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ABSTRACT OF THE DISSERTATION

An extended finite element formulation for contact in multi-material

arbitrary Lagrangian-Eulerian calculations

by

Efrem Vitali

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California San Diego, 2007

Professor David J. Benson, Chair

A contact method for the multi-dimensional Lagrangian step in multi-material arbi-

trary Lagrangian-Eulerian (ALE) formulations is presented. The extended finite element

method (X-FEM) is used to create independent fields (i.e. velocity, strain rate, force,

mass, etc.) for each material in the problem. The accelerations of the multi-material

nodes are obtained by coupling the material force and mass fields as a function of the

prescribed contact; similarly, the velocities of the multi-material nodes are recalculated

using the conservation of momentum when the prescribed contact requires it. The cou-

pling procedures impose the same nodal velocity on the coupled materials in the direction

normal to their interface during the time step update. As a result, the overlap of ma-

terials is prevented and unwanted separation does not occur. Three different contacts

are treated: perfectly bonded, frictionless slip, and slip with friction. Example impact

problems are solved and the numerical solutions are presented.
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Chapter I

Introduction

The finite element method (FEM) is a numerical method for simulating the

physical behavior of continuum bodies. For instance, if the boundary conditions and

the material properties of a body are known, the finite element method can compute

the stress distribution in a body. This method provides only approximate solutions,

however, it is a powerful tool in the treatment of geometrically complex bodies where

exact analytical solutions are rarely available. The finite element method is based on

approximate solution methods for partial differential equations; the foundations of this

method were developed in the first half of the twentieth century [2, 3, 4, 5], however, it

was in the second half of that century that the method received broad attention from

the scientific and industrial communities due to the invention of digital computers.

The study of contact between materials undergoing non-linear large deforma-

tions caused by high strain rates is a current area of research.

1
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I.A History of the Finite Element Method

The finite element method (FEM) origins can be traced back to the late 19th

century. In 1877 Rayleigh [1] applied the available minimization of energy principles

to solve structural design problems. Some thirty two years later, Ritz [2] extended the

theory by introducing multiple independent functions. In 1915, Galerkin [3] published

the method of weighted residuals, which is the foundation of the modern finite element

method. By 1941, structural engineers had applied the force-displacement knowledge of

bars and beams to solve truss problems. The same year, Hrennikoff [4] began to expand

the concept to continuum mechanics. His work on the frame-work method consists of

replacing a continuum body with a finite number of bars that express the mechanical

properties of the body; the structure of bars is then solved as a truss problem. In 1943

Courant used the work of Ritz to analyze the St. Venant torsion problem [5]. He is

credited for the introduction of piecewise continuous functions over a continuum body

that was discretized into triangular elements. In 1956, Turner, Clough, Martin, and

Topp [6] used triangular elements to obtained the solution of plane stress problems.

Their work produced the direct stiffness method, and four years later the nomenclature

“finite element method” appears on a paper published by Clough [7]. These successful

attempts captured the attention of the engineering and scientific communities, and the

finite element method increased in popularity. In 1965 the necessity of greater computer

power to solve large matrices was stressed in a conference held at Wright-Patterson Air

force base [10]. Soon after this event, as computing power increased and the FEM theory

developed, the first commercial code named NASA STRuctural ANalysis (NASTRAN)

was available. Other commercial codes such as SAP and ANSYS followed [32, 27].
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Since then the finite element method, along with computational resources, has

been growing to address the various scientific and industrial needs. The aerospace,

nuclear, automotive, metal processing, golf, cellphone industries are just few examples

of sectors currently using FEM.

I.B Finite Element Method

The analysis of a continuum body with the finite element method begins with

the discretization of the body (or domain). The body is divided (or discretized) into small

regions called elements, and each element is defined by a set of points (or nodes) that are

shared with the adjacent elements. Each node has one interpolation functions (or shape

function) ψA(x), and these shape functions have to guarantee continuity throughout the

entire body. As a result, an approximate function that describes the behavior of a variable

over the body is obtained by combining the variable’s nodal values with the respective

shape functions, φ(x) =
∑

A φA ψA(x). The solution to a given problem is obtained

by: 1) introducing the approximate function into the weak form of the appropriate

conservation equations, 2) applying the prescribed initial and boundary conditions, and

3) solving for the nodal unknowns.

I.B.1 Lagrangian and Eulerian formulations

The finite element method is usually applied to the conservation equations in

either the Lagrangian or Eulerian form. In the Lagrangian formulation the mesh is

tied to the material and the elements move and distort with it. As a consequence, the

time derivative of the approximate function is φ̇(x) =
∑

A φ̇A ψA(x). In the Eulerian
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formulation the mesh is fixed in space and the material flows through the mesh. As a

result, the time derivative of the approximation function introduces a transport term

requiring further calculations.

Discretizing problems such that each element contains a single material is an

advantage for Lagrangian formulations. In Eulerian formulations, however, the transport

term causes materials to flow in and out of the elements, and as a consequence, Eulerian

formulations need an algorithm to track the material interfaces.

In Lagrangian formulations, the mesh can deform considerably when bodies un-

dergoing large deformations are studied. Therefore, elements can reach zero or negative

volume resulting in element failure. This does not occur in Eulerian formulations since

the mesh, being fixed in space, is not conditioned by the amount of deformation.

Contact problems, for instance two body separating or colliding, present more

challenges. Lagrangian formulations increase in complexity when new interfaces need to

be created or contact conditions must be enforced. However, the transport algorithm of

Eulerian formulation automatically satisfies these requirements.

I.B.2 eXtended Finite Element Method

The extended finite element method (X-FEM) was developed by Belytschko

et al. [22, 24, 26, 28, 31, 33, 37] in the 1990s to solve problems with discontinuities

within elements. For example, Belytschko used this method in Lagrangian formulations

to solve fracture mechanics problems [22, 26, 28, 31]. Each discontinuity in an element

requires the addition of a set of extra degrees of freedom to the element’s nodes, which

are associated to an enrichment function. The enrichment function if chosen based on
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the type of discontinuity present in the element. For instance, a Heavyside function can

be used to describe a crack that cuts an element in two, and asymptotic functions can

be used to describe the behavior of an element containing a crack tip [28].

I.C Motivation

In the past, trial and error methods in the laboratory were used to study the

behavior of materials and structures. With the advent of the finite element method,

much of the laboratory testing has been replaced by computer simulations, considerably

reducing the testing time and costs. Moreover, the ability to simulate the behavior of

complex shapes provides a more accurate and detailed analysis of the problem. The finite

element method can solve a wide range of problems such as: static loading, dynamic

loading, fracture mechanics, impact, thermodynamics, etc. This research focuses on

non-linear deformations found in high strain rate contact problems (e.g. high velocity

impacts).

Contact problems involving high strain rate deformations are common in var-

ious scientific and industrial fields. For instance, an active field of research in material

science aims to improve bulletproof vests by developing new materials and structures.

A finite element analysis can provide valuable information for this problem, such as

material fragmentation and energy dissipation. In the transportation industry, vehicles

(e.g. cars, trains, helicopters, etc.) must satisfy prescribed impact tests (or crash tests)

before they can be sold. Computer simulations can spot structural weaknesses at the

development stage, and the design can be improved before production. Another example

is found in the metal stamping industry where products are obtained by striking a die
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on a sheet of metal placed on another die. The sheet of metal undergoes large plas-

tic deformations and the design of the dies is critical to obtain the required properties

such as the product thickness. The behavior of the metal during the stamping can be

reproduced with a finite element model and the dies can be modified beforehand. The

finite element method is also very valuable when used in projects that employ expensive

materials such as titanium. Moreover, it can simulate problems at magnitudes and envi-

ronments where laboratory testing is difficult due to the limitations of data acquisition

devices, for instance, applying strain gauges at the micrometer magnitude, or operating

devices at -164 °F (i.e. average temperature on Mars).

I.D Objective

Multi-material Eulerian formulations were initially introduced to solve hydro-

dynamic problems. Their ability to solve non-linear large deformation problems and au-

tomatically generate new interfaces make these formulations very attractive for solving

solid mechanics problems. Eulerian codes, by their nature, require a relatively elaborate

interface tracking. However, the biggest challenge resides in the development of a contact

formulation, which has to describe the materials’ behavior in elements containing two or

more materials (or multi-material elements). Little work has been done in this direction

and the literature is scarce. The main contribution in this field is attributed to Benson

[18, 20, 21] with his pioneering work on contact mixture theories. Mixture theories have

proved to work well with multi-material problems that have fully bonded interfaces be-

tween materials. However, there are limitations on these theories when the frictionless

slip or slip with friction are required. The failure to correctly model the behavior of
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these contact types is due to a single velocity field across all the materials. Consider the

four node rectangular element displayed in table I.1 example a), the element contains

one material with a horizontal rigid body displacement. Since the finite element method

uses the movement of the element’s nodes to describe the displacement of the material,

the four nodes will move in the same horizontal direction and by the same amount.

In this case, the prediction agrees with the expected result. Now consider the element

containing two materials in example b), where one material fills the bottom half and a

second material fills the top half. In addition, the two materials have a horizontal rigid

body motion opposite with respect to each other. In this example, the element is unable

to express both movements since the nodes, having one set of degrees of freedom, can

describe the rigid body motion of only one material. As a consequence, the prediction

differs from the expected result, and errors, such as shear stress, are introduced in the

formulation.

The objective of this research is to develop a contact algorithm for Eulerian formu-

Table I.1: Overlapping of two materials with independent mesh

Problem Prediction Expected

a)
v

b)
v

v
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lations that overcomes the problems encountered in the mixture theories. The contact

algorithm must handle the following contact types: fully bonded, frictionless slip, and

slip with friction. In order to counter the mixture theory problems, additional degrees

of freedom for each material are assigned to the nodes having more than one material

in their support (i.e. multi-material nodes), where the nodal support is defined as the

elements connected to the node. The new algorithm is integrated into Raven, a multi-

material Eulerian research code developed at UCSD.

Chapter II offers an overview of the Eulerian formulation, where the conserva-

tion equations are separated into a Lagrangian step and an Eulerian step by operator

splitting. The Lagrangian step section describes the time integration and reviews some

of the constitutive equations. The material transport and the interface reconstruction is

presented in the Eulerian step section. Chapter III describes how the three contact types

are enforced in the mean strain rate, pressure equilibration, stress equilibration, and con-

tact mixture theories. The details on the development of the new contact algorithm for

Eulerian formulations are developed in chapter IV. The concept of independent fields

is introduced first, then followed by the analysis of independent deformations. The last

section of the chapter, dependent deformations, describes the algorithm used to couple

nodal accelerations and velocities as a functions of the three contact types. Chapter V

presents the numerical results for example problems including bouncing cylinder, sliding

block, Taylor anvil test, projectile penetration, and high velocity shock compression of

a steel powder. The final chapter is dedicated to conclusions and future work.



Chapter II

Eulerian Formulation

This chapter covers the basic concepts of the Eulerian formulation used in

this research. In the first section operator splitting is used to separate the Eulerian

conservation equations into a Lagrangian and an Eulerian step. Unsplit methods are

also available and can achieve higher accuracy than operator splitting, however, their

implementation is more complicated and expensive. Operator splitting is often preferred

because of its simplicity, robustness, and efficiency. The second section reviews the

Lagrangian step, including the time integration, some common constitutive equations,

and the contact enforcement. The third section explains the material transport and

interface tracking used in the Eulerian step.

II.A Operator Splitting

Operator splitting separates the Eulerian conservation equations into source

and convective equations. The source equations correspond to the Lagrangian conser-

vation equations, therefore, they are referred to as the Lagrangian step. The convective

9
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equations correspond to the transport through space and are referred to as the Eulerian

step. The two steps are solved independently and sequentially.

The Eulerian conservation equations have the general form

∂φ

∂t
+ ∇ ·Φ = S (II.1)

where φ is a solution variable, Φ is a flux function, and S is the source term. Operator

splitting [13] divides equation (II.1) in two separate equations.

∂φ

∂t
=
∂φL

∂t
+
∂φE

∂t
(II.2)

∂φL

∂t
= S (II.3)

∂φE

∂t
+ ∇ · Φ = 0 (II.4)

Equation (II.3) corresponds to the Lagrangian step and equation (II.4) corresponds to

the Eulerian step. Figure II.1 presents a physical interpretation of the two steps.

⇒ Lagrangian Step ⇒ ⇒ Eulerian Step ⇒

Figure II.1: Lagrangian and Eulerian Steps

The Eulerian equations for the conservation of mass, momentum, and energy are:

∂ρ

∂t
+ ∇ · (ρv) = 0 (II.5)

∂(ρv)

∂t
+ ∇ · (ρv ⊗ v) = ∇ · σ + ρ b (II.6)

∂(ρ e)

∂t
+ ∇ · (ρ ev) = σ : ǫ̇ (II.7)
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where ρ is the density, v is the velocity, σ is the Cauchy stress, ǫ̇ is the strain rate, b is

the body force, e is the internal energy, and t is the time. Equations (II.5), (II.6), and

(II.7) are split into the Lagrangian step:

∂ρ

∂t
= 0 (II.8)

∂(ρv)

∂t
= ∇ · σ + ρ b (II.9)

∂(ρ e)

∂t
= σ : ǫ̇ (II.10)

and into the Eulerian step:

∂ρ

∂t
+ ∇ · (ρv) = 0 (II.11)

∂(ρv)

∂t
+ ∇ · (ρv ⊗ v) = 0 (II.12)

∂(ρ e)

∂t
+ ∇ · (ρ ev) = 0 (II.13)

II.B Lagrangian Step

The time integration, the constitutive equations, and contact enforcement take

place during the Lagrangian step. The contact enforcement depends on whether a mix-

ture theory or the extended finite element method is implemented. Since these ap-

proaches are different and require an in depth consideration, they are treated separately

in chapters three and four.

II.B.1 Time integration

The central difference method is a simple and efficient way to update the time

dependent variables. This time integration scheme is implemented in Raven and pre-
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sented here.

an = [Mn]−1 {F n
ext. − F n

int.} where F n
int. =

∫

BTσndV (II.14)

vn+ 1

2 = vn− 1

2 + ∆tan (II.15)

xn+1 = xn + ∆tvn+ 1

2 (II.16)

ǫ̇n+ 1

2 = Bvn+ 1

2 (II.17)

σn+1 = Constit.Eq.(σn, ǫ̇n+ 1

2 ,∆t, etc.) (II.18)

where a is the acceleration, M is the mass, Fext. is the external force, B is the matrix

containing the shape functions derivatives,
∫

· dV is the integration over the volume, x

is the material coordinate, n is the current time step number, and ∆t is the time step.

II.B.2 Constitutive equations

Various constitutive equations are available in Raven. However, this section

presents only the equations used in this research, namely: linear elasticity, J2 plasticity

with linear hardening (for low strain rate problems), and the Steinberg-Guinan consti-

tutive model (for high strain rate problems). The materials analyzed in this research are

assumed to be isotropic.

The stress tensor is separated into two terms:

σ = σ′ − IP (II.19)

where σ′ is the deviatoric part of the Cauchy stress tensor, I is the identity matrix, and

P is the hydrostatic pressure. Equation (II.19) is updated as follows:

σn+1 = σn + (σ̇′ − IṖ )∆t (II.20)
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where σ̇′ is the deviatoric stress rate, and Ṗ is the pressure rate, give by

Ṗ = −K tr(ǫ̇) (II.21)

where K is the bulk modulus, tr(·) is the trace, and ǫ̇ is the strain rate.

The material constitutive relations use the objective Jaumann stress rate for

the deviatoric stress,

σ∇J = σ̇′ −W · σ′ − σ′ ·WT (II.22)

where σ∇J is the objective Jaumann stress rate, and W is the spin tensor.

Linear elasticity

The deviatoric stress rate for the linear elasticity model corresponds to

σ∇J = 2Gǫ̇′ (II.23)

where G is the shear modulus, and ǫ̇′ is the deviatoric strain rate.

Plasticity

The strain hardening for the plasticity models is linear and follows the isotropic

J2 flow theory:

σ∇J = 2G(ǫ̇′ − ǫ̇p) (II.24)

ǫ̇p =
3σ′

2 σ̄
˙̄ǫp (II.25)

σ̄ =

√

3

2
σ′ : σ′ (II.26)

˙̄ǫp =
3σ′ : Cel : ǫ̇

2 σ̄ (H(ǭp) + 3µ)
(II.27)

H(ǭp) =
∂σy(ǭ

p)

∂ǭp
(II.28)
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σ̄ − σy(ǭ
p) = 0 (II.29)

ǭp =

∫

˙̄ǫp dt (II.30)

where ǫ̇p is the plastic strain rate, σ̄ is the Von Mises effective stress, ˙̄ǫp is the effective

plastic strain rate, Cel is the fourth order elastic moduli, µ is a Lamé constant, σy is

the yield stress, and equation (II.29) is the yield condition. The radial return method is

used for the numerical integration [9]. The reader is encouraged to review Belytchko et

al. [29] for more details on the J2 theory and implementation.

For low strain rates, linear hardening is used,

σy(ǭ
p) = σyo +H1ǭ

p (II.31)

where H1 is the strain hardening parameter, and σyo is the initial yield stress.

For high strain rate problems (i.e. ǫ̇ > 105 1
s
) the Steinberg-Guinan model

[14, 15] is used,

G = Go

[

1 +
bP

(

ρ

ρo

)
1

3

+ h(T − 300)

]

exp

[ −fe
emelt − e

]

(II.32)

σy = σ′yo

[

1 +
b′P

(

ρ

ρo

)
1

3

+ h(T − 300)

]

exp

[ −fe
emelt − e

]

(II.33)

σ′yo
= MIN(σmax, σyo [1 + β(ǭpo + ǭp)]α) (II.34)

where the subscript o indicates the initial state of the variable, P is the pressure, T is

the temperature, α and β are strain hardening parameters, e is the internal energy, emelt

is the melting energy, and f is the thermo softening parameter. Constants b, b′, and h,

are found experimentally and are defined as follows:

b =
1

Go

∂G

∂P

∣

∣

∣

∣

0

(II.35)
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b′ =
1

σyo

∂σy

∂P

∣

∣

∣

∣

0

(II.36)

h =
1

Go

∂G

∂T

∣

∣

∣

∣

0

(II.37)

The Steinberg-Guinan model assumes the yield stress to be rate independent because the

rate effects have typically saturated out at the high strain rate where this model is used.

However, at these rates the pressure and temperature dependency becomes important.

II.C Eulerian Step

This section describes the transport and interface tracking algorithms used

in this research. These methods are simple and effective when a structured mesh is

employed. However, if an unstructured mesh is utilized, the formulation becomes more

elaborate.

II.C.1 Transport

The transport through space in Raven is implemented with the monotone

upstream-centered schemes for conservation laws (MUSCL). The MUSCL algorithm was

developed by Bram Van Leer [12], it is second order accurate in the smooth regions of

the solution and it is monotonic. The change in the solution variable φ in an element is

determined from the material entering and leaving it over the time step:

φn+1
+ =

1

V n+1
+

[

V n+1
− φn+1

− +

N
∑

i=1

∆Vi φ
n+1
i

]

(II.38)

where the + and − subscripts indicate the state of the variable before and after the

transport respectively, n + 1 indicates that the time dependent variables have been

updated, V is the element’s volume, ∆Vi is the volume swept in or out by the nodes
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defining the i-th face of the element during the deformation, and φn+1
i is the mean value

of φn+1 in ∆Vi. The value of ∆Vi is positive when it is swept inside the element and

negative when it is swept out. For multi-material elements, an interface reconstruction

or interface tracking method [16, 18, 23, 25, 30, 34, 35] provides the location of the

material’s interfaces, and partition ∆Vi among the different materials. The transport is

illustrated in the one-dimensional example of figure II.2.

xi i + 1

φ−

V− = xi+1 − xi

a)

xi i + 1

φi
Vi = ∆xin

φi+1

Vi+1 = −∆xout

b)

xi i + 1

φ+

V+ = V− + Vi + Vi+1

c)

Figure II.2: Transport concept: one-dimensional example
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Figure II.2 a) displays an element before the transport occurs. The element is defined

by nodes i and i + 1. For one-dimensional problems, the volume can be considered as

the distance between the two nodes. The value of φ inside the element is interpreted

as the average value within the element (the volume-weighted variable is represented by

the shaded area). Figure II.2 b) shows the element during the transport. The volume

entering the element (i.e. swept in) through the face i is ∆xin while −∆xout corresponds

to the volume exiting the element (i.e. swept out) through the face i + 1. Note that

also in this case the shaded areas represent the volume-weighted variable being swept.

Figure II.2 c) shows the element after the transport. The new volume is calculated and

the transported value is obtained according to equation (II.38).

φn+1
+ =

1

V n+1
+

(

V n+1
− φn+1

− + ∆Vi φ
n+1
i + ∆Vi+1 φ

n+1
i+1

)

(II.39)

MUSCL generates a linear distribution of φ within the element to replace the finite

element piecewise constant value of φ per element, which is evaluated in the middle of

the element. Consider element E in figure II.3,

j − 1 j − 1
2 j

1sj− 1

2

φj− 1

2

φ(x)

Figure II.3: Linear distribution of φ in element E

where j− 1 and j are the nodes defining the element, φj− 1

2

is the value evaluated by the

algorithm and being transported, and sj− 1

2

is the slope of the linear distribution to be
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defined. The distribution of φ for the element in the figure is

φ(x) = sj− 1

2

(x− xj− 1

2

) + φj− 1

2

(II.40)

The slope is obtained from the values of φ in the surrounding elements. Figure II.4

displays the three slopes (gray lines) considered for sj− 1

2

, where the full circles represent

the position of the nodes a time n, the empty circles represent the position of the nodes

at time n + 1, and the horizontal lines represent the constant value of φ calculated by

the algorithm for each element. The second order accuracy in the smooth regions of the

solution is obtained by creating second order accurate slopes. Figure II.4 a) is the center

slope and it is given by:

sc
j− 1

2

=
φj+ 1

2

− φj− 3

2

xj+ 1

2

− xj− 3

2

(II.41)

The left slope, which is represented in figure II.4 b), follows:

sl
j− 1

2

=
φj− 1

2

− φj− 3

2

xj− 1

2

− x̃j−1
(II.42)

where x̃ = x+ 1
2 v∆t. Similarly, for the right slope in figure II.4 c),

sr
j− 1

2

=
φj+ 1

2

− φj− 1

2

x̃j − xj− 1

2

(II.43)

The monotonicity of MUSCL is achieved by preventing the slope from creating values

at the faces of the element (i.e. j − 1 and j for the middle element) that are outside the

range of the value in the adjacent elements (i.e. φj− 3

2

- φj+ 1

2

for the middle element),

therefore, the smallest of the three slopes is selected.

sj− 1

2

=
1

2

[

SIGN(sl
j− 1

2

) + SIGN(sr
j− 1

2

)
]

MIN(|SIGN(sl
j− 1

2

)|, |SIGN(sc
j− 1

2

)|, |SIGN(sr
j− 1

2

)|)
(II.44)
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a)

j − 2 j − 1 j j + 1

φj− 3

2

φj− 1

2

φj+ 1

2

b)

j − 2 j − 1 j j + 1

φj− 3

2

φj− 1

2

φj+ 1

2

c)

j − 2 j − 1 j j + 1

φj− 3

2

φj− 1

2

φj+ 1

2

Figure II.4: Slopes considered for the linear distribution

In two-dimensional problems the transport is performed by operator splitting,

first performing the one-dimensional transport in the x-direction and then in the y-

direction. The order is alternated every time step in order to minimize errors due to

aliasing. In figure II.5, a variable is swept outside the shaded element. In this case,

the volume weighted variable is first swept out in the x-direction and then swept out

in the y-direction. This method is easily implemented in structured meshes, in addi-

tion, it incorporates corner coupling. Corner coupling is the flow of the variable being
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x-sweep

y
-s

w
ee

p

Corner Coupling

Figure II.5: Sweeping concept: two-dimensional example

transported (e.g. volume) from an element to one of its adjacent diagonal elements (see

figure II.5). If the transport were carried out in one sweep, the corner coupling would

not be accounted because the transport needs a face between two elements in order to

transport a variable. For instance, in the example of figure II.5 the transport is diagonal.

Therefore, since the face between the lower left element and the upper right element does

not exist, the variable would not be transported into the upper right element.

II.C.2 Interface reconstruction

The interface reconstruction, or tracking, is based on the work of Youngs [16].

The number of interfaces in a multi-material element corresponds to the number of

materials present in the element minus one. Each interface separates the element in

two regions, α and β, and each region contains one or more materials. The slope of

an interface is determined by the volume fraction of α and β inside the element being

considered and its surrounding elements. Consider element E in figure II.6 and its

surrounding elements: A, B, C, D, F, G, H, and I; moreover, let the shaded region define

α and the blank region define β. In this case, the general equation to calculate the slope
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A B C

D E F

G H I

Figure II.6: Two dimensional interface tracking scheme

between α and β is:

slope
(α,β)
E =

b
(α,β)
(E,F ) − b

(α,β)
(D,E)

b
(α,β)
(E,H) − b

(α,β)
(B,E)

(II.45)

where slope
(α,β)
E is the slope of the interface that separates volume α from volume β

inside element E, and b
(α,β)
(E,F )

indicates the volume fraction for the interface (α, β) at

the side (E,F ), which is obtained from volumes α and β inside elements E and F . A

detailed description of the calculation of b is found in Benson [18, 34]. Once the slope is

determined, the interface is moved parallel to itself until the correct volumes of α and

β are obtained. Note that when more than two materials are present, it is necessary to

specify a layering order for the materials.



Chapter III

Mixture Theories

Mixture theories redistribute the strain rate of each mixed element among the

materials inside the element. The nomenclature “mixed” and “multi-material” will be

used interchangeably throughout this work. Among the mixture theories available are

the mean strain rate, the pressure equilibration, the stress equilibration, and the contact

mixture theories. The most appropriate theory is selected according to the problem

and the prescribed contact type. After the strain rates are redistributed, the stress of

each material inside the element is calculated using the material’s constitutive equation.

Finally, the stress of the element, which is needed for the time integration, is obtained

from the stress of its materials.

The first section of this chapter presents the equations common to all mixture

theories, namely the constraint on the strain rates, and the calculation of the element’s

stress from those in its materials. The next three sections describe the theories used to

partition the strain rate of the mixed element among its materials, and the last section

reviews the separation condition.

22
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III.A Requirements

All mixture theories constrain the volume weighted average strain rate of the

materials inside the mixed element to equal the strain rate of the element,

ǫ̇E = BE {v1...vi...vN}T (III.1)

nmat
∑

m=1

ǫ̇mE
V m

E

VE
= ǫ̇E (III.2)

where ǫ̇E is the strain rate for element E, BE is the matrix containing the shape function

derivatives for element E, vi is the velocity of node i, N is the number of the nodes per

element, nmat is the number of materials inside the element, ǫ̇mE is the strain rate of

material m in element E, V m
E is the volume of material m in element E, and VE is the

volume of element E.

The stress of mixed elements is the volume weighted average of the stress in its

materials,

σE =

nmat
∑

m=1

σm
E

V m
E

VE
(III.3)

where σE is the stress tensor of mixed element E, and σm
E is the Cauchy stress tensor

for material m in element E.

III.B Mean Strain Rate

The mean strain rate is the simplest mixture theory. This theory assigns the

mean strain rate of the mixed element to all of its materials,

ǫ̇m1

E = ǫ̇E ∀ m1 ∈MatE (III.4)

where MatE is the set of all the materials inside element E.
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Equation (III.4) assigns the same strain rate to all the materials inside the

element, therefore, all materials are compressed identically and preserve their volume

ratio. As a consequence, stress is generated when two solid materials separated by

a void material move perpendicular with respect to each other. Moreover, the two

solid materials will never share the same interface because the void material is never

compressed out of the element. In order to eliminate the stress issue when the two

solid materials move apart from each other, the volume of the two solid materials is

relaxed until the stress in the direction normal to the respective interface with the void

material becomes zero, in the meantime, the volume of the void material is modified

to accommodate the volume change. On the other hand, when the two materials move

towards each other, the following equations address the problem:

R = MAX

{

V +

V −
,

MIN

(

V +,

nsolid
∑

m

V −
m

)

nsolid
∑

m

V −
m

}

(III.5)

V +
m = V + − R

nsolid
∑

i

V −
i −

nvoid
∑

i
i6=m

V +
i ∀ m ∈ nvoid (III.6)

V +
m = R V −

m ∀ m ∈ nsolid (III.7)

where nsolid is the number of solid materials inside the element, nvoid is the number

of void materials inside the element, R is the compression ratio, V − is the element

volume before the time integration, and V + is the volume of the element after the

time integration. When the element begins to undergo compression (i.e. V − > V + >

∑nsolid
m V −

m ), equation (III.6) starts to compress out the void materials one by one, until

they are all evacuated from the element. During this process, the volume, along with

the hydrostatic pressure of the solid materials, remains unchanged. When all the void
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materials are compressed out (i.e. V − >
∑nsolid

m V −
m > V +), equation (III.7) begins to

compress all the solid materials by the same ratio. Note that equation (III.6) must be

constrained so that the void materials do not become negative.

This modification results in an inequality between the work done by the element

and the work done by the material inside the element.

v ·
∫

BT σE dV 6=
∑

m

σm
E : ǫ̇mE ∆V m

E (III.8)

In other words, the work of the element compressing out void materials does not generate

pressure, or work, in the materials left inside the element. This error is attributed to the

hydrostatic pressure since the above equations modify only the volumetric strain.

III.C Pressure and Stress Equilibration

The pressure and stress equilibration mixture theories are used when an element

is filled primarily with void material and contains a small fragment of solid material. Be-

cause of the large volume of void material, the small fragment may experience extremely

large stresses. Assume that the velocities in equation (III.1) are such that the element

is compressing at a high rate. Equation (III.4) assigns the same high strain rate to the

fragment and the void material. According to the respective constitutive equations, the

fragment experiences high stress while the stress in the void material remains small.

Because of the volume weighted averaging of equation (III.3), the stress in the element is

similar to the one in the void material (i.e. small). As a consequence, the internal forces,

and therefore the accelerations, of equation (II.14) are also small and have little effect

on reducing the nodal velocities of equation (III.1). As a result, the strain rate in the
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next time step will still be high and the stress in the small fragment of solid material will

have another large increment. This problem can be solved by equilibrating the pressure

or the stress.

The equations for pressure equilibration are:

Pm1

E = Pm2

E ∀ {m1,m2} ∈MatE (III.9)

nmat
∑

m

tr(ǫ̇mE )
V m

E

VE
= tr(ǫ̇E) (III.10)

where the superscripts indicate the material, and tr(ǫ̇E) corresponds to the volumet-

ric strain rate of element E. Since the pressures in equation (III.9) are a function of

their respective volumetric strain rate, the two equations above provide nmat equations

for nmat unknown volumetric strain rates. When equation (III.10) is subtracted from

equation (III.2) the following is obtained.

nmat
∑

m=1

ǫ̇′mE
V m

E

VE
= ǫ̇E − 1

3
tr(ǫ̇E) I = ǫ̇′E (III.11)

where ǫ̇′ indicates the deviatoric strain rate. This provides one equation for nmat un-

known deviatoric strain rates. The missing nmat− 1 equations are obtained similarly to

equation (III.4),

ǫ̇′m1

E = ǫ̇′m2

E ∀ {m1,m2} ∈MatE (III.12)

The stress equilibration constraint is defined by

σm1

E = σm2

E ∀ {m1,m2} ∈MatE (III.13)

In this case, equation (III.13) combined with equation (III.2) replaces equations (III.9)

through (III.12) to produce the required number of equations to solve for the nmat strain

rates.
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These solutions impose the same stress, or pressure, on all materials inside the

element by adjusting their strain rates. As a consequence, the strain rate of the fragment

is considerably reduced, lessening the stress and solving the issue. The pressure equili-

bration and stress equilibration theories may encounter energy conservation problems.

The reader is encouraged to review Benson [21] for more details on the energy properties

of these theories.

Note that the above methods do not require a void collapse algorithm. In the

mean strain rate mixture theory all the materials inside an element compress identically,

and therefore void materials are never compressed out of the element. However, the

pressure, or stress, equilibration mixture theories increase the otherwise small stress of

the void material when the element is compressed. As a result, the strain rate of the void

material increases, inducing its volume to shrink at a rate higher than the one of solid

materials. When a certain minimum volume value is met, the void material is eliminated

from the element.

III.D Contact

The purpose of the contact mixture theory is to obtain strain rate of the ma-

terials by imposing interface jump conditions, which are selected as a function of the

appropriate contact type. Fully bonded, frictionless slip, and slip with friction contact

types are analyzed in this section.



28

III.D.1 Fully bonded

For the fully bonded case, the equations are:

[

σm1

E − σm2

E

]

ni = 0 (III.14)

[

σm1

E − σm2

E

]

ti = 0 (III.15)

where m1 and m2 are the materials separated by interface i, n is the normal to the

interface, and t is the interface’s tangent. Equation (III.14) and equation (III.15) enforce

equilibrium at the interface, moreover, they generate nmat− 1 number of equations to

solve for the strain rate of the materials; the missing equation is provided by (III.2).

III.D.2 Frictionless slip

For the frictionless contact type, two constraints are added to the above equa-

tions.

ti · σm
Eni = 0 (III.16)

∑

m

ǫ̇mE
V m

E

VE
+

nmat−1
∑

i

{ti ⊗ni + ni ⊗ ti}si = ǫ̇E (III.17)

The frictionless contact type is enforced in equation (III.16) by setting the shear stress

at the interface to zero. In order to accommodate the nmat− 1 set of new constraints,

an equal number of unknowns is needed. These unknowns are provided by s in equation

(III.17), where si can be considered as the relative slip for interface i. Note that equation

(III.2) is already incorporated in equation (III.17).
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III.D.3 Slip with friction

For the slip with friction, equation (III.16) is replaced by

|ti · σm
Eni| = µ |ni · σm

Eni| (III.18)

where µ is the coefficient of friction.

III.E Separation

Separation occurs when two solid materials sharing the same interface pull

apart from each other. During this process, if separation is allowed, a void material is

introduced between the two solid materials. As a consequence, the existing interface

is reassigned to be shared by the void material and one solid material. Also, a new

interface, parallel to the existing, one is generated and shared by the void material and

the second solid material. To establish whether the two materials are pulling apart from

each other, a volume weighted average of the two materials’ stress is used,

ni ·
(σm1

E V m1

E + σm2

E V m2

E )

V m1

E + V m2

E

ni > 0 (III.19)

where m1 and m2 are the two solid materials sharing interface i. The two materials

separate when equation (III.19) is greater than zero. At this point the volume, and

therefore the volumetric strain, of the two solid materials is recalculated to allow the

traction at the interface to be zero. As a result, the volume of the solid materials is

reduced and the void material fills the missing volume in the element.



Chapter IV

eXtended Finite Element

Formulation for MMALE

Calculations

The multi-material arbitrary Lagrangian Eulerian (MMALE) formulation pre-

sented in this section assigns each node independent displacement, velocity, and accel-

eration fields for each material surrounding it. The idea of locally introducing extra

degrees of freedom emerged from the extended finite element method by Belytschko et

al. [22, 24, 26, 31, 33, 37]. For this reason the formulation developed in this chapter

adopts the “extended finite element” nomenclature.

The first section of this chapter describes the independent fields used in the

finite element formulation. The section following it shows how the transport algorithm

in Raven handles independent deformations (or deformations without contact). Section

three describes the interactions between the independent deformations, which take place

30
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when materials interact and the deformation of one material affects other materials. This

section is the core of the research and it covers velocity and acceleration coupling, nodal

interfaces, and contact constraint enforcement. The contact enforcement subsection

treats fully bonded, frictionless slip, and slip with friction contacts.

IV.A Independent Fields

The original idea of the extended finite element method is to add additional de-

grees of freedom to locally enrich the solution to accurately capture the stress singularity

around the tip of the crack [22, 26, 28, 31]. The current application enriches the velocity

field to allow independent velocities for each material, allowing the jump discontinuities

in the velocities across the interfaces to be accurately modeled. This could be thought as

having one independent mesh per material where elements containing the same interface

match (or overlap). As a consequence, the number of degrees of freedom associated with

a specific node depends on the number of materials present in its nodal support. Figure

IV.1 shows this concept.

mat = 1

mat = 2mat = 1

mat = 2

Figure IV.1: Overlapping of two materials with independent mesh

The element on the left is partially filled with material 1, which is represented by the
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light gray color. The circles on the corner of the element describe the nodes, and the

color of the circles relates the nodes to the material with the same color (in this case

material 1). The same description applies to the element on the right of the figure. This

element contains material 2, which is represented by the darker gray color, instead of

material 1. The two elements are independent from each other, however, they share the

same spatial coordinates at the start of the Lagrangian time step. The two elements

overlap creating the mixed element in the middle of figure IV.1. As a result, the mixed

element has a set of nodes per material, or each node has a set of independent fields per

material.

The equations defining the main variables used for the calculations in this

chapter are

vm
E (x) =

N
∑

i

ψEi
(x)vm

Ei
(IV.1)

ǫ̇mE = BE

{

vm
E1
...vm

Ei
...vm

EN

}T
(IV.2)

σm
E = Constit.Eq.(σmold

E , ǫ̇mE ,∆t, etc.) (IV.3)

Fm
EA

= −BT
EA
σm

E V m
E (IV.4)

Mm
EA

= I
1

N
ρm

E V m
E (IV.5)

where m is the material number, EA indicates node A in element E, N is the number

of nodes per element, ψ is the shape function, I is the identity matrix, and V is the

volume. Equation (IV.1) defines the velocity field for element E per material, equation

(IV.2) is the strain rate of element E per material, equation (IV.3) is the Cauchy stress

of element E per material, equation (IV.4) is the force vector at node A generated from
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element E per material, and equation (IV.5) is the mass matrix at node A generated

from element E per material.

Note that the velocities are evaluated at the nodes, and each node is shared by

the elements in its support. Therefore, vm
Ei

in equation (IV.1) corresponds to vm
A , where

A is the node shared by all the elements in its support including E.

IV.B Independent Deformations

The transport algorithm in Raven ensures an accurate simulation when two

materials move, or deform, without interfering with each other. For instance, let the

elements at the top of figure IV.2 represent the two elements containing material 1 and 2

in figure IV.1. The elements have undergone independent deformations, and the dashed

squares represent the undeformed state of the elements.

mat = 1

mat = 1

mat = 2

mat = 2mat = 1

mat = 2

Figure IV.2: Independent deformation of two materials
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The second step in the figure displays the two elements after the transport algorithm

has reinstated them to their original position. Next, the two elements overlap and create

the mixed element at the bottom of the figure. Finally, the total volume of the mixed

element is calculated and a void material is added to fill the missing volume. Note that

the introduction of a void material implies the generation of an additional material in

the element.

The role of the void material is to preserve the element total volume without

introducing stresses. Therefore, if a void material already exists in the mixed element

and the two solid materials move apart from each other, more void material is added to

the element. Similarly, some void material is removed from the element if the two solid

materials move towards each other.

IV.C Dependent Deformations

Dependent deformations occur when materials interact with each other; in other

words, when the movement or deformation of one material affects the behavior of an-

other material. The transport algorithm on its own does not handle this deformation

correctly because of the independent fields that describe the behavior of each material.

For instance, assume that the two elements containing material 1 and material 2 in figure

IV.1 deform into the shape of the two element at the top of figure IV.3. The second

step in figure IV.3 represents the independent states of the elements after the transport

when the two elements are superposed to create the mixed element at the center of the

figure, the two materials interfere with each other because the variables that describe the

movement of the two materials do not interact during the transport (the shaded region
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in the picture represents the interference). To conserve volume, the transport compresses

the two materials equally until the total volume of the mixed element is achieved and

the mixed element at the bottom of the figure is obtained.

mat = 1

mat = 1

mat = 2

mat = 2mat = 1

mat = 2

mat = 1

mat = 2

Figure IV.3: Materials interference

The finite element formulation cannot rely on the transport algorithm to avoid

interference between the materials because the pressure calculated by the transport is

a source of error. In fact, a large interference will generate high pressures, which will

lead to large nodal forces and therefore large nodal accelerations. Large accelerations

create large velocity changes (i.e. ∆v) during the time step update, and, as a result,

the velocity changes can be larger than the initial velocity introducing errors in the
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formulation, causing instabilities.

The problem is addressed by constraining, or coupling, the velocities and ac-

celerations of the two materials before the interference occurs. The coupling procedure

assigns the same value of acceleration and velocity to both materials in the direction

normal to the interface, in the fully bonded case the same value of acceleration and

velocity is also assigned to both material in the tangential direction, and when slip with

friction is present the two materials partially influence each other tangential accelera-

tions according to the selected friction law. As a consequence, the interference described

in the example does not occur if the velocities of the two materials are coupled in the

direction normal to their interface. In addition, coupling the accelerations in the same

direction ensures that the coupled velocities remain the same through the time step.

IV.C.1 Velocity and Acceleration Coupling

The finite element formulation provides the values for the velocities at each

node, therefore, the velocity coupling is implemented at the nodal level. Since the

purpose of the nodal accelerations is to update the velocities during the time integration,

the acceleration coupling is also implemented at the nodal level. In order to couple

accelerations and velocities, the normal to the interface between each pair of materials

is needed at the nodal level. Therefore, since the interface normals are described at the

element level, nodal normals are obtained from the elements present in its support. For

instance, figure IV.4 displays the nodal support A in a two dimensional example where

two materials sharing the same interface are present.
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A

a)

m = 1 m = 2

n
(1,2)
A

n
(2,1)
A

A

b)

Figure IV.4: Nodal support with two materials

Figure IV.4 a) shows the normals to the interface at the element level, and figure IV.4

b) displays the interface normal at the nodal level. The light gray area corresponds to

material 1, the darker gray area corresponds to material 2, n
(1,2)
A is the nodal normal to

the interface between material 1 and material 2 for node A, and n
(2,1)
A defines the nodal

normal between material 2 and material 1 for node A. The procedure used to calculate

the nodal normals is described in subsection IV.C.2.

Nodal normals are used to obtain projection matrices, for the example in figure

IV.4 the projection matrices are

P
(1,2)
A = n

(1,2)
A ⊗ n(1,2)

A (IV.6)

P
(2,1)
A = n

(2,1)
A ⊗ n(2,1)

A (IV.7)

where P
(1,2)
A is the projection matrix between material 1 and material 2 in nodal support

A, and P
(2,1)
A corresponds to the projection matrix between material 2 and material 1 in

nodal support A. In order to calculate the nodal velocities and accelerations, the masses
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(IV.5) and forces (IV.4) of the elements present in the nodal support need to be gathered

into nodal masses and forces. The nodal masses and forces are:

Mm
A =

∑

E

Mm
EA

(IV.8)

Fm
A =

∑

E

Fm
EA

(IV.9)

where Mm
A is the mass M at node A for material m, F is the nodal force, and the

summation is over the elements present in the nodal support of A.

Note that the materials present in mixed elements act as springs in parallel

since the materials are coupled at the same node.

Velocity Coupling

The conservation of linear momentum law for inelastic collisions is used for the

velocity coupling. In order to avoid interference between two materials, their velocities

are coupled in the direction normal to their interface. The momentum is not transmitted

between materials in the direction tangent to their interface, for instance, the following

is true for materials 1 and 2 at node A in the example of figure IV.4:

M1
A(I − P (1,2)

A )v1−
A = M1

A(I − P (1,2)
A )v1+

A (IV.10)

M2
A(I − P (2,1)

A )v2−
A = M2

A(I − P (2,1)
A )v2+

A (IV.11)

where the superscripts − and + indicate the velocity before and after coupling, respec-

tively. The normal velocities for the two materials are obtained form the conservation of

linear momentum for perfectly plastic impacts,

M1
AP

(1,2)
A v1−

A +M2
AP

(2,1)
A v2−

A = (M1
AP

(1,2)
A +M2

AP
(2,1)
A )v1+

A (IV.12)

= (M1
AP

(1,2)
A +M2

AP
(2,1)
A )v2+

A (IV.13)
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which imposes the same velocity for the two materials in the direction normal to their

interface. The coupled velocity for material 1 is obtained by adding equations (IV.10),

which constrains the tangential velocity, to equation (IV.12), which constrains the normal

velocity.

M1
A v

1−
A +M2

AP
(2,1)
A v2−

A = (M1
A +M2

AP
(2,1)
A )v1+

A (IV.14)

The left hand side of the equation is the linear momentum experienced by material 1,

where the first term corresponds to the momentum generated by material 1 and the

second term is the momentum contribution from material 2. This contribution is the

mass of material 2 multiplied by its velocity, which is projected onto material 1 through

the interface between the two materials. The right hand side of the equation corresponds

to linear momentum after the impact, which equals the masses displaced by material 1

multiplied by its coupled velocity. For material 2, equations (IV.11) and (IV.13) are

added,

M1
AP

(1,2)
A v1−

A +M2
A v

2−

A = (M1
AP

(1,2)
A +M2

A)v2+

A (IV.15)

The coupled velocities for material 1 and material 2 are obtained from equations (IV.14)

and (IV.15):

v1+

A =

[

M1
A +M2

AP
(2,1)
A

]−1
(

M1
A v

1−
A +M2

AP
(2,1)
A v2−

A

)

(IV.16)

v2+

A =

[

M1
AP

(1,2)
A +M2

A

]−1
(

M1
AP

(1,2)
A v1−

A +M2
A v

2−

A

)

(IV.17)

The general expression for coupling multi-material velocities is the following:

vi+

A =

[

∑

j

M
j
AP

(j,i)
A

]−1
(

∑

j

M
j
AP

(j,i)
A v

j−

A

)

(IV.18)
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where i and j are the materials present in the nodal support of node A, and P (i,i) is

equal to the identity matrix. The nodal velocities are then updated with the coupled

velocities: vi
A = vi+

A .

Acceleration Coupling

The acceleration coupling is carried out similar to the velocity coupling; in this

case, the accelerations are obtained by analyzing the forces and masses of the materials in

contact, and Newton’s second law of motion is used to establish the relationship between

the three quantities.

Materials do not exchange forces in the tangential direction when friction is

not present at the interface (the effects of friction on tangential forces are described in

subsection IV.C.3), as a consequence, the accelerations remain unaffected. For instance,

the tangential forces for materials 1 and 2 in the example of figure IV.4, along with the

respective masses and accelerations, are

(I − P (1,2)
A )F 1−

A = (I − P (1,2)
A )M1

A a
1−

A = (I − P (1,2)
A )M1

A a
1+

A (IV.19)

(I − P (2,1)
A )F 2−

A = (I − P (2,1)
A )M2

A a
2−
A = (I − P (2,1)

A )M2
A a

2+

A (IV.20)

In the normal direction, however, the forces are coupled. Equation (IV.21) describes this

force and its relation with the mass and acceleration quantities.

P
(1,2)
A F 1−

A + P
(2,1)
A F 2−

A = P
(1,2)
A M1

A a
1−

A + P
(2,1)
A M2

A a
2−

A (IV.21)

The accelerations of the two materials in the normal direction are also the same, there-
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fore, the coupling of the acceleration in the normal direction is

P
(1,2)
A F 1−

A + P
(2,1)
A F 2−

A = (P
(1,2)
A M1

A + P
(2,1)
A M2

A)a1+

A (IV.22)

= (P
(1,2)
A M1

A + P
(2,1)
A M2

A)a2+

A (IV.23)

The complete relation between the forces and the coupled accelerations of material 1 is

obtained by adding equation (IV.19) to equation (IV.22),

F 1
A + P

(2,1)
A F 2

A = (M1
A + P

(2,1)
A M2

A)a1+

A (IV.24)

where the first term on the left hand side of the equation corresponds to the nodal force

associated with material 1, while the second term is the force transmitted by material 2

to material 1 through their interface; the respective mass and coupled accelerations are

found on the right hand side. The relation for material 2 is obtained by adding equations

(IV.20) to (IV.23),

P
(1,2)
A F 1

A + F 2
A = (P

(1,2)
A M1

A +M2
A)a2+

A (IV.25)

The coupled accelerations for material 1 and material 2 are obtained from equations

(IV.24) and (IV.25):

a1+

A =

[

M1
A + P

(2,1)
A M2

A

]−1
(

F 1
A + P

(2,1)
A F 2

A

)

(IV.26)

a2+

A =

[

P
(1,2)
A M1

A +M2
A

]−1
(

P
(1,2)
A F 1

A + F 2
A

)

(IV.27)

The general form for coupling multi-material accelerations can be expressed as follows:

ai+

A =

[

∑

j

P
(j,i)
A M

j
A

]−1
(

∑

j

P
(j,i)
A F

j
A

)

(IV.28)

The final step in the acceleration coupling consists of updating the nodal accelerations:

ai
A = ai+

A .
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IV.C.2 Nodal Normals

The finite element formulation needs nodal normals in order to couple velocities

and accelerations. These normals are obtained from two types of interfaces present in

the nodal support: the mixed element interfaces, and the intra-element interfaces. The

interface reconstruction algorithm provides interface normals for the mixed elements,

however, intra-element normals need to be established. Element and intra-element nor-

mals are then averaged to obtain nodal normals. Note that element and intra-element

normals relate pair of materials sharing the same interface, therefore, the resulting nodal

normals exist only between adjacent materials.

The nodal normal between two materials that do not share the same interface

is needed since these materials exchange momentum and force contributions. This inter-

material normal is calculated at the nodal level by first finding the path with the smallest

number of interfaces between the two materials, and then by averaging the nodal normals

encountered on the path.

In order to simulate dynamic problems, finite element methods requires a time

discretization, which can induce material interference despite the implementation of the

velocity and acceleration coupling algorithm. For instance, assume that two materials

separated by a void material approach each other. At a certain time step the volume of

the void material is very small while the two solid materials are still uncoupled. At the

end of the following time step, if the time step is too big, the two solid materials will

occupy more volume than the void material allows, and as a result, they will overlap and

create an interference. In order to solve this issue, the time step is recalculated according

to the volume of the void material, the velocities of the two solid materials separated
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by the void material, and the size of the elements in the nodal support. However, this

solution presents an additional issue, which is associated with the time step size. In fact,

while the correct time step size allows for the perfect coupling between the two materials

in a nodal support, it can cause the void material of another nodal support to become

very small. As a consequence, the size of the next time step will be very small, making

the formulation inefficient. In addition, since the calculation of the size of the time step

uses approximate values, the same problem can arise in the nodal support where the

smallest time step was obtained. This problem is solved by introducing an interface

interception volume fraction (IIVF) in the formulation. When the volume fraction of

the void material is smaller than the interception volume, the two solid materials are

considered to be in contact and a nodal normal that relates the two is created. This

normal is obtained by averaging the normals of the two solid materials adjacent to the

void material.

Mixed elements normals

The interface reconstruction provides the positions, and therefore the normals,

of the interfaces between pairs of materials inside mixed elements. Figure IV.5 displays

a mixed element containing four materials with their respective interfaces and normals,

where n̂
(1,2)
E is the normal between material 1 and material 2 in mixed element E. The

nodal vectors associated with the nodes in mixed element E are updated with the above

interfaces normals as follows:

ñ
(i,j)
A =

∑

E

[

ñ
(i,j)
A + SIGN(n̂

(i,j)
E · ñ(i,j)

A ) n̂
(i,j)
E

]

(IV.29)
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m = 1

m = 2
m = 3 m = 4

n̂
(1,2)
E

n̂
(2,1)
E

n̂
(2,3)
E

n̂
(3,2)
E

n̂
(3,4)
E

n̂
(4,3)
E

Figure IV.5: Mixed element normals

where
∑

E is the sum over the element in nodal support A, and ñ
(i,j)
A corresponds to the

non-unit nodal normal (or normal vector). The SIGN function guarantees that n̂
(i,j)
E

points roughly in the same direction as ñ
(i,j)
A before the update, and therefore that the

two vectors do not cancel out during the update. Note that non-adjacent materials do

not share a normal.

Equation (IV.29) is symmetric in its materials (i.e. ñ
(i,j)
A = −ñ(j,i)

A ) in order to

achieve the required nodal normal symmetry n
(i,j)
A = −n(j,i)

A . However, the accuracy of

interface normals can be improved by considering the volumes of each pair of materials.

Intra-element normals

Intra-element normals are present between two pure elements, between two

mixed elements, and between one mixed element and one pure element. Figure IV.6

shows element E with its bottom, right, top, and left elements, which are used to

establish the intra-element normals. The nodes of element E are N1, N2, N3, and N4.
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Figure IV.6: Scheme for intra-element normals

Intra-element interface normals between pure elements are obtained by first

recognizing which material is present in the two elements that share the interface. If

the material in element E of figure IV.6 differs from the material in one of the adjacent

elements, the nodal vectors (i.e. ñ) of the nodes belonging to the interface are updated.

Note that only the vectors of two nodes per intra-element interface are updated. For in-

stance, assume that element E contains material a and element bottom contains material

b. In this case, the nodal vectors are updated as follows:

ñ
(a,b)
A =

[

ñ
(a,b)
A + SIGN(

(

0

−1

)

· ñ(a,b)
A )

(

0

−1

)

]

(IV.30)

where
( 0
−1

)

represents the two dimensional normal for the interface between element E

and element bottom, and A represents node N1 and N2. The same procedure is applied

to nodes N2 and N3 if element right contains material b:

ñ
(a,b)
A =

[

ñ
(a,b)
A + SIGN(

(

1

0

)

· ñ(a,b)
A )

(

1

0

)

]

(IV.31)
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for nodes N3 and N4 in element top:

ñ
(a,b)
A =

[

ñ
(a,b)
A + SIGN(

(

0

1

)

· ñ(a,b)
A )

(

0

1

)

]

(IV.32)

and for nodes N4 and N1 in element left:

ñ
(a,b)
A =

[

ñ
(a,b)
A + SIGN(

(−1

0

)

· ñ(a,b)
A )

(−1

0

)

]

(IV.33)

Note that the procedure generates vectors that are symmetric in their materials, in fact,

ñ
(a,b)
A is updated with

(

0
−1

)

when the interface between element E and element bottom

is analyzed, and ñ
(b,a)
A is updated with

(0
1

)

when the interface between element bottom

and element E is examined.

In order to generate an intra-element normal between two mixed elements, the

materials that share the interface must be identified. Therefore, each mixed element

has to provide the materials at the intra-element interface. Only two materials per

mixed element are considered, which are the materials that share only one interface

inside the mixed element (e.g. material 1 and material 4 for the example in figure IV.5).

The numbers of these materials are stored inside an array when the algorithm creates

the normals for the mixed elements (i.e. n̂ ). Once the materials are identified, the

algorithm uses the information from the surrounding elements to determine if they are

at the interface being analyzed. Figure IV.7 shows the elements used to locate the

material at the intra-element interface between element E and element bottom (see also

figure IV.6). Assume that material a and material b are the two materials with one

interface in mixed element E. The algorithm uses the following logic to establish the

materials at the interface:
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E right

top

left

Figure IV.7: Elements used to locate the materials at the bottom intra-element interface

• If element top contains material a and not material b, then material b is at the

interface.

• Else if element top contains material b and not material a, then material a is at

the interface.

• Else:

– COUNTa = 0.

– COUNTb = 0.

– If element left contains material a, then COUNTa = COUNTa + 1.

– If element left contains material b, then COUNTb = COUNTb + 1.

– If element right contains material a, then COUNTa = COUNTa + 1.

– If element right contains material b, then COUNTb = COUNTb + 1.

– If COUNTa > COUNTb, then material a is at the interface.

– Else if COUNTb > COUNTa, then material b is at the interface.
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– Else material a and material b are at the interface.

A similar scheme is applied to the mixed element bottom to establish the materials at

the interface with element E. Figure IV.8 presents two examples where nodes N1 and

N2 are connected to the intra-element interface between element E and element bottom.

In both examples the mixed element bottom displays material 2 at the interface. Note

that the above algorithm, when adapted to the element bottom, correctly predict this

material.

m = 1 m = 2 m = 3 m = 4

N1 N2

E

bottom

rig
h
t

top

le
f
t

a)

N1 N2

E

bottom

rig
h
t

top

le
f
t

b)

Figure IV.8: Examples of intra-element interfaces

The algorithm also correctly predicts material 4 to be at the interface for element E

in example a). In example b) the algorithm predicts that material 3 and material 4

are at the interface, this is correct despite element E seems to have only material 4 at

the interface. Inaccuracies in the interface geometry are sometimes present in mixed
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elements due to the nature of the interface reconstruction, however, the above algorithm

is not affected by them. In particular circumstances the prediction of the algorithm is

incorrect. Figure IV.9 illustrate the problem with two examples.

m = 1 m = 2 m = 3 m = 4 m = 5

N1 N2
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bottom
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h
t
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N1 N2
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t

top
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f
t

b)

Figure IV.9: Particular cases where the material locator algorithm is inaccurate

In example a), element E contains materials 3, 4, and 5. In this case, the two materials

considered for the intra-element interface are material 3 and material 4 because they

have only one interface inside the mixed element. The algorithm predicts material 3

and material 4 to be at the N1 - N2 interface of element E, while material 5 is at

the same interface for element bottom. As a consequence, the resulting combination

of materials at the interface (i.e. 3-5 and 4-5) is not representative. A similar case

holds for example b), where the combinations of materials 3-2 and 4-2 is also incorrect.

The problem is partially solved by neglecting the interface if the two elements have
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at least one material in common. This solution solves the problem in example a) but

not in example b), however, this is generally acceptable since the situation displayed in

example a) is more common than the one in example b). Moreover, the configuration of

example b) generally holds for just few time steps because as soon as one material from

element E enters element bottom, or vice versa, the issue vanishes. As a consequence,

the error introduced in the formulation is small. Nevertheless, while a smaller mesh size

can address the problem, the accuracy of the algorithm can be improved if the following

points are examined:

• All the materials inside the mixed elements are candidates to be the intra-element

interface materials

• The volume fraction of the materials inside the elements is considered

• The elements on the corners of the mixed element are also analyzed (see figure

IV.7)

Once the materials at the intra-element interface are located, the nodal vectors of the

nodes connected to the interface are updated for each pair of materials. This is done

similarly to equations (IV.30) - (IV.33); for instance, nodes N1 and N2 in the example

b) of figure IV.8 are updated as follows:

ñ
(3,2)
A =

[

ñ
(3,2)
A + SIGN(

(

0

−1

)

· ñ(3,2)
A )

(

0

−1

)

]

(IV.34)

ñ
(4,2)
A =

[

ñ
(4,2)
A + SIGN(

(

0

−1

)

· ñ(4,2)
A )

(

0

−1

)

]

(IV.35)

where A represents nodes N1 and N2. Note that also in this case equations (IV.34)

and (IV.35) are symmetric in their materials. Finally, all four intra-element interfaces
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follow the above scheme and algorithm to update the nodes of mixed element E when it

is required.

Intra-element normals between a mixed element and a pure element are estab-

lished when the pure element does not contain any of the mixed element materials. The

scheme adopted to obtain intra-element normals between mixed elements is also used

in this case, however, when the adjacent element is recognized as pure, also the pure

element - mixed element relationship is considered to ensure material symmetry in the

nodal vectors. For instance, assume that the bottom element in example b) of figure

IV.8 is a pure element containing material 2. In this case, the vectors for nodes N1

and N2 are updated with equations (IV.34) and (IV.35) for the mixed element - pure

element relationship, and the following is added for the pure element - mixed element

relationship,

ñ
(2,3)
A =

[

ñ
(2,3)
A + SIGN(

(

0

1

)

· ñ(2,3)
A )

(

0

1

)

]

(IV.36)

ñ
(2,4)
A =

[

ñ
(2,4)
A + SIGN(

(

0

1

)

· ñ(2,4)
A )

(

0

1

)

]

(IV.37)

where A represents nodes N1 and N2.

Finally, the nodal normals are obtained from the nodal vectors.

n
(i,j)
A =

ñ
(i,j)
A

|ñ(i,j)
A |

(IV.38)

Inter-material normals

Inter-material normals establish the relationship between materials that do not

share the same interface. These normals are needed to account for the momentum and

force contributions from all the materials in the nodal support in equations (IV.14),
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(IV.15), (IV.24), and (IV.25), which are used by equations (IV.18) and (IV.28) to cou-

ple the respective velocities and accelerations. For instance, part of the momentum of

material 2 in example a) of figure IV.10 is transmitted to material 1 and vice versa. The

average of the normals associated to the interfaces that separate the two materials is

used to calculate the relationship:

ñ
(1,2)
A = n

(1,3)
A + n

(3,4)
A + n

(4,2)
A (IV.39)

n
(1,2)
A =

ñ
(1,2)
A

|ñ(1,2)
A |

(IV.40)

The normal n
(1,2)
A is set to zero if one of the materials between material 1 and material

2 is a void material. The same is valid if two of the materials that share one of the

interfaces between material 1 and material 2 separates. However, this is enforced only

if the prescribed contact allows separation. The subsection IV.C.3 treats the separation

condition.

m = 1 m = 2 m = 3 m = 4 m = 5

A

a)

A

b)

Figure IV.10: Examples of nodal support interfaces

When more than one path is available for two materials to exchange their
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contribution, the path that provides the best interfaces alignment is chosen. For example,

the normal between material 1 and material 2 in example b) of figure IV.10 can be

achieved through materials 3 - 5 or materials 4 - 5. The alignment for the 1 - 3 - 5 - 2

path is:

ALIGN1352 = n
(1,3)
A · n(3,5)

A n
(3,5)
A · n(5,2)

A (IV.41)

and for the 1 - 4 - 5 - 2 path is:

ALIGN1452 = n
(1,4)
A · n(4,5)

A n
(4,5)
A · n(5,2)

A (IV.42)

If ALIGN1352 > ALIGN1452 the normal between materials 1 and material 2 is calcu-

lated similarly to equations (IV.39) and (IV.40):

ñ
(1,2)
A = n

(1,3)
A + n

(3,5)
A + n

(5,2)
A (IV.43)

n
(1,2)
A =

ñ
(1,2)
A

|ñ(1,2)
A |

(IV.44)

The path is not considered if a void material is present or if separation, when allowed,

occurs at one of the interfaces. The normal n
(1,2)
A is set to zero if all the paths contain

either a void material or an interface that is separating.

Interface Interception Volume Fraction

The interface interception volume fraction (IIVF) prevents the time step, which

estimates the impact time between two colliding materials, from becoming extremely

small. This is achieved by controlling the volume fraction of the void material present in

the nodal support. If this value is smaller than IIVF the two solid materials separated

by the void material are considered to be in contact and their nodal normal is calculated
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as follows:

if

(

V void
A

VA
< IIV F

)

then n
(i,j)
A =

n
(i,void)
A +n

(void,j)
A

|n(i,void)
A +n

(void,j)
A |

(IV.45)

where i and j represent the two solid materials separated by the void material, V void
A is

the volume of the void material in the nodal support A, and VA is the total volume of

the nodal support A. The void material is eventually compressed out by the transport

algorithm when it recalculates the volume of the materials in each element. In fact,

any stress generated by the coupling of the two materials is “relaxed” until all the void

material disappears from the elements. This is source of negligible error, especially when

a small IIV F is selected by the user. The IIV F value for the simulations presented in

section V is set to 5%.

The impact time is calculated when two materials in a nodal support are sepa-

rated by a void material with a volume fraction greater than IIV F . Figure IV.11 shows

the nodal support of A where the solid materials 1 and 2 are separated by the void

material 2. The length and height of the nodal support is L and H, respectively, and

the interfaces are defined by nodal normals (i.e. only one segment defines each interface

inside the nodal support). For instance, assume that material 2 in the example of figure

IV.11 is a void material, while material 1 and material 3 are solid materials. Vector d̃ is

the average distance between material 1 and material 3 and it is calculated as follows:

d̃ = d |d̃| (IV.46)

d =
n

(1,2)
A + n

(2,3)
A

|n(1,2)
A + n

(2,3)
A |

(IV.47)
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A

m = 1

m = 2 m = 3

d̃

L

H

Figure IV.11: Two colliding materials

if

(

∣

∣d ·
(

0

1

)

∣

∣ <
L√

L2 +H2

)

then

|d̃| =
V 2

A

L

∣

∣d ·
(

0

1

)

∣

∣

else

|d̃| =
V 2

A

H

∣

∣d ·
(

1

0

)

∣

∣

(IV.48)

where V 2
A is the volume of material 2 in the nodal support A. Next, the velocities of the

two solid materials are projected onto d,

vp
1 = v1

A · d (IV.49)

vp
3 = v3

A · d (IV.50)

The following logic is used to calculate the impact time:

1. if (SIGN(vp
1 v

p
3) > 0) then

• ∆vp = vp
1 − vp

3

• if (∆vp > 0) then ∆ti =
|d̃|

∆vp
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2. else if (vp
1 > 0) then

• ∆vp = vp
1 + vp

3

• ∆ti =
|d̃|
∆vp

3. end if

4. ∆t = MIN{∆t, MAX(∆ti, ∆tmin)}

where ∆vp is the difference in the projected velocity between the two solid materials, ∆ti

is the time to impact, ∆t is the current time step, and ∆tmin is the minimum allowable

time step that is specified by the user. When the two projected velocities have the same

direction, point 1 calculates the difference in velocity between the two materials. If ∆vp

is positive the two materials are approaching, therefore, the impact time is calculated.

Point 2 calculates the impact time when the two materials travel in opposite directions

and the velocity of material 1 is positive. Finally, point 4 updates the time step when

necessary. The ∆tmin value in the expression ensures that the time step does not become

too small if an inadequate IIV F is prescribed.

Note that in the above calculation the direction of d, along with the order

in which vp
1 and vp

3 are used, must be respected. Also, the distance |d̃| calculated in

equation (IV.48) can be smaller than the actual value. However, this occurrence results

in a smaller ∆ti, which does not introduce any error in the formulation.

IV.C.3 Contact Enforcement

The purpose of the contact enforcement is to obtain the correct nodal velocities

and accelerations for the prescribed contact. Therefore, equations (IV.18) and (IV.28)
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are modified to enforce the separation condition and the fully bonded, frictionless slip,

and slip with friction contacts.

Separation condition

The separation condition is applied to every pair of solid materials in the nodal

support, and it establishes if the two materials are separating. When the prescribed

contact allows separation, the following is enforced:

if
(

n
(i,j)
A ·

∑

E

(σi
EA

V i
EA

+ σj
EA

V j
EA

)

∑

E

(V i
EA

+ V j
EA

)
n

(i,j)
A ≥ 0

)

then P
(i,j)
A = 0 (IV.51)

where i and j represent the two materials in contact, σi
EA

is the stress of material i

in element E for node A, V is the volume, and
∑

E is the sum over the element in the

nodal support. Equation (IV.51) calculates the traction at the interface using the volume

weighted average of the stresses of the two materials in the nodal support, then, if the

projection of the traction onto the interface normal is greater than zero, the projection

matrix is zeroed. As a consequence, (IV.18) and (IV.28) do not couple the two materials.

Finally, the transport algorithm introduces a void material to fill the gap created between

the two solid materials when the two are uncoupled and move apart from each other. In

case of non-adjacent materials, the projection matrix is also zeroed if one of the interfaces

between the two solid materials separates or if a void material is present between the

two.

Note that the outcome of the “if” statement in equation (IV.51) is the same

for the relationships i→ j and j → i since n
(i,j)
A is equal to −n(j,i)

A .
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Fully bonded contact

The fully bonded contact couples the velocities and accelerations of two mate-

rials in all directions. This is achieved by setting the normal projection matrix equal to

the identity matrix in equations (IV.18) and (IV.28),

P
(i,j)
A = I (IV.52)

Note that equation (IV.51) prevails over equation (IV.52) if separation is allowed.

Frictionless slip contact

The frictionless slip contact enforces coupling only in the direction normal to

the interface leaving the tangential direction unconstrained. This contact was used in

the acceleration and velocity coupling examples, and the projection matrix for equations

(IV.18) and (IV.28) is

P
(i,j)
A = n

(i,j)
A ⊗ n(i,j)

A (IV.53)

where P
(i,i)
A = I. Note that also in this case equation (IV.51) replaces equation (IV.53)

if separation is allowed.

Slip with friction contact

The slip with friction contact modifies only the acceleration coupling of equation

(IV.28). The velocity coupling is not modified because the velocities tangent to the

interface do not change abruptly, moreover, the coupled accelerations correctly update

the velocities during the time integration. Equation (IV.28) is modified as follows:

ai+

A =

[

∑

j

(

P
(j,i)
A M

j
A + µM

(i,j)
A

)

]−1 [

∑

j

(

P
(j,i)
A F

j
A + µF

(i,j)
A

)

]

(IV.54)
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where µF
(i,j)
A is the friction force contribution from material j to material i, and µM

(i,j)
A

is the friction mass contribution from materials j to material i.

The classical, or Coulomb, friction laws for static and kinetic cases are adopted.

The static friction case is applied if the relative velocity tangent to the interface between

two solid materials is zero, else, the kinetic case is implemented,

T
(i,j)
A = I − P (i,j)

A (IV.55)

∆tv
(i,j)
A = T

(j,i)
A v

j
A − T (i,j)

A vi
A (IV.56)

if (|∆tv
(i,j)
A | = 0) then STATIC

else KINETIC

(IV.57)

where T
(i,j)
A is the tangent matrix for the i - j interface, and ∆tv

(i,j)
A is the relative

tangential velocity between material j and material i.

The friction laws are based on the normal force present at the interface between

two solid materials. This force depends on the area of the interface, the stress at the

interface, and the direction normal to the interface. Moreover, it is calculated at the

nodal level, and therefore the elements in the nodal support are considered. The area

of the interface in the nodal support is calculated first. Consider the example in figure

IV.12 where the nodal support A contains materials 1 and 2. The interface runs between

the bottom pair of elements (intra-element interface), and it cuts the upper right element

(mixed element interface). The area of the interface for the mixed element is obtained

from the interface reconstruction, which provides the position of the interface between

adjacent materials. The intra-element area exists only between pair of elements and it

is equal to the surface that separates the two. In the example of figure IV.12, the nodal
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A

m = 1

m = 2

bottom pair

top pair

rig
h
t
p
a
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f
t
p
a
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Figure IV.12: Interface and pairs of elements in nodal support A

area of the interface between material 1 and material 2 for node A is

S
(1,2)
Aint

=
1

N
Ŝ

(1,2)
Aur

+
1

Ne
S̄

(1,2)
Abp

(IV.58)

where N is the number of nodes per element, Ne is the number of nodes on the edge

of the element, Ŝ
(1,2)
Aur

is the area of the mixed element interface between material 1 and

material 2 for the upper right element (i.e. ur), and S̄
(1,2)
Abp

represents the area of the

intra-element interface between material 1 and material 2 in the nodal support A that

runs between the bottom pair of elements (i.e. bp). The general equation for the area of

the interface in nodal support A between material i and material j is

S
(i,j)
Aint

=
1

N

∑

E

Ŝ
(i,j)
E +

1

Ne

∑

p

S̄
(i,j)
Ap

(IV.59)

p = {bottom pair, right pair, top pair, left pair} (IV.60)

where E are the elements in the nodal support. Note that Ŝ
(i,j)
E = Ŝ

(j,i)
E , S̄

(i,j)
Ap

= S̄
(j,i)
Ap

,

and S
(i,j)
A = S

(j,i)
A . Next, the volume weighted average stress of the two solid materials

at the interface is calculated,
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σ
(i,j)
Aint

=

∑

EM

(σi
EMV

i
EM + σj

EMV
j
EM ) +

∑

p

(

∑

EI

σi
EIV

i
EI +

∑

EJ

σ
j
EJV

j
EJ

)

∑

EM

(V i
EM + V j

EM) +
∑

p

(

∑

EI

V i
EI +

∑

EJ

V j
EJ

)

(IV.61)

EM = {E | Ŝ(i,j)
E 6= 0} (IV.62)

EI = {E ∈ p | S̄(i,j)
Ap

6= 0 ∩ MatiE 6= 0} (IV.63)

EJ = {E ∈ p | S̄(i,j)
Ap

6= 0 ∩ MatjE 6= 0} (IV.64)

where σ
(i,j)
Aint

is the volume weighted average stress around the interface between material

i and material j in nodal support A, and MatiE is the material flag that is equal 0 when

material i is not present in element E. Finally, the normal force at the interface between

the two materials is obtained using the nodal normals of equation (IV.38),

F
(i,j)
Aint

= n
(i,j)
A · σ(i,j)

Aint
n

(i,j)
A S

(i,j)
Aint

(IV.65)

Note that equation (IV.65) is symmetric in its materials (i.e. F
(i,j)
Aint

= F
(j,i)
Aint

). The

procedure used to obtain F
(i,j)
Aint

loses in accuracy as the interface in the nodal support

becomes more irregular. This inaccuracy is attributed to the interface area calculation,

which overestimates the effective area in irregular interfaces; moreover, the calculation is

not suitable for three-dimensional problems. Further development is needed to address

these issues.

In the STATIC case the two materials can either remain coupled or start to

slip during the next time step. In order to establish which scenario is present, the forces

tangent to the interface between the two solid materials are needed,

tF
(i,j)
A = T

(j,i)
A F

j
A (IV.66)



62

where tF
(i,j)
A is force of material j tangent to the interface with material i. Next, the

difference between the tangential forces at the interface is calculated.

∆tF
(i,j)
A = tF

(i,j)
A − tF

(j,i)
A (IV.67)

The magnitude of the tangential force difference of equation (IV.67) corresponds to the

friction force needed to avoid slip between the two materials. The following equation is

the maximal tangential force that can be generated by friction,

µsF
(i,j)
Amax

= |F (i,j)
Aint

| µ(i,j)
s

∆tF
(i,j)
A

|∆tF
(i,j)
A |

(IV.68)

where µ
(i,j)
s is the static coefficient of friction between material i and material j, and

the tangential force difference of equation (IV.67) is used to define the direction. The

maximal friction forces at the interface between the two materials is

∆µsF
(i,j)
Amax

= µsF
(i,j)
Amax

− µsF
(j,i)
Amax

= |F (i,j)
Aint

| µ(i,j)
s

∆tF
(i,j)
A

|∆tF
(i,j)
A |

− |F (j,i)
Aint

| µ(j,i)
s

∆tF
(j,i)
A

|∆tF
(j,i)
A |

= 2 |F (i,j)
Aint

| µ(i,j)
s

∆tF
(i,j)
A

|∆tF
(i,j)
A |

(IV.69)

If the magnitude of the maximal friction force difference in equation (IV.69) is greater

than the magnitude of the tangential force difference in equation (IV.68), the two mate-

rials are bonded, else, slip will occur in the next time step.
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if (|∆µsF
(i,j)
Amax

| > |∆tF
(i,j)
A |) then

µF
(i,j)
A = tF

(i,j)
A

µM
(i,j)
A = M

j
A T

(j,i)
A

else

µF
(i,j)
A = µsF

(i,j)
Amax

end

(IV.70)

The bonding is enforced by setting the friction force and friction mass contributions

equal to the tangential force and tangential mass of the contacting material, respectively.

In fact, equation (IV.54) corresponds to equation (IV.28) with P
(j,i)
A = I when the

statement of equation (IV.70) is true, which agrees with the fully bonded case presented

earlier. This is also the only friction case where µM
(i,j)
A 6= 0. When slip occurs, the

normal force at the interface is unable to keep the two materials coupled, and the friction

force contribution from material j to material i becomes the maximal friction force of

equation (IV.68).

Also the KINETIC case presents two scenarios: in the next time step the two

materials can retain a relative velocity, or the relative velocity can drop to zero. In order

to establish which scenario is present, the frictionless relative velocity for the next time

step is predicted,

∆tv
(i,j)
Apre

= ∆tv
(i,j)
A +

{

T
(j,i)
A a

j
Aunc

− T (i,j)
A ai

Aunc

}

∆t

= ∆tv
(i,j)
A +

{

T
(j,i)
A

[

M
j
Aunc

]−1
F

j
Aunc

− T (i,j)
A

[

M i
Aunc

]−1
F i

Aunc

}

∆t

(IV.71)

where ∆tv
(i,j)
Apre

is the predicted frictionless relative velocity between material j and ma-
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terial i, and the subscript unc refers to the uncoupled quantity. Next, the maximal

tangential force that can be generate by friction is calculated,

µkF
(i,j)
Amax

= |F (i,j)
Aint

| µ(i,j)
k

∆tv
(i,j)
Apre

|∆tv
(i,j)
Apre

|
(IV.72)

where µ
(i,j)
k is the kinetic coefficient of friction between material i and material j, and

the predicted frictionless relative velocity of equation (IV.71) is used to determine the

direction. The following equation is the maximal velocity change between material i and

j at node A that can be generated by friction.

∆tv
(i,j)
Afrctn

=

{

ta
j
Afrctn

− tai
Afrctn

}

∆t

=

{

[

M
j
Aunc

]−1 µkF
(i,j)
Amax

−
[

M i
Aunc

]−1 µkF
(j,i)
Amax

}

∆t

=
[

M
j
Aunc

]−1 (

M i
Aunc

+M j
Aunc

) [

M i
Aunc

]−1 µkF
(i,j)
Amax

∆t

(IV.73)

If the magnitude of the predicted frictionless relative velocity of equation (IV.71) is

greater than the magnitude of the maximal friction velocity change of equation (IV.73),

a relative velocity is maintained, else, it drops to zero.

if (|∆tv
(i,j)
Apre

| > |∆tv
(i,j)
Afrctn

|) then

µF
(i,j)
A = µkF

(i,j)
Amax

else

µF
(i,j)
A =

1

∆t
M i

Aunc

[

M i
Aunc

+M j
Aunc

]−1
M

j
Aunc

∆tv
(i,j)
Apre

end

(IV.74)

When a relative velocity is retained, the friction force contribution µF
(i,j)
A becomes the

maximal tangential force generated by friction. On the other hand, when the relative

velocity drops to zero, the friction force contribution is calculated such that during the
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next time steps it generates an acceleration for the two materials that combined cancel

out the predicted relative velocity. In fact, if only the friction force contribution of the

latter scenario is considered, the nodal force becomes

F i
A =

1

∆t
M i

Aunc

[

M i
Aunc

+M j
Aunc

]−1
M

j
Aunc

∆tv
(i,j)
Apre

(IV.75)

and the relative velocity calculated from the forces generated by equation (IV.75) is

{

ta
j
A − tai

A

}

∆t =

{

[

M
j
Aunc

]−1
F

j
A −

[

M i
Aunc

]−1
F i

A

}

∆t = −∆tv
(i,j)
Apre

(IV.76)

which cancels out equation (IV.71) zeroing the relative velocity in the next time step.

Note that the tangential direction is already included in F i
A since it corresponds to the

friction force, and that ∆tv
(i,j)
Apre

= −∆tv
(j,i)
Apre

.

The friction model presented in this subsection is limited to two solid material

per nodal support. The algorithm needs further development in order to obtain the

correct relative forces and velocities between more than two solid materials. Finally,

note that also in this case µF
(i,j)
A = 0 and µM

(i,j)
A = 0 when equation (IV.51) is true.



Chapter V

Numerical Results

This chapter validates the X-FEM formulation by analyzing few problems in-

cluding a bouncing cylinder, a sliding block, a Taylor anvil test, projectile penetration,

and a high velocity shock compression of a steel powder. The bouncing cylinder prob-

lem emphasizes the different coupling and separation behaviors between the X-FEM

formulation and the mean strain rate mixture theory; in addition, a small strain impact

example is simulated using both theories and the results are compared to the analytical

solution. The friction algorithm is tested in the sliding block example, where the results

of the simulation are also compared to the analytical solution. The Taylor anvil test

problem is simulated with frictionless slip, slip with friction, and fully bonded contact

by the X-FEM formulation; three different simulations with different friction coefficients

are presented for the slip with friction contact. The X-FEM solutions are then compared

with the results of the mean strain rate mixture simulation and the results obtained from

LS-DYNA, which employs a Lagrangian formulation. The importance of accurately mod-

eling slip is underlined in the projectile penetration problem. In this case, the results are

66
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compared with the mean strain rate mixture theory. Finally, in the high velocity shock

compression of a steel powder problem, the robustness of the X-FEM algorithm is tested

and some observations about the energy conservation properties of the formulation are

made.

Note: the X-FEM and mixture theories images presented in this chapter are

produced by Benson’s research and development code Raven, the LS-DYNA images are

produced by LS-PREPOST, all the problems are plane strain, and the units employed

in the calculations are centimeters (cm), microseconds (µs), and grams (g).

V.A Bouncing Cylinder

V.A.1 Example 1

The first example in this section compares the coupling and separation behav-

iors of the X-FEM simulation with the solution obtained from the mean strain rate

mixture theory simulation. The problem consists of a cylinder made of copper that

bounces on a block of steel situated below. The behavior of the two materials is con-

sidered to be purely elastic, and the cylinder travels towards the block with an initial

velocity of 0.1 cm/µs. The circular geometry was chosen to produce mixed elements

containing interfaces with different slopes, and the velocity was selected to ensure the

presence of the copper-steel interface in a good number of elements during the impact.

Figure V.1 displays the initial conditions, where the left to right orientation defines axis

x1, the bottom to top orientation defines axis x2, V 2 is the velocity in direction x2, the

cylinder has a diameter of 2 cm, the block is constrained at the boundaries in the normal

direction, and the mesh resolution is 10 elements per centimeter in both directions.
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Figure V.1: Bouncing Cylinder: initial conditions

Table V.1: Bouncing Cylinder: material constants

Copper Steel

ρ 8.96 g/cm3 7.87 g/cm3

K 1.17 g/(cmµs2) 1.63 g/(cmµs2)

G 0.41 g/(cmµs2) 0.79 g/(cmµs2)
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Table V.1 shows the values used in the constitutive equations for the two materials.

Figure V.2 displays the velocities in the x2-direction for the mean strain rate

mixture theory simulation prior to impact. It is noticeable how the velocities of the

Figure V.2: Bouncing Cylinder: pre-impact (Mixture Theory)

two solid materials near the interface have changed even though the impact between the

two has not yet occurred. This effect is caused by the lack of degrees of freedom that

is characteristic of the mixture theories. In fact, since mixture theories can describe

only one velocity field per node, the same nodal velocity is applied to all the materials

present in the nodal support. In other words, the nodal velocity of the steel and copper

materials change as soon as the copper material enters the nodal support containing the
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steel material. As a result, the simulation looses accuracy.

Figure V.3 presents the same simulation at the same time step for the X-FEM

formulation. In this case, the velocities of the two materials are unaffected because

Figure V.3: Bouncing Cylinder: pre-impact (X-FEM)

the extra degrees of freedom allow the X-FEM formulation to describe the independent

behavior of multiple materials in the same nodal support. As a consequence, the two

materials do not influence each other. Nevertheless, the X-FEM formulation couples

the two solid materials according to the prescribed contact when the volume fraction of

the void material reaches the IIVF value. This coupling introduces a small error in the

formulation because the two solid materials are coupled when they are still separated
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by a void material. However, the error introduced in the X-FEM formulation is limited

compared to the one found in the mixture theories; moreover, the X-FEM formulation

allows the user to modify the IIVF value and therefore control the accuracy of the

simulation.

Figure V.4 shows the pressure distribution in the materials for the mean strain

rate mixture theory when the velocity at the copper-steel interface is zero (i.e. point of

maximum penetration). While the location of maximum pressure is expected to be on

Figure V.4: Bouncing Cylinder: full-impact (Mixture Theory)

the vertical axis (i.e. x1 = 0) crossed with the interface, the figure displays this location

to be on the vertical axis but offset by two elements with respect to the interface. This
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behavior is due to the limitation of the mixture theory. Consider the mixed elements that

contain the steel material and where the copper material is about to enter. As soon as the

copper material enters the mixed elements, the velocity of the two materials changes and

their pressure increases. Moreover, the pressures of the adjacent pure elements containing

the two solid materials also increases. The void collapse algorithm implemented with the

mean strain rate mixture theory (see III.B), however, compresses the void material out of

the mixed elements by relaxing the stresses, and therefore the pressure, of the two solid

materials. As a result, the pressure of the materials inside the mixed elements is lower

than the one present in the adjacent pure elements containing the same materials. Note

that a similar behavior is also observed during separation. In fact, during separation,

the solid materials belonging to the same nodal support remain coupled even when they

are divided by a void material; then, the separation algorithm relaxes the stresses inside

the mixed elements by introducing more void material. This operation is executed until

only one solid material is left in the nodal support, therefore, the two solid materials are

independent. As a result, errors are introduced in the mixture theory simulation as long

as the two solid materials share the same nodal support.

Figure V.5 shows the same simulation for the X-FEM formulation. This sim-

ulation emphasizes how the error introduced in the X-FEM formulation by the IIVF

coupling effect is small compared to the error found in the mixture theory simulation.

In fact, the results are more accurate and the pressure reaches its peak at the interface

as expected. Note that the IIVF coupling effect occurs also during separation, however,

the inaccuracies introduced in the simulation are as small as for the impact simulation.

Figure V.6 displays the prediction of the mean strain rate mixture theory with-
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Figure V.5: Bouncing Cylinder: full-impact (X-FEM)

out the separation algorithm when the cylinder moves away from the block. The mate-

rials became fully bonded during impact and do not separate when tension is present at

the interface.

Finally, figure V.7 shows the same scenario with the X-FEM formulation predic-

tion. In this case, the separation between the two materials is clean and representative.

Note that figure V.6 and figure V.7 display the same time step.
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Figure V.6: Bouncing Cylinder: separation (Mixture Theory)
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Figure V.7: Bouncing Cylinder: separation (X-FEM)
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V.A.2 Example 2

In the second example, the analytical solution for a line contact between a

cylinder and a plate is compared to the X-FEM and the mixture theory simulations. The

analytical solution is obtained from the two dimensional contact of cylindrical bodies

presented in Johnson [17]. In the solution, the compression δ in the x2-direction as

a function of the x1 coordinate is considered quadratic. Johnson obtains the Hertz’

approximation by treating the displacement of each cylinder as an elastic half-space.

Moreover, the theory for a line loading of an elastic half-space is used to calculate the

pressure distribution on the contact area. The plate-cylinder contact problem is solved

by letting the radius of one cylinder go to infinity. The stresses along the vertical axis

of symmetry of the cylinder for plain strain problems provided by Johnson [17] are

σ1(x2, P ) = −po(P )

a(P )
{(a2(P ) + 2x2

2)(a
2(P ) + x2

2)
− 1

2 − 2x2} (V.1)

σ2(x2, P ) = −po(P )a(P )(a2(P ) + x2
2)

− 1

2 (V.2)

p2
o(P ) =

PE⋆

πR
(V.3)

a2(P ) =
4PR

πE⋆
(V.4)

1

E⋆
=

1 − ν2
copper

Ecopper
+

1 − ν2
steel

Esteel
(V.5)

where po is the maximum pressure, a is half the contact width, P is the load on the

contact area, R is the radius of the cylinder, ν is the Poisson’s ration, and E is the

Young’s modulus. The compression in x2 is found by integrating the strain ǫ2(x2) over

the cylinder diameter,

δ(P ) =

∫ 2R

0
ǫ2(x2, P ) dx2 (V.6)
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ǫ2(x2, P ) =
1 − ν2

copper

Ecopper
{σ2(x2, P ) − νcopper

1 − νcopper
σ1(x2, P )} (V.7)

The elastic strain energy is calculated as follows:

Ue =

∫

P dδ(P ) (V.8)

The load on the contact area is obtained by iterating equation (V.8) until Ue matches

the kinetic energy Uk,

Uk =
1

2
Mcyl. v

2
cyl. (V.9)

where M is the mass and v the velocity of the cylinder. The compression δ and the half

contact width a are then obtained from equations (V.6) and (V.4), respectively, and the

results are used to validate the simulations. The equations provided by Johnson [17]

require the contact to be frictionless and that a ≪ R. The first requirement cannot

be satisfied by the mixture theory, however, it is satisfied by the X-FEM formulation

by imposing the frictionless contact. In order to satisfy the second requirement, the

initial velocity of the cylinder is set to 0.001 cm/µs, which results in a = 0.08 cm and

δ = −0.0075 cm. The 8% ratio between the half contact width and the radius is rel-

atively large, however, it still allows a good evaluation of the simulation’s results with

the employment of a reasonable mesh size. The mesh resolution for the simulations is

increased to 50 elements per centimeter in both directions, and the lower boundary is

moved to −1 cm to better represent the infinitely thick block.

Figure V.8 displays the pressure distribution in the contact region when the

interface reaches the lowest point in the mixture theory simulation. The inaccuracy

of the pressure distribution is caused by the error observed in figure V.2, which also

influences the result by preventing the contact between the two solid materials. In this
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Figure V.8: Bouncing Cylinder: maximum contact (Mixture Theory)

case, the two materials do not come into contact because of the low impact velocity. The

value of the deformation δ is observed to be −0.0075 cm and agrees with the analytical

solution, however, the lack of contact makes the reading of a impracticable.

Figure V.9 shows the results of the X-FEM simulation. In this case, the contact

between the two materials is established, and the pressure distribution is well represented.

The value of δ is −0.0076 cm, and the half contact width a is 0.08 cm; both results agree

with the analytical solution. Note that because of the low speed of the impact, it

was possible to set IIVF to 0.05%, which minimized the coupling effect in the X-FEM
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Figure V.9: Bouncing Cylinder: maximum contact (X-FEM)

simulation. Future work, however, aims to reduce the dependency between the coupling

effect and the IIVF by compressing out the void material from the nodal support when

the prescribed IIVF is reached. It is worth noting that the interface reaches its lowest

point earlier in the mixture theory simulation than in the X-FEM simulation. This is a

consequence of the impact occurring earlier in the mixture theory because taking place as

soon as the two solid materials share the same nodal support. In the X-FEM simulation,

however, the coupling occurs when the materials are almost in contact, generating more

accurate results. Finally, notice that the values are extrapolated from elements with
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length and width of 0.02 cm, and that the value of a, in the X-FEM simulation, contains

exactly four elements.

V.B Sliding Block

This example tests the friction portion of the algorithm. A block made of steel

travels towards a 0.98 cm gap made by two parallel rigid plates. The height of the block

is 1 cm, its width is 5 cm, and the longitudinal extremities are rounded with a diameter

of 1 cm. The ends of the rigid plates that face the block are rounded with a diameter

of 4 cm. The round geometry was chosen in order to avoid sharp corners on the sliding

Figure V.10: Sliding Block: initial conditions
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surface. The initial velocity of the block is of 0.15 cm/µs, and the static and kinetic

friction coefficients are µs = µk = 0.2. Figure V.10 shows the initial conditions, where

the top and bottom boundaries are fully constrained, and the mesh resolution is 15

elements per centimeter in both directions. The block and the plates behavior is purely

elastic. Table V.2 displays the materials constants for the two solid materials, where the

Table V.2: Sliding Block: material constants

Steel Rigid Plates

ρ 7.87 g/cm3 78.7 g/cm3

K 1.63 g/(cmµs2) 16.3 g/(cmµs2)

G 0.79 g/(cmµs2) 7.9 g/(cmµs2)

rigid body behavior of the plates is simulated by setting their constants to ten times the

values for the steel.

The calculation of analytical solution begins when the block is entirely between

the two rigid plates. Figure V.11 shows the problem after 38.7µs, At this point, the

average velocity of the block is 0.107 cm/µs, and its centroid is at 8.03 cm. The analytical

solution is used to predict the stopping point of the block,

ǫ22 =
1 cm− 0.98 cm

1 cm
= −0.02 (V.10)

ǫ11 = −ǫ22 ν = 0.0058274 (V.11)

σ22 = − E ν

(1 + ν)(1 − 2 ν)
(ǫ11 + ǫ22) +

E

(1 + ν)
ǫ22 = −0.0472375

g

cmµs2
(V.12)

A = 4 (1 + ǫ11) = 4.0233 cm3 (V.13)
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Figure V.11: Sliding Block: begin calculation

F frctn = |2Aσ22 µ| = 0.07602044
g cm

µs2
(V.14)

M = (4 + 0.52 π) ρ = 37.6610835 g (V.15)

a =
F frctn

M
= 0.0020185

cm

µs2
(V.16)

∆x1 =
(0.107 cm

µs
)2

2 a
= 2.84 cm (V.17)

xfinal
1 = 8.03 cm+ ∆x1 = 10.87 cm (V.18)

where ǫ11 and ǫ22 are the strains in the respective x1 and x2 directions, σ22 is the stress

in direction x2, E and ν are the Young’s modulus and Poisson’s ratio, respectively, A is

the contact area on one side of the block, F frctn is the friction force, µ = µs = µk is the
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friction coefficient, M is the mass of the block, and xfinal
1 is the final middle position of

the block in direction x1.

Figure V.12 shows the block after it stopped. The simulation predicts that the

Figure V.12: Sliding Block: final condition

middle of the block stops at 11.03 cm, which gives an error of

Errorx1
=

11.03 cm− 10.87 cm

2.84 cm
= 5.75% (V.19)

The average of the absolute values of the stresses at the interface (see equation (IV.61))

during the simulation from time = 38.7 µs until the block stopped are

|σ̄11| = 0.0223842
g

cmµs2
(V.20)
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|σ̄22| = 0.0471512
g

cmµs2
(V.21)

|σ̄12| = 0.0097610
g

cmµs2
(V.22)

The stress error in direction x2 is

Errorσ22
=

|σ̄22| − |σ22|
|σ22|

= −0.18% (V.23)

The error in the friction coefficient is

Errorfrctn =

|σ̄12|
|σ̄22|

− µ

µ
= 3.51% (V.24)

The average contact area per side during the simulation is 3.875 cm2, which results in

the following error:

ErrorA =
3.874 cm2 −A

A
= −3.67% (V.25)

All the errors with respect to the analytical solutions are within a reasonable margin.

In this simulation, IIVF was set to 1% to avoid the generation of an excessive

ǫ22, which results from an effect similar to the one encountered in section V.A. When

the void material reaches the IIVF value, the two solid materials inside the element

are considered in contact. Therefore, the velocities and accelerations of the two solid

materials are coupled in the normal direction. As a result, a gap between 0% and IIVF

of the volume of the nodal support is locked between the two solid materials, imposing

an extra strain on the materials in the normal direction. This effect increases with the

IIVF, and it is displayed in figure V.13 with an IIVF value of 5%. Figure V.14 shows

how the gap is reduced when an IIVF of 1% is applied. The amount of error introduced

in the simulation by the IIVF is problem dependent. In this problem, the IIVF value has

to be chosen carefully. A value that is too large produces the effect observed in figure
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Figure V.13: Sliding Block: gap between materials with IIVF = 5%

V.13, which ultimately generates a larger friction force, while a value that is too small

generates the opposite effect. In fact, a small amount of void material constantly appears

and disappears between the two sliding surfaces during the simulation. Therefore, an

excessively small IIVF can decouple the two solid materials in several nodal supports,

and therefore, the contact areas of these nodal supports are not accounted, resulting in a

smaller friction force. Future work aims to improve this aspect by compressing the void

material that has reached the IIVF value out from the nodal support allowing a large

IIVF to be employed in the simulation with higher accuracy. Note that figures V.13 and

V.14 use a different scale for the x1-direction and the x2-direction. Also, that the errors
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Figure V.14: Sliding Block: gap between materials with IIVF = 1%

associated with the IIVF decreases with the mesh size.
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V.C Taylor Anvil Test

In this example the X-FEM results for frictionless slip, slip with friction, and

fully bonded contact are compared to the mean strain rate mixture theory and the LS-

DYNA results. The problem consists of a bar made of magnesium with a diameter of

3.0 cm and a height of 6.0 cm striking a rigid block with an initial velocity of 0.03 cm/µs.

Figure V.15 displays the initial conditions, where the block is constrained in the normal

Figure V.15: Taylor Anvil Test: initial conditions

direction at the bottom boundary, symmetry is used on the left boundary, and the mesh

resolution is 10 elements per centimeter in both directions. The bar is elastic-plastic with

linear strain hardening, and the target behavior is purely elastic. Table V.3 shows the
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materials constants, where the rigid body behavior of the block is simulated by setting

Table V.3: Taylor Anvil Test: material constants

Magnesium Rigid Block

ρ 1.74 g/cm3 17.40 g/cm3

K 0.49 g/(cmµs2) 4.90 g/(cmµs2)

G 0.16 g/(cmµs2) 1.60 g/(cmµs2)

σy 0.69 × 10−3 g/(cmµs2) −

H1 1.0 × 10−3 −

its constants to ten times the values of magnesium.

Figure V.16 shows the effective plastic strain in the mean strain rate mixture

theory simulation. The lines drawn on the figures are contours of constant initial x1,

allowing the deformation to be visualized as with a Lagrangian mesh. The materials

at the interface have not moved with respect to each other and the bar material has

flowed over its lower right corner, generating a peak plastic strain of 3.00 in that region.

Moreover, the overall form of the bar does not display the expected mushroom shape.

Figure V.17 displays the effective plastic strain in the X-FEM simulation where

the frictionless contact is employed. The X-FEM simulation correctly predicts the mush-

room shape and the relative slip between the two materials, with a peak plastic strain

of 1.6. The height and bottom width of the bar in the X-FEM simulation after 100µs

(80µs since impact) are 4.03 cm and 3.89 cm, respectively.

Figure V.18 shows the results for the frictionless contact generated by LS-
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Figure V.16: Taylor Anvil Test: frictionless (Mixture Theory)

DYNA, which employed two-dimensional plane strain Lagrangian elements and the same

mesh resolution as Raven. The height and bottom width of the bar in the LS-DYNA

simulation after 100µs are 4.08 cm and 4.1 cm, respectively. The difference between

the width of the bar in the X-FEM simulation and in the LS-DYNA simulation can be

attributed to better interface definition that is characteristic of Lagrangian formulations.

However, the overall shape and plastic strain distribution of the two simulations agree.

Figure V.19 displays the result of the X-FEM simulation when a fully bonded

contact is enforced. As expected, figure V.19 matches the image of the mixture theory

simulation of figure V.16. The height and bottom width of the bar after 100µs are
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Figure V.17: Taylor Anvil Test: frictionless (X-FEM)

4.21 cm and 2.88 cm, respectively.

Figure V.20 shows the result of the LS-DYNA simulation with fully bonded

contact. The height and bottom width of the bar after 100µs are 4.17 cm and 2.94 cm,

respectively. The LS-DYNA simulation agrees with the X-FEM and the mixture theory

simulations.

In the next three examples, which employ three different friction coefficients,

the results of the X-FEM simulations are compared with the results obtained from LS-

DYNA. A static and kinetic friction coefficient of 0.75 is employed in the simulations

of figures V.21 and V.22. The X-FEM simulation of figure V.21 displays the deformed
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Figure V.18: Taylor Anvil Test: frictionless (LS-DYNA)

bar with a height and a bottom width of 4.12 cm and 3.10 cm, respectively, after 100µs.

Figure V.22 shows the simulation obtained from LS-DYNA, where the height and bottom

width of the bar after 100µs are 4.16 cm and 3.07 cm, respectively.

A static and kinetic friction coefficient of 0.5 is employed in the simulations

of figures V.23 and V.24. The X-FEM simulation of figure V.23 displays the deformed

bar with a height and a bottom width of 4.10 cm and 3.31 cm, respectively, after 100µs.

Figure V.24 shows the results obtained from LS-DYNA, where the height and bottom

width of the bar after 100µs are 4.15 cm and 3.30 cm, respectively.

Finally, a static and kinetic friction coefficient of 0.25 is employed in the sim-
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Figure V.19: Taylor Anvil Test: fully bonded (X-FEM)

ulations of figures V.25 and V.26. The X-FEM simulation of figure V.25 displays the

deformed bar with a height and a bottom width of 4.07 cm and 3.61 cm, respectively,

after 100µs. Figure V.26 shows the results obtained from LS-DYNA, where the height

and bottom width of the bar after 100µs are 4.12 cm and 3.66 cm, respectively.

Note how the sequence of the figures V.19, V.21, V.23, V.25, and V.17 is in

agreement with the respective contact enforcement. Moreover, the X-FEM results find

a good agreement with the LS-DYNA results.
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Figure V.20: Taylor Anvil Test: fully bonded (LS-DYNA)



94

Figure V.21: Taylor Anvil Test: 0.75 friction (X-FEM)
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Figure V.22: Taylor Anvil Test: 0.75 friction (LS-DYNA)
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Figure V.23: Taylor Anvil Test: 0.5 friction (X-FEM)



97

Figure V.24: Taylor Anvil Test: 0.5 friction (LS-DYNA)
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Figure V.25: Taylor Anvil Test: 0.25 friction (X-FEM)
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Figure V.26: Taylor Anvil Test: 0.25 friction (LS-DYNA)
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V.D Projectile Penetration

This example demonstrates the importance of accurately modeling slip with

the simulation of a projectile penetrating a plate. While ballistic penetration is not

frictionless, numerical friction is undesirable. The problem consists of a projectile made of

steel with a diameter of 10mm and a height of 24mm striking a 10mm thick copper plate

with an initial velocity of 0.02 cm/µs. Figure V.27 shows the initial conditions, where

Figure V.27: Projectile Penetration: initial conditions

the left and right boundaries are constrained in the normal and tangential directions, and

the mesh resolution is of 15 elements per centimeter in both directions. The behavior

of the two materials is elastic-plastic with linear hardening, table V.4 summarizes the
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materials constants.

Table V.4: Projectile Penetration: material constants

Steel Copper

ρ 7.87 g/cm3 8.96 g/cm3

K 1.63 g/(cmµs2) 1.17 g/(cmµs2)

G 0.79 g/(cmµs2) 0.41 g/(cmµs2)

σy 2.85 × 10−3 g/(cmµs2) 0.33 × 10−3 g/(cmµs2)

H1 1.0 × 10−3 1.0 × 10−3

Figure V.28 shows the results of the mean strain rate mixture theory simulation.

Note how the steel projectile does not flow past the copper plate because of the inability

of the mixture theory to allow slip between the two materials.

Figure V.29 displays the results of the X-FEM simulation. In this case, the

steel projectile penetrates the copper plate because the materials are allowed to slip

with respect to each other, as a result, the simulation provides a more realistic solution.

The difference between the mixture theory simulation of figure V.28, which is unable to

allow slip, and the X-FEM simulation of figure V.29, with the frictionless slip contact

enforced, is evident.
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Figure V.28: Projectile Penetration (Mixture Theory)
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Figure V.29: Projectile Penetration (X-FEM)
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V.E High Velocity Shock Compression of a Steel Powder

The shock compression example demonstrates the robustness of the X-FEM

algorithm and illustrates the energy conservation properties of the formulation. The

problem consists of a 0.2mm thick rigid plate that strikes a steel powder with an initial

velocity of 0.1 cm/µs. Figure V.30 shows the initial conditions, where the mesh resolution

Figure V.30: Steel Powder: initial conditions

is 750 elements per centimeter in both directions. The behavior of the rigid plate is purely

elastic, while the Steinberg-Guinan material model is used for the steel particles. Table

V.5 shows the materials constants used in the simulation, where the left superscript ⋆
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indicates the constants used to define the temperature T in equations (II.32) and (II.33).

The procedure used to obtain T can be found in [38]. The rigid plate is simulated by

setting its material constants to ten times the values of the steel particles.

Figure V.31 displays the internal energy per current volume in the materials

after 0.6µs. The results prove the stability of the algorithm, moreover, it is noticeable

Figure V.31: Steel Powder: shock compression

how the multitude of interfaces are also handled well by the algorithm.

Figure V.32 shows the total, internal, and kinetic energies throughout the sim-

ulation. Note that the total energy decreases with time, and that the decrease in kinetic



106

Figure V.32: Steel Powder: total, internal, and kinetic energies

energy is greater than the increase in internal energy. This loss of the kinetic energy is

due to using the conservation of linear momentum for inelastic collisions to couple the

velocity. The issue is not evident in the previous simulations because of the relatively

small area of the interfaces. In this example, however, a large number of interfaces are

present, and the problem is accentuated. The amount of kinetic energy loss decreases

with the mesh size because less mass, and therefore kinetic energy, is involved in the

velocity coupling. This problem is a subject for future research.
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Table V.5: Steel Powder: material constants

Steel Powder Rigid Plate

ρ 7.87 g/cm3 78.7 g/cm3

K 1.63 g/(cmµs2) 16.3 g/(cmµs2)

Go 0.79 g/(cmµs2) (G) 7.9 g/(cmµs2)

σyo 2.85 × 10−3 g/(cmµs2) −

β 43.0 −

n 0.35 −

⋆γi 0.0 −

σmax 2.4 × 10−3 g/(cmµs2) −

b 2.6 (cmµs2)/g −

b′ 2.6 (cmµs2)/g −

h −0.45 × 10−3 −

f 1.0 × 10−3 −

⋆A 55.35 g/mol −

⋆Tmo 2380.0 K −

⋆γo 1.93 −

⋆a 0.53 −



Chapter VI

Conclusions and Future Work

VI.A Summary and Conclusions

A new multi-material arbitrary Lagrangian Eulerian formulation method that

can effectively simulate different types of contact has been developed. The method pro-

vides each node independent degrees of freedom for each material present in the nodal

support. As a result, each material is able to move independently through the mesh.

The interactions between the materials are controlled by coupling the accelerations and

velocities of the multi-material nodes allowing perfectly bonded, frictionless slip, and slip

with friction contact to be modeled. The effectiveness of the method has been demon-

strated along with its superiority over mixture theories. Example V.A demonstrated

the higher accuracy of the method with respect to the mean strain rate mixture theory

upon the contact, or coupling, of two materials. In addition, the behavior of the separa-

tion condition was observed. The results of a small deformation impact simulation were

successfully compared to the analytical solution of the problem. The friction algorithm

108
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was validated in example V.B by comparing the results of the simulation to the ana-

lytical solution. In example V.C, the inability of the mixture theory to allow slip was

emphasized. The results were compared to the X-FEM simulation, which did not show

this limitation. Moreover, the X-FEM simulations were in good agreement with the La-

grangian simulations produced by LS-DYNA. Example V.D highlighted the importance

of being able to correctly simulate the slip contact type with a projectile penetration

problem. The simulations obtained from the mixture theory and the X-FEM formula-

tion were compared, demonstrating the superiority of the new method. Finally, example

V.E tested the robustness of the X-FEM formulation with good results.

The X-FEM formulation is suitable for a vast range of solid mechanics problems,

however, its true effectiveness is achieved with problems presenting large deformations

(e.g. materials processing).

VI.B Future Work

The new contact algorithm is promising, however, it is at an early stage of

development and the room for improvement is considerable. The following list presents

a few possible areas of future research.

• A different approach to the velocity coupling algorithm of subsection IV.C.1 can

improve the energy conservation of the formulation.

• The accuracy of the nodal normals in subsection IV.C.2 can be improved by vol-

ume weighting the mixed elements and intra-elements normals, such that the in-

terface normals associated with small fragment of materials have little influence.
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In addition, more representative nodal normals can be achieved by allowing all

the materials inside the two elements that define an intra-element interfaces to be

considered as materials at the interface.

• Projection matrices relating two non-adjacent materials can be improved to better

describe the force and velocity contribution exchanged between the two materials.

• The dependency between the accuracy of the interface behavior and the IIVF value

can be ameliorated by allowing the stress of the solid materials in contact to relax

until the void material is completely compressed out (see examples V.A and V.B).

• The friction algorithm can be extended to include more than two solid materials

per nodal support. In addition, the calculation for the contact area in the nodal

support can be improved to achieve a more representative value.
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