
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Figure 13. Energy impacts of the three charge pricing scenarios with carbon price change.  

Note: Ratio of non-home charging loads increase from 50.4% to 71.5%, 63.8% to 67.3%, and 

55.8% to 89.2% for the tier two flat rate, real-time pricing, and time-of-use rate scenarios 

respectively as carbon price increases from 0 to 1000 $/tons CO2.  

 

We further break down the energy demand by hour-of-day for each of the charging scenarios in 

Figure 14. By employing the tier two flat rate as charging price, we observe relatively even 

distribution of the charging loads over a day in general, but sensible timing of charging in non-

home locations that correspond to daytime hours when BEV drivers are away from home and 

have higher non-home charging opportunities, which emphasizes the importance of considering 

the staying and travel constraints into the charging strategies optimization. In addition, we see 

two peaks of charging in the real-time pricing scenario: the first one happening during the 

daytime with level 2 non-home charging as the major pattern and a secondary peak in charging 
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at home locations during nighttime hours from midnight to 5:00, aligning with the two off-peak 

periods of the grid. This indicates the impact of the dynamic electricity rates in managing EV 

charging loads.  

 

The EV charging load profile under the existing time-of-use charge pricing strategy in San Diego 

is dramatically different from that under the scenario of real-time one. Level 2 public charging is 

the major charging strategy for EV drivers since the price for Level 2 public charging is always the 

lowest except for the time period from midnight to 5:00. In the TOU scenario, level 2 public 

charging accounts for 55.8% of the total EV charging demand and dominates the energy 

requirement between 6:00 and 23:00. However, we still observe a small fraction of home 

charging during time periods from 6:00 to 11:00 and 21:00 to 23:00, indicating that the empirical 

travel and dwelling pattern of EV drivers constrains the availability and capacity of pricing 

management of charging loads. DCFC has no contribution to the charging demand under TOU 

scenario, since level 2 public charging is always preferable in price. Among the three default 

charging scenarios, the local distribution system in San Diego is affected most in the real-time 

pricing scenario with the extra charging load as high as over 26.0 MW during 9:00 to 10:00 with 

the biggest contribution from level 2 non-home charging, while the peak load of time-of-use 

scenario is around 10.4 MW and flat rate one 6.2 MW mainly from home charging during the 

midnight.  
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More importantly, we also observe a clustering effect on the charging load profiles by integrating 

the carbon prices, which makes charging activities more cluster around daytime hours when the 

GHG intensity of the grid is lower. Internalizing the climate change damage will not only decrease 

the environmental impact of EV driving, but also help smooth the grid by shifting EV charging 

loads towards off-peak hours during the day. The share of non-home charging (level 2 public and 

DCFC) increases from 50.4% to 71.5%, 63.8% to 67.3%, and 55.8% to 89.2% for flat rate, real time 

pricing, and time-of-use rate scenarios with the implementation of a carbon price, shifting 

overnight home charging (especially level 1 home) to shared public level 2 charging during the 

day when the GHG intensity of the electricity is lower. In sum, the charging load profile with our 

optimized charging platform is the result of various determinants including the dynamic 

electricity price, travel and dwelling constraints, carbon price clustering effect, as well as the 

exclusive home versus shared non-home charging. 
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Figure 14. Temporal change in charging loads of the three charge pricing scenarios with carbon 

price change.  

Note: In flat rate scenarios, charging loads distribute evenly over a day in general, but showing 

sensible timing of charging in non-home locations; in real time pricing scenarios, two peaks of 

charging align with the two off-peak periods of the grid; in the time-of-use scenarios, level 2 

public charging is the major charging strategy except for the time period from midnight to 5:00. 

There is a clustering effect on the charging load profiles by integrating the carbon prices, 

making charging activities more cluster around daytime hours when the GHG intensity of the 

grid is lower.  
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3.2 Environmental impact 

Charging behavior of EV drivers is changed when the climate change damage is internalized. 

Figure 15 depicts the changes in environmental impacts before and after we introduce the carbon 

prices into the optimization model. Overall, the total GHG emissions of the charging system in 

San Diego under the default time-of-use scenario is the highest. The flat rate one and the real 

time pricing one is 3.9% and 24.1% lower respectively. The shape of hourly emission profile of 

the default real-time pricing scenario (Figure 15b) is generally consistent with the hourly GHG 

intensity of the grid – daytime charging peak aligning with the off-peak period in GHG intensity. 

Therefore, the shape of the emission profile in the real-time pricing scenario does not change too 

much after introducing carbon prices, and only an extremely high carbon price of $1000/ton CO2e 

lower the secondary peak value of carbon emissions during the nighttime hours. In Figure 15a, 

the blue line, which shows the hourly GHG emissions under the default flat rate, is flat across a 

day. However, only a carbon price of $50/ton CO2 eq shifts the charging activities into the daytime 

hours from 6am to 6pm (Figure 15a green line) and decrease the total emissions by 12.33% as a 

result. For comparison, we do not see an obvious “cluster effect” in the time of use scenarios 

when applying a carbon price of $50/ton CO2 eq and the GHG emissions only decrease by 7.27%. 

When applying a carbon price of $1000/ton CO2 eq, the benefit of charging during the low 

emissions daytime hours offsets the relative higher level 2 non-home charging price, therefore 

we see a dramatic shift from overnight home charging emissions towards daytime ones. As a 

result, the total GHG emissions decrease by 24.9%. 



 

61 
 

 

Figure 15. Temporal change in charging emissions with carbon price change for (a) flat rate 

scenario, (b) real time pricing scenario, and (c) time-of-use scenario.  

 

Table 4 shows the effect of applying different carbon prices on the environmental outcome for 

EV charging load. We find that the environmental impact of EV charging load is the lowest in the 

real time pricing scenario, and the existing time-of-use pricing strategy in San Diego is the highest. 

They are 21% lower and 4.1% higher compared with the annual GHG emissions under the flat 

rate scenario, which is about 10,899 tons CO2e. 

 

We also find that the effectiveness of carbon price in mitigating GHG emissions depends on the 

default pricing strategy. In the real time pricing scenarios, daytime charging is the major charging 
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strategy in the default scenario and there is no much room to improve after introducing carbon 

prices. Therefore, the mitigation cost is extremely high accordingly. On the contrary, the 

mitigation costs of shifting EV charging load towards daytime hours by applying carbon prices are 

remarkably lower in the flat rate scenario, and we only see a significant improvement in GHG 

mitigation when the carbon price is high in the time-of-use scenario. 

Table 4. GHG emissions of charging pricing scenarios modeling 

 Flat 
Rate 

FR 
+CP50 

FR 
+CP1000 

Real 
Time 

RT 
+CP50 

RT 
+CP1000 

TOU 
TOU 

+CP50 
TOU 

+CP1000 

GHG 
(tons CO2e) 

10,899 9,555 8,215 8,608 8,571 8,261 11,342 10,518 8,517 

GHG mitigation 
(tons CO2e) 

- 1,344 2,684 - 37 347 - 824 2,825 

Mitigation cost 
($/tons CO2e) 

- 261 3,159 - 12,995 24,340 - 716 3,294 

 

3.3 Cost and infrastructure deployment 

Figure 16 compares the distributions of the required charging infrastructure in four types under 

the three default charge pricing scenarios with carbon price change. Flat rate scenario requires 

the largest total number of charging infrastructures, in which level 1 home charger contributes 

the most, accounting for about 74.2%. By introducing carbon prices, the total number of charging 

infrastructures decreases, but the share of the required level 2 home chargers and DCFC 

increases. In the TOU scenario, the total number of charging infrastructure is the smallest among 

all three default scenarios, and level 2 non-home chargers account for 20%. No DCFC is required 

to be built in the TOU scenario. We also see an increase in the share of non-home chargers and 

decrease in the total amount of chargers required after introduction of carbon prices. However, 
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in the real time pricing scenarios, the share of non-home chargers stabilizes at about 29% and 

the total number of chargers increases with carbon price change. 

 

Figure 16. Charging infrastructure requirement for the three charge pricing scenarios with 

carbon price change.  

Note: Home chargers are the main charging types in all three baseline pricing scenarios (with 

zero carbon price), but the flat rate scenario is the highest. Under the time-of-use rate scenario, 

the total number of infrastructures required is the lowest, due to higher ratio of more efficient 

chargers are installed.   

 

Table 5 compares the cost impact among charge pricing scenarios. Time-of-use scenario has the 

lowest total costs, which is 8.97 million dollars annually. Real time pricing and flat rate scenario 

are 6.9% and 69.7% higher. The higher total cost in the flat rate scenario comes from a much 

higher cost from charging due to higher charging rates, which is $0.35/kWh in the flat rate 

scenario while about $0.18/kWh and $0.19/kWh in the real time and time of use scenarios on 

average. Although flat rate scenario requires the largest number of total charging infrastructure 
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among all three default scenarios, the infrastructure cost is not the highest since the major type 

of charging infrastructure is level 1 home charger, which is much cheaper than others. Similarly, 

real time scenario has the highest infrastructure costs, but the total number of charging 

infrastructure is not the highest since it requires much more level 2 home and non-home charging 

infrastructures than other two scenarios.  

 

We also see a balance among charging cost, infrastructure cost and carbon cost under the 

optimization. The model output for the time of use case is optimized by selecting higher charging 

cost and lower infrastructure cost than the output for the real time case, which means the model 

optimally choose to charge during a higher rate period instead of installing more or higher 

efficient charging infrastructures to meet the system total charging demand. After introducing a 

carbon price of $50/tons CO2e, more charging activities cluster in daytime hours with level 2 

chargers but there is no requirement for many DCFC yet, resulting in more required shared level 

2 chargers but less exclusive level 1 home charger and expensive DCFC. Therefore, the total 

infrastructure cost decreases in the flat rate scenario. But in the scenario of baseline flat rate 

with a carbon price of $1000/tons CO2e, the extremely high carbon cost makes charging in the 

daytime, during which the grid GHG intensity is lower, more preferable. As a result, the share of 

the highly efficient DCFC and level 2 chargers increases, and the total infrastructure increases.  
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Generally, the total carbon cost of the charging system are 0.43 to 0.53 million dollars by 

implementing a carbon price of $50/tons CO2e, and 8.22 to 8.52 million dollars with a carbon 

price of $1000/tons CO2e. 

Table 5. Cost’s breakdown of charging pricing scenarios modeling 

 
Flat 
rate 

FR+ 
CP50 

FR+ 
CP1000 

Real 
time 

RT+ 
CP50 

RT+ 
CP1000 

TOU 
TOU+ 
CP50 

TOU+ 
CP1000 

Total cost  
(Million dollars) 

15.2
2 

15.57 23.70 9.59 10.07 18.03 8.97 9.56 18.28 

Charging cost 
(Million dollars) 

13.5
8 

13.58 13.58 7.11 7.07 6.99 7.49 7.52 7.75 

Infrastructure cost  
(Million dollars) 

1.64 1.51 1.90 2.47 2.58 2.78 1.48 1.51 2.01 

Carbon cost 
(Million dollars) 

- 0.48 8.22 - 0.43 8.26 - 0.53 8.52 

 

4 Conclusions and discussion 

In this study, we utilize an integrated optimization platform for EV charging infrastructure 

planning and charging management to investigate the energy, economic and environmental 

impacts of three default charge pricing scenarios in San Diego: tier two flat rate, real time pricing, 

and existing EV time of use residential rate and public EV charging rates. Additionally, we 

introduce the climate change damage by applying carbon prices of $50/tons CO2e and 

$1000/tons CO2e in each of the default pricing scenarios. More importantly, we consider the 

price elasticity of charging demand into the model, which gives a more precise estimation on the 

effect of pricing signals. The high-resolution activity-based travel diary data provides empirical 

data on travel and dwelling behavior of EV drivers, which offers opportunities to conduct a more 

accurate impact analysis for managing EV charging loads through appropriate price signals. The 

output of the optimization model platform reveals the optimal spatial-temporal distribution of 
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charging activities and the required number of chargers of four levels in San Diego at the census 

tract level.  

 

The results show that the charging load profile with our optimized charging platform is the result 

of various determinants including the dynamic electricity price, travel and dwelling constraints, 

carbon price clustering effect, as well as the exclusive home and shared non-home charging. In 

general, level 2 non-home charging is the largest contributor in all nine scenarios. After 

internalizing the climate change damage by applying various carbon prices, the ratio of non-home 

charging loads increases from 50.4% to 71.5%, 63.8% to 67.3%, and 55.8% to 89.2% for the tier 

two flat rate, real-time pricing, and time-of-use rate scenarios respectively. We also observe a 

clustering effect by integrating the carbon prices, which means charging activities more cluster 

around daytime hours when the GHG intensity of the grid is lower. Therefore, internalizing the 

climate change damage will not only decrease the environmental impact of EV driving, but also 

help smooth the grid by shifting EV charging loads towards off-peak hours during the day.  

 

Our research also shows that the GHG impacts of EV charging load depends largely on charging 

price strategies, and the mitigation cost of internalizing climate change damage also varies 

accordingly, indicating the importance of considering the default EV charging price strategy when 

making climate policies. Overall, the total GHG emissions of the charging system in San Diego 

under the default time-of-use scenario is the highest and the flat rate one and the real time 

pricing one is 3.9% and 24.1% lower respectively. The mitigation costs of shifting EV charging load 
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towards daytime hours by applying carbon prices is extremely high in the real time pricing 

scenario and are remarkably lower in the flat rate scenario. We only see a significant 

improvement in GHG mitigation when the carbon price is extremely high in the time-of-use 

scenario. The ability of changing charging behavior to obtain environmental benefits is a 

combination of the carbon price and default charging price, and the optimization platform will 

balance among charging price, carbon price, and infrastructure costs. Therefore, the extreme 

carbon pricing of $1000/ton does not substantially help in certain scenarios. 

 

The model results may underestimate the number of DCFC and the associated impacts because 

we only subsample the EV drivers who have home address within the area of San Diego, failing 

to consider the charging demand from drivers passing through the study domain. They often have 

long distance trips, but short dwell times. However, this case study reveals the minimum impacts 

of the local charging infrastructure system under various charging price strategies. In this study, 

we regard the EV drivers as price takers since the extra charging load from existing EV fleet are 

too small to affect generator dispatching. However, California has set a state target of having 5 

million ZEVs on California roads by 2030 and deploying 250,000 charging stations, including 

10,000 fast-charging stations, by 202532. The next step in our research is to investigate the 

potential impacts of charge pricing mechanism in future scenarios in which the EV fleet is large. 

 

This paper provides new insights to both policymakers and researchers on how to evaluate the 

impacts of various charge pricing strategies with an integrated optimization model which assess 
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the charging behaviors and planning for the required charging infrastructure system 

simultaneously. Results of this research not only provide policy guidance for charging 

management and infrastructure planning in San Diego, California but may be applicable to other 

regions for which similar data are available. Compared to previous studies, this study is the first 

of this kind to combine both individual mobility dynamics and charging pricing mechanism and 

consider charging activities management and infrastructure planning together in a 

comprehensive optimization to explore the economic, energy and environmental impacts. 

Considering the price elasticity of EV charging demand into the price strategy impacts analysis is 

another innovation aspect of our study. This study is based on the mobility of current light-duty 

vehicle drivers, but it can be easily converted to new mobility with changing vehicle occupation 

rates under different scenarios such as shared mobility and/or medium and heavy-duty 

electrification. 
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Chapter 5. Emissions Implications of Shared, Autonomous, and Electric 

Vehicle Fleets: A Case Study of California’s Near Future 

 

Abstract 

Shared autonomous electric vehicles (SAEVs) are potentially one of the most promising ways to 

reduce the transportation greenhouse gas (GHG) emissions on a per-vehicle basis. However, 

measuring their effect on emission savings requires a careful simulation of their travel and 

charging behaviors, as well as a sophisticated integration with an ever-evolving power system. In 

this paper, we conduct an analysis by forecasting market penetration of SAEVs and integrating it 

with a grid dispatch model, while considering various charging strategies and travel patterns 

based on empirical data. We find that SAEVs with exogenous charging would reduce GHG 

emissions by at least 75% compared to the internal combustion vehicles fleet in 2030, and the 

advantage expands to 97% if charging activities can interact with the grid when smart charging is 

available. The emission benefits of SAEVs are mainly dominated by vehicle electrification and grid 

development. 

 

1 Introduction 

In 2019, California statewide greenhouse gas (GHG) emissions reached 418.2 MMTCO2e, and the 

transportation sector accounted for 39.7%, in which passenger vehicles are the major source 

contributing 28.5%98. The state’s GHG emissions have dropped below the 2020 GHG limit 
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required by the California Global Warming Solutions Act (Assembly Bill 32) since 2016 and the 

state has continued its commitment to reduce emissions to at least 40 percent below 1990 levels 

required by 2030 Senate Bill 32. To reach the goal, many efforts have been made including 

establishing vehicle emission standards and fuel carbon intensity requirements. 

 

In 2018, the state of California passed Senate Bill 1014 which requires the California Air Resources 

Board (CARB) to regulate transportation network companies (TNCs) such as Uber and Lyft to 

transition vehicles in their fleets to become zero emission vehicles (ZEVs).  The rules formed by 

CARB are known as the Clean Miles Standard (CMS).  These requirements will help to reduce 

greenhouse gas emissions from some of the highest travel intensity passenger vehicles within 

the state.  However, the TNCs also face the difficult prospect of turning over a fleet of vehicles 

that they do not own.  Shared, autonomous, and electric vehicles (SAEVs) offer a potential 

solution for TNCs as the vehicles would follow the CMS requirements while simultaneously 

operating under a different ownership structure where TNCs would likely own and operate the 

vehicles themselves.  This study examines the differences in travel and charging behavior by 

SAEVs, and the resultant emissions impacts associated with their use. 

 

Previous studies have investigated the environmental impacts of vehicle automation, 

electrification, and ridesharing. Some studies indicated that the environmental outcomes and 

energy consumption of autonomous vehicles with internal combustion engines could be deeply 

uncertain, ranging from extremely negative to highly positive 99,100. Combining ridesharing with 

autonomous vehicles might decrease the energy use and GHG emissions in the transportation 
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sector 101. A study assessing 12 combinations of penetration scenarios among shared, electric 

and autonomous vehicles found that system CO2 emissions range from -22% to +6% 102. Coupled 

with vehicle electrification, an SAEV fleet could achieve a 70% reduction in GHG emissions 

compared with a private EV fleet 103. These research and other studies, at first glance, indicate a 

promising future of electrifying the shared autonomous vehicle fleet in terms of emission 

reduction. However, some questions are still unsolved: how does the emission benefits change 

with the development of the grid, and how charging behaviors or vehicle occupancy affect the 

emission performance of the SAEV fleet?  

 

In the past decade, many studies have investigated the upstream emissions from electricity 

generation that correspond to EV charging. In the studies that compare life cycle emissions from 

EV with that from internal combustion vehicle (ICV), this part of emissions is usually calculated 

using general average 104,105 or marginal 106 emission factors of electricity generation, which is a 

very rough estimation neglecting the temporal fluctuation of emission rate and the difference in 

the time of charging. Gai et al. and Fang et al. matched hourly charging load with hourly emission 

factors to investigate the performance of different temporal charging patterns 107,108. But this 

method still omits the complexity in the dynamic interaction between the supply and demand 

sides of the power system. To address this, several studies have established economic dispatch 

models based on real-world power systems in PJM Interconnection 109, Beijing 110, Germany 111, 

Italy 112, all over the U.S. 113 , and all over Europe 114. But none of them have focused on SAEV 

charging load specifically, nor have any endogenized future renewable capacity expansion into 

the optimization models. Furthermore, the investigation into different charging strategies is still 
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not sufficient. Most previous studies focus on the general comparison between controlled and 

uncontrolled charging 109,111–113. A few studies address rough categorizations of uncontrolled 

charging patterns such as day or night charging 114, fast or slow charging 107, home and workplace 

charging 110. More detailed discussion is needed for SAEVs since the fleet is operated by the 

service providers, and there is more flexibility for managing their charging activities. 

 

To address the research gaps above, we evaluate the emission benefits of an SAEV fleet against 

travel and charging patterns, utilizing a unique data set to cover real TNC trips across the San 

Francisco Bay Area in California, and incorporating hourly charging profiles drawing on 

information from various sources including real-world charging activities from electric vehicle 

data loggers and public charging suppliers, ride requests from TNCs, and netload profiles from 

the utility. 162 scenarios are defined based on three possible market penetration levels, seven 

charging strategies, and four vehicle occupancy rates with annual projections from 2022 to 2030. 

This work performs a bottom-up investigation into the consequential emissions of SAEVs by 

building a power system dispatch model, with an optimized projection of future generation mix 

in compliance with policy requirements for future renewable capacity expansion.  

 

2 Simulating the travel pattern of SAEV fleet 

To simulate the travel behavior of an SAEV fleet, we assume that SAEVs operate in the same 

manner as existing TNC services when providing trips. Our model employs a unique dataset of 

both Uber and Lyft in period 3 operation (driving a passenger from an origin to destination) that 

allows us to replicate the distribution of distances travelled per trip and frequency of demand 
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throughout the period of a day. Since these miles only account for operation when driving 

passengers, we scale the miles by a deadheading factor of 38.5% to represent the additional miles 

travelled in periods 1 and 2 (driving in search of passengers and driving to pick-up matched 

passengers respectively) according to the estimation of deadhead miles based on the TNC data 

in 2018 from California Air Resources Board115.  

 

Accurate simulation of daily travel patterns of an SAEV fleet is fundamental to estimate the 

associated electricity consumption. In this research, we utilize a bootstrapping algorithm to 

simulate the hourly travel distances of a single SAEV based on a given distribution of trip distances 

for each hour of a day from the existing TNC fleet. The result is extrapolated based on an 

exogenously specified number of vehicles, thus providing a total number of daily miles 

travelled. The probability density function of the trip distances for each hour, which is shown in 

Figure 17, is dominated by short trips which are less than 25 miles in general but indicates 

variability across hours of a day.  
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Figure 17. Trip distances distribution by hour. 

 

Figure 18 shows the bootstrapping simulation result for daily travel pattern of an SAEV in the 

base case, in which the vehicle occupancy is consistent with that of a TNC vehicle. We find that 

there are two peaks in the hourly vehicle miles travelled: one from 7am to 12pm, and the other 

from 3pm to 9pm. The average daily vehicle miles travelled of an SAEV is 213 miles including 

deadheading. 
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Figure 18. Simulation result for SAEV daily travel pattern, deadhead included. 

 

We defined three scenarios for the growth of the SAEV adoption based on the proportion of 

current Uber and Lyft market size, which is around 96,000 vehicles in the San Francisco Bay Area 

of California. The medium adoption scenario assumes that the SAEV fleet will be as large as 10% 

of current TNC market by 2030, and the SAEV fleet in the low and high scenario corresponds to 

5% and 25% respectively. Given that the average vehicle occupancy of a TNC vehicle is 1.55 116, 

total travel demand for the SAEV fleet through 2030 is estimated as 0.58 to 2.90 trillion passenger 

miles in the low and high adoption scenarios respectively. 

 

To investigate the environmental benefits of the SAEV fleet under different adoption and 

charging strategy scenarios, we compare their total GHG emissions to the four counterfactual 

scenarios, which are defined as “private internal combustion vehicles”, “TNC internal combustion 
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vehicles”, “private electric vehicles” and “TNC electric vehicles”. The average vehicle occupancy 

is 1.55 and 1.54 for TNC and private vehicles respectively based on the 2017 National Household 

Travel Survey117. According to the design of the prospective autonomous vehicles providing 

shared rides, the Cruise Origin for example, we defined the average occupancy from a range of 

one to four passengers per trip for the SAEV fleet following a uniform distribution.  

 

Private vehicle scenarios assume that the travel demand of the SAEV fleet is fulfilled by private 

vehicles, and as a result, there are no deadhead miles in the two cases. Since deadheading is 

assumed to contribute 38.5% to the total miles in the SAEV and TNC scenarios, the total 

passenger miles will be lower. Private vehicle scenarios not only excludes deadhead miles, but 

also removes effects from induced demand and passengers shift from other modes as many 

studies concern118,119. We assume the impact from induced miles and mode shifts of TNCs and 

SAEVs ranges from 5% to 35% increase in passenger miles following a uniform distribution. 

Considering mode shifts and induced miles will further reduce the environmental benefit of 

SAEVs but provides a more precise estimation of net emission savings. Figure 19 compares the 

daily travel distance for SAEVs, TNCs and private vehicles in 2030 at medium adoption level. The 

total daily vehicle miles of the SAEV fleet have larger variance since the vehicle occupancy rates 

ranges larger compared with the other two modes. To fulfil the same level of travel demand, the 

total daily vehicle miles using TNC services is the highest due to high deadhead ratio and induced 

miles compared with that using private vehicles. The vehicle miles of SAEV fleet are lower than 

that of TNC fleet due to this higher vehicle occupancy rate on average. 
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Figure 19. A comparison of daily travel distance for SAEVs, TNCs and private vehicles in 2030 at 

medium adoption level. 

 

3 Characterizing SAEVs charging behavior 

The energy efficiency of SAEVs is calculated considering the general EV energy efficiency and 

power draw of SAEVs, which is the energy consumption from other electronic devices such as 

board computing, radar or cooling devices. We assume that the energy efficiency of a typical 

SAEV is 0.3kWh/mile and power draw is 8.3 kW. Overall, the total energy efficiency of SAEVs is 

0.58 kWh/mile, which is nearly double than that of a private or TNC electric vehicle 
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(0.33kWh/mile). The aggregate hourly charging profile of SAEVs is obtained by allocating the total 

daily energy demand into each hour under different charging strategies.  

 

We define six exogenous charging strategies and one endogenous strategy. Exogenous charging 

strategies assume that charging stations have no communication or interaction with the grid, and 

thus could only schedule charging according to pre-set daily charging probability patterns, 

instead of being able to adapt charging according to real-time grid conditions. Patterns of 

“Nighttime Charging”, “Daytime Workplace Charging”, “Daytime Public Charging” are extracted 

from real-world charging data from the Electric Vehicle Miles Traveled (eVMT) project of UC Davis. 

The eVMT project established a platform that monitors the day-to-day usage patterns and 

charging behavior of EVs over the course of a single year (per logged vehicle) that includes in 

aggregate over 2 million miles travelled and over 55,000 charging events 58,120,121. The pattern of 

“Charging Inverse to Netload '' is defined according to data from California Independent System 

Operator (CAISO). The seasonal typical netload patterns of 2020 are extracted and standardized. 

Then the inverse pattern is taken to be the charging probability. Scheduling charging under this 

pattern is aimed at flattening demand profile and consuming excess intermittent renewable 

generation. The pattern of “Charging Inverse to Ride Requests” is defined according to data from 

Lyft. Using the number of trips started in each hour as ride requests, we standardize and invert 

this hourly pattern to define the charging probability. This strategy schedules less charging when 

there are more ride requests, which is expected to be beneficial for the ride hailing service 

provider. Lastly, the “Uniform Charging” is a flat pattern without any specific strategy. 
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To simulate the day-to-day variability of the charging profile, we add a random variation into 

each hour of the charging probability pattern. For a single day, the variation in each hour is 

sampled from a normal distribution, with the expectation being zero and the variance derived 

from the real-world charging data of EVgo. The charging data in California from 2014 to 2019 is 

normalized by day, and the variance of all the charging loads in each hour is calculated 

respectively, to be used for the distribution of the variation. The daily charging probability 

patterns are then multiplied with the daily energy needed to form daily charging profiles. An 

example of charging load profiles of the six exogenous charging strategies are depicted in Figure 

20. 

 

 

Figure 20. SAEV hourly charging profiles of exogenous charging strategies, covering each day of 

2030, at medium adoption level. 

 



 

80 
 

The endogenous charging strategy is “smart charging”, which assumes that charging stations can 

schedule the charging of SAEVs in response to the temporal price changes in the electricity 

wholesale generation market. We also assume that the charging schedule is completely flexible 

throughout a day if all the energy consumed in this day is charged by the end of the day. The 

charging profiles of the exogenous strategies will be part of the demand side input into the grid 

simulation model. The charging profile of the endogenous strategy is instead an output variable 

from the model when smart charging is allowed. Apart from SAEV charging loads, the charging 

loads of other EVs are also included in the demand side input. The scale of it is derived from the 

projection of yearly miles travelled from eVMT data. And the pattern of the charging load is 

assumed to be a combination of 80% nighttime charging, 10% daytime public charging, and 10% 

daytime workplace charging. 

 

4 Emissions implications of SAEVs 

To calculate emissions generated from the power grid that correspond to SAEV charging loads, 

the average emission rate per hour is calculated and multiplied with the charging load in each 

hour. In Figure 21, the total annual CO2 emissions from SAEVs under different charging strategies 

are shown over the years from 2022 to 2030. For non-smart charging strategies, total emissions 

increase by year, because of the gradual increase in SAEV fleet size. Nighttime charging and 

daytime public charging perform the worst, because both strategies mainly charge at the times 

without a lot of solar generation. Charging inverse to ride requests emits CO2 at a similar scale as 

uniform charging. Charging inverse to netload is the second cleanest strategy, but not ideal since 

the netload patterns are from 2020, which does not correspond to the future netload patterns 
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as more and more renewable generation is integrated. The daytime workplace charging is the 

least carbon intensive among all exogenous strategies because it best utilizes the solar 

generation during the day. By adjusting the SAEV charging strategy without interaction with the 

electricity wholesale market, there can be an incremental CO2 emission benefit of up to 20,000 

tonnes in 2030. 

 

Generally, switching from non-smart charging to smart charging reduces emissions more 

drastically than changing between exogenous strategies. The reduction could be more than 

60,000 tonnes of CO2 in 2030. However, the trend of total emissions over the years under smart 

charging is not consistent with the exogenous strategies. This is because the smart charging 

pattern is affected by the renewable penetration level. In early years, when there is less 

renewable capacity in the grid, the hourly electricity price does not change very significantly with 

the fluctuation of renewable availability. In this way, the charging is scheduled more randomly 

throughout the day, and could take place in hours with higher emission rates. The increase in 

SAEV fleet size could then cause an increase in emissions in early years. In fact, in 2022 and 2023, 

smart charging performs slightly worse than charging inverse to netload and daytime workplace 

charging. However, with the increase in renewable capacity over the years, the price of electricity 

tends to drop more significantly when there is a large amount of renewable generation during 

the day. Since the charging is scheduled during hours with lower electricity prices, smart charging 

patterns tend to follow renewable generation and relieve curtailment. Thus, the charging load 

corresponds to lower emissions in later years, and smart charging reveals a more significant 

advantage compared with the other strategies.  
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Figure 21. Total annual CO2 emission from SAEVs in California at medium adoption level. 

 

Figure 22 compares the daily GHG emissions from the SAEV fleet under different charging 

strategies with the four counterfactual scenarios. We find that TNC combustion vehicles have the 

highest emissions due to high deadheading and low occupancy rate. The emission benefit from 

SAEV fleet varies largely depending on the charging strategies. Smart charging will make SAEV 

the most environmentally friendly across all scenarios. Compared to private combustion vehicles, 

the SAEV fleet could reduce GHG by at least 75% in 2030, and the emission benefits will expand 

to at least 85% compared to the combustion TNC fleets. 
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Figure 22. A comparison of total annual CO2 emissions for SAEVs, TNCs and private vehicles in 

2030 under medium adoption scenario, in which the travel demand corresponds to 14,880 TNC 

vehicles with an average vehicle occupancy of 1.55. 

 

In aggregate, the annual change in total GHG emissions under three adoption levels are shown 

in Figure 23. We find that the counterfactual emissions from combustion vehicles only vary 

depending on the level of adoption, and the emission benefits of SAEVs are dominated by 

electrification, especially considering the offset effects from less mileage travelled in the private 

combustion vehicle scenario. Annual emissions from the SAEV fleet under daytime workplace 

charging are 73% and 85% lower than those from the private combustion vehicle and combustion 

TNC scenarios in 2022, and the benefits become 82% and 90% in 2030. The reason is that the 
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renewable capacity expands due to the RPS, and the average GHG intensity of the electricity in 

the grid decreases over the years accordingly. Smart charging strategy further increases the 

advantages of SAEVs to 97% and 98% compared with the private combustion vehicle and 

combustion TNC scenarios in 2030 because the extra SAEV loads happen during even cleaner 

hours of a day compared with other charging strategies. The annual emissions from electric TNC 

vehicles and SAEV fleet under daytime workplace charging strategy are similar, indicating that 

the benefit from higher occupancy rate of SAEVs is offset by the lower general efficiency due to 

the power draw. The annual emission from private electric vehicles is the lowest before 2025. 

However, after 2025, benefit from a cleaner electric grid and smart charging technology, SAEV 

becomes the best mode in terms of GHG emissions even when considering deadheading, effects 

from induced miles, and mode shifts as well as the power draw of autonomous vehicles.     

 

 

Figure 23. Total GHG emissions from the counterfactual scenarios and SAEV scenarios with 

different adoption levels and charging strategies. 
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5 Conclusions and discussion 

In this study, we aim to investigate the environmental benefits of SAEVs with respect to grid 

development, market penetration as well as travel and charging behaviors. By using a bottom-up 

economic dispatch model with expansion constraints for future renewable capacity, we are able 

to forecast the consequential emissions of SAEVs through 2030. The unique real-world TNC 

vehicle travel data, and the empirical charging activity data offer opportunities to conduct more 

precise simulations of SAEV driving and charging patterns, based on which, a more accurate 

estimation of emission outcomes is made. 

 

The results show that, compared with the two counterfactuals with combustion vehicles, vehicle 

electrification dominates the emission benefits of SAEVs. Emissions from an SAEV fleet are 

tremendously smaller than a counterfactual fleet, and the benefits expand with time as the grid 

becomes cleaner, and the SAEV adoption level becomes higher. Appropriate charging strategies 

and higher occupancy help the SAEV fleet achieve greater benefits. Our study also strongly 

reveals the advantage of synergizing SAEVs with the electricity grid. Among charging strategies 

without interaction with the grid, the daytime workplace charging pattern accounts for the least 

emissions. But emission benefits are way more significant if SAEV charging can be managed 

according to signals from the grid. 
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Our analysis may overestimate the emission benefits of SAEV in the smart charging scenarios 

because we did not consider the constraints from charging infrastructure capacity and battery 

size of the vehicle. Furthermore, in the counterfactual scenarios, we assume that the ICV 

efficiency is fixed over the years, but in fact the efficiency could be increasing with technology 

development, which could also shrink the emission savings of SAEVs. We will fix the limitations 

above in the future research. The next step in our research also includes conducting more 

sensitivity analysis on the mode shift, deadhead, and induced demand for future SAEV fleet, as 

well as considering the environmental impacts from other air pollutants like CH4, NOx, and SO2. 

 

6 Methods 

We employ the Grid Optimized Operation Dispatch (GOOD) model to simulate the operation of 

electricity generators that respond to electricity load demand 103,113. The GOOD model is an 

economic dispatch optimization model that turns on power generators one at a time based on 

the cost of operation (fuel costs plus operating costs) until total load demand is fulfilled.  For 

renewable power sources, the model contains constraints that limit generation based on the 

timing of resource availability (when the sun shines or wind blows). 

 

While our study is focused on the operation of vehicles within the San Francisco Bay Area, the 

electricity grid operation is substantially more interconnected, and we therefore simulate the 

operation of the entire Western Interconnect (WECC).  By including all of WECC, we are able to 

accurately capture imports and exports of electricity to better account for emissions impacts of 
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charging events in California.  The model also contains constraints for renewable capacity 

expansion to comply with Renewable Portfolio Standards (RPS).  We run our model for four 

representative weeks in each season, on an hourly basis, for each year from 2022 through 2030.  

The RPS requirements for each year linearly increase up to 60% in 2030 from approximately 30% 

in 2020 in accordance with SB100. 

 

Objective Function: Total cost of the system 

The objective function describes the total cost of the electricity system across all generators g, 

time periods t, and regions r (with alias set o).  The cost is comprised of the total cost of electricity 

generation, wheeling charges related to transmission of electricity across different balancing 

zones, and the cost to install new solar, wind, and storage capacity.  The total cost in the system 

varies as a function of how generators are dispatched; electricity is imported/exported from 

different regions; the charging load patterns from electric vehicles; new capacity of solar, wind, 

and storage assets; and the operation of grid storage—all of which are determined endogenously 

by the GOOD model. 

Equation 12 
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This constraint is active when modeling the scenario with “regular” SAEV charging behavior 

defined by exogenous charging strategies.  In each time period t and region r, the generation 

(plus net import/exports and net storage input/output) of electricity must meet the total demand 

load.  The demand load is comprised of two exogenous parameters: baseload demand and 

charging load demand from SAEVs as determined by the mobility portion of our modeling system. 

The charging load from other EVs is included in the baseload demand. 

Equation 13 

   

Constraint 1b: Generation must equal load with smart charging behavior 

This constraint is active when modeling the scenario with “smart” EV charging behavior, which is 

the endogenous charging strategy.  It is identical to 1a, except that the charging load demand 

from EVs is now a decision variable (the GOOD model determines the best time that EVs should 

charge). 

Equation 14 
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maximum initial capacity of solar generators plus newly installed capacity of solar resources in 

the year being run by the GOOD model. 

Equation 15 

   

 

Constraint 3: Maximum wind generation 

This constraint takes information about representative wind profiles across all regions r in all time 

periods t and limits the maximum generation from all wind resources in the model based on the 

maximum initial capacity of wind generators plus newly installed capacity of wind resources in 

the year being run by the GOOD model. 

Equation 16 

   M 

 

Constraint 4: Balancing flexible EV load under an EV smart charging scenario 

This constraint provides guidance on how often the GOOD model must fulfill the aggregate 

charging demand from EVs.  The hourly demand is allowed to be determined endogenously but 

the aggregate demand must be fulfilled within a larger time window. 

Equation 17 
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Constraint 5: Renewable Portfolio Standards renewable generation requirement 

This constraint specifies the proportion of in-state (within California) generation that must be 

fulfilled by renewable resources. 

Equation 18 

   

 

Constraint 6: Tracking storage state of charge 

This constraint tracks the aggregate energy state of grid storage batteries.  In each time period, 

the energy balance is achieved by adding the energy input minus the energy output to the 

previous time period’s energy level. 

Equation 19 

   

 

Constraint 7: Maximum storage capacity 

This constraint specifies the maximum amount of energy that can be stored in the grid battery 

storage based on the installed capacity of storage. 

Equation 20 

   

 

Constraints 8 & 9: Storage input/output limits 
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This pair of constraints limits the amount of energy that can be transferred in and out of the grid 

storage within one time-period.  Based on the performance of current lithium-ion batteries, we 

allow for a charging/discharging limit equal to 25% of the total capacity of the storage device. 

Equation 21 

  

Equation 22  
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Chapter 6. Conclusions 

By employing three studies, this research demonstrates that integrating the heterogeneity of 

individual travel, dwelling, and charging behaviors and the development of the grid dynamics can 

improve the charging infrastructure planning while ensuring the environmental benefits from 

widespread vehicle electrification. The major conclusions drawn from this research include: 

1. Spatial and temporal travel and dwelling patterns of BEV drivers substantially affect the 

design of the EV charging infrastructure system. 

Traditional methodologies charging infrastructure planning focuses primarily on origin-

destination trip data for locating chargers but failing to consider the charging opportunity 

indicated by the dwelling constraints of BEV drivers in trip stops. Our study on the integrated 

charging infrastructure optimization platform (Chapter 3) shows the importance of including 

individuals dwelling patterns on the decision-making process of optimal charger placement and 

charging activity management. These considerations will be critical moving into the future 

because an improper framework may prevent the system from adequately reducing costs or 

interacting with the electricity grid. 

2. The GHG impacts of EV charging load depends largely on charging price strategies, and the 

mitigation cost of internalizing climate change damage varies accordingly. 

Comparing the energy, economic and environmental impacts of three default charge pricing 

scenarios in San Diego (Chapter 4), we observe that the ratio of non-home charging loads 

increases from 50.4% to 71.5%, 63.8% to 67.3%, and 55.8% to 89.2% for the tier two flat rate, 

real-time pricing, and time-of-use rate scenarios respectively after internalizing the climate 
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change damage by applying various carbon prices. This indicates that considering the default EV 

charging price strategy is critical when making climate policies. The ability of changing charging 

behavior for enhancing environmental benefits is a combination of the carbon price and default 

charging price, and affected by other factors including dynamic electricity price, travel and 

dwelling constraints, carbon price clustering effect, as well as the exclusive home and shared 

non-home charging. Our study emphasizes the importance of a more accurate impact analysis 

for managing EV charging loads through appropriate price signals. 

3. Vehicle electrification dominates the emission benefits of SAEVs, and appropriate 

charging strategies and higher occupancy help the SAEV fleet achieve greater benefits.  

The study of investigating the environmental benefits of SAEVs with respect to grid development, 

market penetration as well as travel and charging behaviors reveals that the emissions from an 

SAEV fleet are 97% and 98% smaller compared with the private combustion vehicle and 

combustion TNC scenarios in 2030, and the benefits expand with time as the grid becomes 

cleaner, and the SAEV adoption level becomes higher. Emission benefits are way more significant 

if SAEV charging can be managed according to signals from the grid with appropriate smart 

charging technology.  
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Chapter 7. Supporting Information 

1 Supporting Information for Chapter 3 

1.1 Convergence of the average results for spatial charger distributions 

Due to the extensive physical memory requirements and complexity of our optimization, we have 

devised a new method to solve a smaller system while maintaining reliable results. We 

subsampled 500 individuals from the sampled individual pool of the California Household Travel 

Survey (CHTS) dataset, run the model for each subset, and repeat this process 99 times. The 

median case among the 99 trials is selected as a representative solution for the model. We show 

the distribution of the solutions in terms of the per capita system cost of these 99 trials and the 

median value in Figure SI- 1. 

 

Figure SI- 1. Per capita system cost distribution of the 99 trials. The red lines show the median 

values of the solutions for each of the study areas. 
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Figure SI- 2 and Figure SI- 3 show the cumulative average of the number of the optimized charging 

stations for each census tract converged in med-cost scenario as the number of trials increases 

for Great Sacramento Area and San Diego respectively. We use the cumulative average value of 

the 99 trials to calibrate the spatial distribution of the chargers in the estimation of the model 

results with the median case.  

 

Figure SI- 2. Average of the optimized charging stations converged in the medium cost scenario 

in Great Sacramento Area for a) level 1 home charger; b) level 2 home charger, c) level 2 non-

home charger, and d) DCFC, respectively. 

 

a) Level 1 home charger b) Level 2 home charger

c) Level 2 nonhome charger d) DCFC
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Figure SI- 3. Average of the optimized charging stations converged in the medium cost scenario 

in San Diego for a) level 1 home charger; b) level 2 home charger, c) level 2 non-home charger, 

and d) DCFC, respectively. 

 

1.2 Spatial and temporal distribution of energy demand 

We list the top 50 values of the energy demand among all census tracts at each hour of the day 

with the four charger levels for med-cost scenario in the tables below to show our model outputs 

in terms of energy demand. For example, census tract 170.32 in San Diego County, California will 

see the highest extra charging demand in the hour of 10 from level 2 non-home charging. This 

allows for the spatial and temporal “hotspots” of the energy demand as well as their sources to 

be easily identified with our model. 

a) Level 1 home charger

d) DCFC
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Table SI- 1. Top 50 values of the energy demand in San Diego, med-cost scenario 

Region Time Level of charger 
value 
(kWh) 

Census Tract 170.32, San Diego County, California start_hr10 L2_Non-Home 196.00 

Census Tract 170.32, San Diego County, California start_hr9 L2_Non-Home 196.00 

Census Tract 170.35, San Diego County, California start_hr0 L2_Home 126.71 

Census Tract 170.35, San Diego County, California start_hr2 L2_Home 126.71 

Census Tract 170.35, San Diego County, California start_hr23 L2_Home 126.71 

Census Tract 54, San Diego County, California start_hr10 L2_Home 79.03 

Census Tract 54, San Diego County, California start_hr3 L2_Home 79.03 

Census Tract 54, San Diego County, California start_hr8 L2_Home 79.03 

Census Tract 54, San Diego County, California start_hr9 L2_Home 79.03 

Census Tract 83.03, San Diego County, California start_hr0 L1_Home 77.79 

Census Tract 83.03, San Diego County, California start_hr1 L1_Home 77.79 

Census Tract 83.03, San Diego County, California start_hr2 L1_Home 77.79 

Census Tract 83.03, San Diego County, California start_hr23 L1_Home 77.79 

Census Tract 83.03, San Diego County, California start_hr3 L1_Home 77.79 

Census Tract 83.03, San Diego County, California start_hr4 L1_Home 77.79 

Census Tract 83.03, San Diego County, California start_hr5 L1_Home 77.79 

Census Tract 83.48, San Diego County, California start_hr10 L2_Non-Home 70.00 

Census Tract 83.48, San Diego County, California start_hr3 L2_Non-Home 70.00 

Census Tract 83.48, San Diego County, California start_hr4 L2_Non-Home 70.00 

Census Tract 83.48, San Diego County, California start_hr5 L2_Non-Home 70.00 

Census Tract 83.48, San Diego County, California start_hr7 L2_Non-Home 70.00 

Census Tract 83.48, San Diego County, California start_hr8 L2_Non-Home 70.00 

Census Tract 83.48, San Diego County, California start_hr9 L2_Non-Home 70.00 

Census Tract 83.48, San Diego County, California start_hr11 L2_Non-Home 69.37 

Census Tract 170.32, San Diego County, California start_hr11 L2_Non-Home 69.01 

Census Tract 215, San Diego County, California start_hr2 L1_Home 64.37 

Census Tract 215, San Diego County, California start_hr3 L1_Home 64.37 
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Census Tract 215, San Diego County, California start_hr4 L1_Home 64.37 

Census Tract 83.24, San Diego County, California start_hr10 L1_Home 61.17 

Census Tract 83.24, San Diego County, California start_hr11 L1_Home 61.17 

Census Tract 83.24, San Diego County, California start_hr12 L1_Home 61.17 

Census Tract 83.24, San Diego County, California start_hr2 L1_Home 61.17 

Census Tract 83.24, San Diego County, California start_hr3 L1_Home 61.17 

Census Tract 83.24, San Diego County, California start_hr4 L1_Home 61.17 

Census Tract 215, San Diego County, California start_hr8 L1_Home 56.64 

Census Tract 83.65, San Diego County, California start_hr0 L1_Home 54.71 

Census Tract 83.65, San Diego County, California start_hr1 L1_Home 54.71 

Census Tract 83.65, San Diego County, California start_hr13 L1_Home 54.71 

Census Tract 83.65, San Diego County, California start_hr14 L1_Home 54.71 

Census Tract 83.65, San Diego County, California start_hr2 L1_Home 54.71 

Census Tract 83.65, San Diego County, California start_hr23 L1_Home 54.71 

Census Tract 83.65, San Diego County, California start_hr3 L1_Home 54.71 

Census Tract 83.65, San Diego County, California start_hr4 L1_Home 54.71 

Census Tract 54, San Diego County, California start_hr2 L2_Home 51.78 

Census Tract 83.06, San Diego County, California start_hr12 L1_Home 51.56 

Census Tract 51, San Diego County, California start_hr10 DCFC 50.00 

Census Tract 51, San Diego County, California start_hr11 DCFC 50.00 

Census Tract 51, San Diego County, California start_hr12 DCFC 50.00 

Census Tract 51, San Diego County, California start_hr8 DCFC 50.00 

 

Table SI- 2. Top 50 values of the energy demand in Great Sacramento Area, med-cost scenario 

Region Time Level of charger 
Value 
(kWh) 

Census Tract 3, San Diego County, California start_hr12 L2_Non-Home 161.00 

Census Tract 3, San Diego County, California start_hr13 L2_Non-Home 161.00 

Census Tract 3, San Diego County, California start_hr14 L2_Non-Home 161.00 
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Census Tract 3, San Diego County, California start_hr15 L2_Non-Home 154.73 

Census Tract 170.21, San Diego County, California start_hr14 L1_Home 135.91 

Census Tract 170.21, San Diego County, California start_hr2 L1_Home 135.91 

Census Tract 170.21, San Diego County, California start_hr3 L1_Home 135.91 

Census Tract 170.21, San Diego County, California start_hr4 L1_Home 135.91 

Census Tract 170.21, San Diego County, California start_hr8 L1_Home 135.91 

Census Tract 170.21, San Diego County, California start_hr0 L1_Home 91.89 

Census Tract 85.11, San Diego County, California start_hr10 L2_Non-Home 91.00 

Census Tract 85.11, San Diego County, California start_hr11 L2_Non-Home 91.00 

Census Tract 85.11, San Diego County, California start_hr12 L2_Non-Home 91.00 

Census Tract 85.11, San Diego County, California start_hr13 L2_Non-Home 91.00 

Census Tract 85.11, San Diego County, California start_hr14 L2_Non-Home 91.00 

Census Tract 85.11, San Diego County, California start_hr15 L2_Non-Home 91.00 

Census Tract 85.11, San Diego County, California start_hr7 L2_Non-Home 91.00 

Census Tract 85.11, San Diego County, California start_hr8 L2_Non-Home 91.00 

Census Tract 85.11, San Diego County, California start_hr9 L2_Non-Home 91.00 

Census Tract 170.20, San Diego County, California start_hr9 L2_Home 89.79 

Census Tract 83.03, San Diego County, California start_hr0 L1_Home 77.79 

Census Tract 83.03, San Diego County, California start_hr1 L1_Home 77.79 

Census Tract 83.03, San Diego County, California start_hr2 L1_Home 77.79 

Census Tract 83.03, San Diego County, California start_hr23 L1_Home 77.79 

Census Tract 83.03, San Diego County, California start_hr3 L1_Home 77.79 

Census Tract 83.03, San Diego County, California start_hr4 L1_Home 77.79 

Census Tract 83.03, San Diego County, California start_hr5 L1_Home 77.79 

Census Tract 170.21, San Diego County, California start_hr9 L1_Home 70.67 

Census Tract 215, San Diego County, California start_hr2 L1_Home 64.37 

Census Tract 215, San Diego County, California start_hr3 L1_Home 64.37 

Census Tract 215, San Diego County, California start_hr8 L1_Home 64.37 

Census Tract 215, San Diego County, California start_hr9 L1_Home 64.37 

Census Tract 83.01, San Diego County, California start_hr9 L1_Home 64.29 
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Census Tract 83.24, San Diego County, California start_hr2 L1_Home 61.17 

Census Tract 83.24, San Diego County, California start_hr3 L1_Home 61.17 

Census Tract 83.24, San Diego County, California start_hr4 L1_Home 61.17 

Census Tract 83.33, San Diego County, California start_hr9 L1_Home 57.81 

Census Tract 170.52, San Diego County, California start_hr0 L2_Home 56.80 

Census Tract 170.52, San Diego County, California start_hr2 L2_Home 56.80 

Census Tract 170.52, San Diego County, California start_hr23 L2_Home 56.80 

Census Tract 170.52, San Diego County, California start_hr3 L2_Home 56.80 

Census Tract 170.52, San Diego County, California start_hr4 L2_Home 56.80 

Census Tract 170.52, San Diego County, California start_hr8 L2_Home 56.80 

Census Tract 83.29, San Diego County, California start_hr10 L2_Non-Home 56.00 

Census Tract 83.29, San Diego County, California start_hr11 L2_Non-Home 56.00 

Census Tract 83.29, San Diego County, California start_hr12 L2_Non-Home 56.00 

Census Tract 83.29, San Diego County, California start_hr13 L2_Non-Home 56.00 

Census Tract 83.29, San Diego County, California start_hr14 L2_Non-Home 56.00 

Census Tract 83.29, San Diego County, California start_hr8 L2_Non-Home 56.00 

Census Tract 83.29, San Diego County, California start_hr9 L2_Non-Home 56.00 

 

1.3 Spatial and temporal distribution of power requirement 

To evaluate the impact of the EV charging loads to the grid, we are also able to see the power 

requirement from charging in each time period for each census tract region. Figure SI- 4 and 

Figure SI- 5 show the temporal change of the power requirement within the study areas. Under 

optimized charging strategies, the charging is concentrated in two time periods, aligning with the 

off-peak periods on the grid. 
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Figure SI- 4. Spatial and temporal distribution of power requirements in the medium cost scenario 

in Great Sacramento Area 
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Figure SI- 5. Spatial and temporal distribution of power requirements in the medium cost scenario 

in San Diego 

 

2 Supporting Information for Chapter 4 
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Figure SI- 6. Daily dwelling locations and travel distance of BEV drivers in San Diego.  

Note: BEV drivers in San Diego cluster along the coast, and their daily travel distance is mostly 

below 100 miles with an average value of 22 miles. 

 

 

Figure SI- 7. GHG emission intensities and load profile of the grid in the hourly manner.  

Note: There is a green period of time from 7am to 5pm during the day for using the electricity, 

and this green period aligns with the second off-peak period in net load of the grid.  
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