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Estimating profile soil moisture and groundwater variations

using GRACE and Oklahoma Mesonet soil moisture data

Sean Swenson,1 James Famiglietti,2 Jeffrey Basara,3 and John Wahr4
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[1] In this study we estimate a time series of regional groundwater anomalies by
combining terrestrial water storage estimates from the Gravity Recovery and Climate
Experiment (GRACE) satellite mission with in situ soil moisture observations from the
Oklahoma Mesonet. Using supplementary data from the Department of Energy’s
Atmospheric Radiation Measurement (DOE ARM) network, we develop an empirical
scaling factor with which to relate the soil moisture variability in the top 75 cm sampled
by the Mesonet sites to the total variability in the upper 4 m of the unsaturated zone. By
subtracting this estimate of the full unsaturated zone soil moisture anomalies, we arrive at
a time series of groundwater anomalies, spatially averaged over a region approximately
280,000 km2 in area. Results are compared to observed well level data from a larger
surrounding region, and show consistent phase and relative inter-annual variability.

Citation: Swenson, S., J. Famiglietti, J. Basara, and J. Wahr (2008), Estimating profile soil moisture and groundwater variations

using GRACE and Oklahoma Mesonet soil moisture data, Water Resour. Res., 44, W01413, doi:10.1029/2007WR006057.

1. Introduction

[2] Water stored below the Earth’s surface is fundamen-
tally important to the well-being of most of the world’s
inhabitants. Nearly half the population of the U.S. use
groundwater as their primary source of drinking water
[Bartolino and Cunningham, 2003], and approximately
40% of irrigation water is extracted from the ground.
Furthermore, ‘‘No comprehensive national groundwater-
level network exists with uniform coverage of major aqui-
fers, climate zones, and land uses’ [Hutson et al., 2004].
Globally, the situation is the same or worse, with many
regions experiencing depletion, salinization, or contamina-
tion of their groundwater supply [Shah et al., 2000].
Groundwater stores are experiencing increasing demands,
and proper management of these resources requires better
monitoring and assessment.
[3] Remotely sensed data have been used extensively to

monitor surface and near-surface components of the water
cycle, e.g., altimetric measurements of river and lake height
[Alsdorf and Lettenmaier, 2003], microwave estimation of
soil moisture [Njoku et al., 2003] and snow water equivalent
[Kelly et al., 2004]. Characterizing the stores and fluxes of
sub-surface water has proven less tractable to typical
satellite methods. Because groundwater is stored below
the land surface, nearly all methods must rely on indirect
measures of various aspects of groundwater hydrology.

These include remote sensing of surface fractures and
lineaments, vegetation along springs, surface displacements
due to aquifer inflation and compaction, surface water
bodies, and localized recharge features [Becker, 2006].
One exception is the use of data from the Gravity Recovery
and Climate Experiment (GRACE), which is sensitive to
changes in the total water column [Wahr et al., 1998;
Swenson et al., 2006]. Yeh et al. [2006] demonstrated that
regional average variations in groundwater could be reli-
ably estimated by combining GRACE estimates of verti-
cally integrated water storage with independent estimates
of unsaturated zone storage using a water balance ap-
proach. (We use the term groundwater to refer to the
saturated zone only, while the terms soil moisture content
and unsaturated zone water content will be used somewhat
interchangably.)
[4] In this paper, we apply the water balance approach

used by Yeh et al. [2006] to estimate variations in ground-
water averaged over a region centered on the state of
Oklahoma in the Central U.S. As for the region studied in
that paper (Illinois), the primary contributors to changes in
the Oklahoma regional water balance are soil moisture and
groundwater; snow and surface water are assumed negligi-
ble [Rodell and Famiglietti, 2001]. To estimate regional
average soil moisture, we utilize observations from the
Oklahoma Mesonet [Brock et al., 1995]. The Oklahoma
Mesonet (OM) is an automated observing network, collect-
ing real-time hydrometeorological observations from more
than a hundred stations throughout Oklahoma. As part of
the suite of observations made at many of these sites, soil
moisture measurements are made every 30 min at depths
of 5, 25, 60, and 75 cm using Campbell Scientific 229-L
heat dissipation sensors [Basara and Crawford, 2000]. By
combining these data with total column water storage
estimates from GRACE in a water balance equation, we
compute a time series of spatially averaged groundwater
storage variations.
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[5] The study of Yeh et al. [2006] was made possible by
the existence of an extensive monitoring network of both
soil moisture and groundwater well levels operated by the
Illinois State Water Survey (ISWS) [Hollinger and Isard,
1994]. This network is perhaps unique by virtue of its
combination of areal extent (�200,000 km2), a long and
up-to-date period of record, and measurement of all signif-
icant water balance components. While the Oklahoma
Mesonet shares the first two characteristics with the ISWS
network, the third is unfortunately a point of departure.
[6] Tens of thousands of wells exist in Oklahoma, but

only a few are monitored more frequently than once per
year. Moreover, the parameters (e.g., specific yield) neces-
sary to convert well level to water storage are difficult to
obtain and uncertain. Thus the ability to assess a remotely
sensed groundwater estimate with in situ observations is
limited, and this should be kept in mind when interpreting
the comparison between a GRACE-derived groundwater
estimate to an in situ estimate shown later in the paper.
[7] Another concern regarding the OM soil moisture data

are their representativeness. Because the water table is
relatively shallow in Illinois, the ISWS soil moisture mea-
surements (which span the upper 2 m) effectively represent
the entire unsaturated zone, and therefore the separation of
the GRACE total column water storage is relatively straight-
forward in this case. In Oklahoma, however, where the
mean water table depth is usually tens of meters deep, there
are significant variations in unsaturated zone water storage
below 75 cm depth (the deepest OM sensor depth) that are
not captured by the OM soil moisture sensors. We address
this issue here by utilizing an empirical method for esti-
mating deeper soil moisture from near-surface observations,
before creating a more robust residual groundwater esti-
mate. Because the groundwater estimate is the residual term
in a water balance equation, failure to sample the total

unsaturated soil moisture signal will lead to greater errors in
our groundwater estimate. The method we describe to
account for deeper soil moisture is applied here to the
region of the Southern Great Plains of the U.S., but is
applicable to other observational data sets, whether in situ or
remotely sensed, that may not fully sample the variability
present in the unsaturated zone.

2. Data

2.1. GRACE

[8] The GRACE satellite mission, jointly sponsored by
NASA and its German counterpart DLR, has been collect-
ing data since mid-2002. The nominal product of the
mission is a series of monthly Earth gravity fields [Tapley
et al., 2004]. However, by exploiting the direct relationship
between changes in the gravity field and changes in mass at
the Earth’s surface, the month-to-month gravity variations
obtained from GRACE can be used to make global esti-
mates of vertically integrated terrestrial water storage with a
spatial resolution of a few hundred km and greater, with
higher accuracy at larger spatial scales [Wahr et al., 2004;
Swenson et al., 2003].
[9] GRACE data have been used in a number of studies

to estimate water storage variability, e.g., to estimate terres-
trial water storage variations from the scale of large river
basins [Crowley et al., 2006; Seo et al., 2006] to the
continents [Schmidt et al., 2006; Tapley et al., 2004], for
estimating groundwater storage variations [Rodell et al.,
2006; Yeh et al., 2006], for ice sheet and glacier mass loss
studies [Velicogna and Wahr, 2006; Tamisiea et al., 2005]
and for estimating hydrologic fluxes including evapotrans-
piration [Rodell et al., 2004], precipitation minus evapo-
transpiration [Swenson and Wahr, 2006b], and discharge
[Syed et al., 2005].

Figure 1. Map of Central U.S. showing locations of OM soil moisture sites. Contours indicate values of
GRACE averaging kernel.
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[10] In this study, we use Release 4 (RL04) data produced
by the Center for Space Research (CSR) which incorporate
numerous improvements in the gravity field determination
process. Additionally, we apply the post-processing tech-
nique of Swenson and Wahr [2006a], which has been shown
to produce water storage estimates that compare well with
in situ observations averaged over a region of 280,000 km2

surrounding Illinois [Swenson et al., 2006].

2.2. Soil Moisture Observations

2.2.1. Oklahoma Mesonet
[11] The Oklahoma Mesonetwork (Mesonet) began in

1991 as a state-wide mesoscale environmental monitoring
network [Brock et al. 1995; McPherson et al., 2007]. Soil
moisture sensors were added to 60 sites and installed at four
depths (5, 25, 60, and 75 cm) in 1996 and to 43 sites at two
depths (5 and 25 cm) in 1999 [Illston et al., 2007]. Data are
collected every 30 min and processed at the Oklahoma
Climatological Survey (OCS) at the University of Okla-
homa. A series of automated and manual processes maintain
quality control and convert the raw data into daily average
values of volumetric soil water content [Illston et al., 2007].
Figure 1 shows the Oklahoma Mesonet (OM) locations used
in this study, as well as the contours of the averaging kernel
used to compute the GRACE water storage time series.
[12] The soil moisture sensor deployed at OM sites is the

Campbell Scientific 229-L heat dissipation sensor. This
sensor measures its change in temperature after a heat pulse
has been introduced [Basara and Crawford, 2000; Illston et
al., 2007]. During installation of the soil moisture sensors,
soil cores from each site and each depth are analyzed for the
soil characteristics. Using the measured temperature differ-
ence of the sensor before and after heating (i.e., heat
dissipation) and the soil characteristics, hydrological varia-
bles such as soil water content and soil matric potential can
be calculated.
[13] The volumetric water content is determined from a

soil water retention curve. Using detailed soil characteristics

and soil bulk density measurements collected at each sensor
location, soil water retention curves were estimated using
the Arya and Paris [1981] methodology. A number of
automated algorithms assess the quality of the soil moisture
data. In general, the algorithms ensure that the data are
reporting within operational ranges, the calibration coeffi-
cients are correct, and the soil is not frozen.
2.2.2. DOE ARM Network
[14] Significant soil water variability occurs below the

deepest OM sensor depth of 75 cm. To accurately estimate a
residual groundwater signal, the full contribution from the
unsaturated zone must be removed from the total column
signal as determined from GRACE data; any inaccuracies in
the removed signal will contaminate the groundwater esti-
mate. Observations of deeper soil moisture in this region
can be obtained, although with less dense spatial coverage,
from the Department of Energy’s Southern Great Plains
Atmospheric Radiation Measurement (DOE ARM) network
[Schneider et al., 2003].
[15] The DOE ARM network has 21 automated soil water

and temperature systems, using the same heat dissipation
sensor as the Oklahoma Mesonet, installed at locations in
Oklahoma and Kansas. Called the Soil Water and Temper-
ature System (SWATS), these systems provide hourly pro-
files of soil temperature and water at eight depths, from 0.05
to 1.75 m below the surface, in twin profiles 1 m apart. The
average inter-site distance is about 75 km. Of these sites, 10
were found that both spanned the period 2002 to the present
and passed our quality control criteria. Figure 2 shows the
locations of the DOE ARM sites used in this study.
[16] Because this subset of the DOE ARM network lacks

the density to adequately sample a region large enough to
match the spatial sampling of GRACE, these data are not
used to directly estimate the unsaturated zone signal.
Instead, we used this data set as a testbed with which to
answer certain questions regarding the variability of soil
moisture with depth, such as ‘‘does the deeper DOE ARM
network effectively capture all the variability of unsaturated

Figure 2. Map showing locations of DOE/ARM soil moisture sites and USGS observation wells.

W01413 SWENSON ET AL.: GRACE ESTIMATES OF GROUNDWATER VARIABILITY IN OKLAHOMA

3 of 12

W01413



zone soil moisture?’’, ‘‘if not, can one develop a model to
extrapolate these data to depth?’’, and ‘‘does such a model
reveal a robust relationship between variability in near-
surface soil moisture and that of the entire unsaturated
zone?’’. The result of this analysis, described below, is a
scaling relationship between variability in the upper 75 cm
to that of the entire unsaturated zone, thus allowing the
estimation of a full unsaturated zone signal from the OM
data.

3. Methods

3.1. GRACE

[17] Each monthly GRACE gravity field is composed of a
set of spherical harmonic (Stokes) coefficients. Degree 1
terms are not part of the solution, so they are estimated from
a combined land-surface/ocean model. After removal of the
temporal mean and conversion of the gravity field anoma-
lies to an equivalent water thickness, each monthly field is
subjected to a two-stage filtering process by applying first
the Swenson and Wahr [2006a] decorrelation filter, followed
by a Gaussian filter with a half-width corresponding to
300 km [Wahr et al., 1998]. Spatial averaging of GRACE
data, via the Gaussian filter, is necessary to reduce the
contribution of noisy short wavelength components of the
gravity field solutions.
[18] Additionally, the effects of postglacial rebound

(PGR) are also modeled and removed from the GRACE
time series. PGR is the ongoing, viscoelastic response of the
solid Earth to the deglaciation that occurred at the end of
the last ice age. We modeled the PGR contributions to the
Stokes coefficients using the ICE-5G ice deglaciation model
of Peltier [2004], and convolving with visco-elastic Green’s
functions based on Peltier’s [1996] VM2 viscosity model.
[19] To assess the uncertainty in the filtered GRACE

coefficients, the method of Wahr et al. [2006] is used. In
brief, the temporal RMS of the high-pass filtered portion of

each coefficient is used as an estimate of the upper bound
on the random component of the error. This estimate is
conservative, because intraannual variations in the signal
will be interpreted as error. The 1-sigma error estimates in
the spatially averaged GRACE time series are then calcu-
lated from the estimates of uncertainty in the individual
Stokes coefficients [Swenson and Wahr, 2002].
[20] To reduce the influence of errors in the monthly

GRACE estimates, we construct a smoothed seasonal time
series by applying a low-pass filter to the original data. The
low-pass filter consists of fitting six terms (annual sine and
cosine, semi-annual sine and cosine, mean, and trend) to the
time series. These terms vary for different epochs due to the
presence of a moving set of weights, which take the form of
a Gaussian function centered on each epoch successively.
The application of the low-pass filter reduces the impact of
monthly errors and results in a smoothly varying time
series, yet retains important interannual variability that
would not be captured by examining the mean seasonal
cycle for the time period spanned by the data.

3.2. Oklahoma Mesonet Data

[21] To derive a residual groundwater change estimate, a
spatially averaged soil moisture estimate must be removed
from the GRACE regional average time series. First, how-
ever, we need to determine whether the Oklahoma Mesonet
soil moisture data capture the variability of the entire
unsaturated zone.
[22] Figure 3 shows the time series of soil moisture,

expressed as monthly anomalies (relative to the mean value
during the period 2003–2006) of volumetric water content
at each of the four depths at which OM sensors are located,
averaged over all sites. A phase lag with depth can be seen,
consistent with the findings of other studies [e.g.,Hirabayashi
et al., 2003; Wu et al., 2002; Entin et al., 2000]. The
amplitudes of the four layers, however, are quite similar,
showing little dampening at 75 cm depth, implying signifi-

Figure 3. Regional average time series of monthly soil moisture anomalies sampled at four depths by
the OM network. X axis is time, in years, and y axis is volumetric water content.
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cant variability in deeper layers. This finding motivates our
analysis of the DOE ARM data, which extends another meter
to 1.75 m depth. In the following section, we examine the
DOE ARM data to determine the nature of the relationship
between soil moisture variability and depth in this region.

3.3. DOE ARM Data

[23] The availability of the DOE ARM data allows us to
explore the depth dependence of soil moisture below the
75 cm lower limit of the OM network. As with the OM data,
the hourly DOE ARM soil moisture observations at each of

Figure 4. Regional average time series of monthly soil moisture anomalies sampled at eight depths by
the DOE/ARM network. X axis is time, in years, and y axis is volumetric water content.

Figure 5. Spectral coefficients describing DOE/ARM soil moisture observations, plotted as a function
of depth. Each line represents the coefficients of an individual monthly epoch. Upper left: temporal mean;
upper right: trend; lower left: annual amplitude; lower right: annual phase. Y-axes are depth below
surface, in meters.
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the two profiles at the ten sites are first combined to form
monthly averaged time series for each of the eight layers.
[24] Figure 4 shows the monthly averaged soil moisture

anomalies, expressed as volumetric water content, for each
layer as a function of time. The increasing phase lag with
depth seen in Figure 3 is also apparent in Figure 4.
Additionally, for depths below about 20 cm, the amplitude
of the signal decreases with depth, although it is still a large
fraction of the amplitude in the upper layers. This implies
that even below 1.75 m depth, soil moisture variability is
significant. However, because the variation with depth is
more apparent in the deeper DOE ARM data set, it may be
possible to create a simple model with which to extrapolate
these observations to depth, and so better represent the full
unsaturated zone signal.
[25] To provide a clearer picture of the depth dependence

of the soil moisture observations, we use a weighted
spectral filter to estimate a four-term annual cycle (ampli-
tude, phase, mean, and linear trend) at each monthly epoch.
Two key aspects of the observed soil moisture variability as
a function of depth are the amplitude damping and the phase
lag. The spectral decomposition allows the effects of de-
creasing amplitude and increasing phase lag with depth to
be considered independently [Wu et al., 2002]. The weights
take the form of a Gaussian taper with a halfwidth of three
months. When the taper is centered on a particular month,
the spectral filter is most sensitive to the nearest monthly
epochs. The coefficients describing the annual cycle thus
vary with time, and retain the inter-annual variability that
would be lost by examining only the mean annual cycle.
[26] Figure 5 shows the spectral coefficients computed

from the monthly averaged soil moisture values, plotted as a

function of depth. Each line represents the coefficients of
each layer for a particular month. The y axis spans 4 m
depth because it appears that the annual amplitude decays to
a negligible value at about this depth (see Figure 6). From
the surface to roughly 35 cm depth (denoted by a horizontal
line), the mean, trend, and amplitude coefficients generally
increase toward a maximum absolute value, and then
decrease with increasing depth. The amplitude damping
seen in the lower layers of Figure 4 is clearly expressed
by the rapidly decreasing values of the annual amplitude
coefficients (lower left panel of Figure 5). The phase of the
annual cycle generally increases monotonically with in-
creasing depth, corresponding to the phase lag seen in
Figure 4.
[27] The relatively smooth variation with depth of these

spectral coefficients indicates that it may be possible to
extend the observed depth dependence with a simple
parameterization. On the basis of the apparent change in
behavior occurring around 35 cm depth, which may corre-
spond to the depth at which root density takes its maximum
value, we chose to model the upper layers separately from
the lower layers. By isolating the well-correlated lower
layers, a model of their depth dependence can be created
with a minimum of parameters.
[28] For depths shallower than 35 cm, each coefficient is

approximated by a linear function (A(z) = az + b, where A is
any spectral coefficient and a and b are model parameters, z
is depth). For the deeper layers, we chose two models.
Mean, trend, and amplitude coefficients are modeled as
exponential functions of depth (A(z) = ae�z/b). Implicit in
this choice of model is an assumption that the values of the
spectral coefficients decrease with depth. This assumption is

Figure 6. Empirically modeled spectral coefficients, plotted as a function of depth. Upper left: temporal
mean; upper right: trend; lower left: annual amplitude; lower right: annual phase. Y-axes are depth below
surface, in meters.
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not applied to the phase, whose logarithm is modeled as a
linear function of depth (ln(A) = az + b).
[29] Figure 6 shows the results of fitting these models to

the DOE ARM data. As can be seen from the lower left
panel of Figure 6, the extrapolated amplitude coefficients
generally decrease to near zero by about 4 m depth. The
models can now be used to estimate the soil moisture
variability at arbitrary depths, in particular, those depths
below the deepest observations. As a test of the model’s
ability to reproduce the observations, we first compare the
observations to the model values computed at the observa-
tion depths. The upper panel of Figure 7 shows the regional
average time series for each of the eight ARM DOE depths.
The model results for the same depths are shown in the
lower panel. The model results in general look quite similar
to the observations. The most notable differences occur in
the summer of 2004 and the extended dry period seen in the
second half of 2005. It is important to note that we are
interested mainly in the model’s description of the depth
dependence of soil moisture, not its ability to render every
feature of the observed time series, which includes errors of
its own. The amplitude damping and phase lag with depth
seen in the observed time series are both well represented by
the model.
[30] The goal of this two-step modeling procedure is to

determine whether a relationship exists between the vari-
ability of the soil moisture in the upper soil and the
variability integrated over the entire unsaturated zone.
Using the model, we now create two time series of vertically
integrated soil moisture anomalies. These time series are
obtained by summing the product of volumetric water
content and layer depth, and therefore have units of water

thickness. One time series is computed by summing mod-
eled soil moisture values in the upper 75 cm; this time series
simulates the OM data set. The second time series includes
soil moisture variations from the surface to 4 m depth, the
approximate depth at which variability becomes negligible
in the model. This time series represents the full unsaturated
zone (UZ) signal. The upper panel of Figure 8 shows both
time series. The importance of estimating deeper soil
moisture is apparent in the relative amplitudes of the two
time series; the full unsaturated zone signal is nearly twice
that of the upper 75 cm time series.
[31] The lower panel shows the same 75 cm time series,

but now overplotted with an estimate of the UZ signal that
is obtained by scaling the 75 cm time series. To scale the
75 cm time series, we find the factor which minimizes, in a
least squares sense, the difference between the UZ and
75 cm time series shown in the upper panel. Applying the
best fit value of 1.75 for the scale factor results in a scaled
time series that explains 77% of the variance of the full UZ
time series. The root-mean square difference between the
UZ and scaled time series is 10.3 mm, and we use this as an
estimate of the errors in the scaled time series. In the next
section, we will apply this scale factor to the original OM
data, resulting in an estimate of the full unsaturated zone
signal for the region spanned by the Oklahoma Mesonet
data set.

3.4. Scaled Oklahoma Mesonet Data

[32] Because the GRACE time series represents a
weighted spatial average, it is necessary to implement the
same weighting when averaging the OM data into a regional
average time series. In this case, a Gaussian function with a

Figure 7. Top panel: same as Figure 4; bottom panel: modeled monthly soil moisture anomalies,
constructed using spectral coefficients shown in 6.
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halfwidth of 300 km, centered on the mean coordinates of
the Mesonet stations is used. Figure 1 shows the contours of
the averaging kernel amplitude. This halfwidth was chosen
to keep the averaging kernel localized about the OM
network, while still suppressing the higher degree errors
in the filtered GRACE coefficients. After averaging the soil
moisture data into monthly anomalies, the time series is
low-pass filtered in the same way as the GRACE time
series, and scaled using the factor derived in the preceding
section. This scaled time series is then removed from the
GRACE total water storage time series to obtain a residual
regional average groundwater estimate.

4. Results

[33] The upper panel of Figure 9 shows the time series of
monthly GRACE total water storage anomalies (circles), as
well as the seasonal time series (line). The mean standard
error in the monthly estimates, which includes measurement
error, errors induced by the decorrelation filter, and errors in
the fields used to model and remove the atmospheric gravity
signal, is 11.4 mm. Plotted in the middle panel of Figure 9
are the original (0–75 cm) and scaled (0–4 m) OM soil
moisture anomalies and seasonal time series. The bottom
panel of this figure compares the GRACE and scaled OM
time series. The phase of the GRACE and OM time series
agree quite well, both peaking around February/March and

reaching a minimum near August/September. The amplitude
of the GRACE time series ranges from about 100–150 mm
peak-to-peak, or 1.2 to 1.7 times the scaled OM time series
amplitude.
[34] By removing the scaled OM soil moisture time series

from the GRACE total water storage time series, we obtain
a residual time series describing regional groundwater
variations. The upper panel of Figure 10 shows the monthly
and seasonal GRACE-OM groundwater time series. We
assume that the errors in the GRACE and scaled OM time
series are uncorrelated, resulting in a total error of 15.3 mm
in the monthly values. The peak amplitude generally occurs
later than either the GRACE or OM time series by 4–
6 weeks. The peak-to-peak amplitude is comparable to that
of soil moisture, ranging from 40 to 80 mm. This partition-
ing of the total water storage nearly equally between soil
moisture and groundwater is consistent with water balance
studies of Illinois [Rodell and Famiglietti, 2001; Swenson
et al., 2006].
[35] The middle panel of Figure 10 represents our best

effort at confirming the results shown in the upper panel.
Because neither the USGS nor the Oklahoma Water Resour-
ces Board (OWRB) actively monitor more than a few wells
on timescales shorter than a year, it is difficult to obtain well
level data within the region spanned by the Oklahoma
Mesonet. However, by including wells from neighboring
states, it is possible to make a rough estimate of the

Figure 8. Top panel: modeled regional average time series of monthly total soil moisture anomalies.
Black line computed from only depths of 75 cm and shallower, gray line computed from depth from 0 to
4 m. Bottom panel: Black line is the same as above, gray line computed by scaling 0–75 cm result (black
line) to fit 0–4 m result (top panel gray line) via least squares. X axis is time, in years, and y axis is
volumetric water content, in per cent.
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groundwater variations averaged over a larger region. From
the USGS database, well level data were found for Okla-
homa (5 wells), Northern Texas (19 wells), Southern Kansas
(5 wells), and Western Arkansas (10 wells). Figure 2 shows
the locations of these sites. One reason for the relatively
small number of sites having usable well level data is the
need for an estimate of the material composition or geologic
formation where the well is located; this information can
then be used to assign a value of specific yield, which is
necessary to convert well level to water storage, to each
well. Another constraint is the requirement that the data
span some part of the period 2002 to the present. The
varying time periods of these time series further necessitated
the removal of temporal trends that would otherwise cause
spurious offsets in the regional average.
[36] The thin lines shown in the middle panel of Figure 10

show groundwater storage estimated from the �40 USGS
well levels in the region around Oklahoma, scaled by the
weight of the GRACE averaging kernel shown in Figure 1
used to create the regional average. The circles show the
monthly anomalies of the regional average; the thick line
shows the seasonal time series. The bottom panel of
Figure 10 compares the two groundwater estimates. The
well level groundwater time series (dark gray line) appears
to confirm the general characteristics of the regional
groundwater signal estimated as a residual from GRACE
(light gray line). Both time series show a mainly seasonal
cycle, and the phases of the time series agree well, giving a

correlation coefficient is 0.89 and an RMS difference is
9.1 mm.

5. Discussion and Summary

[37] Although there are significant discrepencies in both
spatial and temporal sampling between the data used to
create the two groundwater estimates, the overall agreement
is good. Both time series show similar interannual variabil-
ity: a relatively dry 2004, followed by a much wetter 2005,
and the 2003 signal lying between the other years. While the
smaller amplitude of the well level derived time series is not
surprising based on its larger sampling area, where signals
separated by larger distances are likely to be less well
correlated, the degree of similarity perhaps is surprising
given the dearth of well sites within the region most
strongly sampled by both GRACE and the OM network.
This may indicate that variations in both soil moisture and
groundwater are well correlated at scales even larger than
that examined here. The correlation between month-to-
month changes in the two time series may also indicate
that the method for estimating GRACE uncertainty is overly
pessimistic, and that some of the monthly (non-seasonal)
variability should be in fact interpreted as real signal, thus
decreasing the GRACE error estimate.
[38] The model used to extrapolate the DOE ARM soil

moisture observations to greater depths is simple and
empirical. Physically based models for flow through porous
media, such as the USGS VS2DI model [Hsieh et al., 2000]

Figure 9. Top panel: GRACE regional average time series of total water storage anomalies. Circles
represent monthly values, line represents seasonally varying values. Middle panel: monthly OM
unsaturated zone soil moisture anomalies. Black circles represent 0–75 cm values, gray circles represent
scaled 0–4 m values. Bottom panel: comparison of GRACE and scaled OM time series. X axis is time, in
years; y axis is water equivalent thickness, in mm.
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could also be used for this purpose. However, such models
require forcing data (e.g., infiltration, evaporation, plant-
transpiration), site-specific information regarding hydraulic
properties of the media, and functional relationships be-
tween moisture content, saturated hydraulic conductivity,
and pressure head. Because we are ultimately interested in a
simple scaling relationship between the available observa-
tions and the total unsaturated zone signal at those sites, the
benefit of using sophisticated models may be small.
[39] The value of the scaling factor derived here (1.75)

depends on both the vertical sampling and the climate, soil,
and vegetation characteristics of the Oklahoma Mesonet and
DOE/ARM soil moisture networks, and therefore may not
apply elsewhere. The method we have described, however,
is general, and can be used to extend data sets or synthesize
data sets having insufficient vertical resolution, such as the
OM, with those having insufficient lateral resolution, such
as the DOE/ARM network. Furthermore, the result that over
40% of the variability in unsaturated zone water storage
occurs below the deepest OM sensors should provide a note
of caution to those who wish to use these and other soil
moisture observations in water balance studies and/or in
conjunction with GRACE data; failing to account for the
entire unsaturated soil moisture signal will degrade a
residual groundwater estimate much more than the errors
in the data.
[40] When extensive in situ observations capable of

resolving the upper soil depths are not available, physically
based models may be the best means to estimate soil

moisture variability in the unsaturated zone. For example,
remotely sensed soil moisture in the upper few cm of soil
from microwave instruments such as The Advanced Micro-
wave Scanning Radiometer - Earth Observing System
(AMSR-E) sensor aboard NASA’s Aqua satellite (launched
2002) [Njoku et al., 2003] or ESA’s Soil Moisture and
Ocean Salinity (SMOS) mission (planned for 2008 launch)
[Kerr et al., 2000] may help constrain unsaturated zone
porous media flow models. The combination of these model
simulations of the unsaturated zone could then be combined
with GRACE to provide regional estimates of groundwater
variability all over the globe.
[41] Given the rising demands on the Earth’s freshwater

resources by an ever increasing human population, ques-
tions exist on our ability to meet these demands in the future
[Dennehy, 2005]. To better assess and manage groundwater
supplies, there is a strong need to improve monitoring of
these resources, especially at the regional scale [NRC,
2000]. Aquifer depletion occurs not just in arid regions,
but in any location where they are overstressed. Although
well-level measurements are the principal source of infor-
mation on the hydrologic stresses felt by aquifers, water-
level monitoring in the United States is fragmented and
stable networks of monitoring wells exist only in some
locations. Monitoring often occurs in individual states, but
aquifers that cross boundaries are not subject to coordinated
study [Bartolino and Cunningham, 2003]. Furthermore,
similar to the state of surface discharge observations,
[Alsdorf and Lettenmaier, 2003] there has been an ongoing

Figure 10. Top panel: regional average time series of residual groundwater storage anomalies,
computed by subtracting scaled OM time series from GRACE time series. Circles represent monthly
values, line represents seasonally varying values. Middle panel: monthly groundwater anomalies,
computed from USGS well level observations. Thin gray lines represent individual wells, thick gray line
represents regional average. Bottom panel: comparison of GRACE-OM and USGS groundwater time
series. X axis is time, in years; y axis is water equivalent thickness, in mm.

10 of 12

W01413 SWENSON ET AL.: GRACE ESTIMATES OF GROUNDWATER VARIABILITY IN OKLAHOMA W01413



decrease in the number of observing wells, both nationally
and globally [Taylor and Alley, 2001].
[42] Many of the obstacles to monitoring water resources

at a variety of spatial and temporal scales may be potentially
overcome through the application of remotely sensed mea-
surements. In this study, we have combined regional total
water storage anomalies estimated from GRACE with in situ
soil moisture observations from the Oklahoma Mesonet and
DOE ARM network to derive a monthly time series of
groundwater variations spatially averaged over an area of
about 280,000 km2. This large-scale estimate complements
the point estimates obtained from individual observation
wells, which are subject to considerable spatial heterogeneity.
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