
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Data-Driven Methods for Safe Task Transfer Learning with Model Predictive Control

Permalink
https://escholarship.org/uc/item/1fr8t4r8

Author
Vallon, Charlott Sophie

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1fr8t4r8
https://escholarship.org
http://www.cdlib.org/

Data-Driven Methods for Safe Task Transfer Learning with Model Predictive Control

by

Charlott Sophie Vallon

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Mechanical Engineering

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Francesco Borrelli, Chair
Assistant Professor Mark Mueller

Associate Professor Benjamin Recht

Fall 2021

Data-Driven Methods for Safe Task Transfer Learning with Model Predictive Control

Copyright 2021
by

Charlott Sophie Vallon

1

Abstract

Data-Driven Methods for Safe Task Transfer Learning with Model Predictive Control

by

Charlott Sophie Vallon

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Francesco Borrelli, Chair

The topic of learning in control has garnered much attention in recent years, with many
researchers proposing methods for combining data-based learning methods with more tra-
ditional control design. For systems repeatedly performing a single task, iterative learning
controllers provide a structured, model-based way of using collected data to iteratively im-
prove on a particular task while guaranteeing constraint satisfaction during the learning
process. However, it remains difficult to design model-based learning controllers that both
perform well and act safely in a variety of changing or unknown environments.

This dissertation considers a particular problem: how to use stored trajectory data from a
system solving an initial set of tasks in order to design a controller that performs a related
task in a new environment both safely (satisfying all new constraints) and effectively (max-
imizing a desired objective). We approach this question from a Model Predictive Control
(MPC) perspective. Fundamentally, we ask how traditionally model-based terminal sets and
cost functions of the MPC may be replaced with data-driven counterparts while maintaining
feasibility guarantees that classical MPC theory offers. We consider various instantiations
of the changing environment problem, including known or unknown task environments with
time-invariant or time-varying constraints. For each scenario, we propose approaches for
safe and effective control design. Using tools from MPC theory, optimization, and statistics,
we demonstrate the safety (with high probability) for each proposed control scheme. The
presented control approaches are validated in simulations and experiments in a variety of
applications, including autonomous racing, robotic manipulation, and computer game tasks.
The evaluations demonstrate the potential for safely integrating data in model-based control
design.

i

For all my wonderful families.

And especially for Jacqueline and Sean,
my very greatest joys and inspirations,

for their unconditional support.

ii

Contents

Contents ii

List of Figures v

List of Tables viii

1 Introduction 1
1.1 Background . 1
1.2 Problem Formulation . 4
1.3 Dissertation Outline and Contributions . 8
1.4 List of Publications . 9
1.5 Preliminaries . 9

2 Task Decomposition 11
2.1 Introduction . 11
2.2 Problem Formulation . 12
2.3 Task Decomposition for ILMPC . 15
2.4 Properties of TDMPC Policies . 19
2.5 Application 1: Autonomous Racing . 21
2.6 Application 2: Robotic Path Planning . 24
2.7 Discussion . 28
2.8 Conclusion . 30
2.9 Additional Results . 32

3 Task Decomposition for Piecewise Linear Systems 33
3.1 Introduction . 33
3.2 Problem Formulation . 34
3.3 Safe Set Based ILMPC for Piecewise Linear Systems 34
3.4 Task Decomposition for Piecewise Linear ILMPC 39
3.5 Properties of the PWL-TDMPC Policy . 42
3.6 Application: Robot Path Planning . 42
3.7 Conclusion . 45

iii

4 Probabilistically Safe Controllable Sets 46
4.1 Introduction . 46
4.2 Problem Formulation . 49
4.3 Probabilistically Safe Controllable Sets . 51
4.4 Approximating Controllable Sets . 54
4.5 Learning Strategies To Approximate Controllable Sets 56
4.6 Applying Learned Strategies . 59
4.7 Low-Level Controller . 65
4.8 Properties of PSCS Policies . 67
4.9 Application: Integrator System . 69
4.10 Discussion . 73
4.11 Conclusion . 77

5 Hierarchical Predictive Learning 80
5.1 Introduction . 80
5.2 Problem Formulation . 81
5.3 Hierarchical Predictive Learning Control . 82
5.4 Learning Strategies From Data . 85
5.5 Safely Applying Learned Strategies . 92
5.6 Low-level Controller Design . 95
5.7 The HPL Algorithm . 96
5.8 Properties of HPL Conrol . 96
5.9 Application 1: Robotic Manipulator Navigation 98
5.10 Application 2: Formula 1 Racing . 102
5.11 Application 3: Flappy Bird . 109
5.12 Discussion . 113
5.13 Conclusion . 114
5.14 Additional Results . 115

6 Discussion 117
6.1 Task Decomposition . 117
6.2 Task Decomposition for Piecewise Linear Systems 119
6.3 Probabilistically Safe Controllable Sets . 120
6.4 Hierarchical Predictive Learning . 122
6.5 Performance Comparison . 123

Bibliography 125

A Proofs 136
A.1 Proofs from Chapter 2 . 136
A.2 Proofs from Chapter 3 . 137
A.3 Proofs from Chapter 4 . 138

iv

A.4 Proofs from Chapter 5 . 142

v

List of Figures

1.1 Example of an environment descriptor function for a racing task. 5

2.1 Depiction of the TDMPC Alg. 1 applied to stored task data from an autonomous
racing application. More details can be found in Sec. 2.5. 17

2.2 Each subtask of the racing task corresponds to a segment of the track with con-
stant curvature. The vehicle state s tracks the distance traveled along the centerline. 21

2.3 The TDMPC-initialized ILMPC converges to a locally optimal trajectory faster
than the PID-initialized one. 23

2.4 Topview of the robotic path planning task. Each subtask corresponds to an
obstacle in the environment with constant height. 24

2.5 The UR5e manipulator has very high tracking accuracy, allowing us to model the
end effector as an integrator system in place of a more complex dynamic model. 25

2.6 The TDMPC-initialized ILMPC solves T 2 much faster than the ILMPC initialized
with a center-height tracking policy π0. 28

2.7 An overview of the TDMPC approach for using stored data to efficiently find an
initial trajectory for a new ILMPC. 30

2.8 Additional examples from the autonomous racing application. 32

3.1 Convex subtask safe sets contain states from which the transition set can be
reached in a certain number of steps. Data reproduced from robotic path-planning
application (see Sec. 3.6). 36

3.2 For the double integrator system (3.9 - 3.10), the chosen target set (3.11) is not
an invariant set, as the N -step controllable sets are not subsets of the (N+1)-step
controllable sets. 38

3.3 For systems with piecewise-linear dynamics and piecewise-convex constraints, the
multiple pointwise controllability checks can be replaced with a single convex
controllability check. 41

3.4 Topview of the robot path planning task. Each subtask corresponds to a pair of
upper and lower obstacles. 42

3.5 Alg. 2 produces a significantly larger set of feasible states for T 2 in 10% of the
time as the algorithm in [122]. The sampled guard sets for each subtask are
plotted in black. 44

vi

4.1 Offline, we learn a strategy map ḡ from a dataset D containing stored executions
from previous tasks. Online, at each time k, an N -step local environment forecast
zk:k+N is used to determine if a new high-level control strategy sk is available.
Strategies provide instructions how to construct a terminal set XN(sk) towards
which to steer the system. 52

4.2 We use data from previous tasks to find ellipsoidal approximations of controllable
sets for different scenario conditions. 54

4.3 The PSCS Alg. 3 proposes a controllable set to the system at each time step,
shown in green. Using this ellipsoidal set as a a terminal set in a low-level MPC
results in a feasible closed-loop trajectory satisfying all time-varying constraints
(blue boxes). The naive MPC without a terminal set fails to complete the task. 71

4.4 As the system solves the new task, it plans 4-step open-loop trajectories ending
in the GP-constructed terminal sets (shown in green). The terminal sets ensure
that the system will be able to satisfy future unknown environmental constraints. 72

5.1 Sample of strategies taught at various online racing schools. 83
5.2 The Hierarchical Predictive Learning (HPL) control architecture. At time k,

the state xk and T -step environment forecast θk:k+T are used to evaluate the
control strategy. A strategy consists of reduced dimensions sets, X̃k+N and Ũk:k+N ,
towards which to steer the system in the next N time steps and input guidelines
for getting there. These sets are used to construct a full-dimension target set,
Xk+N , used as a terminal set in an MPC controller with horizon NMPC. At each
time k, SetListk determines the relationship between N and NMPC. The low-level
control loop is drawn in black, and shaded yellow blocks indicate control design
choices. 84

5.3 Each dimension x̃(i) of the strategy set X̃k+N is bounded using the mean and
variance of a GP evaluation (5.19). 90

5.4 In the lifted strategy set (5.22), the strategy states x̃(1) and x̃(2) are constrained
to lie in the strategy set, with additional states like x(3) constrained according
to XE. 93

5.5 As β varies, the constraints on the non-strategy state x(3) are imposed either
through XE (if β = 0), X (θ) (if β = 1), or a combination of both (if 0 < β < 1). 94

5.6 The end-effector is constrained to stay in the light blue tube X (Θ). The strategy
states measure the cumulative distance along and the distance from the centerline. 99

5.7 At each time step, the target set list (5.24) provides different regions in the task
space for the system to track. 100

5.8 The HPL execution is compared to the raceline (the fastest possible execution), as
determined by an LMPC [100]. Respective execution times in [s] are 6.5 (LMPC),
8.8 (HPL), and 12.8 (Centerline-tracking πe). 101

5.9 The same task is performed using two different values of β. For this task, using
β = 1 led to eventual constraint violation because the terminal constraints were
not formed in conjunction with the safety controller. 102

vii

5.10 The two strategy GPs, trained using minimum-time trajectory data from seven
race tracks, are able to predict (red) the centerline deviation and longitudinal
velocity of a new, unseen track’s raceline (blue). 105

5.11 The HPL controller is able to match the speed profile and shapes of the mini-
mum time trajectory, slowing down in curves and speeding up to the maximum
allowable velocity on straight segments. 106

5.12 The HPL controller uses learned strategies to cut corners in all three test race
tracks. 107

5.13 The HPL controller is able to match the speed profile and shapes of the minimum
time trajectory . 108

5.14 A strategy parameterized as a neural network can also capture the true raceline
reasonably well, but with more errors in the predicted centerline deviation than
the strategy GP. 109

5.15 The goal of Flappy Bird is to guide the bird through a series of pipe obstacles.
Only the pipes visible in the game screen (dashed rectangle) are visible to the
bird at any time. 110

5.16 The open-loop trajectories of the HPL controller (left image, in red) and the
standard MPC controller (right image, in blue) are compared. The HPL controller
uses the pre-determined safety set XE to plan trajectories that will be feasible
regardless of the upcoming pipe obstacle height, resulting in a trajectory towards
the center of the screen. 112

5.17 The HPL controller matches the speed profile and shape of the minimum time
trajectory on the BE track. 115

5.18 The HPL controller matches the speed profile and shape of the minimum time
trajectory on the US track. 116

viii

List of Tables

3.1 Controllability Analysis Run-Time . 45

4.1 As the state dimension n and number of convex hull facets p increases, the solve
time for (4.11) increases significantly. Depending on the application, these are
not suitable for real-time control tasks. Numbers represent the average duration
of ten trials each calculated using Yalmip in Matlab. 57

4.2 We compare the online evaluation time required at each time step for three differ-
ent control approaches. Numbers represent the average duration of 100 trials each
calculated using Mosek in Python, normalized by the evaluation time required by
the safety controller for each n and p combination. For reference, the safety con-
troller with (n = 2, p = 8) required 0.02 seconds to evaluate, and (n = 7, p = 75)
required 0.04 seconds. 76

5.1 The HPL controller results in lap times less than 5% longer than the minimum-
time trajectory, demonstrating that an effective racing strategy was learned. . . 106

5.2 The HPL controller is compared with a publicly available standard MPC con-
troller [139]. In a trial of 50 tasks, the HPL controller significantly outperformed
the standard controller. 111

6.1 Comparing various features of the presented control methods. 124

ix

Acknowledgments

I am deeply grateful for the generous financial support of the National Institute for
Standards and Technology and the GMSE Fellowship throughout my graduate studies. The
work presented in this dissertation is also based upon research generously supported by the
National Science Foundation under Grant No. 191853 and the Office of Naval Research
Grant No. N00014-18-1-2833. Any conclusions herein do not necessarily reflect their views.

No paragraph here could adequately express the immense gratitude I feel for my advisor,
Francesco Borrelli, but his feedback, mentorship, and constant encouragement during the
last five years have made me an infinitely better researcher and person. I would also like
to thank Professor Koushil Sreenath and Professor Laurent El Ghaoui for being on my
Qualifying Exam committee, and Professor Mark Mueller and Professor Benjamin Recht for
serving on both my Qualifying and Dissertation Committees.

Being a part of the Model Predictive Control lab has been the happiest part of graduate
school. I am very thankful to my labmates for their company during late-night paper writing
sessions, assistance in deciphering Borrelli’s feedback, and the general support of all my
endeavors (except vegetarianism). I am so proud to be academically and socially associated
with you, and you all are what I will miss most about Berkeley.

They say beauty is in the eyes of the beholder, and never is this more true than for
Etcheverry Hall. I would very much like to thank all my Etcheverry friends, who have made
the building’s monochrome hallways feel like a cozy home. Thank you especially to Monica
Li for not letting me stop running before we reached the twelve mile mark (a true story
and a metaphor); to Erin Kunz for always being there for me and always knowing what I
mean and never laughing at my Peets order; to Tony Zheng for being an all-around inspiring
human, co-GSI, mentor, Wordle player, and chef; to Ed Zhu for being the most excellent desk
neighbor and a true friend through small (a bug in the code) and large (a bug in the wall)
problems; to Brian Reli-Bri Cera for being my project partner every time and rolling with
my last-minute changes to the presentation script (also every time); and to Kate (Kathy)
Schweidel for being my sounding board, live-sharer, and other half. What a complete joy to
know all of you and to have you in my corner.

Thank you so very much to all my family for the phone calls, visits, care packages, love,
and support throughout the ups and downs of these years at Berkeley. A special thanks also
to the Anderson family for providing a home away from home, and especially to Teresa, who
to me represents everything right in this world and who I try hard to emulate.

To my sister Jackie: there is no responsibility I take more seriously than being your older
sister, but you make it very easy and extremely fun. I am so proud of you, so grateful to
have you as my best friend, and thankful for our sister days. And, finally, thank you to Sean
Anderson, for taking care of me and making these last four years my happiest and most
adventurous. You remain my greatest luck and best decision. This dissertation is dedicated
to the two of you. I don’t see how I could have achieved any of this without you, and I’m so
thankful.

1

Chapter 1

Introduction

1.1 Background

Control design for systems repeatedly performing a single task has been studied extensively.
Such problems arise frequently in practical applications [20, 130], and examples range from
autonomous cars racing around a track [65, 22, 101] to robotic system manipulators per-
forming industrial warehouse tasks [53, 3, 126, 129]. In these cases, the system repeatedly
performs the same task under a constant set of environment constraints.

Iterative Learning Controllers (ILCs) aim to autonomously improve a system’s closed-
loop reference tracking performance at each iteration of a repeated task while rejecting
periodic disturbances [20, 108]. In classical ILC, the controller uses tracking error data
from previous task iterations to better track a provided reference trajectory during the cur-
rent iteration. ILC methods been used in a variety of applications, ranging from quadrotor
control [35] to additive manufacturing [4], robotics [52], and ventricular assist devices [58].
Recent work has also explored reference-free ILC for applications whose goals are better
defined through a performance metric, rather than a reference trajectory. Examples include
autonomous racing tasks (e.g. “minimize lap time”) [101, 56], or optimizing flight paths
for tethered energy-harvesting systems (e.g. “maximize average power generation”) [29]. In
these cases, the controller again uses previous iteration data to improve closed-loop perfor-
mance, but with respect to the chosen performance metric rather than reference tracking
error.

Because ILC policies are trained to attenuate task-specific disturbances or avoid task-
specific obstacles, the learned ILC policy is generally not cost-effective, or even feasible, if the
task environment or reference trajectory changes [101, 123]. Several approaches have been
proposed for improving ILC performance in these situations, including representing tasks in
terms of basis functions [140, 51], enforcing sparsity in the ILC policy to prevent overfitting to
a particular task [84], or training neural networks to predict the task-specific ILC input given
an environment observation [136, 88]. Generally, if the task goal or environment changes, a
new reference trajectory with which to initialize the ILC needs to be designed to match the

CHAPTER 1. INTRODUCTION 2

new task.
Many methods exist to use data collected from a task to efficiently find trajectories for

variations of that task. Such a trajectory could then, for example, be used to initialize a
new ILC or to solve the task directly. In the simplest case, two tasks differ only in their
environment constraints (e.g. different track shape in a racing task), while task goals (e.g.
“reach the finish line”) and performance objectives (e.g. “minimize lap time”) remain the
same. These approaches can loosely be considered in three groups: model-free transfer
learning, trajectory libraries, and model-based generalizable policies.

AI/Transfer learning

In the Artificial Intelligence and Reinforcement Learning communities, the ability to generate
a control policy which performs well under different environment conditions is a common
challenge, often referred to as “generalization” or “task transfer learning” [119, 133, 138]. The
challenge results because policies learned from repeated tasks are trained to avoid specific
environmental obstacles or disturbances; if the task environment (such as the location of
the obstacles) changes, purely data-driven policies are generally no longer guaranteed to be
feasible. Because these approaches are typically model-free, they lack a structured way of
adapting to new changes in the environment. As a result, model-free approaches typically
focus on minimizing a policy’s performance loss between environments [27, 80], rather than
guaranteeing feasibility of the policy in a new environment.

Similar strategies are proposed in [45, 117]. The authors in [63] propose learning a
feature-based value function approximation in the space of shared task features. The learned
function then provides an initial guess for the new task’s true value function, which can be
used to initialize a standard RL method. These mappings must be learned and evaluated
for each saved state, scaling poorly to long horizon tasks. Furthermore, these methods
offer no guarantees for safety in the new task. Because the safety of the policy will be of
high importance in this dissertation, we will not include further details here on model-free
approaches; however, any of the cited works are excellent references for the interested reader.

Trajectory libraries

A variety of model-based methods have been suggested for finding feasible trajectories or
policies for new tasks using stored data from related tasks. One popular approach relies on
building trajectory libraries [10, 113, 72, 116], and adapting the stored trajectories online to
the changed constraints of the new tasks.

For example, the authors of [82] design new walking gaits for a bipedal robot navigat-
ing across stepping stones by linearly interpolating trajectories from a library of previously
recorded asymptotically stable periodic walking gaits. A trajectory library built using dif-
ferential dynamic programming is used in [72] to design a controller for balance control in
a humanoid robot. In this approach, a trajectory is selected from the library at each time
step based on current task parameter estimates and a k-nearest neighbor selection scheme.

CHAPTER 1. INTRODUCTION 3

A similar method is explored in [116], where differential dynamic programming is combined
with receding horizon control. The authors of [135] consider a set of actions and correspond-
ing motion primitives for iterative teleoperative tasks. Given a new user-provided input,
probabilistic inferences are made over the respective set of locally feasible trajectories. Sim-
ilar approaches considering probabilistic distributions over trajectory libraries are proposed
for robotic manipulators and autonomous vehicles in [87] and [137], respectively.

In [113], manually chosen environment features are used to divide a task and create
a library of local trajectories in relative state space frames. These trajectories are then
pieced back together in real-time according to the features of the new task environment.
The authors in [11] propose a two-step approach: a desired path planning method is run
in parallel with a retrieve-and-repair algorithm that selects an appropriate trajectory from
a trajectory library, and adapts the trajectory to the constraints of a new task. Retrieve
and repair was shown to decrease overall planning time, but requires checking for constraint
violations at each point along a retrieved trajectory.

The authors in [5] propose piecing together stored trajectories corresponding to discrete
system dynamics only at states of dynamics transition. Thus, this method can avoid verifying
constraint satisfaction at each point of the trajectory. However, this method only applies to
discontinuities in system dynamics, and does not generalize to other task variations.

While trajectory library methods decrease planning time, they do require maintaining
trajectory libraries and verifying or interpolating the saved trajectories at each new time
step, which may be unneccessary and inefficient, and cannot typically a priori guarantee
constraint satisfaction in the new task.

Generalizable policies

A third type of approach learns model-based, generalizable policies from stored task data.
These methods can sometimes guarantee feasibility (at least with high likelihood) by incor-
porating system models in the policy design [14, 50, 114, 90], and here, too, approaches have
been proposed for applications ranging from autonomous vehicles to robotic manipulation
[87, 42, 123].

In [90], a fixed map is learned between a given reference trajectory and the input sequence
required for a linear time-invariant system to track that reference trajectory. Once learned,
this map can be used to determine an input sequence that lets the linear system track a new
reference trajectory. Thus this approach defines a policy given a new reference trajectory,
but does not directly provide the trajectory itself. No adaptations for nonlinear systems are
provided.

The authors of [31] consider linear hybrid systems. Data is collected in individual modes,
and a polynomial optimization problem is formulated to find a stabilizing controller for
arbitrary switching sequences. The authors of [43] learn a mapping between a robot gripper
pose performing the same task with different tools, based on online human corrections. While
this method was effective in demonstrations, it required human supervision and intervention,
and provided no safety guarantees.

CHAPTER 1. INTRODUCTION 4

MPC-based approach

In this dissertation, we approach the task transfer learning problem from an MPC perspec-
tive. Our goal will be to use stored trajectory data from previous tasks, collected using an
ILC or other controller, in order to find MPC policies for tasks with different environmental
constraints. We specifically desire that these MPC policies are:

1. safe (satisfy all constraints), with constraint satisfaction guarantees before beginning
the new control task,

2. effective (optimize a desired objective), and

3. efficient to store and evaluate.

To the best of our knowledge, this is the first work that considers such a systematic MPC-
focused approach. We formalize our problem statement next, and conclude this section with
a dissertation outline.

1.2 Problem Formulation

We consider a discrete-time system with dynamical model

xk+1 = f(xk, uk), (1.1)

subject to system state and input constraints

xk ∈ X , uk ∈ U . (1.2)

The vectors xk ∈ Rnx and uk ∈ Rnu collect the states and inputs at time k.

Tasks

The system (1.1) solves a series of n different control tasks {T 1, . . . , T n}. Each control task
T i is defined by the tuple

T i = {X ,U ,P i,Θi}, (1.3)

where X and U are the system state and input constraints (1.2). P i ⊂ X denotes the task
target set the system (1.1) needs to reach in order to complete task T i; thus, the task ends
when xk ∈ P i. Lastly, Θi is an environment descriptor function, formalized below. Note
that two tasks can differ either in their goal and/or their environment descriptor function.

CHAPTER 1. INTRODUCTION 5

(a) The environment descriptor function
Θ gives a local description of the task
environment, such as a camera image of
the track at a particular location.

(b) From this description, local environ-
ment constraints such as lane boundaries
the vehicle must observe, can be deter-
mined.

Figure 1.1: Example of an environment descriptor function for a racing task.

Task Environments

The n solved control tasks {T 1, . . . , T n} take place in various task environments, parame-
terized by different environment descriptor functions {Θ1, . . . ,Θn}. In each control task the
system model (1.1) and constraints (1.2) are identical. However, the environment descriptor
function generates additional task-specific environmental state constraints.

For each task T i, the environment descriptor function Θi maps the state xk at time
k to a description of the local task environment, denoted Θi(·). The set of states satis-
fying the environmental constraints imposed by this local task environment are denoted
by E(Θi(·)). Future chapters will make specific assumptions on the arguments of Θi (e.g.
state-dependence, time-invariance), which is why we use only general notation here.

Note that whenever Θi is time-varying, the combined constraints may also be state- and
time-dependent. We write these joint system and environment state constraints as

xk ∈ X (Θi(·)) = E(Θi(·)) ∩ X . (1.4)

For notational simplicity, wherever it is obvious we will drop the argument dependence and
refer to the combined system and environment constraints (1.4) simply as X (Θi).

Racing Example

Examples of local task environment descriptions Θi(·) include camera images, the coefficients
of a polynomial describing a race track’s lane boundaries, or simple waypoints for tracking.
Consider, for example, an autonomous racing task where a car has to drive around a track

CHAPTER 1. INTRODUCTION 6

as quickly as possible, with the task target set P defined as the finish line. We will refer
back to this example repeatedly throughout this work.

Here, the vehicle-specific state and input constraints (1.2) may include acceleration and
steering limits imposed by the construction of the vehicle itself. The environment descriptor
function Θi may map a state along the track to a frontview camera image of the track at
that point in space and time (Fig. 1.1a). From this camera environment description, we can
then extract the additional environmental constraints E(Θi(·)), such as lane boundaries the
vehicle needs to remain in, which are dictated by the environment rather than the vehicle
(Fig. 1.1b).

Task Executions

A feasible execution of the task T i in an environment parameterized by Θi is defined as a
pair of state and input trajectories

Ex(T i,Θi) = [xi,ui] (1.5)

xi = [xi0, x
i
1, ..., x

i
Di], xik ∈ X (Θi) ∀k ∈ [0, Di], xiDi ∈ P i

ui = [ui0, u
i
1, ..., u

i
Di], uik ∈ U ∀k ∈ [0, Di],

where ui collects the inputs applied to the system and xi is the resulting state evolution. Di

is the duration of the execution of task T i. The final state of a feasible task execution, xiDi ,
is in the task’s target set P i ⊂ X (Θi). Certain techniques proposed in this work will make
additional assumptions about the control objectives when the executions were created, but
these will be introduced in the appropriate sections.

In the racing task, feasible executions would be vehicle state and input trajectories obey-
ing the lane boundaries described by the environment descriptor function.

Problem Definition

Given a dynamical model (1.1) with state and input constraints (1.2), (1.4), and a collection
of feasible executions (1.5) that solve a series of n control tasks, {Ex(T 1,Θ1), ...,Ex(T n,Θn)},
our aim is to find a data-driven MPC policy u = π(x, ·) that results in a feasible and high-
performance execution of a new task in a new environment: Ex(T n+1,Θn+1). Such a policy

CHAPTER 1. INTRODUCTION 7

will be of the form:

u? = arg min
uk|k,...,uk+N−1|k

N−1∑
t=0

pk(xk+t|k, uk+t|k, ·) + q(xk+N |k, ·) (1.6)

s.t. xk+t+1|k = f(xk+t|k, uk+t|k) (1.7)

uk+t|k ∈ U , ∀t ∈ {0, . . . , N − 1} (1.8)

xk+t|k ∈ X (Θn+1), ∀t ∈ {0, . . . , N} (1.9)

xk|k = xk (1.10)

xk+N |k ∈ XN (1.11)

uk = π(xk, ·) = u?k|k. (1.12)

The policy (1.6-1.12) searches for the input sequence u? of length N that minimizes a cost
(1.6) over the planning horizon N while satisfying the system dynamics (1.7) and constraints
(1.8-1.9). The predicted state sequence is initialized with the current state xk (1.10), and the
last predicted state, xk+N |k, is constrained to be in a chosen terminal set (1.11). At time k,
the N -step input sequence that minimizes the chosen objective function (1.6) is calculated
and the first input u?0|k is applied to the system. A new N -step input sequence is then
calculated again at time k + 1, potentially using updated information about the system or
environment. This iterative planning and executing approach is known as receding horizon
control.

In this dissertation, we will present multiple approaches to using stored data from previ-
ous tasks (1.5) to design MPC cost functions (1.6) and terminal constraints (1.11). In MPC
theory, the cost function and terminal constraints are typically used to demonstrate recur-
sive feasibility of the controller. Recursive feasibility refers to the desired property that if
the MPC controller (1.6-1.12) is applied repeatedly to a dynamical system, the optimization
problem (1.6-1.11) will always have at least one feasible solution. This ensures that the MPC
will always be able to find a constraint-satisfying input (1.12) to apply to the system. Future
chapters will analyze this property, and how to design terminal constraints that induce such
a property, in more detail.

If feasibility were the only goal, one approach would be to use a robust, conservative
controller to solve the new task—for example, tracking the centerline of the road at a very
slow longitudinal speed. However, we would also like to solve the new task well. Thus, in
addition to satisfying the new environment constraints, the execution should try to minimize
a desired objective function J(xn+1,un+1). Assumptions about J will be discussed in future
sections.

Remark 1. For notational simplicity, we write that the collected data set contains one
execution each from every previously solved task. However, in practice one may of course
collect multiple executions of each task T i. In this case, the executions can simply be stacked,
and the procedures proposed in this dissertation can proceed as described.

CHAPTER 1. INTRODUCTION 8

Remark 2. Throughout this dissertation, we assume perfect knowledge of the system dynam-
ics model (1.7). The approaches presented can also be straightforwardly extended to models
with bounded uncertainty.

1.3 Dissertation Outline and Contributions

This dissertation discusses four different methods to approaching the changing environment
problem.

In Chapter 2, a task decomposition approach based on iterative learning MPC is intro-
duced. Task decomposition proposes breaking larger tasks into sequences of subtasks, so
that any two related tasks differ only in the sequence ordering of the subtasks. Thus, similar
to trajectory library methods, the question becomes whether stored subtask trajectories can
be pieced together to form a feasible task trajectory through the constraints of the new
task. There are various ways trajectories can be stitched together; we propose an efficient
algorithm that adapts the original subtask trajectories (and original task policy) only at
points of subtask transition, rather than along the entire previous trajectory, via one-step
controllability problems. If the proposed algorithm converges, it provides both a trajectory
as well as a policy that solve the new task while satisfying all system and environmental
constraints.

Chapter 3 describes how to reduce the computational complexity of task decomposi-
tion, while increasing the domain of the resulting policy, for piecewise linear systems with
piecewise convex state and environment constraints. The required offline calculation time is
improved by reducing the number of one-step controllability problems performed to adapt
stored subtask trajectories, and reformulating each into a convex optimization problem for
efficient calculation.

In Chapter 4, we attempt to generalize the key ideas of task decomposition. Instead
of storing and piecing together recorded subtask trajectories, we train Gaussian processes
to learn data-driven estimates of the stored trajectories. For such an approach, rather
than requiring that tasks are composed of the same set of subtasks, we simply require that
each task’s environment constraints evolve according to a task-invariant, but potentially
time-varying, function. This allows us to design controllers for entirely new kinds of task
environments. We demonstrate that for linear time-varying systems with convex constraints,
the proposed algorithm results in a control policy that satisfies all (potentially time-varying)
constraints of the new task.

Lastly, whereas Chapters 2-4 focus on using stored task trajectories to estimate control-
lable sets and adapt these to the constraints of the new task, Chapter 5 uses stored data to
learn generalizable control strategies. At each time step, based on a local forecast of the new
task environment, the learned strategy consists of a target region in the state space and input
constraints to guide the system evolution to the target region. These strategies are learned
from stored trajectories of previous tasks, and then applied to the new task in real-time.
The target regions are used as terminal sets by a low-level model predictive controller. By

CHAPTER 1. INTRODUCTION 9

working in conjunction with a model-based safety controller, this method is guaranteed to
satisfy all constraints and results in a feasible task execution, despite only relying on a local
forecast of the new task (i.e. the entire task description is not necessarily known a priori).

Each proposed method is evaluated in a variety of applications. Concluding remarks
comparing the effectiveness and efficiencies of the control designs are written in Chapter 6.

1.4 List of Publications

The results presented in this dissertation have appeared in a number of publications authored
by the author of this dissertation. In particular:

• Chapter 2 is based on:

– C. Vallon and F. Borrelli. “Task decomposition for iterative learning model pre-
dictive control.” In: 2020 IEEE American Control Conference (ACC). 2020, pp.
2024-2029.

• Chapter 3 is based on:

– C. Vallon and F. Borrelli. “Task decomposition for MPC: A computationally effi-
cient approach for linear time-varying systems.” In: 2020 IFAC World Congress.
2020, pp. 4240-4245.

• Chapter 5 is based on:

– C. Vallon and F. Borrelli. “Data-driven hierarchical predictive learning in un-
known environments.” In: 2020 IEEE 16th International Conference on Automa-
tion Science and Engineering (CASE). 2020, pp. 104-109.

– C. Vallon and F. Borrelli. “Data-driven strategies for hierarchical predictive con-
trol in unknown environments.” To appear in: 2021 Transactions on Automation
Science and Engineering (TASE).

1.5 Preliminaries

The methods introduced in this dissertation make use of the following definitions.

Definition 1. For a given set R, the N -step controllable set KN(R) of a system (1.1)
subject to constraints (1.2)-(1.4) is defined recursively as:

Pre(R) = {x : ∃u ∈ U : f(x, u) ∈ R}
K0(R) = R
Kj(R) = Pre(Kj−1(R)) ∩ X , j ∈ {1, ..., N} .

CHAPTER 1. INTRODUCTION 10

For all states in the N-step controllable set to R there exists a feasible input sequence of
length N that drives the the system into R in N steps.

Definition 2. A system (1.2) is N-step controllable from an initial state x0 to a terminal
state xP if x0 ∈ KN(xP).

Definition 3. The set A is controllable to a set R if there exists an N > 0 such that
A ⊆ KN(R).

Note that if an MPC can find a state trajectory ending in a terminal set that is controllable
to a goal set, this also guarantees the existence of a feasible state trajectory from the current
state to the goal set.

Definition 4. The set P is a control-invariant set for a system (1.1) subject to constraints
(1.2)-(1.4) if

∀xk ∈ P , ∃uk ∈ U : xk+1 = f(xk, uk) ∈ P .

11

Chapter 2

Task Decomposition

2.1 Introduction

Control design for systems repeatedly performing a single task has been studied extensively.
Such problems arise frequently in practical applications [20, 130] and examples range from
autonomous cars racing around a track [65, 22, 101] to robotic system manipulators [53, 3,
126, 129]. Iterative Learning Controllers (ILCs) aim to autonomously improve a system’s
closed-loop reference tracking performance at each iteration of a repeated task, while reject-
ing periodic disturbances [20, 69, 74]. In classical ILC, the controller uses tracking error
data from previous task iterations to better track a provided reference trajectory during the
current iteration. Recent work has also explored reference-free ILC strategies for tasks whose
goals are better defined in terms of an economic metric, rather than a reference trajectory.
The controller again uses previous iteration data to improve closed-loop performance with
respect to the chosen performance metric. Examples include autonomous racing tasks (e.g.
“minimize lap time”) [101, 56], or optimizing flight paths for tethered energy-harvesting
systems (e.g. “maximize average power generation”) [29].

In this chapter, our objective is to find a feasible trajectory to smartly initialize an
Iterative Learning Model Predictive Controller (ILMPC) [100] for a new task, using data
from previous tasks. ILMPC is a type of reference-free ILC that uses a sampled safe set to
design a model predictive control (MPC) policy for an iterative control task. The ILMPC
safe set is initialized using a feasible task trajectory, and guides the policy towards improved
performance with each subsequent iteration. Details on the ILMPC approach are provided
in Sec. 2.2.

We consider a constrained nonlinear dynamical system and assume the availability of
a dataset containing states and inputs corresponding to multiple iterations of a task T 1.
This dataset can be stored explicitly (e.g. by human demonstrations [28] or an iterative
controller [100]) or generated by roll-out of a given policy (e.g. a hand-tuned controller). We
introduce a Task Decomposition for ILMPC algorithm (TDMPC), and show how to use the
stored T 1 dataset to efficiently construct a non-empty ILMPC safe set for task T 2 (a new

CHAPTER 2. TASK DECOMPOSITION 12

variation of T 1), containing feasible trajectories for T 2. TDMPC reduces the complexity to
adapt trajectories from T 1 to a new task T 2 by decomposing task T 1 into different modes
of operation, called subtasks. The stored T 1 trajectories are adapted to T 2 only at points
of subtask transition, by solving one-step controllability problems.

In this chapter, we:

1. provide a brief introduction to ILMPC as outlined in [100],

2. present how to build the aforementioned T 2 safe set using the TDMPC algorithm, and

3. prove that the resulting safe set based ILMPC policy is feasible for T 2, and the cor-
responding closed-loop trajectories have lower iteration cost compared to an ILMPC
initialized using simple methods.

The results presented in this chapter have also appeared in:

• C. Vallon and F. Borrelli. “Task decomposition for iterative learning model predictive
control.” In: 2020 IEEE American Control Conference (ACC). 2020, pp. 2024-2029.

2.2 Problem Formulation

We begin by providing a brief overview of safe set based ILMPC [100]. This approach pro-
vides a method for iteratively improving the closed-loop cost of a system performing a single
task repeatedly, beginning with a suboptimal initial trajectory and eventually converging to
a local optimum.

Problem Setup

We consider a system

xk+1 = f(xk, uk), (2.1)

where f(xk, uk) is the dynamical model, subject to the constraints

xk ∈ X , uk ∈ U . (2.2)

The vectors xk ∈ Rnx and uk ∈ Rnu collect the states and inputs at time step k. We pick
a set P ⊂ X to be the target set for an iterative task T , performed repeatedly by system
(4.1) and defined by the tuple

T = {X ,U ,P ,Θ} . (2.3)

P ⊂ X denotes the task target set the system (4.1) needs to reach in order to complete task
T , and Θ the task’s environment descriptor function.

CHAPTER 2. TASK DECOMPOSITION 13

Assumption 1. P is a control invariant set (Def. 4, Sec. 1.5), i.e.:

∀xk ∈ P , ∃uk ∈ U : xk+1 = f(xk, uk) ∈ P .

Each task execution is referred to as an iteration. The goal of an ILMPC is to solve at
each iteration the optimal task completion problem:

V ?
0→D(x0) = min

D,u0,...,uD−1

D∑
k=0

p(xk, uk) (2.4)

s.t. xk+1 = f(xk, uk)

xk ∈ X (Θ), uk ∈ U ∀k ≥ 0

xD ∈ P ,

where V ?
0→D(x0) is the optimal cost-to-go from the initial state x0, and p(xk, uk) is a chosen

stage cost (which may or may not help guide the system into P). Note that (2.4) also finds
the optimal task duration, D.

ILMPC Approach

We consider that the task T is solved repeatedly. At the j-th successful task iteration, the
vectors

Exj(T) = [xj,uj] (2.5a)

xj = [xj0, x
j
1, ..., x

j
Dj], x

j
k ∈ X (Θ) ∀k ∈ [0, Dj], xj

Dj ∈ P
uj = [uj0, u

j
1, ...u

j
Dj], u

j
k ∈ U ∀k ∈ [0, Dj], (2.5b)

collect the inputs applied to system (1) and the corresponding state evolution. In (2.5), xjk
and ujk denote the system state and control input at time k of the j-th iteration, and Dj is
the duration of the j-th iteration.

After J number of iterations of task T , we define the sampled safe state set and sampled
safe input set as:

SSJ =

{
J⋃
j=1

xj

}
, SUJ =

{
J⋃
j=1

uj

}
, (2.6)

where SSJ contains all states visited by the system during the J previous task iterations,
and SUJ the corresponding inputs applied at each of these states. Hence, for any state in
SSJ there exists a feasible input sequence contained in SUJ to reach the goal set P while
satisfying state and input constraints (4.2).

Similarly, we define the sampled cost set as:

SQJ =

{
J⋃
j=1

qj

}
(2.7a)

qj = [V j(xj0), V
j(xj1), ..., V

j(xj
Dj)], (2.7b)

CHAPTER 2. TASK DECOMPOSITION 14

where V j(xjk) is the realized cost-to-go from state xjk at time step k of the j-th task execution:

V j(xjk) =
Dj∑
i=k

p(xji , u
j
i). (2.8)

Note that (2.8) is not the best conceivable cost-to-go from xjk, but rather the closed-loop
cost that was achieved in iteration j using the stored inputs in uj.

The safe set based ILMPC policy tries to solve (2.4) by using state and input data
collected during past task iterations, stored in the sampled safe sets. At time k of iteration
J + 1, the ILMPC solves the optimal control problem:

V ILMPC,J+1(xJ+1
k) = min

j,uk|k,...,uk+N−1|k

N−1∑
t=0

p(xk+t|k, uk+t|k) + V j(xk+N |k) (2.9)

s.t. xk+t+1|k = f(xk+t|k, uk+t|k)

uk+t|k ∈ U ∀t ∈ {0, . . . , N − 1}
xk+t|k ∈ X (Θ) ∀t ∈ {0, . . . , N}
xk|k = xk

xk+N |k ∈∈ SSJ ∪ P
j ∈ {1, J},

which searches for an input sequence over a chosen planning horizon N that controls the
system (4.1) to the state in the sampled safe state set (2.6) or task target set P with the
lowest cost-to-go (2.8) reachable from xk. We then apply a receding horizon strategy:

u(xjk) = πILMPC(xjk) = u?k|k. (2.10)

A system (4.1) in closed-loop with (2.9-2.10) is guaranteed to result in a feasible task ex-
ecution if x0 ∈ SSJ . At each time step, the ILMPC policy searches for the optimal input
based on previous task data, leading to gradual performance improvement on the task as the
sampled safe sets continue to grow with each subsequent iteration, until convergence to a
global or local minimum. The key intuition of ILMPC is that safe sets (2.6) collected across
previous iterations contain points which are all controllable to the task goal set P ; finding
an MPC trajectory ending in SSJ ensures the recursive feasibility of the ILMPC policy.
Note also that the controller (2.9-2.10) is only constrained to lie in the previous data at the
last predicted state, xk+N |k. This allows the ILMPC to explore new states that optimize
closed-loop cost. For details on ILMPC, we refer to [100].

Drawbacks

ILMPC is an appealing method to find an effective policy for tasks that are difficult to
solve outright (i.e. when the dynamics model (4.1) is not entirely known [101] or when

CHAPTER 2. TASK DECOMPOSITION 15

computation power must be minimized [103]). However, the sampled safe sets used in the
ILMPC policy (2.10) must first be initialized to contain at least one feasible task execution.
If the task constraints change even slightly, the trajectories stored in the safe sets will no
longer be guaranteed to contain feasible executions to P . A new ILMPC policy must be
re-initialized for the reconfigured task, requiring a new initial task execution.

In this chapter, we introduce TDMPC, an approach for using data collected from an
initially solved task T 1 in order to efficiently find such an execution for a new, different task
T 2. This execution can be used to directly solve the task using (2.10), or to initialize a new
ILMPC for T 2. We approach this using subtasks, formalized in Sec. 2.3, and the concept of
controllability.

2.3 Task Decomposition for ILMPC

Here we describe the intuition behind TDMPC, and provide an algorithm for the method.

Subtasks

Consider an iterative task T as in (2.3) and a sequence of M subtasks, where the i-th subtask
Si is the tuple

Si = {Xi,Ui,Ri,Θi}. (2.11)

We take Xi ⊆ X as the subtask workspace, Ui ⊆ U the subtask input space (the input
constraints while the system is in the subtask), and Ri the set of transition states from the
current subtask Si workspace into the subsequent Si+1 workspace:

Ri ⊆ Xi = {x ∈ Xi : ∃u ∈ Ui, f(x, u) ∈ Xi+1}.

Each subtask environment descriptor function Θi is the restriction of the task environment
descriptor function Θ on the subtask work space Xi. Here we do not make assumptions
about the continuity of Θ at points of subtask transition.

Within each subtask Si, the joint system and environmental state constraints are:

X (Θi) = {x ∈ Xi ∩ E(Θi(·))}. (2.12)

Similar to our definition in (2.5), a successful subtask execution Ex(Si) is a trajectory of
inputs and corresponding states evolving according to (4.1) while respecting state and input
constraints (4.2), ending in the transition set:

Exj(Si) = [xji ,u
j
i] (2.13a)

xji = [xj0, x
j
1, ..., x

j

Dj
i

], xk ∈ X (Θi) ∀k ∈ [0, Dj
i], xj

Dj
i

∈ Ri (2.13b)

uji = [uj0, u
j
1, ..., u

j

Dj
i

], uk ∈ Ui ∀k ∈ [0, Dj
i],

CHAPTER 2. TASK DECOMPOSITION 16

where the vectors uji and xji collect the inputs applied to the system (4.1) and the resulting
states, respectively, and xjk and ujk denote the system state and the control input at time
k of subtask execution j. Dj

i is the duration of the j-th execution of subtask i. The final
state of each successful subtask execution is in the subtask transition set, from which the
system can evolve into new subtasks. For the sake of notational simplicity, we have written
all subtask executions as beginning at time step k = 0.

We say the task T is an ordered sequence of the M subtasks (denoted T = {Si}Mi=1) if any
j-th successful task execution (2.5) is the concatenation of successful subtask executions:

Exj(T) = [Exj(S1),Exj(S2), ...,Exj(SM)] = [xj,uj]

xj = [xj1,x
j
2, ...,x

j
M]

uj = [uj1,u
j
2, ...,u

j
M]

f
(
xj
Dj

[1→i]

, uDj
[1→i]

)
∈ Xi+1, i ∈ [1,M − 1]

xj
Dj

[1→M]

∈ RM ,

where Dj
[1→i] is the duration of the first i subtasks during the j-th task iteration. When

the state reaches a subtask transition set, the system has completed subtask Si, and it
transitions into the following subtask Si+1. The task is completed when the system reaches
the last subtask’s transition set, RM , which we consider as the task’s control invariant target
set P .

Let T 1 and T 2 be different ordered sequences of the same M subtasks:

T 1 = {Si}Mi=1, T 2 = {Sli}Mi=1, (2.15)

where the sequence [l1, l2, ..., lM] is a reordering of the sequence [1, 2, ...,M]. Assume non-
empty sampled safe sets SSJ[1→M], SUJ[1→M], and SQJ[1→M] (2.6, 2.7) containing executions
that solve T 1.

The goal of TDMPC is to use the executions stored in the sampled safe sets from T 1 in
order to find a feasible execution for T 2, ending in the T 2 goal set RlM .

Algorithm

The key intuition of the TDMPC method is that all successful subtask executions from T 1

are also successful subtask executions for T 2, as this definition only depends on properties
(2.13) of the subtask itself, not the subtask sequence. We need to determine which subtask
executions are also part of task executions for T 2, i.e. controllable to P = RlM .

Only stored points at subtask transitions need to be analyzed. Based on this intuition,
Algorithm 1 proceeds backwards through the new subtask sequence [l1, l2, ..., lM]. The key
steps are discussed below, and visualized in Fig. 2.1.

CHAPTER 2. TASK DECOMPOSITION 17

(a) Step 1: transfer stored
subtask executions from
SlM .

(b) Step 2: populate pre-
vious subtask with stored
trajectories.

(c) Step 3: check control-
lability from points at sub-
task transition.

(d) Step 4: Remove sub-
task executions that can-
not be controlled to the
next task.

(e) Step 5: Repeat Steps 2-
4 for subsequent subtasks.

Figure 2.1: Depiction of the TDMPC Alg. 1 applied to stored task data from an
autonomous racing application. More details can be found in Sec. 2.5.

• Consider the last subtask of T 2, SlM . All states from SlM stored in the T 1 executions
are controllable to RlM using stored inputs, i.e. there exists a stored input sequence
that can be applied to the state such that the system evolves to be in P = RlM . Thus,
all states from SlM in T 1 are also safe for T 2. We next look for stored states from the
preceding subtask, SlM−1

, which are controllable to RlM via SlM . (Alg. 1, Lines 4-6,
Fig. 2.1a-2.1b)

• Define the sampled guard set of SlM−1
as

SGlM−1
=

{
J⋃
j=1

xj
Dj

[1→lM−1]

}
. (2.16)

The set contains those states in SlM−1
from which the system transitioned into another

subtask during one of the previous J executions of T 1. Only controllability from the
sampled guard set will be important in our approach.

CHAPTER 2. TASK DECOMPOSITION 18

Algorithm 1 TDMPC

1: input f , X , U , SSJ[1→M], SUJ[1→M],SQJ[1→M], [l1, l2, ..., lM] (2.6-2.7)

2: output: SS0
[l1→lM], SU0

[l1→lM], SQ0
[l1→lM]

3:

4: do guard set clustering(SSJ[1→M]) (2.16)

5: initialize empty ŜS, ŜU
6: ŜS lM ←

⋃J
j=1 x

j
lM

7: ûjlM ← ujlM∀j ∈ [1, J], ŜU lM ←
⋃J
j=1 û

j
lM

,

8: ŜQlM ←
⋃J
j=1 V

j(xjlM)
9: for i ∈ [lM−1 : −1 : l1] do

10: ŜS i ←
⋃J
j=1 x

j
i

11: ûji ← uji ∀j ∈ [1, J]
12: for x ∈ SGi do
13: k = {k : x ∈ xki }
14: initialize empty Q?

15: for j : xji+1 ∈ ŜS i+1 do

16: q̂ji+1 = V j(xji+1)

17: solve (Q?
j , u

?
j) = Ctrb(x,xji+1, q̂

j
i+1) (2.17)

18: if Q? not empty then
19: j∗ = arg minj Q

?
j

20: ûki [−1]← u?j∗
21: else
22: ŜS i ← ŜS i\xki , ŜU i ← ŜU i\ûki
23: ŜU i ←

⋃J
j=1 û

j
i , ŜQi ←

⋃J
j=1 V

j(x̂ji)

24:

25: return SS0
[l1→lM] =

⋃lM
i=l1
ŜS i, SU0

[l1→lM] =
⋃lM
i=l1
ŜU i, SQ0

[l1→lM] =
⋃lM
i=l1
ŜQi

• We search for all points in SGlM−1
that are controllable to stored states in SlM , i.e.

points which are in the transition sets of both T 1 and T 2. This problem can be solved
using a variety of numerical approaches, including a one-step controllability problem
(see Implementation). (Alg. 1, Lines 9-15, Fig. 2.1c)

• For any stored state x in SGlM−1
for which the controllability analysis fails, we remove

the stored SSJ[lM−1]
subtask execution ending in x as candidate controllable states for

T 2. All remaining stored states in SlM−1
are controllable to stored states in SlM , and

therefore also to P = RlM . (Alg. 1, Lines 15-20, Fig. 2.1d)

Algorithm 1 iterates backwards through the remaining subtask sequence (Fig. 2.1e),
connecting points in sampled guard sets to previously verified trajectories in the next subtask.

CHAPTER 2. TASK DECOMPOSITION 19

The algorithm terminates when it has iterated through the new subtask order, or when no
states in a subtask’s sampled guard set can be shown to be controllable to RlM . The
algorithm returns sampled safe sets for T 2 that have been verified through controllability to
contain feasible executions of T 2.

Implementation

TDMPC can improve on the computational complexity of existing trajectory transfer meth-
ods in two key ways: (i) by verifying stored trajectories only at states in the sampled
guard set, rather than at each recorded time step, and (ii) by solving a data-driven, one-
step controllability problem to adapt the trajectories, rather than a multi-step or set-based
controllability method.

In the examples presented in this chapter, we implement the search for controllable points
(Alg. 1, Line 15) by solving a one-step controllability problem, (Q?, u?) = Ctrb(x, z, q), where

u?, λ? = arg min
u,λ

p(x, u) + λ>q (2.17)

s.t. f(x, u) = λ>z∑
λi = 1, λi ≥ 0

u ∈ Ui,
Q? = λ?>q, (2.18)

where z is a previously verified state trajectory through the next T 2 subtask, and q the
sampled cost vector from SQJ (2.7a) associated with the trajectory. (2.17) aims to find an
input that connects the sampled guard state x to a state in the convex hull of the trajectory
[19, Sec 4.4.2]. If such an input is found, the new cost-to-go (2.8) for the state x is taken
to be the convex combination of the stored cost vector (2.18). Solving the controllability
analysis to the convex hull is an additional method for reducing computational complexity of
TDMPC but is exact only for linear systems with convex constraints. This idea is explored
further in Ch. 3.

Note that the number of subtasks and points of subtask transition (i.e. the sets Ri)
should be defined as is most useful, given the two tasks. Subtask transition points simply
indicate which segments of the stored trajectories are certain to remain feasible in T 2 using
the stored policies—but this can change depending on how exactly T 2 differs from T 1. The
TDMPC method is therefore not limited in applicability to a predetermined number of
reshuffled tasks.

2.4 Properties of TDMPC Policies

We prove feasibility and iteration cost reduction of ILMPC policies (2.10) initialized using
TDMPC.

CHAPTER 2. TASK DECOMPOSITION 20

Assumption 2. T 1 and T 2 are defined as in (3.12), where the subtask workspaces and input
spaces are given by Xi = X , Ui = U for all i ∈ [1,M].

Theorem 1. (Feasibility) Let Assumptions 1-2 hold. Assume non-empty sets SSJ[1→M],

SUJ[1→M], SQJ[1→M] containing trajectories of system (4.1) for T 1. Assume Algorithm 1

outputs non-empty sets SS0
[l1→lM], SU0

[l1→lM], SQ0
[l1→lM] for T 2. Then, if x0 ∈ SS0

[l1→lM], the

policy πILMPC
[l1→lM], as defined in (2.10), produces a feasible execution of T 2.

The proof is detailed in Sec. A.1. Theorem 1 implies that the safe sets designed by the
TDMPC algorithm induce an ILMPC policy that can be used to successfully complete T 2

while satisfying all input and state constraints.

Assumption 3. Consider T 1 and T 2 as defined in (3.12). The trajectories stored in
SSJ[1→M] and SUJ[1→M] correspond to executions of T 1 by a nonlinear system (4.1). One
stored trajectory corresponds to an execution of (4.1) in closed-loop with a policy π0(·) that
is feasible for both T 1 and T 2.

An example of a control policy π0(·) feasible for two different tasks for the autonomous
racing task is a center-lane following controller moving at very slow longitudinal speed. Note
that if asm. 3 does not hold for a particular set of tasks T 1 and T 2, it is possible that Alg. 1
fails to find a feasible connection between trajectories of two subtasks. In this case, the
TDMPC strategy can be adapted as follows:

1. The controllability problem (2.17) may be transformed from a one-step to an N -step
problem, where N can be adjusted until a connection is found.

2. A planning from scratch method can be used to search for a T 2 policy up until the
failed subtask connection, after which an ILMPC-based policy (2.10) based on the
partial TDMPC safe set can be used for the remainder of the task.

Theorem 2. (Cost Improvement) Let Assumptions 2-3 hold. Then, Algorithm 1 will return
non-empty sets SS0

[l1→lM], SU0
[l1→lM], SQ0

[l1→lM] for T 2. Furthermore, if x0 ∈ SS1
[1→M], an

ILMPC initialized using SS0
[l1→lM] will incur no higher iteration cost during an execution of

T 2 than an ILMPC initialized using a trajectory corresponding to (4.1) in closed-loop with
π0(·).

The proof is found in Sec. A.1. The main idea is that the ILMPC policy will at each
time step choose a terminal state with the lowest cost-to-go. If the new safe set SS0

[l1→lM]
contains the trajectory induced by π0(·), the ILMPC will at each time step either match or
outperform π0(·).

The proof that the improved closed-loop iteration cost follows from the improved ILMPC
cost (2.9) is straightforward and not included here. However, the result shown holds for the
examples presented in Sec. 2.5-2.6.

CHAPTER 2. TASK DECOMPOSITION 21

2.5 Application 1: Autonomous Racing

Figure 2.2: Each subtask of the racing task corresponds to a segment of the track
with constant curvature. The vehicle state s tracks the distance traveled along the
centerline.

Task Formulation

Consider an autonomous racing task, in which a vehicle is controlled to minimize lap time
driving around a race track with piecewise constant curvature (Fig. 2.2), while satisfying all
system and environmental state and input constraints. We model this task as a series of ten
subtasks, where the i-th subtask corresponds to a section of the track with constant radius
of curvature ci. Tasks with different subtask order are tracks consisting of the same road
segments in a different order. Each new control task T corresponds to a new track, described
using the environment descriptor function Θ which maps the current position along the track
to a description of the local track curvature.

The vehicle is modeled as a Euler discretized dynamic bicycle model [101] in the curvi-
linear abscissa reference frame [94], with states and inputs at time step k given by

xk = [vxk vyk ψ̇k eψk
sk eyk]>

uk = [ak δk]
>,

where vxk , vyk , and ψ̇k are the vehicle’s longitudinal velocity, lateral velocity, and yaw rate,
respectively, at time step k, sk is the distance travelled along the centerline of the road, and
eψk

and eyk are the heading angle and lateral distance error between the vehicle and the
path. The inputs are longitudinal acceleration ak and steering angle δk.

CHAPTER 2. TASK DECOMPOSITION 22

The vehicle is subject to system-imposed state and input constraints given by

X =


x :


0

−10 m/s
−π

2
rad

−π
3

rad
0
− l

2
m

 ≤

vx
vy
wz
eψ
s
ey

 ≤


10 m/s
10 m/s
π
2

rad
π
3

rad
L m
l
2

m




(2.20)

U =

{
u :

[
−1 m/s2

−0.5 rad/s2

]
≤
[
a
δ

]
≤
[

1 m/s2

0.5 rad/s2

]}
,

where l = 0.8 is the track’s lane width and L = 19.2 the track length, both in meters. These
bounds indicate that the vehicle can only drive forwards on the track, up to a maximum
velocity, and must stay within the lane.

The task target set is the race track’s finish line,

P = RM = {x : s ≥ send} .

The task goal is to complete a lap and reach the target set P as quickly as possible. Therefore
we define the stage cost in (2.9) as:

p(xk, uk) =

{
0, xk ∈ P
1, otherwise.

We formulate each subtask according to (2.11), with:

Subtask Workspace Xi
Xi = {x ∈ X : si−1 ≤ s ≤ si} ,

where si−1 and si mark the distances along the centerline to the start and end of the subtask.
This means s10 = send is the total length of the track.

Subtask Input Space Ui
Ui = U

The input limits are a function of the vehicle, not the environment, and do not change
between subtasks.

Subtask Transition Set, Ri

We define the subtask transition set to be the states along the subtask border where the
track’s radius of curvature changes:

Ri = {x ∈ Xi : ∃u ∈ Ui, s.t. f(x, u) ∈ Xi+1}.

CHAPTER 2. TASK DECOMPOSITION 23

Figure 2.3: The TDMPC-initialized ILMPC converges to a locally optimal trajec-
tory faster than the PID-initialized one.

Subtask Environment Descriptor Function, Θi

The task’s environment descriptor function Θ maps the current position along the track to
a description of the upcoming track curvature. Since the curvature is assumed constant in
each subtask, Θi maps any x ∈ Xi to ci.

Simulation Setup

An ILMPC (2.10) is used to complete J = 5 executions of T 1, the track depicted in Fig. 2.2.
The vehicle begins each task iteration at standstill on the centerline at the start of the track.
The J executions and their costs are stored in SS [1→M], SU [1→M], and SQ[1→M]. An initial
trajectory for the ILMPC safe sets is executed using a centerline-tracking, low-velocity PID
controller, π0.

TDMPC then uses these sampled safe sets to design initial policies for a new track
composed of the same track segments. Two ILMPCs are designed for the reconfigured track:
one initialized with TDMPC, and another initialized with π0. Each ILMPC completes J = 10
laps around the new tracks. In this example, the reconfigured track is not continuous, and
should be considered to be a segments of larger, continuous track.

Simulation Results

Fig. 2.3 compares the first and tenth trajectories around the track of the two ILMPCs,
plotted as black and red lines. The π0-initialized ILMPC (in dashed black) initially stays
close to the centerline, taking nearly 18 seconds to traverse the new track. The TDMPC-

CHAPTER 2. TASK DECOMPOSITION 24

Figure 2.4: Topview of the robotic path planning task. Each subtask corresponds
to an obstacle in the environment with constant height.

initialized ILMPC, however, traverses the new track more efficiently starting with the first
lap. The first lap completed using the TDMPC-initialized ILMPC (in solid black) begins
closer to the final locally optimal policies (in red) that both ILMPCs eventually converge
to. Here, the TDMPC method is able to leverage experience on another track in order to
complete sections of the new track in a locally optimal way, even on the first iteration of a
new task.

The lap time of each of the ten ILMPC iterations is plotted in the bottom of Fig. 2.3.
As expected, the TDMPC-initialized ILMPC completes the first several laps faster than the
π0-initialized ILMPC. The TDMPC-initialized ILMPC requires fewer task iterations and less
time per iteration to reach a locally optimal trajectory.

2.6 Application 2: Robotic Path Planning

TDMPC can also be used to combine knowledge gained from solving a variety of previous
tasks. For example, if n ILMPCs as in (2.10) complete J iterations of n different tasks, all
composed of the same subtasks, TDMPC can be used to design a policy for a task T n+1.
The algorithm draws on subtask executions collected over n different tasks in order to build
safe sets for T n+1. We evaluate this approach in a robotic path planning example.

Task Formulation

Consider a task in which a UR5e1 robotic arm needs to move an object to a target without
colliding with obstacles (Fig. 2.4). The obstacles are modeled as extruded disks of varying
heights above and below the robot, leaving a workspace space between omin,i and omax,i. Here,

1https://www.universal-robots.com/products/ur5-robot/

CHAPTER 2. TASK DECOMPOSITION 25

Figure 2.5: The UR5e manipulator has very high tracking accuracy, allowing us to
model the end effector as an integrator system in place of a more complex dynamic
model.

each subtask corresponds to the workspace above a particular obstacle. Different subtask
orderings correspond to a rearranging of the obstacle locations. As in the autonomous racing
example, here the environment descriptor function Θ maps an end-effector position to the
corresponding workspace heights at that location.

In a certain subset of the state and input space, characterized experimentally, the UR5e
has very high end-effector reference tracking accuracy (see Fig. 2.5). This allows us to use
a simplified end-effector model in place of a discretized second-order model as in [110]. We
solve the task in the reduced state space:

xk = [q0k q̇0k zk żk]
>

uk = [q̈0k z̈k]
>,

where q0k is the angle of the robot’s base joint and zk is the height of the robot end-effector
at time step k, calculated from the six joint angles via forward kinematics. q̇0k and żk are the
corresponding velocities. We control q̈0k and z̈k, the accelerations of q0 and z, respectively.
We model the simplified system as a quadruple integrator:

xk+1 =


1 dt 0 0
0 1 0 0
0 0 1 dt
0 0 0 1

xk +


0 0
dt 0
0 0
0 dt

uk, (2.22)

where dt = 0.01 seconds is the sampling time.

CHAPTER 2. TASK DECOMPOSITION 26

The system state and input constraints are

X = {x : −π rad/s ≤ q̇0k ≤ π rad/s}
U =

{
u : −π rad/s2 ≤ q̈0k ≤ π rad/s2

}
.

The task target set is the end of the obstacle course,

P = RM = {x : q0 = ΩM , omin,M ≤ z ≤ omax,M} ,

and the task goal is to reach the target set as quickly as possible:

p(xk, uk) =

{
0, xk ∈ P
1, otherwise.

We formulate each subtask according to (2.11).

Subtask Constraints Xi

Xi =

x ∈ X :

 Ωi−1 rad
omin,i m
żmin,i m/s

 ≤
q0zk
żk

 ≤
 Ωi rad
omax,i m
żmax,i m/s


where Ωi−1 and Ωi mark the cumulative angle to the beginning and end of the i-th obstacle,
as in Fig. 3.4. The robot end-effector is constrained to remain in the space between the
upper and lower obstacles, bounded by omin,i and omax,i. The base’s rotational velocity q̇0k
and żk are constrained to lie in the experimentally determined region of high end-effector
tracking accuracy. Specifically, we take

żmax,i = C1 sin

(
arccos

(
omin,i

d1

))
żmin,i = −żmax,i,

where the constants C1 and d1 depend on setup parameters and joint limits provided by the
manufacturer.

Subtask Input Space Ui
Ui =

{
u ∈ Ui : z̈min,i m/s2 ≤ z̈k ≤ z̈max,i m/s2

}
,

where q̈0k and z̈k are constrained to lie in the experimentally determined region of high
end-effector tracking accuracy. Specifically,

z̈max,i = C2 sin

(
arccos

(
omin,i

d2

)
+
omin,i

d3

)
z̈min,i = −z̈max,i,

where C2, d2 and d3 depend on setup parameters and joint limits provided by the manufac-
turer.

CHAPTER 2. TASK DECOMPOSITION 27

Subtask Transition Set, Ri

We define the subtask transition set to be the states along the subtask border where the
next obstacle begins:

Ri = {x ∈ Xi : ∃u ∈ Ui, s.t. q+0 ≥ Ωi },

where x+ = Aix+Biu (3.1). The task target set is the end of the last mode:

R6 = {x : q0 = Ω6, omin,6 ≤ z ≤ omax,6} .

The task goal is to reach the target set as quickly as possible:

p(xk, uk) =

{
0, xk ∈ R6

1, otherwise.

Experimental Setup

An ILMPC (2.10) was used to complete J = 10 executions of five different training tasks,
where each training task corresponded to a reordering of the obstacles. In each task, the
ILMPC tries to reach the target set as quickly as possible while avoiding the obstacles. Each
ILMPC was initialized with a trajectory resulting from executing a policy π0 that tracks the
center height of each mode with the end-effector, while the robot rotated at a low constant
joint velocity q̇0. TDMPC was then applied to the combined sampled safe sets of the five
training tasks, and used to design an initial policy for a new ILMPC on an unseen ordering of
obstacles, shown in Fig. 2.6. The white space corresponds to environment obstacles, so that
the ILMPC task is to reach the end of the last mode as quickly as possible while controlling
the end-effector to remain within the safe (green) part of the state space. A second ILMPC
was initialized with the center-height tracking π0, for comparison. After initialization, the
two ILCMPs completed J = 20 iterations of the new task. These iterations were executed
in simulation using the simplified model (5.29), and the first and last trajectories of each
ILMPC were then tracked by a real UR5e robot using end-effector tracking.

Experimental Results

The measured robot trajectories are plotted in Fig. 2.6. The π0-initialized ILMPC follows the
center-height of each mode closely during the first task iteration (plotted in dashed black).
After ten iterations of the task, the resulting trajectory (plotted in dashed red) has only
diverged from the center-height trajectory slightly. Correspondingly, after ten iterations the
π0-initialized ILMPC still requires more than four seconds to complete the task.

The TDMPC-initialized ILMPC, however, draws on knowledge gathered over many pre-
vious tasks in order to solve the task efficiently right away. Already on the first trajectory
(plotted in solid black), the TDMPC-initialized ILMPC solves the task in under three sec-
onds. This is a 30% improvement over the π0-initialized ILMPC. As in the autonomous

CHAPTER 2. TASK DECOMPOSITION 28

Figure 2.6: The TDMPC-initialized ILMPC solves T 2 much faster than the ILMPC
initialized with a center-height tracking policy π0.

driving task, the first trajectory completed by the TDMPC-initialized ILMPC is very close
to the ultimate locally optimal trajectory.

Because of the nonconvex obstacles, this task is nonconvex, and there are many locally
optimal trajectories. At various iterations of the task, both the TDMPC-initialized and the
π0-initialized ILMPCs get stuck at such local minima, so that the ILMPCs performance
metric remained constant over several iterations before improving again (Fig. 2.6). At these
performance plateaus, the realized trajectories continue to change. We believe that the
variability in the mixed integer solver used in the ILMPC led the ILMPC to follow differ-
ent trajectories with the same iteration cost, as if encouraging exploration. Some of these
different trajectories then allowed for performance improvement in the next iteration.

2.7 Discussion

The TDMPC algorithm provides a systematic way of adapting stored task trajectories to
the changed environmental constraints of a new task. Here we analyze two perspectives of
TDMPC.

A Hybrid Systems Perspective

The TDMPC algorithm performs backwards reachability between points in different sub-
tasks. If each subtask is viewed as a mode of operation, TDMPC can be analyzed from a
hybrid systems reachability perspective.

CHAPTER 2. TASK DECOMPOSITION 29

Hybrid systems refer to a class of dynamical systems that switch among several discrete
operating modes, with each mode governed by its own dynamics [18]. Hybrid systems reach-
ability considers whether a feasible trajectory exists between a set of initial states and a set
of goal states in a potentially different mode. The extensive literature on hybrid systems
reachability mainly focuses on two approaches: set-based methods and simulation [107]. Set-
based methods are exhaustive methods that use reach set computation to verify feasibility
of entire sets of initial conditions and bounded inputs, and many algorithms have recently
been proposed [62, 96, 106, 75]. Though effective, set-based methods suffer from the “curse
of dimensionality”, and do not scale well with state dimension. These methods often approx-
imate complex sets as polyhedral or ellipsoidal, which affects solution accuracy. To combat
this, the authors of [7] propose splitting the system state into independent substates, but
this is not guaranteed to work for complex systems.

Sampling-based simulation methods verify feasibility of a trajectory from an initial con-
dition under sampled input sequences. These methods are less limited to low-dimensional
systems, but are not an exhaustive search and can miss subtle phenomena that complex
dynamics may generate [115, 36, 6, 70].

In contrast, TDMPC only solves reachability problems between discrete points in the
sampled guard set. This ensures the algorithm scales well with state dimension and num-
ber of subtasks without requiring drastic approximations. Even if set-based methods are
computationally feasible for a particular system, in contrast to TDMPC they only provide
sets of reachable states, without a complete policy. Additionally, traditional sampling-based
hybrid systems reachability methods propagate sampled trajectories with random inputs,
without any check on whether the trajectory is promising, or will inevitably lead to even-
tual infeasibility. TDMPC explicitly only checks for reachability to feasible points. Lastly,
TDMPC views the transitions between subtasks as particular to the task instance, rather
than permanent. We are aware of no previously published work in which the transitions of
a hybrid system change.

A Dynamic Programming Perspective

Dynamic Programming (DP) methods provide exact solutions to constrained optimal con-
trol problems. However, DP can incur tremendous cost and is therefore not implementable
for high-dimensional systems. Recent work [12] proposes forming aggregate (or represen-
tative) features out of system states in order to reduce the problem dimension. These
reduced-dimension problems can provide approximate solutions to the original task. In
spatio-temporal aggregation, coarse space and time states are chosen as aggregate features.
Space-time barriers serve as transition sets between these aggregate features, and the short-
est path problem is solved only between points immediately adjacent to the barriers. This
is an analog to TDMPC performing reachability only at points in the sampled guard sets.
While, unlike TDMPC, spatio-temporal aggregation does not explicitly consider a notion
of reordering, it provides an additional perspective on the utility of task segmentation for
computationally effective policy instantiating.

CHAPTER 2. TASK DECOMPOSITION 30

Figure 2.7: An overview of the TDMPC approach for using stored data to efficiently
find an initial trajectory for a new ILMPC.

A Controllability Perspective

Something about quickly constructing controllable sets by searching in the span of the data?
Here we can discuss that this is what’s happening in ILMPC (we use controllable sets), and
also generally for safe MPC. I’m not sure where to put this.

2.8 Conclusion

In this chapter, we introduced the first approach for using stored state and input trajecto-
ries from executions of a task to efficiently designs policies for executing variations of that
task. We began by considering a simplification of the changing environment problem, and
assuming that different tasks could be split into a shared set of subtasks. The proposed
TDMPC algorithm takes inspiration from ILMPC, an iterative learning control method that
uses stored trajectory data to design safe terminal sets for an MPC controller that result
in performance improvement with each task iteration. TDMPC breaks the stored task tra-
jectories into subtasks and performs controllability analysis at sampled safe states between
subtasks. This one-step controllability analysis allows us to quickly learn whether any previ-
ously recorded subtask executions (which were controllable to the previous task target set)
are also controllable to the new task’s target set. These verified trajectories can then be
used to construct an ILMPC safe set, and used in an ILMPC controller for the new task.

The effectiveness of the proposed algorithm was evaluated on autonomous racing and

CHAPTER 2. TASK DECOMPOSITION 31

robotic manipulation tasks, both in simulation and experiments. Our results confirm that
TDMPC allows an ILMPC to converge to a locally-optimal minimum-time trajectory faster
than using simple initialization methods, by providing a smarter initial trajectory constructed
from efficient previous subtask executions.

The TDMPC algorithm can improve upon other trajectory library methods by only
needing to verify and adapt the original task policy at points of subtask transition, rather
than along the entire trajectory, and it provides a fast and straightforward method for finding
approximations of controllable sets in a new task. In Chapter 3, we increase this efficiency
further by considering algorithm adaptations for piecewise linear systems with piecewise
convex constraints.

CHAPTER 2. TASK DECOMPOSITION 32

2.9 Additional Results

(a)

(b)

Figure 2.8: Additional examples from the autonomous racing application.

33

Chapter 3

Task Decomposition for Piecewise
Linear Systems

3.1 Introduction

Classical Iterative Learning Controllers (ILCs) aim to improve a system’s closed-loop refer-
ence tracking performance at each iteration of a repeated task ([20, 69]). In both classical
and reference-free ILC, the controller uses data from previous iterations to improve future
closed-loop performance with respect to the appropriate performance metric. At the very
first iteration, these methods require either a reference trajectory to track or a feasible tra-
jectory with which to initialize the control algorithm. If the task changes, a new trajectory
must be designed, which can be difficult for complex tasks.

In this chapter, we again consider the problem of finding a feasible trajectory to smartly
initialize an Iterative Learning Model Predictive Controller (ILMPC) ([98]) for a new task.
ILMPC is a reference-free ILC that uses a safe set to design an MPC policy for an iterative
control task. This safe set is initialized using a feasible task trajectory, and collects states
from which the task can be completed. In Chapter 2, a Task Decomposition algorithm for
ILMPC (TDMPC) was introduced for nonlinear, constrained dynamical systems. TDMPC
is data-efficient, requires no human supervision, and, if the algorithm converges, produces
trajectories that are guaranteed to satisfy all constraints for the new task. TDMPC decom-
poses an initial task T 1 into different modes of operation, called subtasks, and adapts stored
T 1 trajectories to a new task T 2 only at points of subtask transition, by solving one-step
controllability problems. In this chapter, we:

1. present a reformulation of the TDMPC Alg. 1 in Chapter 2 for searching for a task
trajectory in the space of previously stored subtask trajectories. We introduce a new
formulation for piecewise linear systems with piecewise convex state and input con-
straints. The new formulation further reduces the computational burden of finding
feasible trajectories for a new task T 2 by formulating the controllability check as a

CHAPTER 3. TASK DECOMPOSITION FOR PIECEWISE LINEAR SYSTEMS 34

convex optimization problem, and simultaneously increases the size of the resulting T 2

safe set.

2. prove that the induced safe set based MPC policy is feasible for T 2. This policy can
be used to initialize an iterative learning control algorithm, or to directly obtain a
suboptimal execution of T 2.

The results presented in this chapter have also appeared in:

• C. Vallon and F. Borrelli. “Task decomposition for MPC: A computationally efficient
approach for linear time-varying systems.” In: 2020 IFAC World Congress. 2020, pp.
4240-4245.

3.2 Problem Formulation

As in Chapter 2, we consider a system (4.1) solving tasks T that can be decomposed into an
ordered sequence of subtasks. However, here we restrict our focus to systems with piecewise
linear dynamics and piecewise convex system and environmental constraint sets. Specifically,
within the i-th subtask Si, the system is subject to linear dynamics

∀xk ∈ Xi, xk+1 = Aixk +Biuk, (3.1)

and convex system state and input workspaces

xk ∈ Xi, uk ∈ Ui, (3.2)

where Xi ⊆ X and Ui ⊆ U are convex sets. Ri is the set of transition states from Si into the
next subtask Si+1:

Ri ⊆ Xi = {x ∈ Xi : ∃u ∈ Ui, Aix+Biu ∈ Xi+1}. (3.3)

Additionally, the environmental constraints in each subtask are also assumed to be convex:

Assumption 4. The environmental state constraints in each subtask, E(Θi(·)), are convex
in each subtask.

Note that the requirement of piecewise linearity of the system dynamics (3.1) and piece-
wise convexity of the constraints are key novelties compared to Chapter 2.

3.3 Safe Set Based ILMPC for Piecewise Linear

Systems

In Chapter 2, an overview of safe set based ILMPC [100] for general nonlinear systems was
given. We then presented the TDMPC algorithm, a method for using stored executions from

CHAPTER 3. TASK DECOMPOSITION FOR PIECEWISE LINEAR SYSTEMS 35

previous tasks in order to construct a trajectory for a new task. Such a trajectory can be
used to initialize an ILMPC for the new task.

Here we want to take advantage of the additional linearity and convexity requirements
on the subtask dynamics and constraints in order to improve the efficiency of TDMPC
Alg. 1. In [98], an adaptation of the ILMPC for linear time-invariant systems with convex
constraints was introduced. We begin by proposing an adaptation of this ILMPC formulation
for piecewise linear systems with piecewise convex constraints.

As in standard ILMPC [100], we begin by sorting stored executions into a safe set. After
J number of task iterations, we define the time-indexed sampled subtask safe set of subtask
Si as:

KS i,k =

{
J⋃
j=1

xj
Dj

i−k

}
, k ∈ [0,max

j
Dj
i − 1]. (3.4)

For given k and i, xj
Dj

i−k
is the k-to-last state visited in Si during the j-th task iteration. Thus

each set (3.4) is the collection of states from which the system reaches the subtask transition
set Ri in exactly k steps during a previously recorded task iteration, while satisfying subtask
constraints (3.2). Notice that these sets are more restrictive than SSJ (2.6). We similarly
define a time-indexed sampled subtask input set of subtask Si as:

KU i,k =

{
J⋃
j=1

uj
Dj

i−k

}
, k ∈ [0,max

j
Dj
i − 1].

Lastly, we define convex subtask safe sets and convex subtask input sets as:

CKi,k =


|KSi,k|∑
p=1

λpzp : λp ≥ 0,

|KSi,k|∑
p=1

λp = 1, zp ∈ KS i,k


CU i,k =


|KUi,k|∑
p=1

λpwp : λp ≥ 0,

|KUi,k|∑
p=1

λp = 1, wp ∈ KU i,k

 ,

(3.5)

where |KS i,k| is the cardinality of KS i,k. Note that because Xi, Ui, and E(Θi(·)) are all
convex, there also exists a feasible k-step input sequence to Ri for each element in CKJi,k
(see [98] or Thm. 3 for a proof). This fact will be key to adapting the TDMPC Alg. 1 for
piecewise linear systems.

CHAPTER 3. TASK DECOMPOSITION FOR PIECEWISE LINEAR SYSTEMS 36

Figure 3.1: Convex subtask safe sets contain states from which the transition set
can be reached in a certain number of steps. Data reproduced from robotic path-
planning application (see Sec. 3.6).

Lastly, we define a barycentric cost-to-go over the convex subtask safe sets:

v(x) = min
λp≥0, I, K

|KSI,K |∑
p=0

λpV (zp) (3.6)

s.t.

|KSI,K |∑
p=0

λp = 1

|KSI,K |∑
p=0

λpzp = x, zp ∈ KSI,K ,

where V (zp) was the realized cost-to-go (2.8) from state zp during a past execution. This
allows us to approximate the cost-to-go from new states in the time-indexed convex hull of
stored points as the convex combination of nearby states visited in previous task iterations.

Fig. 3.1 depicts these sets for three trajectories through a subtask from a robotic path-
planning task detailed in Sec. 3.6. Using these sets, we can approximate the optimal control

CHAPTER 3. TASK DECOMPOSITION FOR PIECEWISE LINEAR SYSTEMS 37

problem (2.4) at time step k of iteration J + 1 by solving:

V ILMPC,J+1(xJ+1
k) = min

uk|k,...,uk+N−1|k,I,K

k+N−1∑
t=k

p(xk+t|k, uk+t|k) + v(xk+N |k) (3.7)

s.t. xk+t+1|k = f(xk+t|k, uk+t|k)

uk+t|k ∈ Ui, ∀t ∈ {0, . . . , N − 1}
xk+t|k ∈ X (Θ), ∀t ∈ {0, . . . , N}
xk|k = xjk
xk+N |k ∈ CKI,K ∪ P ,

which searches for an input sequence over a horizon N that controls the system (3.1) to the
state in a convex subtask safe state set or task target set P with the lowest cost-to-go (3.6).
We use a receding horizon strategy:

u(xjk) = πILMPC(xjk) = u?k|k. (3.8)

In Sec. 3.5, we prove that a system (3.1) in closed-loop with (3.8) leads to a feasible task
execution for T .

At the first iteration of a new task, the ILMPC (3.7) requires non-empty sets CK·,· con-
taining at least one feasible execution of the task. In Sec. 3.4, we present a computationally
efficient approach for creating such sets using data from executions of different tasks.

Controllability Properties

First, we state the following propositions, which motivate the approach of storing task exe-
cutions in time-indexed convex subtask safe sets (3.5).

Proposition 1. In general, not all states belonging to the convex hull of stored subtask
executions are controllable to the subtask transition set (3.3).

Proof. We know that all states in a feasible subtask execution (2.13) are controllable to a
point in the subtask transition set (2.13b). A sufficient condition for all states in the convex
hull of feasible subtask executions to also be controllable to the convex hull of corresponding
points in the subtask transition set is for latter to be a control invariant set.

By definition of a feasible task execution (2.5) and the proof of Thm. 3, any point in
the convex hull of stored states in the transition set is also controllable to the task’s control
invariant goal set. For linear time-invariant systems, states that are controllable to an
invariant set are also invariant ([19]). However, for linear time-varying systems these states
are only stabilizable to the invariant. Therefore the convex hull of the points in the transition
set is not inherently an invariant.

We recognize that the convex hull of states in the transition set is a control invariant
set if its backward controllable sets grow to contain each other, i.e. if for all scalar values

CHAPTER 3. TASK DECOMPOSITION FOR PIECEWISE LINEAR SYSTEMS 38

Figure 3.2: For the double integrator system (3.9 - 3.10), the chosen target set
(3.11) is not an invariant set, as the N -step controllable sets are not subsets of the
(N + 1)-step controllable sets.

N , KN−1(Ri) ⊆ KN(Ri). Unfortunately, this property does not generally hold for linear
systems. Consider for example the double integrator system

xk+1 =

[
1 0
0 1

]
xk +

[
0
1

]
uk, (3.9)

subject to the convex state and input constraints

xk ∈ X , uk ∈ [−2, 2]. (3.10)

Define a target set, R, to be the convex hull of three points:

R = convhull

([
3
2

]
,

[
2

2.5

]
,

[
3
3

])
. (3.11)

The 1-step, 2-step, and 3-step controllable sets to R are plotted in Fig. 3.2. We also plot
C, the convex hull of R and the controllable sets. It is clear from the plot that R is not an
invariant set. This means it is possible that states in the convex hull of trajectories leading
into R are not N -step controllable to R for any value of N . In Fig. 3.2, this corresponds to
states who are in C, but not in any KN(R).

Thus, we have shown that the convex hull of stored subtask executions is not generally
controllable to the subtask transition set.

CHAPTER 3. TASK DECOMPOSITION FOR PIECEWISE LINEAR SYSTEMS 39

Proposition 2. All states in the time-indexed convex subtask safe sets (3.5) are controllable
to the subtask transition set (3.3).

The proof follows from Thm. 3 in Sec. 3.5.

3.4 Task Decomposition for Piecewise Linear ILMPC

Let Task 1 and Task 2 be different ordered sequences of the same M subtasks:

T 1 = {Si}Mi=1, T 2 = {Sli}Mi=1, (3.12)

where the sequence [l1, l2, ..., lM] is a reordering of the sequence [1, 2, ...,M]. Assume non-
empty subtask safe sets KS [1→M] (3.4) containing task data from T 1.

Our goal is to use stored subtask safe sets (3.4) from T 1 in order to find convex subtask
safe sets (3.5) for T 2. These sets can then be used to initalize a controller for the new task.
The key intuition of TDMPC is that all successful subtask executions (2.13) from T 1 are also
successful subtask executions for T 2, as this definition only depends on properties of each
individual subtask, not the subtask sequence. With this notion, Alg. 2 proceeds backwards
through the new subtask sequence.

TDMPC Algorithm

The notation (lM , ·) or (i, ·) indicates that the described action is undertaken for all appro-
priate second arguments.

• Consider the last subtask, SlM . By definition, for any state in CKlM ,· there exists
a stored input sequence in CU lM ,· that can be applied such that the system evolves
into RlM . Thus, all states from SlM in T 1 are also safe for T 2. We next look for
stored states from the preceding subtask, SlM−1

, which are controllable to RlM via SlM .
(Alg. 2, Lines 2-5).

• Form the sampled guard set of SlM−1
, defined as:

SGlM−1
= KS lM−1,0. (3.13)

The sampled guard set for subtask lM−1 contains the states in SlM−1
from which the sys-

tem transitioned into another subtask during a past execution of T 1 (Alg. 2, Line 10).

• Determine which points in SGlM−1
are one-step controllable to CKlM ,k for some time

index k. This problem can be solved using a variety of numerical approaches. In the
results presented in this paper, we check controllability for each k, and choose the

CHAPTER 3. TASK DECOMPOSITION FOR PIECEWISE LINEAR SYSTEMS 40

Algorithm 2 TDMPC algorithm

1: input KS [1→M], KU [1→M], [l1, l2, ..., lM]
2: output: CK[l1→lM], CU [l1→lM]

3:

4: do CK[1→M] = convexify(KS [1→M]) (3.5)
5: do SGi = guard set clustering(KS [1→M]) (3.13)

6: initialize empty K̂S, K̂U , ĈK, ĈU
7: ĈKlM ,· ← CKlM ,·, ĈU lM ,· ← CU lM ,·
8: for i ∈ [lM−1 : −1 : l1] do
9: K̂S i,· ← KS i,·

10: K̂U i,· ← KU i,·
11: initialize empty K̂U i,0
12: for x ∈ SGi do
13: check (q?, u?) = Ctrb(x, ĈKi+1,·) (3.14)
14: if infeasible then
15: K̂S i,· ← K̂S i,·\trajectory(x)

16: K̂U i,· ← K̂U i,·\trajectory(u?)
17: else
18: K̂U i,0 ← u?

19: ĈKi,· ← convexify(K̂S i,·) (3.5)

20: ĈU i,· ← convexify(K̂U i,·) (3.5)

21:

22: return CK[l1→lM] ← ĈK, CU [l1→lM] ← ĈU

input u to minimize the cost of the resulting state according to (3.6). Specifically, for
each point x ∈ SGlM−1

and index k, we solve (q?, u?) = Ctrb(x, ĈKlM ,k), where:

u? = arg min
u

v(z) (3.14)

s.t. z = AlM−1
x+BlM−1

u

u ∈ UlM−1

z ∈ ĈKlM ,k,

q? = v(AlM−1
x+BlM−1

u?). (3.15)

If (3.14) is feasible, the previously stored T 1 cost-to-go (3.6) from the state x is replaced
by q?, the cost to reach the goal set of T 2. (Alg. 2, Line 11)

• For all states x in SGlM−1
not controllable to any convex safe set in SlM , we remove

the stored subtask execution ending in x out of the set of subtask safe sets for SlM .
(Alg. 2, Lines 12-16)

CHAPTER 3. TASK DECOMPOSITION FOR PIECEWISE LINEAR SYSTEMS 41

Figure 3.3: For systems with piecewise-linear dynamics and piecewise-convex con-
straints, the multiple pointwise controllability checks can be replaced with a single
convex controllability check.

• After checking the entire sampled guard set, all remaining convex subtask safe sets for
SlM−1

are controllable to convex subtask safe sets in SlM , and therefore also to RlM .
(Alg. 2, Lines 17-19)

Alg. 2 iterates backwards through the remaining subtasks, verifying the controllability
of points in sampled guard sets to a convex subtask safe set in the following subtask. The
algorithm returns convex subtask safe sets for T 2 that can be used to initialize an ILMPC
(3.7 - 3.8) for T 2.

Note the reformulation of the stored T 1 executions into convex sets (3.5). This allows
us to replace the point-to-point controllability verification from Alg. 1 in Chapter 2 with
point-to-set controllability in Alg. 2; Fig. 3.3 depicts this comparison. This allows for three
major improvements to the procedure:

1. The reformulated controllability problem (3.14) is a convex optimization problem,
which is, in general, much faster to solve than the non-convex point-to-point con-
trollability.

2. By using the convex hull of stored states (3.5) as a target set in (3.14), rather than
individual states, more points in the sampled guard sets (3.13) can potentially be
demonstrated to lead to feasible T 2 executions.

3. We increase the number of points for which we know a feasible T 2 policy, since such a
policy is known for all points in the time-indexed convex hulls of T 1 trajectories (3.5),
rather than only the discrete points of the T 1 trajectories.

CHAPTER 3. TASK DECOMPOSITION FOR PIECEWISE LINEAR SYSTEMS 42

Figure 3.4: Topview of the robot path planning task. Each subtask corresponds to
a pair of upper and lower obstacles.

Next, we show that the resulting time-indexed convex sets for T 2 induce feasible ILMPC
policies.

3.5 Properties of the PWL-TDMPC Policy

We prove the feasibility of ILMPC policies (3.8) initialized using Alg. 2. Note that here, CKj
denotes the convex subtask safe sets containing trajectories from the first j executions of a
task.

Assumption 5. T 1 and T 2 are defined as in (3.12), with each subtask defined by linear
dynamics (3.1) and convex constraints (3.2).

Theorem 3. Let Assumptions 4-5 hold. Assume Alg. 2 outputs non-empty sets CK0
[l1→lM]

for T 2. Then, if x0 ∈ CK0
[l1→lM], the policy πILMPC

[l1→lM], as defined in (3.8), produces a feasible

execution of T 2.

The proof is detailed in Sec. A.2. It follows from the same arguments that the ILMPC
policy (3.7-3.8) will eventually bring any x0 ∈ CKJ to the task target set RlM .

3.6 Application: Robot Path Planning

Task Formulation

We demonstrate the effectiveness of Alg. 2 in the robotic path planning example introduced
in Chapter 2. Consider a UR5e1 robotic arm tasked with maneuvering through six sets of

1https://www.universal-robots.com/products/ur5-robot/

CHAPTER 3. TASK DECOMPOSITION FOR PIECEWISE LINEAR SYSTEMS 43

obstacles modeled as extruded disks of varying heights above and below the robot. Each
set of upper and lower obstacles leaves a workspace between the disks for the robot to move
between. Here, each subtask Si corresponds to the workspace between a pair of lower and
upper obstacles. Different subtask orderings correspond to a rearranging of the obstacle
locations, indicated by Ωi in Fig. 3.4.

In a certain subset of the state and input space, characterized experimentally, the UR5e
has very high end-effector reference tracking accuracy (see Fig. 2.5). This allows us to use
a simplified end-effector model in place of a discretized second-order model as in [110]. We
solve the task in the reduced state space:

xk = [q0k q̇0k zk żk]
>

uk = [q̈0k z̈k]
>,

where q0k is the angle of the robot’s base joint along the Ω direction and zk is the height of the
robot end-effector at time step k, calculated from the six joint angles via forward kinematics.
q̇0k and żk are the corresponding velocities. We control q̈0k and z̈k, the accelerations of q0
and z, respectively. We model the base-and-end-effector system as a quadruple integrator:

xk ∈ Xi =⇒ xk+1 = Aixk +Biuk (3.17a)

Ai =


1 dt 0 0
0 1 0 0
0 0 1 dt
0 0 0 1

 , Bi =


0 0
dt 0
0 0
0 dt

 , ∀i ∈ [1, 6] (3.17b)

where dt = 0.01 seconds is the sampling time. This simplified model holds as long as we
operate within the region of high end-effector reference tracking accuracy, characterized in
previous experiments.

This reduced state space allows us to formulate the task as a concatenation of M = 6
subtasks with piecewise affine dynamics and convex constraints, according to (2.11); thus
we can use Alg. 2 to find a policy for a new task. For additional task description details, we
refer to Sec. 2.6 in Chapter 2.

Experimental Results

We evaluate the efficiency of Alg. 2 by comparing its run-time with the the run-time of the
point-to-point controllability analysis for task decomposition introduced in [122] for nonlinear
systems.

First, an ILMPC (3.7)-(3.8) is used to complete five executions of five different training
tasks, where each training task is a different reordering of the six obstacles. Each ILMPC
is initialized with a suboptimal state and input trajectory that tracks the center-height of
each subtask while the robot arm rotates at a low base velocity q̇0. In each task, the ILMPC
tries to reach the target set as quickly as possible while avoiding the obstacles. The new

CHAPTER 3. TASK DECOMPOSITION FOR PIECEWISE LINEAR SYSTEMS 44

Figure 3.5: Alg. 2 produces a significantly larger set of feasible states for T 2 in 10%
of the time as the algorithm in [122]. The sampled guard sets for each subtask are
plotted in black.

task T 2 is configured from another new reshuffling of the obstacles. Fig. 3.5 depicts the
T 2 workspace in light blue, along with the T 2 safe sets returned by the two versions of the
TDMPC algorithm. The left image plots in red the feasible safe states for T 2 output from the
point-to-point controllability method from [122]. The right image shows in red the feasible
safe sets output by the efficient point-to-convex-set controllability method from Alg. 2.

For each state in a subtask’s sampled guard set, the point-to-point controllability method
solves a mixed-integer program to try to find an input that controls the system to the last
state of a subsequent subtask trajectory. Therefore the complexity of both controllability
methods depends on the state dimension and number of trajectories through the subsequent
subtask (as this provides an upper bound for the size of the subtask safe set). The efficiency
improvement results from replacing the mixed-integer constraint in point-to-point controlla-
bility with a convex constraint of equal complexity, which is typically easier to compute.

In the example shown, our improved method was an order of magnitude faster at finding
safe states for T 2 than the point-to-point method, requiring 246 seconds of processing instead
of 2879 seconds, using a 2017 Mac Book Pro with 2.8 GHz Quad-Core Intel Core i7. Indeed,
the efficient reformulation of Alg. 2 for linear systems resulted in an average eleven fold
speed-up for five different trials of the described setup and testing procedure. In Tab. 3.1,
each trial corresponds to a newly shuffled T 2.

As is clear from Fig. 3.5, the convex set controllability analysis outputs a significantly
larger set of feasible states for T 2 than the pointwise method. This results from two main
phenomena. First, more states from the T 1 sampled guard sets remain in T 2 when using
the convex set controllability than point-to-point controllability. This follows since the new

CHAPTER 3. TASK DECOMPOSITION FOR PIECEWISE LINEAR SYSTEMS 45

Trial Convex Set Analysis Pointwise Analysis

1 246 s 2879 s
2 312 s 5561 s
3 219 s 1618 s
4 212 s 1810 s
5 264 s 2806 s

Table 3.1: Controllability Analysis Run-Time

controllability analysis (3.14) considers a larger one-step target set than the pointwise con-
trollablity analysis (i.e. a convex hull of states in the next subtask rather than individual
states). As a result, more points in the sampled guard set can be shown to lead to feasible
executions of T 2. Second, while the point-to-point controllability analysis only checks for
T 2 feasibility of the actual subtask trajectories from T 1, the new convex set controllability
analysis automatically also provides a policy for the convex subtask safe sets induced by the
trajectories. All safe states found using the point-to-point controllability method are thus
also found using the convex set controllability method. Accordingly, an ILMPC (3.7-3.8)
initialized with safe sets returned from Alg. 2 may also lead to a faster first execution of T 2.

3.7 Conclusion

This chapter presented an extension to the Task Decomposition algorithm from Chapter 2.
The new algorithm is designed for piecewise linear systems with piecewise convex constraint
sets, and is shown to reduce the computational burden associated with the TDMPC algo-
rithm and demonstrably increase the domain of the induced ILMPC policy. We prove that
the resulting policies are guaranteed to lead to feasible executions of the new task. Finally,
we evaluate the effectiveness of the proposed algorithm in a robotic path planning task, and
demonstrate the reduced computational burden compared with the TDMPC algorithm for
nonlinear systems.

46

Chapter 4

Probabilistically Safe Controllable
Sets

4.1 Introduction

We again consider a constrained, discrete-time dynamical system solving a series of tasks. In
each considered task T i, the system state and input constraints are identical, and the task
environment imposes additional task-specific environmental constraints. Our goal is to use
stored trajectories from previous tasks to find a control policy that solves a new task safely
and effectively. The previous two chapters described efficient approaches for adapting stored
task trajectories to the changed constraints of the new task; however, these methods required
a priori knowledge of the entire new task environment in order to perform the backwards
reachability analysis required to calculate controllable sets to the task goal.

In this chapter, we consider a situation in which the task-specific environmental con-
straints are at each time step k parameterized by a scenario parameter zk which evolves
according to a time-varying but task-invariant scenario dynamics function zk+1 = φ(zk, k).
(Consider, for example, time-varying hyperrectangular constraints with fixed sizes whose
centers at any time step k are given by zk.) We specifically consider the case where φ is
unknown. Given a collection of state-input-parameter trajectories that solve a collection of
n previous tasks (i.e. satisfying all system and respective task-dependent constraints), our
goal is to develop an MPC control policy that results in a feasible trajectory for a new task
T n+1 with a new sequence of time-varying scenario parameters.

MPC for systems with time-invariant constraints has been studied extensively, and it is
well-understood how to design the policy to guarantee stability and feasibility. Significantly
fewer studies exist that examine MPC with time-varying constraints; some are proposed in
[73, 71, 76, 128, 134, 55, 83]. The authors in [73, 71, 76, 128] design controllers robust to
possible changes in state constraints, but make assumptions on what those changes can be
and require pre-calculating appropriate invariant sets. An approach using Control Lyapunov
Functions and Control Barrier Functions for systems evolving on manifolds is presented in

CHAPTER 4. PROBABILISTICALLY SAFE CONTROLLABLE SETS 47

[134]. Such functions can be difficult to design for arbitrary systems and requires an explicit
model of how the constraints will vary. The authors of [55] and [83] formulate MPC problems
with time-varying constraints specific to autonomous driving and inverted pendulum robots,
respectively, but these works focus on how to recalculate time-varying constraints efficiently,
rather than ensuring feasibility.

Here, we will utilize controllable set theory to find a controller satisfying all time-varying
constraints in the new task. Controllable sets play an important role in safe MPC control
design, including for autonomous systems [120, 57]. They represent areas of the state space
from which the system can be safely controlled into a goal set P , while satisfying all (possibly
time-varying) state and input constraints. Thus, if the MPC can find a short-horizon tra-
jectory reaching a controllable set to the task goal, there must also exist a longer trajectory
ending in the task goal itself. Using controllable sets as terminal sets in MPC is the most
common way to guarantee desirable properties such as stability and recursive feasibility [77,
15]. Our approach is therefore to find a controllable set at each time step of solving the new
task T n+1, and using it as the terminal set in the MPC.

For linear systems with convex constraints, exact controllable sets can be calculated using
iterative methods, most famously via the Matlab MPT toolbox [66]. While these iterative
methods provide exact characterizations of controllable sets, the computational requirement
scales quickly with system dimension, becoming unreasonable for real-time calculation for
dimensions greater than four [2].

For constrained nonlinear systems, calculating controllable sets is generally considered to
be impossible [93, 41], but many methods for calculating approximate controllable sets have
been presented. One common approach is to linearize the system and constraints and find
robust controllable sets that take into account induced linearization errors [48, 40].

Hamilton-Jacobi based backward reachability [79] or dynamic programming [13] methods
can provide the most accurate approximations. An overview of these methods is given in [8].
However, these approaches famously scale very poorly with system dimension. Lyapunov-
based methods can also provide good approximations [125, 92]. However, these methods
require finding an appropriate Lyapunov function for the system, which can be very difficult
as there are no clear guidelines for constructing Lyapunov functions for arbitrary systems
[118, 16].

Because finding exact solutions is so difficult, recent work has considered using data-
driven and sample-based approaches to find estimates of controllable sets [91, 24, 131, 33, 26,
64]. These approaches can be especially useful if the system dynamics are unknown; in these
situations, trajectories of the system can be sampled and analyzed to estimate controllable
sets. Most purely data-driven approaches cannot provide guarantees that the resulting set
is a controllable set for the true system, though some offer probabilistic guarantees.

The extensive computational overhead required for the approximations described thus
far mean that these calculations must happen offline. To ease this burden, new research has
explored the possibility of analytically deriving controllable sets for certain classes of systems.
Such analytic methods are desirable because they can provide simple expressions that need
only be evaluated at a new state or constraint configuration, rather than entirely recalculated.

CHAPTER 4. PROBABILISTICALLY SAFE CONTROLLABLE SETS 48

This could allow on-board computers to find controllable sets during a control task. The
authors of [2] proposed a method for linear discrete-time systems, and analytic expressions
for controllable sets of integrator systems are derived in [34]; these have known solutions
for system dimension up to four. Extensive research has also led to analytic solutions of
controllable sets in variations of the pursuit-evasion game [109, 17, 37]. These solutions are
specific to the presented dynamics, and cannot be adapted to other scenarios.

In this chapter, we describe an approach that uses machine learning to quickly find
approximate controllable sets for new, time-varying environmental constraints. In contrast
with the previously introduced task decomposition approach, here we propose training and
storing a learned strategy function, rather than storing the previous trajectories themselves.
This strategy function is trained offline on stored trajectories, and implemented during the
new control task, where its output is used to efficiently construct approximations of the
controllable set to the new task’s goal set. This controllable set estimate is then integrated
into an MPC policy. Note that in contrast with [123], we do not require the tasks to be
composed of the same subtasks—the new task’s scenario parameter sequence can be entirely
new.

Our approach consists of two main steps. Offline, before beginning the new task, stored
trajectories are used to find ellipsoidal inner-approximations of controllable sets. Note that
each of these sets is controllable with respect to the environment constraints imposed by the
specific scenario parameter’s evolution. A “strategy function” is then constructed that maps
a scenario parameter to the center of such an ellipsoidal controllable set approximation.
Online, while solving the new control task, the strategy function is evaluated and a new
controllable set estimate is formed. Critically, this set is constructed so as to be with high
probability contained in the true controllable set to the task goal.

In this chapter, we:

1. propose a method for estimating controllable sets from data for systems with time-
varying constraints,

2. demonstrate how to use stored data to quickly find approximate controllable sets for
new constraints, such that the approximation is with high probability a subset of the
true controllable set,

3. demonstrate how to incorporate these sets into an MPC framework, and

4. provide probabilistic guarantees of feasible task completion for linear systems with
convex time-varying constraints under the resulting MPC policy.

We emphasize that while machine learning has been used to find the boundaries of con-
trollable sets for systems with time-invariant constraints, the novelty of the approach in this
chapter is that we consider using machine learning to quickly construct controllable sets as a
function of a time-varying constraint parameter. Our aim is to provide an alternative method
based on stored trajectory data for representing analytical expressions for controllable sets
that can be evaluated efficiently and can provide accuracy guarantees in some cases.

CHAPTER 4. PROBABILISTICALLY SAFE CONTROLLABLE SETS 49

4.2 Problem Formulation

Problem Setup

We consider a discrete-time system with dynamical model

xk+1 = f(xk, uk), (4.1)

subject to system state and input constraints

xk ∈ X , uk ∈ U . (4.2)

The vectors xk ∈ Rnx and uk ∈ Rnu collect the states and inputs at time k.
The system (4.1) solves a series of n finite-horizon control tasks, {T 1, . . . , T n}, each with

fixed duration T + 1. Each control task T i is defined by the tuple

T i = {X ,U ,P i,Θi},

where X and U are the system state and input constraints (4.2). In this chapter, we consider
environment parameter functions Θi of the form

Θi(xk, k) = zik,

where zik ∈ Rnz denotes a scenario parameter specific to the i-th task at time k. The param-
eters evolve according to an unknown task-invariant, but time-varying, scenario dynamics
function φ:

Θi(xk, k) = zik

= φ(zik−1, k − 1)

= φ(Θi(xk−1, k − 1), k − 1).

We denote the resulting task-specific sequence of k environment scenario parameters as

S i = {zi0, . . . , ziT | zik+1 = φ(zik, k)}. (4.3)

In each control task the system model (4.1) and constraints (4.2) are identical. However,
the task-specific scenario parameters S i generate additional time-varying state constraints
specific to each task’s environment, denoted as

X (Θi(xk, k)) = X (zik) = {x | h(x, zik) ≤ 0}, k = 0, . . . , T. (4.4)

As in our previous definitions of tasks, P i represents the task’s goal set, or the set of
states the system must reach in order to complete the task. Here we specifically define

P i = XT , ∀i ∈ Z+.

CHAPTER 4. PROBABILISTICALLY SAFE CONTROLLABLE SETS 50

Assumption 6. In this chapter we consider tasks and environment scenarios that all share
a goal set:

X (ziT) ⊆ XT , ∀i ∈ Z+.

As before, a feasible execution of the task T i in environment scenario S i is defined as a
pair of state and input trajectories

Ex(T i,S i) = (xi,ui), (4.5)

where

xi = [xi0, x
i
1, . . . , x

i
T], xik ∈ X ∩ X (zik), x

i
T ∈ P i

ui = [ui0, u
i
1, . . . , u

i
T−1], u

i
k ∈ U .

Note that each closed-loop state xik satisfies both the system state constraints and the task-
specific environmental state constraints specified by the parameter zik at time k.

Problem Statement

Consider a dynamical model (4.1) with state and input constraints (4.2), (4.4), and a collec-
tion D of feasible executions (4.5) that solve a series of n control tasks,

D = {Ex(T 1,S1), ...,Ex(T n,Sn)}.

Our aim is to utilize D to find a data-driven state feedback control policy π such that for
any new scenario Sn+1 satisfying Asm. 6 and xn+1

0 ∈ X ∩ X (zn+1
0),

f(xk, π(xk)) ∈ X ∩ X (zn+1
k+1), ∀k = 0, . . . , T.

By definition, such a policy results in a feasible execution Ex(T n+1,Sn+1).
Critically, we consider that at the start of the new task we do not have access to the

entire scenario Sn+1 nor the scenario dynamics function φ. Instead, at any time k of solving
the new task we know only the current state xk and a limited N -step scenario parameter
forecast,

zn+1
k:k+N = [zn+1

k , ..., zn+1
k+N]. (4.6)

Assumption 7. In this chapter we assume that we have access to the true scenario parameter
forecast, i.e. that there is no uncertainty in zn+1

k:k+N .

Assumption 8. We assume that there exists a feasible execution of T n+1 from initial state
xn+1
0 which satisfies the environment constraints specified by the scenario parameters Sn+1.

CHAPTER 4. PROBABILISTICALLY SAFE CONTROLLABLE SETS 51

Definitions and Notation

This chapter makes use of the following controllability definitions, reproduced here from
Ch. 1.

Definition 5. For a given set R, the N -step controllable set KN(R) of a system (4.1)
subject to constraints (4.2)-(5.3) is defined recursively as:

Pre(R) = {x : ∃u ∈ U : f(x, u) ∈ R}
K0(R) = R
Kj(R) = Pre(Kj−1(R)) ∩ X (Θ), j ∈ {1, ..., N} .

For all states in the N-step controllable set to R there exists a feasible input sequence of
length N that drives the system into R in N steps.

Definition 6. The set A is controllable to a set R if there exists an N > 0 such that
A ⊆ KN(R).

Note that if an MPC can find a state trajectory ending in a terminal set that is controllable
to the goal set while satisfying the task-specific time-varying environmental constraints, this
guarantees the existence of a feasible state trajectory from the current state to the goal set.

In addition to these definitions, this chapter utilizes ellipsoidal sets. Here we write an
ellipsoid as the image of the unit ball under an affine transformation

Ell(c, P) = {x | (x− c)>P−1(x− c) ≤ 1}, (4.7)

where c is the center and P the shape matrix of the ellipsoid.

4.3 Probabilistically Safe Controllable Sets

As in the two previous chapters, our goal will be to use stored trajectory data to design
terminal sets for an MPC policy of the form (1.11). Specifically, we will design a terminal
set that is controllable to the task goal. If an iteration of the MPC can find a state and
input sequence ending in a terminal set that is controllable to the task goal, by Def. 3 there
is also a (longer) state and input sequence ending in the task goal.

Common approaches to finding controllable sets typically make one of two assumptions:

1. Knowledge of the entire scenario Sn+1: If the entire task scenario were known, control-
lable sets to the goal Pn+1 could be computed offline using Def. 1 and used as terminal
sets in an MPC, resulting in closed-loop control with guaranteed recursive feasibility.

2. Knowledge of φ: If the scenario dynamics φ can be estimated from the limited scenario
data (4.6) available at time k, controllable sets based on robust predictions of the future
scenario parameters beyond time step k+N could be computed. However, such robust
reachability analysis is difficult for high-dimensional and nonlinear systems, and too
time-consuming for online control.

CHAPTER 4. PROBABILISTICALLY SAFE CONTROLLABLE SETS 52

Figure 4.1: Offline, we learn a strategy map ḡ from a dataset D containing stored
executions from previous tasks. Online, at each time k, an N -step local environ-
ment forecast zk:k+N is used to determine if a new high-level control strategy sk is
available. Strategies provide instructions how to construct a terminal set XN(sk)
towards which to steer the system.

In our considered context, the limited environment look-ahead (4.6) poses a challenge.
Greedy MPC control using only constraint information available at the current time step
is likely to become infeasible at future time steps, especially if scenario parameters change
quickly with respect to the control horizon.

In this chapter, we propose learning data-driven, strategy-parameterized sets that mimic
the effect of an MPC terminal set that is controllable to a goal set. Before starting the
new task T n+1, we use the stored executions in D to learn time-varying high-level strategy
functions ḡk for k = 0, . . . , T which map a state xk and the furthest available environment
forecast from (4.6) at time k to a strategy state sk:

sk = ḡk(xk, zk+N , θ
?), (4.8)

where θ? are learned parameters. Online, at each time k of solving the new task T n+1, we
evaluate the appropriate mapping (4.8) at the current state and environment forecast, and
use the resulting strategy state to construct an MPC terminal set XN(sk). The construction
approach of these sets will be presented in Sec. 4.6. Lastly, an MPC controller searches for

CHAPTER 4. PROBABILISTICALLY SAFE CONTROLLABLE SETS 53

a feasible input sequence to steer the system into XN(sk):

u?(xk, zk:k+N) = arg min
uk|k,...,uk+N−1|k

N−1∑
t=0

lk(xk+t|k, uk+t|k) + lN(xk+N |k)·)

s.t. xk+t+1|k = f(xk+t|k, uk+t|k)

uk+t|k ∈ U , ∀t ∈ {0, . . . , N − 1}
xk+t|k ∈ X ∩ X (zk+t), ∀t ∈ {0, . . . , N}
xk|k = xk

xk+N |k ∈ XN(sk)

uk = u?k|k.

Our goal is to learn appropriate strategy mappings ḡk in 4.8 so that using the resulting
terminal sets XN(sk) in a low-level MPC leads to a feasible execution for the new task
despite the limited forecast of the new scenario parameter sequence Sn+1. An overview of
our proposed control architecture is shown in Fig. 4.1. Our approach is split into three parts:

1. using stored data D to find parameterized approximations of controllable sets,

2. learning mappings ḡk (4.8) from a current system state and environment forecast to a
strategy state sk that parameterizes an appropriate controllable set, and

3. using the strategy state sk to construct an inner approximation XN(sk) of the (T −
(k +N))-step controllable set to the task goal P .

Each of these components is addressed in detail in the following sections. In Sec. 4.8 we
also provide feasibility guarantees for the resulting closed-loop control for certain classes of
systems.

A Note About Performance

In this chapter we specifically aim to use strategies to learn data-driven estimates of control-
lable sets to the task goal. Here the strategy state sk only influences the low-level controller
by changing the terminal constraint. The control objective function (e.g. minimize control
effort) can be freely chosen by the control designer without affecting the recursive feasibility
guarantees provided by our proposed terminal constraint. Critically, this also means that
no restrictions are placed on the control objectives that guided the executions of previous
tasks making up our stored data set D. In contrast with [121], we do not make the implicit
assumption that the objectives used to construct D are identical to each other or to the
control objective for the new task T n+1.

CHAPTER 4. PROBABILISTICALLY SAFE CONTROLLABLE SETS 54

(a) Steps II - IV: forming time-indexed dis-
crete sets Ek, taking the convex hull Ck, and
slicing at a specific scenario parameter zk,
resulting in Ck(zk). Here, xk(1) and xk(2)
are the first and second dimensions of the
system state x at task time k.

(b) Step V: fitting an ellipse Xk(zk) to
the polytopic controllable set approximation
Ck(zk).

Figure 4.2: We use data from previous tasks to find ellipsoidal approximations of
controllable sets for different scenario conditions.

4.4 Approximating Controllable Sets

Our first aim is to find estimates of controllable sets to the task goal Pn+1 ⊇ X (zn+1
T) using

stored trajectories from previous tasks. These sets are then used as terminal sets in an MPC.

Exact Approaches

As stated in Def. 3, finding controllable sets to a goal set requires recursively intersecting
the backward reachable set of the system (4.1) with the constraint sets applicable at each re-
cursion step (4.2)-(4.4). Efficient methods for finding controllable sets exist for systems with
linear dynamics and convex constraints [44, 67, 104, 95, 105], though these scale poorly with
system dimension [39]. However, this is a difficult and computationally intensive problem in
general, and is typically not well-suited to online computation [32, 38, 1].

Data-Driven Approximation

In order to avoid complex calculations to find exact controllable sets, we use data from
previous tasks stored in D to find approximations of controllable sets. Note that because
the scenario parameters impose additional constraints that must be satisfied at different

CHAPTER 4. PROBABILISTICALLY SAFE CONTROLLABLE SETS 55

time steps, these controllable sets are specific to a particular task time step k and scenario
parameter zk. Our approach is outlined here, and visualized in Fig. 4.2.

Step 1: Form time-indexed sets of augmented states

We first form augmented states q which stack the recorded system state and environment
parameter at a given time:

qk = [x>k , z
>
k]> ∈ Rnx+nz . (4.9)

The augmented states from different tasks are collected according to the time at which they
were recorded. At each time k = 0, . . . , T , this set is defined as

Ek =
n⋃
i=1

qik,

and contains the collection of state and scenario parameter pairs from which the system pre-
viously solved a particular control task at time k. Each augmented state in Ek concatenates
a state xk that is controllable to the goal state under environment constraints described by
the corresponding scenario parameter zk and its deterministic evolution 4.3 until the end of
the task. Therefore any set Ek is a subset of the (T − k)-step controllable set to the task
goal set under a specific scenario S i.

Step 2: Take the convex hull of time-indexed sets

To convert these collections of discrete points into polytopic sets, we take the convex hull of
each set:

Ck =

{
n∑
i=1

λiq
i
k

∣∣∣∣∣ λi ≥ 0,
n∑
i=1

λi = 1, qik ∈ Ek

}
(4.10)

= {q |
[
Hx
k Hz

k

]
q ≤ hk},

where Hx
k ∈ Rp×nx and Hz

k ∈ Rp×nz . Note that the resulting set Ck now includes augmented
states that were not included in D, and have therefore not yet been explicitly shown in
previous tasks to be controllable to the task goal.

Step 3: Evaluate at a particular scenario parameter

The convex hull sets Ck are in the space of augmented states (4.9). Given a particular
scenario parameter zk = z̄ at time k, an approximation of the controllable system states can
be determined by obtaining a slice of the set Ck at z̄:

Ck(z = z̄) = {x | [x>, z̄>]> ∈ Ck}
= {x | Hx

kx ≤ hk −Hz
k z̄}.

The resulting set Ck(z̄) is a polytope, and therefore remains convex. An example is shown
in Fig. 4.2a.

CHAPTER 4. PROBABILISTICALLY SAFE CONTROLLABLE SETS 56

Step 4: Fit an ellipse to the convex hull

Polytopic sets can be challenging to parameterize, especially if the set is multi-faceted or high-
dimensional (since either each vertex or hyperplane must be stored in order to characterize
the set). To reduce the complexity of storing our approximated controllable sets Ck(z), as
a last step we find the largest ellipsoid contained inside each Ck(z), i.e. a vector ck(z) and
matrix Pk(z) such that:

Xk(z = z̄) = Ell(ck(z̄), Pk(z̄)) ⊂ Ck(z̄).

These can be computed via the parameterized semi-definite program

gk(z) = arg max
ck(z),Pk(z)�0

log detPk(z) (4.11)

s.t. ‖Pk(z)hxk,i‖2 + hxk,i
>ck(z) ≤ hk,i − hzk,i>z ∀i = 1, . . . , p.

Where hxk,i and hzk,i are the i-th columns of Hx
k
> and Hz

k
> and hk,i is the i-th element of hk.

When solving (4.11), we may additionally constrain Pk(z) to be a diagonal matrix in order
to ensure that the resulting ellipse is axis-aligned. An example is shown in Fig. 4.2b.

These steps result in a collection of ellipsoidal, data-driven approximations of control-
lable sets, constructed using data stored in D. We re-emphasize that each of these ellipsoids,
parameterized by a center and shape matrix, approximates a set of system states at a par-
ticular time k and a specific scenario parameter zk which are controllable to the goal set in
(T − k) steps.

Remark 3. For systems with linear dynamics and convex state- and environment-dependent
constraints, any point in the time-indexed convex hull (4.10) of controllable states is also
controllable to the task goal. (The proof follows from Thm. 3, shown in A.2.) For such
systems, this approach therefore results in an inner approximation of the true controllable
sets, i.e. Ell(ck(zk), Pk(zk)) ⊂ KT−k(X (zT)). In general, however, points in the convex hull
of states that are individually controllable to a goal set are not necessarily also controllable
to that set [124], though they provide an approximation [46, 78, 47].

4.5 Learning Strategies To Approximate Controllable

Sets

Section 4.4 discussed the first step of our approach: using stored data to find approximations
of controllable sets to the task goal. These sets are ellipsoids parameterized by their center
and shape matrix. When solving the new task T n+1, we will need to find these parameters for
new ellipsoidal controllable sets at each time step, based on the current scenario parameter
forecast (4.6). While it is certainly possible to find such parameters by evaluating gk (4.11)
for each new scenario parameter observed, it can be difficult to do so in real-time for high-
dimensional systems and/or convex hulls with many facets (see Tab. 4.1, which lists the

CHAPTER 4. PROBABILISTICALLY SAFE CONTROLLABLE SETS 57

p = n3 p = n4 p = n5

n = 3 0.81 [s] 0.88 [s] 1.16 [s]

n = 4 1.52 [s] 2.66 [s] 4.34 [s]

n = 5 9.33 [s] 30.65 [s] 80.14 [s]

n = 6 183 [s] 1001.7 [s] 3964.9 [s]

Table 4.1: As the state dimension n and number of convex hull facets p increases,
the solve time for (4.11) increases significantly. Depending on the application, these
are not suitable for real-time control tasks. Numbers represent the average duration
of ten trials each calculated using Yalmip in Matlab.

computation time required to solve (4.11) in Matlab for a variety of state dimensions and
facet numbers). Thus, our next aim is to find efficient mappings ḡk from a new scenario
parameter zn+1

k to a controllable set parameterization.
We propose to use data stored in D to obtain such functions ḡk which can be efficiently

evaluated and approximate the functions gk defined in (4.11). This will allow for quick
computation of controllable ellipsoidal MPC terminal sets XN(sk) given a new scenario pa-
rameter. Specifically, we propose to use Gaussian processes (GPs) for this function approx-
imation.

Gaussian Process Regression

A GP maintains a probability distribution over functions, and is completely specified by a
mean function µ(x) and a scalar covariance function k(x, x′|θ) (also called the kernel) with
hyperparameters θ. Suppose we are given a GP with µ(x) = 0 and some kernel function
k(·, ·|θ) and want to estimate an unknown function ψ : Rn → R. Then given a data set
X = [x1 . . . xn]> and Y = [y1 . . . yn]> corresponding to noisy evaluations of the unknown
function as yi = ψ(xi) + w where w ∼ N (0, σ2

n), the posterior distribution of ψ(x) is given
by a GP specified by

µ(x|X,Y, θ) = k(x)>(K + σ2
nI)−1Y (4.12)

Var(x|X,Y, θ) = k(x, x|θ)− k(x)>(K + σ2
nI)−1k(x), (4.13)

where

[K]ij = k(xi, x(j)|θ)
k(x) = [k(x, x1|θ), . . . , k(x, xn|θ)]>.

As more training data becomes available, the posterior GPs approximate the unknown func-
tion ψ(·) more accurately provided that it belongs to the Reproducing Kernel Hilbert Space

CHAPTER 4. PROBABILISTICALLY SAFE CONTROLLABLE SETS 58

(RKHS) [89] induced by the kernel k(·, ·|θ). Moreover, the kernel hyperparameters may be
optimized by maximizing the marginal likelihood of the training observations using gradient-
based methods.

GPs have been used in recent predictive control literature to obtain data-driven estimates
of unknown nonlinear dynamics [61, 50, 54, 60]; here we use them to approximate gk.

Training GPs

Using the available dataset D containing successful executions of n control tasks, the GP
training data for each ḡk consists of:

Xk = {(xik, zik+N)}ni=1

Yk =
{(
ck+N(zik+N)Pk+N(zik+N)

)}n
i=1

. (4.14)

The output labels Y contain the center and shape matrix of the ellipse (4.11) approximating
the (T − (k+N))-step controllable set from the scenario parameter zik+N . These centers are
calculated using the data from D as described in Sec. 4.4. Because GPs best approximate
functions with scalar outputs, we train one GP for each dimension of the strategy state, for
a total number of (T −N) · 2nx̃ GPs. Each GP uses the same training input data.

Once training data is formatted, we use Bayesian optimization to learn optimal kernel
hyperparameters that best match the training data (4.14). A variety of solvers exist to
automate this optimization, including GPyTorch and SKLearn in Python and the Machine
Learning toolbox in Matlab. If desired, new hyperparameters can be learned whenever more
executions become available.

Remark 4. As stated in Asm. 7, we consider the case where at any time step k we have an
exact measurement of zk+N , the scenario parameter N steps into the future. If this is not
the case, e.g. if we only have estimates of the future environment, then the entire N-step
environment prediction zk:k+N may be used as input to the GP. This additional information
regarding the expected scenario trajectory may allow the GP to make more informed decisions
in the face of environment uncertainty.

Evaluating GPs

After training, the GPs can be evaluated on state and scenario data from the new task. At
time k of a new task T n+1, we evaluate the GPs at a new query point (xn+1

k , zn+1
k+N). Each

GP returns a one-dimensional Gaussian distribution over output scalars, parameterized by
the posterior mean (4.12) and variance (4.13):

µ(qk) = [¯̃ck+N(zn+1
k+N), ¯̃Pk+N(zn+1

k+N)] (4.15)

Var(qk) = diag([σ2(c̃k+N(zn+1
k+N)), σ2(P̃k+N(zn+1

k+N))]). (4.16)

CHAPTER 4. PROBABILISTICALLY SAFE CONTROLLABLE SETS 59

The posterior mean (4.15) represents the GP’s best guess based on the training data for
the parameters of the ellipsoidal approximation to the controllable set from the scenario
parameter zn+1

k+N . The posterior variance (4.16) provides additional information about the
uncertainty in each dimension of the parameter estimates. The ability to calculate this
uncertainty using (4.13), and thus how confident the GP is in its prediction at a particular
input, is a useful benefit of using GPs.

These statistics (4.15-4.16) represent the estimated strategy sk at time k:

sk = [µ(qk),Var(qk)] = ḡk(xk, zk+N , θ
?). (4.17)

Next, we describe how we find controllable terminal sets XN(sk) once we have these estimates
of the ellipsoid’s parameters.

4.6 Applying Learned Strategies

The last step in our approach is to use the GP’s calculated strategy state sk (the estimates
of ellipsoid parameters) to construct approximations of the (T − (k + N))-step controllable
set to the task goal. This set can then be used as a terminal set in a low-level MPC. In
particular, at each time k of solving the new task T n+1, we construct ellipsoidal sets XN(sk),
parameterized as:

XN(sk) = Ell(ĉk, P̂k). (4.18)

We would like these ellipsoids to be as similar as possible to the ellipsoids Ell(ck, Pk) con-
structed in Sec. 4.4. Here we describe how to determine ĉk and P̂k from sk to ensure that,
with high probability, Ell(ĉk, P̂k) ⊆ Ell(ck+N(zn+1

k+N), Pk+N(zn+1
k+N)).

Ellipse Center

At each time k of solving the new task, the state xk and environmental forecast zn+1
k:k+N are

available. This information is used as input to the GPs (4.15-4.16), which provides estimates
of the controllable ellipsoid’s center and shape matrix. We define the center of XN(sk) to be
the posterior mean of the estimated center:

ĉk = ¯̃ck+N(zn+1
k+N).

Ellipse Semi-Axes

As in Sec. 4.4, we restrict the semi-axes of the ellipsoid XN(sk) to be axis-aligned. This
restriction ensures that the ellipsoidal shape matrix is a diagonal matrix, resulting in sim-
plifications in the calculations required to ultimately construct XN(sk) in Sec. 4.6 (see, for
example, the simplification introduced in Corollary 1). A downside to enforcing axis-aligned

CHAPTER 4. PROBABILISTICALLY SAFE CONTROLLABLE SETS 60

ellipsoids is that the resulting controllable set estimate may provide less coverage of the true
controllable set than an arbitrarily-aligned ellipsoid. To minimize this conservatism as much
as possible, the axes should be chosen carefully according to the shapes of the time-varying
constraints.

In particular, we want to choose the ellipsoid’s shape matrix P̂k (and thereby the axis
lengths) such that with high probability (1 − δ) the resulting ellipsoid is contained within
the data-driven ellipsoidal approximation to the true controllable set Xk+N(zk+N):

P̂k = arg max
P̂

log det P̂ (4.19)

s.t. P[Ell(ĉk, P̂) ⊆ Ell(ck+N(zn+1
k+N), Pk+N(zn+1

k+N))] ≥ (1− δ).

Our approach to solve (4.19) consists of two steps:

1. rewriting the set containment constraint as a function of the distance between two
ellipsoid centers ĉk and ck+N(zn+1

k+N), and

2. finding a probabilistic bound on this distance between the ellipsoid centers.

We first rewrite the containment constraint. For this, we require the following result.

Lemma 1. Consider the nondegenerate ellipsoids E = {x ∈ Rn | (x − c)>P−1(x − c) ≤ 1}
and Ê = {x ∈ Rn | (x− ĉ)>P̂−1(x− ĉ) ≤ 1}, where ‖c− ĉ‖2 ≤ ε and P � Γ. Then Ê ⊆ E, if
there exist λ > 0 and P̂ � 0 such that the following inequalities hold:

λΓ− P̂ � 0

λε2

λmin(λΓ− P̂)
+ (λ− 1) ≤ 0.

The proof makes use of the Schur complement and matrix inversion lemma, and is in-
cluded in Sec. A.3.

For axis-aligned ellipsoids, the following corollary allows us to apply element-wise bounds
on the center and shape matrix diagonal:

Corollary 1. If the ellipsoids in Lemma 1 are axis-aligned, i.e. P = diag(p1, . . . , pn) and
P̂ = diag(p̂1, . . . , p̂n), where |ci − ĉi| ≤ εi, and pi ≥ γi for i = 1, . . . , n. Then Ê ⊆ E, if there
exist λ > 0 and p̂i > 0 such that the following inequalities hold:

λγi − p̂i > 0
n∑
i=1

λε2i
λγi − p̂i

+ (λ− 1) ≤ 0, ∀i ∈ {1, n}.

Given an upper bound ε on the distance between ck+N(zn+1
k+N) and ĉk, the centers of

two ellipsoids, and a lower bound Γ on the size of the shape matrix, Lemma 1 provides

CHAPTER 4. PROBABILISTICALLY SAFE CONTROLLABLE SETS 61

conditions on the shape matrix P̂ such that the resulting ellipse Ell(ĉk, P̂k) is contained
within Ell(ck+N(zn+1

k+N), Pk+N(zn+1
k+N)). The values for ε and Γ are determined from sk using

the uniform error bound provided in [68], which we reproduce below in Lemma 2. Specifically,
Lemma 2 provides conditions on the function gk+N (4.11) and the GP kernel k(·, ·|θ) such
that the deviation between the outputs of the GP mean function (4.17) evaluated at an input
and the function gk evaluated at the same input can be uniformly bounded, i.e. that there
exist constants α and β such that

P
[
|gk+N,j(z)− ḡk,j(z)| ≤ α

√
σ2
j (z) + β, ∀x ∈ X

]
≥ 1− δ

holds jointly over the domain X of gk+N for a chosen probability level (1 − δ), where the
subscript j indicates the j-th element of the vector valued functions.

Lemma 2. (Theorem 3.1 in [68]) Consider a zero mean Gaussian process defined through
the continuous covariance kernel k(·, ·) with Lipschitz constant Lk on the compact set X.
Furthermore, consider a continuous unknown function f : X→ R, sampled from a Gaussian
process GP (0, k(x, x′)), with Lipschitz constant Lf and B ∈ N observations yi = f(xi) + ε,
where ε ∼ N (0, σ2

n) . Then, the posterior mean function µ(·) and standard deviation σ(·) of a
Gaussian process conditioned on the training data {(xi, yi)}Bi=1 are continuous with Lipschitz
constant Lµ and modulus continuity ωσ(·) on X. Moreover, pick δ ∈ (0, 1), τ ∈ R+ and set

β(τ) = 2 log
M(τ,X)

δ

γ(τ) = (Lµ + Lf)τ +
√
β(τ)ωσ(τ).

Then, it holds that

P
[
|f(x)− µ(x)| ≤

√
β(τ)σ(x) + γ(τ), ∀x ∈ X

]
≥ 1− δ.

Details on how to compute the constants in Lemma 2 can be found in Sec. 4.6. Thus,
Lemma 2 provides a probabilistic bound on the deviation between the posterior mean of a
Gaussian process and the function gk from which the GP training data was sampled, which
holds jointly over the entire input space X. The proof of Lemma 2 utilizes the Lipschitz
continuity of the posterior mean and modulus of continuity in order to extend previous
found bounds for a discrete input domain [111] to a continuous input domain. Critically,
this Lipschitz-based approach results in bounds that contain easily calculable parameters,
rather than other related works which utilize RKHS norms.

Using the bounds

ε = Var(ck+N(zk+N))
√
β(τ) + γ(τ)

Γ = µ(Pk+N(zk+N))− Var(Pk+N(zk+N))
√
β(τ)

CHAPTER 4. PROBABILISTICALLY SAFE CONTROLLABLE SETS 62

in Lemma 1, we can rewrite (4.19) as:

P̂k = arg max
λ>0,P̂�0

log det P̂ (4.20)

s.t. λΓ− P̂ � 0

λε2

λmin(λΓ− P̂)
+ (λ− 1) ≤ 0.

If Ell(ck+N(zn+1
k+N), Pk+N(zn+1

k+N)) ⊆ KT−(k+N)(Pn+1), then the resulting ellipsoid Ell(ĉk, P̂k) is
with probability (1− δ) contained within the controllable set.

Remark 5. Lemma 2 provides a probabilistic bound on the deviation between the mean
function of a GP and the function gk+N from which the GP training data was sampled. Here,
gk+N is the function mapping a state and forecast to the center of the ellipse Xk+N(zk+N),
formed as described in Sec. 4.4. Note that each function gk+N is only defined in the range of
the collected task data Ck+N . Thus, although the GP can be evaluated outside this range, the
guarantees provided by (4.20) only hold in the span of collected task data.

Implementation

The uniform error bound described by Lemma 2 requires that the function being approx-
imated is Lipschitz continuous with constant Lf . We now show that the function which
maps an environment parameter z̄ to the center of the maximum volume inscribed ellipsoid
of Ck(z̄) (as described in Sec. 4.4) satisfies this requirement.

Lemma 3. Consider the following parameterized optimization problem and let Z ⊆ Rnz be
a compact set of parameters such that the set of feasible solutions within the compact set
x ∈ X ⊆ Rn is nonempty,

g(z) = arg min
x

l(x, z) (4.21)

s.t. hi(x, z) ≤ 0, i ∈ {1, . . . ,m}

where l : Rn×Z 7→ R and hi : Rn×Z 7→ R are convex w.r.t. x with ∇2
xl(x, z) � 0, ∀z ∈ Z.

All functions are C2 in x and C1 in z. If for all z ∈ Z, the optimal solution x? is unique
and LICQ and complementary slackness holds, then the map g : Z 7→ Rn is continuously
differentiable.

Proof. Define the function ξ : Rn × Rm ×Z 7→ Rn × Rm:

ξ(x, λ, z) =


∇xl(x, z) +

∑m
i=1 λi∇xhi(x, z)

λ1h1(x, z)
...

λmhm(x, z)

 .

CHAPTER 4. PROBABILISTICALLY SAFE CONTROLLABLE SETS 63

It is clear from the statement of the Lemma that for any z̄ ∈ Z, (4.21) is a convex optimiza-
tion problem for which strong duality holds. Therefore, for the primal and dual solution x?

and λ? corresponding to z̄, we have that ξ(x?, λ?, z̄) = 0. Taking the Jacobian of ξ w.r.t. x
and λ, we have

Dx,λξ(x
?, λ?, z̄) =

[
A(x?, λ?, z̄) B(x?, z̄)
ΛB(x?, z̄)> C(x?, z̄)

]
,

where

A(x?, λ?, z̄) = ∇2
xl(x

?, z̄) +
m∑
i=1

λ?i∇2
xhi(x

?, z̄)

B(x?, z̄) =
[
∇xh1(x

?, z̄) . . . ∇xhm(x?, z̄)
]

C(x?, z̄) = diag(h1(x
?, z̄), . . . , hm(x?, z̄))

Λ = diag(λ?1, . . . , λ
?
m).

The block matrix Dx,λξ is invertible when A and C − ΛB>A−1B (the Schur complement of
A) are both invertible. It is straightforward to see that A is invertible from the assumption
on ∇2

xl, i.e. A � 0.
Let I(x?, z̄) = {1, . . . , m̄} denote the set of active inequality constraints at x? and z̄.

Due to the complementary slackness condition, we have that hi(x
?, z̄) = 0 and λ?i > 0 for

i ∈ I(x?, z̄) (note that any active constraints, where both hi(x
?, z̄) = 0 and λ?i = 0, may be

removed from (4.21) without affecting the optimal solution) and hi(x
?, z̄) < 0 and λ?i = 0

for i /∈ I(x?, z̄). We therefore have that

C − ΛB>A−1B

=

[
0

C2

]
−
[
Λ1B

>
1 A
−1B1 Λ1B

>
1 A
−1B2

0 0

]
=

[
−Λ1B

>
1 A
−1B1 −Λ1B

>
1 A
−1B2

0 C2

]
,

where we have partitioned the matrices B,C, and Λ into submatrices corresponding to the
active and inactive inequality constraints respectively. Since x? satisfies LICQ, B1 is full
column rank, which implies that Λ1B

>
1 A
−1B1 � 0. Finally, the complementary slackness

requirement ensures that C2 ≺ 0, and we have that Dx,λξ is full rank and therefore invertible
at (x?, λ?, z̄).

By the implicit function theorem, in an open neighborhood U which contains z̄, there
exists a unique continuously differentiable map g′ : U 7→ Rn × Rm such that g′(z̄) = (x̄, λ̄)
and ξ(x̄, λ̄, z̄) = 0. By strong duality, we have that (x̄, λ̄) must be the solution to (4.21) at
z̄. Define a function which returns the portion of g′(z̄) corresponding to the primal solution.
Since the choice of z̄ ∈ Z was arbitrary, this function is equivalent to g as defined in (4.21),
which concludes the proof.

CHAPTER 4. PROBABILISTICALLY SAFE CONTROLLABLE SETS 64

While (4.11) does have a unique solution [49], it does not immediately satisfy the require-
ments of Lemma 3 since the Hessian of the cost function is not positive definite. To achieve
this, we can easily modify the objective in (4.11) to arrive at the following strictly convex
optimization problem

arg max
ck,Pk�0

log detPk −
α

2
‖ck‖22 −

β

2
‖Pk‖2F (4.22)

s.t. ‖Pkak,i‖2 + a>k,ick ≤ bk,i − h>k,iz̄, i = 1, . . . , p,

where we have added regularization terms for ck and Pk in the cost function with constants
α, β > 0. Using (4.22) in place of (4.11) when constructing approximate controllable sets
from data may result in slightly different ellipsoidal sets and, therefore, GP training data.
However, we note that as α, β → 0, the solution of (4.22) converges to that of (4.11).

Another potential issue with (4.11) and (4.22) is that for a large number of constraints,
i.e. a polytope with a large number of facets, it is possible that the number of active
constraints exceeds the dimension of the decision space, which would violate the assumption
of the satisfied LICQ conditions required in Lemma 2. However, since we are obtaining the
convex hull from data, we may always limit the number of data points used (at the cost
of conservatism) in the construction of the convex hull. An alternative would be to further
modify (4.22) such that we may obtain unique solutions which are suboptimal with respect
to (4.11), but are strictly in the interior of the feasible set. We can then use Slater’s condition
to establish strong duality in Lemma 3 and obtain the same result.

Lastly, Lemma 3 requires that complementary slackness holds at each optimal solution
x? to (4.11), i.e. that no active constraints are also redundant. In the context of (4.11), this
means that no hyperplanes of the convex hull are tangent to the largest-volume ellipse with-
out constraining the maximum volume the ellipse could have had. While it is theoretically
possible that such a situation occurs, in which case the complementary slackness condition
is not satisfied, this is extremely unlikely for randomly chosen initial conditions of the task
executions and multi-dimensional systems. Furthermore, as in the case of the LICQ require-
ment, by pruning the number of data points used to construct the convex hull, redundant
active constraints can easily be removed in order to satisfy complementary slackness.

Lemma 2 also requires that each unknown function gk is a sample from a Gaussian process
with zero mean and kernel k. Note that many so-called universal kernels [112], including
the squared exponential kernel, can be used to represent continuous functions with arbitrary
precision. Given the results in Lemma 3 confirming the continuity of gk, this requirement is
therefore not restrictive.

Finally, Lems. 1-2 depend on various measures and constants that must be chosen ap-
propriately for good performance and applicability.

• Lf : the Lipschitz constant of gk (existence of which is guaranteed by Lemma 3) can be
estimated from collected data. Alternatively, a probabilistic approach for estimating
Lf from collected data is provided in [68].

CHAPTER 4. PROBABILISTICALLY SAFE CONTROLLABLE SETS 65

• Lµ and ωσ: these values can be calculated from the Lipschitz constant of the kernel
k and Lf . Formulas for determining these values, which depend only on the training
data and kernel expressions, are included in [68].

• τ and M(τ,X): here, τ represents a grid constant which is used to derive the theorem
in [68]. The covering number M(τ,X) is the minimum number of points in a grid on
X with grid constant τ . While this number can be difficult to calculate in general,
upper bounds can be easily computed. Note that β(τ) only grows logarithmically with
diminishing τ , so that τ can be chosen arbitrarily small so that the effect of γ(τ)
becomes negligible compared to

√
β(τ)ωσ(τ).

Thus, the quantities in Lemma 1 and Lemma 2 are all easily computed or estimated.
This is in contrast with various previous approaches for bounding GP learning errors, which
often require knowing the maximal information gains of training data and RKHS norms of
the functions to be estimated. These are very difficult to calculate, which has historically
resulted in limited rigorous application of the methods in control research.

The Time-Invariant Case

So far we have considered the case where the scenario dynamics function φ explicitly depends
on time k. If this is not the case, i.e. if zik+1 = φ(zik) does not depend on the current time
step k, a simpler approach than the one presented thus far can be taken.

Rather than constructing k polyhedral approximations to k controllable sets, one convex
set C can be found by taking the convex hull of all recorded data (states and environment
parameters), across all k timesteps. This polyhedron can then be sliced and ellipsoids fitted
as described, but unified across all timesteps. A single GP function ḡ can then be used to
approximate the mapping from a new environment parameter z to the strategy state sk.
Besides the construction of a single convex set C and a single GP, the rest of the framework
does not change.

This approach reduces the complexity of estimating controllable sets as well as the number
of different strategy functions that have to be stored. However, because training time of GPs
scales with the cube of the input dimension (4.14), training time may significantly increase
a GP is trained with all data points.

4.7 Low-Level Controller

The low-level MPC controller calculates the input to be applied to the system at each time k.
This input is calculated based on the terminal set XN(sk) constructed around the strategy
state sk, calculated using the GP. If no feasible input sequence ending in XN(sk) can be
found, a safety controller is applied. Here, we formalize this control approach. Guarantees
of recursive feasibility for linear systems are provided in Sec. 4.8.

CHAPTER 4. PROBABILISTICALLY SAFE CONTROLLABLE SETS 66

MPC Formulation

At each time k of solving the new task T n+1, we construct a terminal set XN(sk) according
to Secs. 4.5-4.6. These sets are used as a terminal set in an MPC,

u?(xk, zk:k+N) = arg min
uk|k,...,uk+N−1|k

N−1∑
k=0

p(xk+t|k, uk+t|k) + q(xk+N |k) (4.23)

s.t. xk+t+1|k = f(xk+t|k, uk+t|k)

uk+t|k ∈ U , ∀t ∈ {0, . . . , N − 1}
xk+t|k ∈ X ∩ X (zk+t), ∀t ∈ {0, . . . , N}
xk|k = xk

xk+N |k ∈ XN(sk)

uk = u?k|k, (4.24)

which searches for a feasible state and input trajectory that minimizes a chosen stage cost p
and terminal cost q, and ends in the terminal set XN(sk). This optimization problem (4.23)
is solved at each time k of solving the new task, and if a feasible input trajectory exists, the
first optimal input u?t|t is applied to the system.

Safety Control

It can occur that (4.23) is an infeasible problem; in other words, that no state-input trajectory
satisfying system and environmental constraints exists that ends in the constructed terminal
set. When this happens, a safety control is activated for time k only, and we choose case

CHAPTER 4. PROBABILISTICALLY SAFE CONTROLLABLE SETS 67

uk = usk|k, where

us(xk, zk:k+N) = arg min
uk|k,...,uk+N−1|k,λ

N−1∑
k=0

p(xk+t|k, uk+t|k) + q(xk+N |k) (4.25)

s.t. xk+t+1|k = f(xk+t|k, uk+t|k)

uk+t|k ∈ U , ∀t ∈ {0, . . . , N − 1}
xk+t|k ∈ X ∩ X (zt+k), ∀t ∈ {0, . . . , N}
xk|k = xk

xk+N |k =

|Ek+N |∑
i=1

λixik+N

λ ≥ 0,

|Ek+N |∑
i=1

λi = 1

uk = usk|k. (4.26)

The only difference between the safety controller (4.25-4.26) and the strategy MPC (4.23-
4.24) is the terminal set constraint. The safety controller searches for a state and input
trajectory that ends in the convex hull of states from previous trajectories, Ek+N . (Note that
if φ is not time-varying, the safety controller terminal constraint will be the convex hull of
all stored data.)

The safety controller controls the system in a safe manner until a time when a feasible
terminal set XN(sk) is found. Our control approach outlined in Alg. 3 ensures that the safety
controller can always be applied. We show this in Sec. 4.8.

Algorithm

Algorithm 3 summarizes the proposed control policy. Importantly, the approach only requires
a local N -step forecast of the new task environment, rather than the entire environment
scenario. Gaussian processes, trained offline on trajectories from past control tasks, are used
to construct data-driven estimates of controllable sets to the task goal set P . These sets are
constructed at each time step, and used as terminal sets in an MPC controller. When no
feasible input sequence can be found, a safety controller is used at that time step instead.

4.8 Properties of PSCS Policies

For systems with linear dynamics (4.1) and convex state and input constraints (4.2), solv-
ing tasks with convex environment constraints (4.4) evolving according to a linear scenario
dynamics function φ, the convex hull approximation made in Step 3 in Sec. 4.4 is exact. As

CHAPTER 4. PROBABILISTICALLY SAFE CONTROLLABLE SETS 68

Algorithm 3 PSCS Control Policy

1: parameters: λ,Γ, N, δ

2: input: f , X , U , {Ex(T 1,S1), ...,Ex(T M ,SM)}
3: output: policy π for Ex(T n+1,Sn+1)
4:

5: offline:
6: construct approximate controllable sets as in Sec. 4.4
7: train GPs using stored executions as in Sec. 4.5
8:

9: online:
10: for each time step k do
11: collect (xn+1

k , zn+1
k:k+N)

12: evaluate sk = ḡk(x
n+1
k , zn+1

k+N) using (4.15)
13: construct XN(sk) using (4.18)
14: solve MPC (4.23)
15: if (4.23) is feasible then
16: uk = u?k|k (4.24)
17: else
18: solve safety MPC (4.25)
19: uk = usk|k (4.26)

20: end

a result, Ell(ck+N(z̄), Pk+N(z̄)) ⊆ KT−(k+N)(Pn+1), and Ell(ĉk, P̂k) ⊆ Ell(ck+N(z̄), Pk+N(z̄))
for any z̄ = zn+1

k+N ⊆ Ck+N with probability (1− δ). This is stated in Thm. 4.

Assumption 9. The system (4.1) has linear dynamics

xk+1 = Axk +Buk, (4.27)

and is subject to convex system state and input constraints (4.2)

Hxxk ≤ hx

Huuk ≤ ux.

Furthermore, the task scenario function φ is also linear

zk+1 = Ckzk, (4.28)

and imposes convex environmental state constraints

Hz(xk − zk) ≤ hz. (4.29)

CHAPTER 4. PROBABILISTICALLY SAFE CONTROLLABLE SETS 69

Theorem 4. Consider a system and set of n + 1 tasks satisfying Asms. 6-9. The trajec-
tories of the system solving the first n tasks are stored in D, and data-driven estimates of
controllable sets are calculated according to Secs. 4.4-4.6.

If a new state and scenario parameter for task T n+1 are chosen such that qn+1
0 =

[xn+1
0 , zn+1

0] ∈ C0, then

P[Ell(ĉk, P̂k) ⊆ KT−(k+N) ∀k ∈ 0, ..., T −N] ≥ 1− δ . (4.30)

The proof is detailed in Sec. A.3, and utilizes the fact that for linear systems the time-
indexed convex hull of controllable states is also a controllable set to a task goal.

Theorem 4 states that for linear systems with convex system and environment constraints,
the methods outlined in Secs.4.4-4.6 produce data-driven estimates of controllable sets that
are, with chosen probability (1− δ), subsets of the true controllable set to the task goal with
chosen probability. It follows that using XN(sk) = Ell(ĉk, P̂k) as an MPC terminal set for
these types of systems results in a feasible execution of the new task with probability (1−δ).
This is stated in Thm. 5.

Theorem 5. Consider a system and set of n + 1 tasks satisfying Asms. 6-9. If a new
state and scenario parameter for task T n+1 are chosen such that qn+1

0 = [xn+1
0 , zn+1

0] ∈ C0,
then the control approach outlined in Alg. 3 results in a feasible execution of the new task
Ex(T n+1,Sn+1) with at least probability (1− δ).

The proof can be found in Sec. A.3. The key idea is to show that if the initial augmented
state qn+1

0 is in the convex hull of stored trajectory data, using the GP-based controller will
result in a closed-loop trajectory that remains within the convex hull of data. Thus the safety
controller can be applied whenever necessary, resulting in a successful closed-loop trajectory.

Remark 6. The probabilistic bounds provided by Thm. 5 hold true for any function gk with
bounded Lipschitz constant. No linearity or convexity are required. However, Asms. 6-9 are
required to ensure that gk as defined in (4.11) is, in fact, the center of an ellipsoidal set that
is controllable to the task goal. The controllable set approximations undertaken in Sec. 4.4
to define gk are only guaranteed to be true for linear systems with convex constraints.

4.9 Application: Integrator System

We evaluate Alg. 3 in a simulation example. Specifically, we examine the probability of
feasibility in comparison to the safety controller. In Sec. 4.10, we further analyze the com-
putational complexity of Alg. 3 and compare with similar approaches.

CHAPTER 4. PROBABILISTICALLY SAFE CONTROLLABLE SETS 70

Problem Formulation

We consider a discrete-time, four-dimensional integrator system with state xk and input uk,
evolving according to

xk+1 =


1 0 dt 0
0 1 0 dt
0 0 1 0
0 0 0 1

xk +


0 0
0 0
dt 0
0 dt

uk,
where dt = 0.1[s] corresponds to the discretization sampling time. The system state and
input are box constrained as

−10 ≤ xk ≤ 10

−5 ≤ uk ≤ 5

for all time steps k.
In addition to the box system constraints, the system must satisfy time-varying environ-

mental constraints. At each time k, the state is additionally constrained according to the
element-wise inequality

xk ∈ X (zk) = {x | |x− z|i ≤ 1, ∀i ∈ nx}.

Thus at each time step k, the system state must be inside a square box of length 2 centered
at zk. Furthermore, zk evolves according to

zk+1 = Azzk,

where Az is the optimal LQR feedback to steer a point mass model to the origin with unity
state and input costs. This feedback can be calculated using the discrete-time algebraic
riccati equation. In each new task, the initial environment parameter z0 changes, as does
the resulting environment constraint sequence.

PSCS Implementation and Results

We consider the availability of trajectories solving n = 5000 different instances of this prob-
Lemma Each trajectory is of length T = 50, and is achieved corresponds to the system in
closed-loop with a unity-cost LQR controller with horizon N = T = 50. Thus the stored
trajectories are solved using a batch approach, not receding horizon, and correspond to the
best possible system response for each specific scenario parameter sequence.

These trajectories are used to construct approximate controllable sets as outlined in
Sec. 4.4. In order to minimize the computational effort required to find the convex hull of
such a large number of stored data points, we used a sampling-based approximation method
to first reduce the cardinality of the data before finding the convex hull. Once the convex

CHAPTER 4. PROBABILISTICALLY SAFE CONTROLLABLE SETS 71

Figure 4.3: The PSCS Alg. 3 proposes a controllable set to the system at each
time step, shown in green. Using this ellipsoidal set as a a terminal set in a low-
level MPC results in a feasible closed-loop trajectory satisfying all time-varying
constraints (blue boxes). The naive MPC without a terminal set fails to complete
the task.

hulls were constructed, the training data for GPs was created. Specifically, we trained GPs
with scaled Matern 1.5 kernels. The resulting GPs provided estimates of controllable sets to
the task goal given a new scenario parameter. All trajectory creation and GP training was
conducted in Python.

After GP training, the strategy functions are used to find controllable set estimates for
a new task, T n+1, with environmental state constraints evolving from the initial parameter
zn+1
0 . We select a desired constraint satisfaction rate of 99%. At each time step k, a 4-step

environmental forecast is used to evaluate the GPs and construct appropriate terminal sets
according to (4.18). These sets are then used in a low-level MPC controller (4.23) with
control horizon N = 4.

An example trajectory is depicted in Fig. 4.3, which shows the system’s closed-loop
trajectory through the sequence of time-varying box constraints as it moves towards the
task goal set at the origin. At each time step, the GP-constructed terminal set steers the
system towards a part of the state space from which a feasible input sequence exists to the
task goal set. The size of the terminal constraint set shrinks as we approach the end of
the task—this can be seen both on the x-y trajectory plot and the individual state plots
(Fig. 4.4). This occurs because as the system approaches the origin, the GP becomes less
uncertain in its predictions; all previously seen task environments converged to the origin,
so the GP has seen this situation before. As a result, the GP variances decrease and the
terminal set according to (4.18) shrinks.

As is clear in Fig. 4.3, the system moves smoothly through the task, and is well within
the task constraints at each time step. However, when we solved the task using a naive

CHAPTER 4. PROBABILISTICALLY SAFE CONTROLLABLE SETS 72

Figure 4.4: As the system solves the new task, it plans 4-step open-loop trajec-
tories ending in the GP-constructed terminal sets (shown in green). The terminal
sets ensure that the system will be able to satisfy future unknown environmental
constraints.

MPC controller with planning horizon N = 4 and no terminal constraint, the closed-loop
system becomes highly unstable. Because the short-sighted controller only plans to satisfy
constraints up to N = 4 steps in advance, the controller is purely focused on minimizing the
control objective. Shortly upon beginning the task, the controller becomes infeasible. In an
evaluation of 850 tasks, the PSCS control found a feasible execution for 848 tasks, while the
naive MPC feasibly completed only 462 tasks.

Even with added noise or state uncertainty, the system using the PSCS controller would
be able to complete this task with use of the suggested terminal set. For further analysis, we
evaluated our controller in a series of ten new tasks when subjecting the system to additive
noise sampled from N (0, 0.02). The PSCS controller successfully completed all ten tasks,
while the naive MPC controller became infeasible in each one. This clearly demonstrates
the necessity for using an appropriate terminal in changing environments, and the PSCS
provides a structured way of using data to construct such sets.

CHAPTER 4. PROBABILISTICALLY SAFE CONTROLLABLE SETS 73

4.10 Discussion

Other Approaches

Traditional approaches for tackling the unknown environment with limited horizon problem
would typically fall into three categories: (i) solving a short-horizon MPC problem without a
terminal set, (ii) estimating φ from data, or (iii) interpolating between the stored data using
convex hull methods. Here we compare our proposed algorithm with each such method.

Approach 1: Solving MPC with limited forecast

An alternative approach is to simply solve an MPC problem using the limited environment
forecast zk:k+N at each time step, without a controllable terminal set, as implemented by
[55, 83]. While this method is easy to implement, there are no guarantees the controller is
recursively feasible. Therefore it is possible that the closed-loop system will become unsafe
at some point during the task. This can be prevented with chosen probability (1− δ) using
Alg. 3.

Approach 2: Estimating φ from data

Given information from stored trajectories about how the scenario parameters z evolved
in previous tasks, one approach is to estimate φ from this transition data. In the case of
linear scenario functions, this is a simple regression problem, which can be completed entirely
offline. Once an estimate φ̂ has been determined, the entire scenario Sn+1 can be determined
from the initial parameter zn+1

0 , and controllable sets to P can be calculated according to
Def. 1. These controllable sets can then be used as terminal sets in an MPC. If φ can be
estimated exactly, then using the calculated controllable sets as terminal sets in an MPC
will result in a feasible task execution. This is explored in [73, 71, 76].

Unless φ is linear or otherwise clearly parameterized, estimating φ may not be straight-
forward. Additionally, calculating reachable sets for nonlinear dynamics is known to be very
challenging. While the estimation of φ from stored data can be completed entirely offline,
the scenario propagation and controllable set calculation can only be completed once zn+1

0

is known. This can be problematic, as the controllable set calculation can be time-intensive,
and may not finish before the first input u0 must be applied to the system. If the calculation
does not finish quickly enough, the safety controller (4.25-4.26) can be applied for the first
few time steps, which may lead to sub-optimal control performance.

If φ cannot be estimated exactly, then robust backwards reachable sets must be calcu-
lated. Depending on the uncertainty in φ̂, these robust backward reachable sets may be
very small or even empty, resulting in an infeasible MPC. In contrast, the controller outlined
in Alg. 3 evaluates very quickly, and does not require any backward propagation, with or
without uncertainty.

CHAPTER 4. PROBABILISTICALLY SAFE CONTROLLABLE SETS 74

Approach 3: Interpolating between stored data

A third approach is to write the initial state xn+1
0 and scenario parameter zn+1

0 as a convex
combination of stored data points, and apply the corresponding convex combination of stored
inputs. Note that this is a similar approach to our proposed safety controller (4.26). As
shown in [98], if Asms. 6-9 hold, this results in a recursively feasible trajectory that satisfies
all system and task constraints. Otherwise, there are no feasibility guarantees using this
approach.

Depending on the dimension of the system and the size of the dataset D, finding ap-
propriate convex hull multipliers can be very slow. As was the case with Approach 2, this
interpolation may take too long for a real-time control scenario. Additionally, because the
input sequence is fixed once convex multipliers are found, no additional control objectives
can be taken into account. In contrast, Alg. 3 only affects the terminal constraint; the control
objective function can be chosen as desired.

Our Approach

In contrast with the above approaches, the framework outlined in Alg. 3 has three main
benefits:

1. not requiring any online set propagation at the start of the control task,

2. taking uncertainty into account in a probabilistic way, thus allowing the control de-
signer to trade off acceptable risk and performance, and

3. allowing for any control objective function.

Complexity Evaluation

Offline Evaluation

The proposed Alg. 3 requires significant offline calculation. Finding the convex hull of
stored trajectory data (as required to find approximate controllable sets in Sec. 4.4) becomes
very slow as the state dimension and number of states increases. Various approximation
techniques exist to reduce the computational burden, including data pruning techniques
before calculating the convex hull, but it remains a significant bottleneck. As demonstrated
in Tab. 4.1, finding the largest ellipsoid inside a convex hull of points (as required to create
the training data labels) scales similarly poorly. The last offline step is to train several GPs,
one for each state dimension and trajectory time step. As previously described, GP training
time scales with the number of training samples cubed.

Thus, the overhead required to train a function that estimates controllable sets is exten-
sive. However, in contrast with the task decomposition methods proposed in Ch. 2-3, the
algorithm outlined here does not have to repeated for each new task environment. The offline

CHAPTER 4. PROBABILISTICALLY SAFE CONTROLLABLE SETS 75

calculations only have to be performed once in order to solve a variety of new tasks, and
only need to be repeated as desired (e.g. to take more new task information into account).

Online Evaluation

At each time step k of solving the new task, Alg. 3 evaluates nx GPs, solves an SDP in
order to find the ellipse shape matrix, and solves a QCQP optimization problem to plan a
trajectory ending in the ellipsoidal terminal set. We compare the online evaluation speed of
the PSCS method with two other controllers:

1. an MPC controller that solves gk (4.11) to exactly find the largest ellipse inside the
convex hull, and utilizes it as a terminal set, and

2. the safety controller detailed in (4.25).

We evaluate these controllers on a double integrator system with dynamics

xk+1 = Inxk + Iunuk,

where Inx is the identity matrix of state dimension nx, and Iunx a stacked vector with
nx − 1 zeros atop a single one. We consider various state dimension sizes nx, using the
same MPC horizon of N = 10. In each case, we consider the availability of p previously
recorded trajectories, and that the convex hull of this stored trajectory data has already
been calculated offline.

Results are shown in Tab. 4.2. Note that each entry contains the average evaluation
time over 100 trials, normalized by the evaluation time required by the safety controller.
For reference, the safety controller with (n = 2, p = 8) required 0.02 seconds to evaluate,
and (n = 7, p = 76) required 0.04 seconds. As the state dimension or number of stored
trajectories increases, solving gk to find the MPC terminal set quickly becomes excessively
slow. For a four-dimensional system with 64 recorded task trajectories, solving gk to find the
largest ellipse within the convex hull of the stored task data is more than nine times slower
than using PSCS control. This demonstrates the value of using GPs to quickly approximate
the gk function. As a result of the excessive calculation times, we only tested the gk MPC
on a small subset of scenarios.

The trend is more complicated for PSCS. For systems with low state dimension n and
small dataset sizes p, the PSCS controller takes nearly twice as long as the safety controller.
However, as the state dimension or dataset size increase, the performance gap shrinks, until
eventually the PSCS controller outperforms the safety controller in several scenarios. This
is because convex hull calculations become very inefficient for large state dimensions and
numbers of vertices—as the dataset grows, the size of the safety control optimization prob-
lem grows proportionally, requiring more auxiliary variables. In contrast, the size of the
PSCS optimization problem only depends on the state dimension. The PSCS controller does
require a GP evaluation, but this can be very efficiently implemented using programs such
as GPyTorch.

CHAPTER 4. PROBABILISTICALLY SAFE CONTROLLABLE SETS 76

gk MPC

PSCS
p = n3 p = n4 p = n5 p = n6 p = n8

n = 2

3.44

1.81

3.55

1.84

—

1.90

—

1.97

—

1.83

n = 3

5.78

1.71

6.36

1.69

—

1.67

—

1.59

—

0.93

n = 4

16.6

1.80

33.3

1.72

—

1.50

—

1.11
—

n = 5

107

1.53

—

1.64

—

1.20

—

0.49
—

n = 6

—

1.68

—

1.43

—

0.74
— —

n = 7

—

1.57

—

1.15

—

0.47
— —

Table 4.2: We compare the online evaluation time required at each time step for
three different control approaches. Numbers represent the average duration of 100
trials each calculated using Mosek in Python, normalized by the evaluation time
required by the safety controller for each n and p combination. For reference,
the safety controller with (n = 2, p = 8) required 0.02 seconds to evaluate, and
(n = 7, p = 75) required 0.04 seconds.

CHAPTER 4. PROBABILISTICALLY SAFE CONTROLLABLE SETS 77

Controller Region of Attraction

GPs are typically used to represent nonlinear functions, for which the convex hull is an
inexact approximation. However, the results in Tab. 4.2 demonstrate that PSCS can offer
utility even for linear systems with convex constraints. While for low-dimensional systems it
is faster to replace the GP approximation with the convex hull, for high-dimensional systems
it is more efficient to use the GP approximation.

However, we note that the PSCS controller does have a smaller region of attraction than
the convex hull safety controller. This is a direct result of the PSCS controller learning
to construct sets that are inner approximations of the true controllable sets (see Sec. 4.4).
Therefore there may be parts of the state space from which an MPC controller with a convex
hull terminal constraint is feasible, but an MPC with a (smaller) PSCS-constructed terminal
set is not. The degree to which the PSCS region of attraction is smaller than that of the
convex hull controller of course depends on how well axis-aligned ellipsoids can cover the
area of the controllable sets.

In simulation trials of 850 different tasks for which the convex hull controller was feasible,
848 were successful using the PSCS controller in conjunction with the backup safety controller
(i.e. as described in Alg. 3). When we additionally tested the performance of a pure-PSCS
controller (i.e. no safety controller was ever implemented; if the PSCS-constructed terminal
set was infeasible at any time step, the task execution ended as a failure), it resulted in
successful completion of 786 tasks. Thus, much of the shrinkage in the region of attraction
can be well-mitigated by utilizing the safety controller when necessary.

4.11 Conclusion

In this chapter, we proposed a data-driven hierarchical framework for safe model predictive
control in unknown environments with time-varying constraints. We consider a discrete-time
dynamical system and the availability of state-input trajectories that solve a variety of tasks
in various environments. In each task, the system state and input constraints are identical,
but a task-specific environment model generates additional task-specific state constraints
which are satisfied by the respective trajectories. Our framework provides a method for
estimating controllable sets from stored trajectories solving previous tasks, as a function of
the parameterized environment model. While we assume that the environment constraints
in previous tasks were all different, the approach requires that the environment constraints
evolve according to a shared time-varying dynamics function and that all tasks share a
common task goal.

Offline, before beginning the new task, Gaussian process strategy functions are learned
from stored data. Online, while solving the new task, the strategy functions are evaluated
at a short-term environmental forecast, and the output is used to construct an ellipsoidal
approximation of the controllable set to the task goal set. Finally, the set estimates are used
as terminal sets in a low-level MPC; the MPC objective function can be designed as desired,

CHAPTER 4. PROBABILISTICALLY SAFE CONTROLLABLE SETS 78

irrespective of the estimated controllable set. For linear systems with convex system and
environment constraints, we prove that the ellipsoidal sets are subsets of the true controllable
sets with arbitrarily high probability, and are thus true controllable sets to the task goal.
As a result, we can demonstrate our approach is guaranteed to result in a feasible execution
for the new task. We evaluated this approach in various applications, and provide extensive
comparisons with other methods for estimating controllable sets and performing MPC in
time-varying environments.

In the next chapter, we more broadly consider the notion of strategies in navigation tasks,
how they may be extracted from trajectory data, and safely integrated in a low-level MPC.

Extensions

The approach presented in this chapter considers a specific instantiation of the changing
environment problem, and makes several assumptions about the problem setup. Here we
briefly discuss how Alg. 3 could be extended in various ways.

Variable task length:

At the beginning of this chapter we made the assumption that all recorded task trajectories
are of the same finite length T . This is critical as our proposed approach utilizes time-
indexed strategy functions ḡk to construct controllable set estimates. If the task goal set P
is an invariant set, our approach still holds for variable task lengths. Otherwise, a single more
general, time-independent strategy function could be used. This function ḡ could consider
the entire environment forecast zik:k+N as input, which may provide additional insight, though
retaining probabilistic containment guarantees is not straightforward in this case.

Multiple possible scenario dynamics functions φ:

Here we have assumed that in each considered task, the environment constraints evolve
according to a fixed function φ. Another worthy extension is to consider the situation where
each task evolves according to some φi ∈ Φ, where Φ is a finite set of functions each φi

could be. In such a case, φi could be estimated from the environment forecast zik:k+N , either
explicitly before estimating the strategy or implicitly by including it as additional input to
the GP. Alternatively, an initial classifier scheme could convert the environment forecast into
a probability distribution over Φ, and the p number of most likely φ ∈ Φ could be considered
individually.

Expanding guarantees to nonlinear systems:

While Alg. 3 can certainly be used to construct controllable set approximations for nonlinear
systems, the probabilistic guarantees described in Thms. 4-5 only hold for linear systems.
The linear dynamics requirement stems from the fact that the entire convex hull of control-
lable states is guaranteed to also be controllable only if the system is linear and constraints

CHAPTER 4. PROBABILISTICALLY SAFE CONTROLLABLE SETS 79

convex. Thus the controllable set approximation described in Sec. 4.4 is only exact for linear
systems. If another way could be proposed for constructing approximate controllable sets
that is also exact for nonlinear systems, our guarantees could hold. However, this is a diffi-
cult problem in general. Note that an additional consideration for nonlinear systems would
be the design of an appropriate safety controller (4.25).

80

Chapter 5

Hierarchical Predictive Learning

5.1 Introduction

The previous three chapters proposed different ways for using stored task data to find ap-
proximations of controllable sets for the new task, either by directly using trajectory libraries
or a function encoding the trajectory libraries. These controllable set estimates could then
be used as a terminal set in a low-level MPC.

In Chapter 4, we began considering the notion of using strategies to represent control-
lable sets. Now, we formalize this notion of using stored data to learn generalizable control
strategies for navigation tasks. The inspiration for this work was how humans learn naviga-
tion tasks and then generalize them: by learning environment-dependent strategies, rather
than specific actions.

We will introduce a hierarchical predictive learning architecture that learns such strategies
from stored task data and then applies the strategies to the new task. At each time step,
based on a local forecast of the new task environment, the learned strategy consists of a
target region in a reduced-dimension state space and input constraints to guide the system
evolution to this target region. These target regions are used as terminal sets by a low-level
model predictive controller.

In this chapter, we show how to (i) design the target sets from past data, and then (ii)
incorporate them into a model predictive control scheme with shifting horizon that ensures
safety of the closed-loop system when performing the new task. We prove the feasibility of
the resulting control policy, and apply the proposed method to robotic path planning, racing,
and computer game applications. We will conclude with a discussion on the benefits using a
hierarchical framework can offer for control generalizability, modularity, transparency, and
safety.

This chapter is organized as follows. Section 5.2 formalizes the background information
and problem statement. Section 5.3 introduces the Hierarchical Predictive Learning Control
Framework, which is detailed further in Secs. 5.4-5.7. We conclude with a proof of the
feasibility of our proposed policy and three example applications. We conclude this chapter

CHAPTER 5. HIERARCHICAL PREDICTIVE LEARNING 81

with a discussion in Sec. 5.12.
The results presented in this chapter have also appeared in:

• C. Vallon and F. Borrelli. “Data-driven hierarchical predictive learning in unknown
environments.” In: 2020 IEEE 16th International Conference on Automation Science
and Engineering (CASE). 2020, pp. 104-109.

• C. Vallon and F. Borrelli. “Data-driven strategies for hierarchical predictive control
in unknown environments.” To appear in: 2021 Transactions on Automation Science
and Engineering (TASE).

5.2 Problem Formulation

As before, we consider a discrete-time system with dynamical model

xk+1 = f(xk, uk), (5.1)

subject to system state and input constraints

xk ∈ X , uk ∈ U . (5.2)

The system (5.1) solves a series of n control tasks {T 1, . . . , T n}. Each control task T i is
defined by the tuple

T i = {X ,U ,P i,Θi},

where X and U are the system state and input constraints. P i ⊂ X denotes the task target
set the system needs to reach in order to complete task T i.

Recall that for each task T i, the environment descriptor function Θi maps the state xk
at time k to a description of the local task environment. In this chapter we only consider
state-dependent, but time-invariant, functions Θi(xk). The set of states satisfying the en-
vironmental constraints imposed by this local task environment are denoted by E(Θi(xk)).
We write the joint system and environment constraints as

xk ∈ X (Θi(xk)) = E(Θi(xk)) ∩ X . (5.3)

For notational simplicity, wherever it is obvious we will drop the state dependence and denote
the combined system and environment constraints (5.3) as X (Θi).

The control architecture proposed in this chapter relies on forecasts of the task environ-
ment, which can be obtained using the environment descriptor function. At time k, we can
use the system model (5.1) to predict the system state across a horizon T ,

x̂ik:k+T = [x̂ik, x̂
i
k+1, . . . , x̂

i
k+T],

CHAPTER 5. HIERARCHICAL PREDICTIVE LEARNING 82

and evaluate the environment descriptor function along this forecast state trajectory. This
provides a forecast of both the upcoming task environment Θi(·) and environmental con-
straints E(Θi(·)):

θik:k+T = [Θi(x̂ik), . . . ,Θ
i(x̂ik+T)]. (5.4)

In the context of the autonomous racing example, we can evaluate Θi at forecasts of the
system state in order to get predictions for the upcoming racetrack curvature, which can be
evaluated from e.g. camera images (Fig. 1.1).

Problem Definition

Given a dynamical model (5.1) with state and input constraints (5.2), (5.3), and a collection
of feasible executions (2.5) that solve a series of n control tasks, {Ex(T 1,Θ1), ...,Ex(T n,Θn)},
our aim is to find a data-driven control policy π(x) that results in a feasible and high-
performance execution of a new task in a new environment: Ex(T n+1,Θn+1).

In addition to satisfying the new environment constraints, the execution should try to
minimize a desired objective function J(xn+1,un+1). In contrast with Chapter 2-3, in this
section we do not explicitly take a cost function J into account. Instead, we assume that the
stored executions from previous tasks T i were collected using control policies that aimed to
minimize the same cost function J(xi,ui). Thus the desired objective function J is implicitly
associated with the stored data. If this assumption does not hold, the method proposed in
this chapter will still provide a feasible trajectory.

5.3 Hierarchical Predictive Learning Control

We propose a data-driven controller that uses stored executions from previous tasks to find
a feasible policy for a new task in a new environment. Instead of simply adapting the stored
executions from previous tasks to the changed environmental constraints of the new task,
we learn generalizable and interpretable strategies from past task data, and apply them to
the new task. Our approach is inspired by how navigation tasks are typically explained to
humans, who can easily generalize their learning to new environments by learning strategies.

A Motivating Example

Consider learning how to race a vehicle around a track. If a human has learned to race a
vehicle by driving around a single track, they can easily adapt their learned strategy when
racing a new track.

A snippet of common racing strategies1 taught to new racers is depicted in Fig. 5.1. The
most basic rules are guidelines for how to find the racing line, or the fastest possible path

1As taught at online racing schools such as Driver 61: https://driver61.com/uni/racing-line/

https://driver61.com/uni/racing-line/
https://driver61.com/uni/racing-line/

CHAPTER 5. HIERARCHICAL PREDICTIVE LEARNING 83

Figure 5.1: Sample of strategies taught at various online racing schools.

around the track, which is directly determined by the track curvature. Drivers are instructed
where along the track to brake, steer, and accelerate, and how to find these locations for
curves of different shapes.

The environmental constraints imposed on the vehicle (lane boundaries) are parameter-
ized by the track curvature. This environmental descriptor gives rise to physical areas along
the track with respect to which racing rules are then explained, e.g. “brake at the braking
point, then cut the curve at the apex and aim for the outside of the straightaway.” The
strategies here consist of sections of the track towards which to aim the vehicle as well as
acceleration profiles to apply along the way. Importantly, the locations of these regions only
depend on the local curvature; the track curvature a mile away has little impact on the
location of the apex in the curve directly ahead.

We also note that the strategies are explained using only a subset of the state space:
the distance from the centerline. Given guidelines on this subset, the driver is free to adjust
other states and inputs such as vehicle velocity and steering in order to satisfy environmental
constraints.

Principles of Strategy

Based on this real-life intuition, we propose three principles of navigation strategy:

1. Strategies are a function of a local environment forecast
(e.g. radius of curvature of an upcoming track segment)

2. Strategies work in a reduced-order state space
(e.g. distance from center lane)

3. Strategies provide target regions in the (reduced-order) state space for which to aim,
and input guidelines for getting there
(e.g. “braking point”, “turn-in point”, “exit point”)

The control architecture proposed in this chapter formalizes the above principles of strategy,
and shows how to incorporate such strategies into a hierarchical learning control framework.
In particular, we focus on two aspects. First, we show how to learn generalizable strategies

CHAPTER 5. HIERARCHICAL PREDICTIVE LEARNING 84

Figure 5.2: The Hierarchical Predictive Learning (HPL) control architecture. At
time k, the state xk and T -step environment forecast θk:k+T are used to evaluate the
control strategy. A strategy consists of reduced dimensions sets, X̃k+N and Ũk:k+N ,
towards which to steer the system in the next N time steps and input guidelines for
getting there. These sets are used to construct a full-dimension target set, Xk+N ,
used as a terminal set in an MPC controller with horizon NMPC. At each time k,
SetListk determines the relationship between N and NMPC. The low-level control
loop is drawn in black, and shaded yellow blocks indicate control design choices.

from stored executions of previous control tasks. Second, we show how to integrate the
learned strategies in an MPC framework so as to guarantee feasibility when solving a new
control task in real-time.

Implementation

Hierarchical Predictive Learning (HPL) is a data-driven control scheme based on applying
high-level strategies learned from previous executions of different tasks. The HPL controller
modifies its behavior whenever new strategies become applicable, and operates in coordina-
tion with a safety controller to ensure constraint satisfaction at all future time steps.

An overview of the control architecture is shown in Fig. 5.2. Offline, before beginning the
new control task, stored executions from previous tasks are used to train strategy functions
of a desired parameterization (Sec. 5.4). After training, the controller can solve new tasks.

CHAPTER 5. HIERARCHICAL PREDICTIVE LEARNING 85

Online, at each time k, an T -step local environment forecast θk:k+T (5.4) is used to determine
if a new high-level control strategy is available (Sec. 5.5). A strategy consists of state and
input sets in reduced dimensions, X̃k+N and Ũk:k+N , that provide a set towards which to
steer the system in the next N timesteps, as well as input guidelines for getting there. The
strategy sets are used to construct a target set in the full state space, Xk+N . We note the
difference between the environment forecast horizon T and the strategy prediction horizon
N (Sec. 5.4). Lastly, an MPC controller with prediction horizon NMPC calculates a low-level
input uk to reach the target set (Sec. 5.6).

There are five key design and control challenges:

1. representing the strategy mathematically,

2. choosing appropriate horizons N , T , and NMPC ,

3. lifting the reduced-dimension strategy set into a full-dimension target set,

4. ensuring closed-loop strategy effectiveness at solving the new task, and

5. ensuring constraint satisfaction and recursive feasibility of the receding horizon control
problem.

In the following sections, we address each of these challenges in detail and prove the feasibility
of the resulting HPL control law. First, we show how to learn generalizable strategies from
stored executions of previous tasks. Second, we show how to integrate the learned strategies
in an MPC framework so as to guarantee feasibility when solving a new control task in
real-time.

5.4 Learning Strategies From Data

This section addresses the first aim of our chapter: learning generalizable strategies from
stored data of previously solved tasks. We consider strategies to be maps from a state and
environment forecast to reduced-dimension strategy sets:

(X̃k+N , Ũk:k+N) = S(xk, θk:k+T), (5.5)

where xk is the system state at time k and θk:k+T the T -step environment forecast. X̃k+N
represents a strategy set in reduced dimension that the system should be in N timesteps into
the future, and Ũk:k+N provides constraint guidelines for a reduced dimension of the input
as the system travels towards X̃k+N .

There are several ways of representing the strategy function S in (5.5), including model-
based methods that use an explicit model for how variations in task environments affect the
optimal control input [14]. In this work we instead opt for a data-driven approach, using
stored executions (2.5) that solve related tasks.

CHAPTER 5. HIERARCHICAL PREDICTIVE LEARNING 86

Strategy States and Inputs

The strategy function outputs reduced-dimension state and input sets. We refer to the
space where these reduced-dimensional sets lie as “strategy state space” and “strategy input
space.”

We define the strategy state at each time k as

x̃k = g(xk,Θ) ∈ Rnx̃ , (5.6)

where g maps the full-dimensional state xk into the corresponding lower-dimensional strategy
state x̃k. Similarly, the strategy inputs are

ũk = r(uk,Θ) ∈ Rnũ , (5.7)

where r maps the full-dimensional input at time k into lower-dimensional strategy inputs.
These mapping functions may depend on the task’s environment descriptor function Θ -
for example, a strategy state x̃ measuring the distance from a race track centerline depends
on the shape of the centerline, which is described by Θ. We denote the strategy state and
strategy input spaces as

X̃ = {x̃ | x̃ = g(x,Θ), x ∈ X} (5.8)

Ũ = {ũ | ũ = r(u,Θ), u ∈ U}. (5.9)

Remark 7. The functions g and r may be any functions mapping X and U to a reduced-
dimension space. They are not limited to indexing functions, i.e. we do not require x̃k to be
a subset of X .

We use strategy states and inputs (rather than the full states and inputs directly) to
allow for simplification and generalization. While all system states and inputs affect the
system’s trajectory via the dynamics (5.1), when solving complex tasks a subset of states
and inputs are likely to be especially informative as to how the system should respond to
the upcoming environment.

The choice of strategy states and inputs is therefore critical. Strategy states and inputs
must be meaningful to solving the task at hand, and it must be reasonably expected that
a strategy mapping (5.5) from an environment forecast to these strategy spaces can be
formulated. If the chosen strategy states and inputs are not correlated with (i.e. can not be
predicted from) the environment forecast, new strategy states must be chosen.

Initially, all system states and environment descriptions can be considered as candidate
strategy states. Because reducing the number of strategy states can improve generalizability,
this list should then be trimmed as much as possible (or as much as required for computa-
tional tractability). Human knowledge can provide insight into what states are likely to have
an impact on optimal behavior, and therefore which strategy states and inputs to choose.
In the autonomous racing task, for example, a control designer will know that it is easier
to use the track curvature forecast to predict the vehicle’s future distance along and from

CHAPTER 5. HIERARCHICAL PREDICTIVE LEARNING 87

the centerline than a future yaw rate. Note that strategy states should encode information
about both task objective and task safety.

If no human intuition can be incorporated, data-driven methods could instead be used to
find appropriate strategy states and inputs. Clustering methods or dimensionality-reduction
methods such as PCA can estimate what states are most important for determining the strat-
egy. Recent work [12], for example, proposes forming aggregate (or representative) features
out of system states in order to reduce the problem dimension in Dynamic Programming -
this approach could similarly be applied to finding strategy states for HPL. Using data-driven
methods to determine the best choice of strategy states, particularly for complex tasks, is
an avenue for future research.

In general, we suggest using intuition about the task to narrow the list of potential
strategy states as much as possible, and using data-driven feature selection methods in the
final stages if strategy performance using only hand-derived features is lacking. Sections
5.9-5.11 provide several examples for choosing strategy states for navigation tasks.

Remark 8. It may also be beneficial to use the current strategy state x̃k, rather than the
current state xk, as an input to the strategy function (5.5). This can further improve the
generalizability of the learned strategy, as fewer values have to match between the new en-
vironment and the stored task data (2.5). The notation in the remainder of this chapter
constructs the strategy input using the full state xk, but the approach and theory remain the
same if the strategy state space is used instead.

Representing the Strategy

Thanks to an immense amount of machine learning research, there are myriad ways to rep-
resent the strategy function S in (5.5). We propose using Gaussian processes (GPs). GPs
have frequently been used in recent predictive control literature to provide data-driven esti-
mates of unknown nonlinear dynamics [50, 54, 60]. Specifically, GPs are used to approximate
vector-valued functions with real (scalar) outputs.

Given training data (input vectors and output values), GPs use a similarity measure
known as “kernel” between pairs of inputs to learn a nonlinear approximation of some true
underlying input-output mapping ψ : Rn → R. The kernel k(x, x′|θ) represents the learned
covariance between two function evaluations x and x′, and is parameterized by a set of
hyperparameters θ. Once the hyperparameters of the kernel have been optimized, typically
by maximizing the marginal likelihood of the training observations using gradient-based
methods, the GP can be queried at a new input vector. Given a training data set X =
[x1 . . . xM]> and Y = [y1 . . . yM]> corresponding to noisy evaluations of the unknown
function as yi = ψ(xi) + w where w ∼ N (0, σ2

n), the posterior distribution of ψ(x) is given
by a GP specified by

µ(x|X,Y, θ) = k(x)>(K + σ2
nI)−1Y (5.10)

σ2(x|X,Y, θ) = k(x, x|θ)− k(x)>(K + σ2
nI)−1k(x), (5.11)

CHAPTER 5. HIERARCHICAL PREDICTIVE LEARNING 88

where

[K]ij = k(xi, x(j)|θ)
k(x) = [k(x, x1|θ), . . . , k(x, xM |θ)]>.

As more training data becomes available, the posterior GPs approximate the unknown func-
tion ψ(·) more accurately provided that it belongs to the Reproducing Kernel Hilbert Space
(RKHS) [89] induced by the kernel k(·, ·|θ). When evaluated at a new input, the GP returns
a Gaussian distribution over output estimates; thus GPs provide a best guess for the output
value corresponding to an input (mean) and a measure of uncertainty about the estimate
(variance). This allows us to gauge how confident the GP is in its prediction at a particular
input, a critical component of the HPL framework. A review of GPs in control is provided
in [61].

We note that the robust MPC community often prefers stochastic models with bounded
support [21] to GPs, in order to have strict safety guarantees. Our approach can be extended
to these types of models as well.

Training the Strategy (Offline)

We train GPs to predict the values of the strategy states (5.6) and inputs (5.7) at N timesteps
into the future, based on the current state and T -step environment forecast. Each GP
approximates the mapping to one strategy state or input:

µ(x̃), σ2(x̃) = GP(xk, θ
i
k:k+T), (5.12)

where µ and σ2 represent statistics of the Gaussian distribution over strategy state estimates.
GPs best approximate functions with scalar outputs, so we train one GP for each strategy
state and input (a total of nx̃ + nũ number of GPs). The learned GPs capture high-level
strategies that were common to a variety of previously solved, related tasks. We note that
the GPs are evaluated only at the current state and environment forecast—they are time-
invariant and do not depend on the new task beyond the environment forecast.

We use the stored executions (2.5) from previous control tasks to create GP training
data. The training output data for each GP contains the strategy state or input the GP is
learning to predict. After solving n control tasks, the training data consists of:

D = {z = [z10 , z
1
1 , . . . , z

1
D1−N , z

2
0 , . . . , z

n
Dn−N]> (5.13)

y = [y10, y
1
1, . . . , y

n
Dn−N]>.

Each input vector zik corresponds to the output yik, where

zik = [(xik)
>, (θik)

>, (θik+1)
>, ...,(θik+T)>], i ∈ [1, n], k ∈ [0, Di −N], (5.14)

and θik denotes the local environment at time k of the ith control task. We note that in
(5.14), each GP uses the same training input data, but this need not be the case.

CHAPTER 5. HIERARCHICAL PREDICTIVE LEARNING 89

The corresponding output entry yik contains the value of the strategy state of interest at
N time steps in the future:

yij = (x̃ik+N)>, i ∈ [1, n], k ∈ [0, Di −N].

The input strategy set can be similarly parameterized in a number of different ways, such as
minimum and maximum values realized over the N -step trajectory.

Once the training data (5.14) is collected, the GP kernel hyperparameters are optimized
using maximum log-likelihood regression. In this chapter, we use the squared-exponential
kernel, though different kernels can be chosen depending on the expected form of the task-
specific strategy equation (5.5). Given two entries of z in (5.13), the squared-exponential
kernel evaluates as

k(zoi , z
w
j) = σ2

f exp−1

2

nx+T+1∑
m=1

(zoi (m)− zwj (m))2

σ2
m

,

where zoi (m) is the mth entry of the vector zoi . Many software packages exist that automate
Bayesian optimization of the hyperparameters, including the Machine Learning Toolbox in
Matlab and SciKit Learn or GPyTorch in Python.

Evaluating the Strategy (Online)

Once trained, the GPs can be evaluated on data from a new task. At time k of a new task
T n+1, we evaluate the GPs at the new query vector zn+1

k , formed as in (5.14), to construct
hyperrectangular strategy sets in reduced-dimension space.

Each GP returns a one-dimensional Gaussian distribution over output scalars, parame-
terized by a mean µ and variance σ2. Specifically, these are evaluated as:

µ(zn+1
k) = k(zn+1

k)K̄−1y (5.15)

σ(zn+1
k)2 = k(zn+1

k , zn+1
k)− k(zn+1

k)K̄−1k>(zn+1
k), (5.16)

where

k(zn+1
k) = [k(zn+1

k , z10), . . . , k(zn+1
k , znDn−N)], (5.17)

and the matrix K̄ is formed out of the covariances between training data samples such that

K̄i,j = k(zi, zj). (5.18)

Given means and variances, we form one-dimensional bounds on each ith strategy state and
jth strategy input as

X̃k+N(i) = [µi(zn+1
k)± ησi(zn+1

k)], ∀i ∈ [1, nx̃] (5.19)

Ũk:k+N(j) = [µj(zn+1
k)± ησj(zn+1

k)],

∀j ∈ [nx̃ + 1, nx̃ + nũ].

CHAPTER 5. HIERARCHICAL PREDICTIVE LEARNING 90

Figure 5.3: Each dimension x̃(i) of the strategy set X̃k+N is bounded using the
mean and variance of a GP evaluation (5.19).

In (5.19), µi(zn+1
k) and σi(zn+1

k) are the means and standard deviations computed by the
ith GP evaluated at zn+1

k . The parameter η > 0 determines the size of the range. When
these one-dimensional bounds are combined for all strategy states and strategy inputs, hy-
perrectangular strategy sets are formed in strategy space, with each dimension constrained
according to (5.19). An example is shown in Fig. 5.3. The hyperrectangular strategy sets
are denoted X̃k+N and Ũk:k+N , and indicate where (in strategy space) the system should be
in N timesteps and what inputs to apply to get there.

Other Strategy Models

There are many benefits to using GPs to model the strategy function (5.5), including the
interpretability of the output variance as a level of strategy confidence. One downside to
using GPs is that they are very computationally inefficient to train: the hyperparameter
optimization time scales as the cube of the training data size. This forces a trade-off between
computational complexity and the effectiveness of the learned strategy, which benefits from
seeing as much training data as possible. It also prevents easy online fine-tuning of the
learned strategy as more task data becomes available.

If training complexity becomes too cumbersome, the strategy function (5.5) may be
replaced by a different data-driven model that best fits the requirements of the considered
task. In addition to computational complexity, there are two main considerations for choosing
a strategy model for HPL:

1. the model should be able to approximate our best reasonable guess for the true shape
of the underlying function (e.g. bounded, continuous, etc.), and

CHAPTER 5. HIERARCHICAL PREDICTIVE LEARNING 91

2. the model should have a way of estimating the confidence in a particular strategy
evaluation.

Any data-driven model that appropriately satisfies these two requirements may be used in
place of the GP without affecting the theory presented in this chapter.

With regard to the first consideration, using universal function approximators such as
neural networks is easy and appealing, as they can be composed to represent functions of
most shapes (at the cost of more hyperparameters to optimize). However, estimating the
confidence associated with a particular strategy prediction is much more difficult for neural
networks than for GPs [81]. Common approaches include bootstrapping [85] or training ad-
ditional network layers to estimate the confidence [59]. These approaches are often tuned to
the considered task, and can be poorly calibrated [86]. Various efforts to improve confidence
estimation in neural networks have been made, but these methods often increase the size of
the learned network, which worsens computational complexity [127, 30]. A promising new
avenue is recent work in model-based neural networks [97], but further validation is required.

Strategy Horizons

The strategy mapping uses two different horizons: the environment forecast horizon T and
the strategy prediction horizon N . T determines how much information about the future
environment the strategy takes into account, while N determines how far out the strategy
predicts the values of strategy states and inputs. The two need not be the same. In fact, for
many navigation tasks it makes sense to choose T > N .

In the autonomous racing example, T > N corresponds to looking further ahead along the
track curvature and then only planning a trajectory along the first part of the visible track.
This choice means that the strategy can suggest a strategy set to aim for that is also likely
to be feasible in and optimal for the immediate future, since the upcoming environmental
constraints were already implicitly considered. Choosing N = T , in contrast, means that
the strategy needs to predict a strategy set as far out as the environment is known. If the
environment changes immediately beyond the horizon T , the proposed strategy set X̃k+N

may have been a poor choice.
As with choosing strategy states, human intuition can also play a role in choosing ap-

propriate strategy horizons. Alternatively, the collected executions (2.5) from previous tasks
can be examined to determine appropriate values for T and N , by evaluating how great envi-
ronmental differences must be before the system’s trajectory changes. This can typically be
estimated from the available task data, and fine-tuned as necessary using cross-validation.
In general, it is wise to use the largest computationally-allowable T .

Sections 5.9-5.11 provide several examples for choosing strategy horizons.

Remark 9. As described thus far, both horizons N and T are time horizons, i.e. they
forecast the environment and predict the strategy state at certain numbers of time steps in
the future. It is also possible to, instead, forecast the environment and strategy state at a

CHAPTER 5. HIERARCHICAL PREDICTIVE LEARNING 92

fixed distance into the future, or use a mix of time- and space-forecasting for N and T . In
the racing example, this could correspond to always seeing a fixed number of meters ahead,
no matter the vehicle speed. This approach is considered in Sec. 5.10.

5.5 Safely Applying Learned Strategies

We now address the second aim of our chapter: using the strategy sets in a low-level con-
troller while maintaining safety guarantees. Our approach consists of i) lifting the reduced-
dimension strategy sets (5.19) back into the full-dimensional state space, and ii) integrating
the lifted strategy set with a safety controller. The result is a target set that can be used in
a low-level MPC controller.

Assumption 10. There exists a safety control policy that can prevent the system (5.1) from
violating both system- and task-specific environment constraints (5.3). In particular, there
exists a safe set

XE ⊆ X (Θ), (5.20)

and a corresponding safety control policy

u = πe(x,Θ), (5.21)

such that ∀x ∈ XE, f(x, πe(x,Θ)) ∈ XE.

Remark 10. Given a safety controller (5.21), a safe set (5.20) may be found using a variety
of data-driven methods, such as sample-based forward reachability from a gridded state space
X [23, 132, 25].

Lifting Strategy Sets to Full-Dimensional Target Sets

At each time k of solving a task T n+1, new reduced-dimension strategy sets are constructed
according to (5.19). These strategy sets must be lifted to target sets in the full-dimensional
state space so they can be used as a terminal constraint in a low-level MPC controller.
Critically, the target set must belong to the safe set (5.20). This ensures that once the
system has reached the target set, there will always exist at least one feasible input (the
safety control (5.21)) that allows the system to satisfy all state constraints. Given strategy
sets (5.19), we find a corresponding lifted strategy set:

Xk+N = {x ∈ XE | g(x,Θ) ∈ X̃k+N}, (5.22)

where g(x,Θ) is the projection of the full-dimensional state x onto the set of chosen strategy
states, as in (5.6). Xk+N is a full-dimensional set in which the strategy states (5.6) lie in
the GP’s strategy sets (5.19) and the remaining states are in the safety set. Thus for any
state xk ∈ Xk+N , the safety control (5.21) can be applied if necessary to ensure constraint
satisfaction in future time steps. Figure 5.4 depicts the difference between a strategy set and
its lifted strategy set.

CHAPTER 5. HIERARCHICAL PREDICTIVE LEARNING 93

Figure 5.4: In the lifted strategy set (5.22), the strategy states x̃(1) and x̃(2) are
constrained to lie in the strategy set, with additional states like x(3) constrained
according to XE.

Tuning Risk

If desired, control designers can specify a maximum risk level β ∈ [0, 1] to control how
conservative the target set Xk+N is with regards to incorporating the safety control. The
above formulation (5.22) for the terminal set corresponds to no risk (i.e. β = 0), since for
all states in Xk+N there exists at least one feasible input sequence (the safety control) that
will result in a safe closed-loop state evolution.

If this is too restrictive, the target set can be chosen to be a convex combination of the
safety set XE and the environmental state constraint set:

Xk+N = {x ∈ βXE + (1− β)X (Θ) | g(x,Θ) ∈ X̃k+N},

By varying β in the range between 0 and 1, we vary how conservative our approach needs to
be, depending on the cost of task failure. As the value of β increases, the target set converges
to the state constraints imposed on the system by the task environment (β = 1).

An example of this interpolation is shown in Fig. 5.5, which depicts how the constraints
for the third entry of the system state x(3) vary across different points in the strategy set (in
the x̃(1) − x̃(2) plane) and as β varies. We see that as β ranges from 0 to 1 the size of the
non-strategy state constraint sets increases. When β = 0, plotted in dark blue, the target
set is as in Fig. 5.4.

CHAPTER 5. HIERARCHICAL PREDICTIVE LEARNING 94

Figure 5.5: As β varies, the constraints on the non-strategy state x(3) are imposed
either through XE (if β = 0), X (θ) (if β = 1), or a combination of both (if 0 < β <
1).

Incorporating the Uncertainty Measure

A benefit of using GPs to represent the strategy is that the standard deviation around an
estimate may be used to evaluate how confident the GP is in its prediction at a particular
input. At time k, consider a vector Ck containing the standard deviations of the evaluated
GPs:

Ck = [σ1(zn+1
k), . . . , σnsx+nsu(zn+1

k)]. (5.23)

If the GPs return a strategy set with standard deviations larger than a chosen threshold
dthresh, we may opt not to use this strategy. We expect Ck > dthresh if either

1. the system did not encounter a similar environment forecast in a previous control task
(training data), or

2. in previous control tasks this environment forecast did not lead to a single coherent
strategy, resulting in a wide distribution of potential future strategy states.

With high uncertainty measures, the strategy sets are not likely to contain valuable control
information for the system. In this case, the target set is set to be empty : Xk+N = []. The
next section 5.6 explains that this results in a horizon shift for the low-level MPC, and the
system (5.1) re-uses the target set from the previous time step.

CHAPTER 5. HIERARCHICAL PREDICTIVE LEARNING 95

5.6 Low-level Controller Design

The low-level MPC controller calculates the input to be applied to the system at each time
k. This input is calculated based on the sequence of target sets (5.22) found during the last
N timesteps.

Target Set List

At each time k of solving task T n+1, a new target set (5.22) is constructed by lifting the
strategy sets (5.19). However, if the standard deviations (5.23) are too high, or there is no
feasible input sequence to reach the target set Xk+N , the target set for time k will be empty:
Xk+N = [].

The target set list keeps track of the target sets (empty or not) which were constructed
during the most recent T timesteps:

SetListk = [Xk+1,Xk+2, . . . ,Xk+N]. (5.24)

At each new time step, the first set is removed and the target set found at the current time
step k is appended to the end. In this way, the target set list (5.24) always maintains exactly
N sets, though some (including the last set Xk+N) may be empty. This list is used to guide
the objective function and constraints of the MPC controller.

Shifting Horizon MPC Formulation

We formulate an MPC controller to calculate our input at each time step:

u?(xk) = arg min
uk|k,...,uk+NMPC

k
−1|k

NMPC
k −1∑
j∈Sk

dist
(
xj|k,Xk+j

)
(5.25)

s.t. xk+t+1|k = f(xk+t|k, uk+t|k)

uk+t|k ∈ U ∀t ∈ {0, . . . , N − 1}
xk+t|k ∈ X (Θn+1) ∀t ∈ {0, . . . , N}
xk|k = xk

xk+NMPC
k |k ∈ Xk+NMPC

k
,

where Sk is the set of indices with non-empty target sets,

Sk = {s | notEmpty(Xk+s−1)}.

The MPC objective function (5.25) penalizes the Euclidean distance from each predicted
state to the target set corresponding to that prediction time. For a smoother cost, the
objective could be augmented to take the input effort into account.

CHAPTER 5. HIERARCHICAL PREDICTIVE LEARNING 96

The MPC uses a time-varying shifting horizon 0 < NMPC
k ≤ N that corresponds to the

largest time step into the future for which a non-empty target set results in feasibility of
(5.25):

NMPC
k = max s : {s ∈ Sk, (5.25) is feasible with NMPC

k = s}. (5.26)

This ensures that the MPC controller (5.25) has a non-empty terminal constraint and the
optimization problem is feasible. To avoid unnecessary repeated computations, all target sets
in the target set list (5.24) which lead to infeasibility of (5.25) when used as the terminal
constraint are set as empty in (5.24). At time step k, we apply the first optimal input to the
system:

uk = u?0|k. (5.27)

Remark 11. Here, new target sets (5.22) are found at the same frequency as the controller
update (5.25)-(5.27), but this can easily be adapted for asynchronous loops as in [102].

Remark 12. Evaluating GPs to calculate the strategy is fast when optimized, and con-
structing strategy sets according to (5.22) is straightforward once GPs have been evaluated.
Incorporating strategies will thus not have significant impacts on the closed-loop run time of
the MPC controller (5.25)-(5.27).

Safety Control

If no target sets in (5.24) can feasibly be used as a terminal constraint in (5.25), all sets in
the target set list will be empty, and the MPC horizon is NMPC

k = 0. When this occurs,
the system enters into Safety Control mode. The safety controller (5.21) controls the system
until a time when a satisfactory target set is found (at which point the MPC horizon resets
to NMPC

k = N). The HPL algorithm in Sec. 5.7 ensures that whenever NMPC
k = 0, the

system will be in the safe set (5.20) and the safety controller may be used. We prove this in
Sec. 5.8.

5.7 The HPL Algorithm

Alg. 4 summarizes the HPL control policy. Gaussian processes, trained offline on trajectories
from past control tasks, are used online to construct reduced-dimension strategy sets based
on new environment forecasts. Target sets, computed by intersecting lifted strategy sets
with the safety set, are used as terminal sets in a shifting-horizon MPC.

5.8 Properties of HPL Conrol

We prove that Alg. 4 outputs a feasible execution for a new control task T n+1.

CHAPTER 5. HIERARCHICAL PREDICTIVE LEARNING 97

Algorithm 4 HPL Control Policy

1: parameters: dthresh, T,N,XE, πE
2: input: f , X , U , {Ex(T 1,Θ1), ...,Ex(T n,Θn)}, Θn+1

3: output: Ex(T n+1,Θn+1)
4:

5: offline:
6: train GPs using stored executions as in Sec.5.4
7:

8: online:
9: initialize k = 0, NMPC

k = N , SetList = []
10: for each time step k do
11: collect (xk, θ

n+1
k:k+T)

12: find [X̃k+N , Ũk:k+N , Ck] (5.12) - (5.19)
13: if Ck < dthresh then
14: Xk+N = []
15: else
16: construct Xk+N (5.22)

17: append Xk+N to SetList and shift sets
18: if all sets in SetList are empty then
19: uk = πe(xk,Θ

n+1)
20: else
21: calculate NMPC

k (5.26)
22: solve MPC with horizon NMPC

k

23: uk = u?0|k (5.27)

Theorem 6. Let Assumption 1 hold. Consider the availability of feasible executions (2.5)
by a constrained system (5.1)-(5.2) of a series of control tasks {T 1, . . . , T n} in different
environments {E(Θ1), . . . , E(Θn)}. Consider a new control task T n+1 in a new environ-
ment E(Θn+1). If xn+1

0 ∈ XE, then the output of Alg. 4 is a feasible execution of T n+1:
Ex(T n+1,Θn+1).

The complete proof is detailed in Sec. A.4. The key idea is that by using the safety
controller to lift reduced-dimensional sets to full-dimensional target sets, the system always
plans trajectories that end in the domain of the safety controller. Thus, any time the strategy
proposes an infeasible terminal set for N consecutive time steps, the safety controller may be
applied until a feasible strategy is found. We use recursion to demonstrate that this results
in a feasible execution of the new task.

CHAPTER 5. HIERARCHICAL PREDICTIVE LEARNING 98

5.9 Application 1: Robotic Manipulator Navigation

We evaluate HPL in the robotic path planning example introduced in Chapter 2.
Here we again consider control of a UR5e2 robotic arm. The UR5e has high end-effector

reference tracking accuracy, allowing us to use a simplified end-effector model in place of a
discretized second-order model [110]. At each time step k, the state of the system is xk,

xk = [q0k , q̇0k , yk, ẏk],

where q0k is the robot’s first horizontal joint angle, yk the height of the end-effector, and q̇0k
and ẏk their respective velocities (see Fig. 2.5). The inputs to the system are

uk = [q̈0k , ÿk], (5.28)

the accelerations of the end-effector in the q0 and y direction, respectively.
We model the base-and-end-effector system as a quadruple integrator:

xk+1 = Axk +Buk (5.29)

A =


1 dt 0 0
0 1 0 0
0 0 1 dt
0 0 0 1

 , B =


0 0
dt 0
0 0
0 dt

 ,
where dt = 0.01 seconds is the sampling time. The system state and input constraints are

X =

{
x :

[
−π rad/s
ẏmin m/s

]
≤
[
q̇0k
ẏk

]
≤
[
π rad/s
ẏmax m/s

]}
U =

{
u :

[
−π rad/s2

ÿmin m/s2

]
≤
[
q̈0k
ÿk

]
≤
[
π rad/s2

ÿmax m/s2

]}
,

where

ẏmax,k = C1 sin

(
arccos

(
yk
d1

))
(5.30)

ẏmin,k = −ẏmax,k (5.31)

ÿmax,k = C2 sin

(
arccos

(
yk
d2

)
+
yk
d3

)
(5.32)

ÿmin,k = −ÿmax,k, (5.33)

with C1, C2, d1, d2 and d3 dependent on setup parameters and joint limits provided by
the manufacturer. This model accurately represents the system dynamics as long as we

2https://www.universal-robots.com/products/ur5-robot/

CHAPTER 5. HIERARCHICAL PREDICTIVE LEARNING 99

Figure 5.6: The end-effector is constrained to stay in the light blue tube X (Θ).
The strategy states measure the cumulative distance along and the distance from
the centerline.

operate within the experimentally characterized region of high end-effector reference tracking
accuracy (see Chapter 2 for details).

Note that the states q0k and yk are not constrained by the system, but by a particular
task environment. Each control task T i requires the end-effector to be controlled through a
different tube, described using the environment descriptor function Θi, as quickly as possible.
Here, the function Θi maps a state in a tube segment to the slope of the constant-width tube.
Different control tasks {T 1, . . . , T n} correspond to maneuvering through tubes of constant
width but different piecewise-constant slopes.

We choose two strategy states for these tasks:

x̃k = [sk, hk],

where sk is the cumulative distance along the centerline of the tube from the current point
(q0k , yk) to the projection onto the centerline, and hk is the distance from (q0k , yk) to the
centerline. The strategy states therefore measure the total distance traveled along the tube
up to time step k, and the current signed distance from the center of the tube. These strategy
states were chosen because they provide information about both task performance (distance
traveled along the tube is a measure of task completion speed) and constraint satisfaction
(distance from the tube boundaries). Note that in this task, just as in car racing, cutting
corners (as measured by hk) also maximizes distance traveled along the tube.

The system inputs (5.28) are used as strategy inputs.
The safety controller (5.21) is an MPC controller which tracks the centerline of the tube

at a slow, constant velocity of 0.5 meters per second. The safe set XE (5.20) is determined
offline using sampling-based forward reachability.

CHAPTER 5. HIERARCHICAL PREDICTIVE LEARNING 100

-5

0

5

-5

0

5

-5

0

5

0 5 10 15 20 25 30

-5

0

5

Figure 5.7: At each time step, the target set list (5.24) provides different regions in
the task space for the system to track.

Hierarchical Predictive Learning Results

We test the effectiveness of the HPL control architecture (Alg. 4) in simulation. We begin by
collecting executions that solve a series of 20 control tasks {T 1, ..., T 20}, with each control
task corresponding to a different tube shape. The executions are closed-loop trajectories
completed by a Learning Model Predictive Controller (LMPC). This reference-free iterative
learning controller is initialized with a conservative, feasible trajectory and then improves
its closed-loop performance at each iteration of a task. For each control task T i, we find
an initial (suboptimal) execution using the centerline-tracking MPC safety controller. This
execution is used to initialize the LMPC, which then runs for five iterations on the task T i.
At each iteration, the LMPC uses the trajectory data from the previous iteration to improve
the closed-loop performance at the current iteration with respect to a chosen cost function
(in our instance, time required to reach the end of the tube). The execution corresponding
to the fifth LMPC iteration of each task T i is added to our training data set.

We use an environment forecast horizon of T = 10 seconds and a control horizon of N = 5
seconds. These horizons were chosen based on the approximate required time to traverse an
average tube segment in the previous tasks. The forecast horizon was chosen to be twice the
control horizon in order to provide information about both the current and subsequent tube
segments. GPs using the squared-exponential kernel are then optimized to approximate the
strategies learned from solving the 20 different control tasks. Matlab 2018a was used for all

CHAPTER 5. HIERARCHICAL PREDICTIVE LEARNING 101

Figure 5.8: The HPL execution is compared to the raceline (the fastest possible
execution), as determined by an LMPC [100]. Respective execution times in [s] are
6.5 (LMPC), 8.8 (HPL), and 12.8 (Centerline-tracking πe).

data collection and GP training.
Figure 5.7 shows the closed-loop trajectory and target set list at various time steps of

solving a new task, T 21, using the HPL framework. At each time step, the final predicted
state lies within the last set in the target set list; the other predicted states track any
non-empty target sets as closely as possible. The formulation allows us to visualize what
strategies have been learned, by plotting at each time step where the system thinks it should
go. Indeed, we see that the system has learned to maneuver along the insides of curves, and
even takes the direct route between two curves going in opposite directions.

Figure 5.8 shows the resulting executions for a new task solved forwards and backwards.
We emphasize that HPL generalizes the strategies learned from training data to unseen
tube segments. Specifically, for the tasks shown here the GPs were trained on executions
solving tasks in the forward direction, i.e. constructed left to right using tube segments
as shown in the top images. For example, tube segments of certain slopes had only been
traversed upwards in previous control tasks, never down. The HPL control architecture was
able to handle this change very well. As in Fig. 5.7, the forward and backwards trajectories
demonstrate good maneuvering strategies, including moving along the insides of curves and
cutting consecutive corners. In fact, the HPL controller finds an execution that is very close
to the minimum time execution as determined by an iterative learning MPC controller [99].

CHAPTER 5. HIERARCHICAL PREDICTIVE LEARNING 102

Figure 5.9: The same task is performed using two different values of β. For this task,
using β = 1 led to eventual constraint violation because the terminal constraints
were not formed in conjunction with the safety controller.

Implementation details

Section 5.5 introduced an approach for tuning the conservativeness with which the strategy
sets (5.19) are lifted into target sets (5.22), by varying the importance of intersecting with
the safety set XE (5.20). To examine the effects of varying the acceptable risk level β on the
system’s closed-loop trajectory, we solve a single task using β = 1 and a more conservative
β = 0.7. The results are depicted in Fig. 5.9, and demonstrate the benefits of incorporating
the safety set XE during the formation of full-dimensional target sets.

Both trajectories (β = 0.7 and β = 1) follow the same path at the beginning of the
task. However, during a sharp curve towards the latter portion of the task, the trajectory
corresponding to β = 1, plotted in purple, is no longer able to satisfy the task constraints.

The more conservative approach, using β = 0.7 and plotted in black, takes the safety
constraints XE into account and is able to maneuver the sharp turn. We see that the center-
tracking safety controller activates at the end of the task and keeps the system within the
constraints (whereas the β = 1 trajectory leaves the task constraints at this point).

5.10 Application 2: Formula 1 Racing

We evaluate HPL control in an autonomous racing task, where a small RC car is controlled
as quickly as possible around 1/10 scale Formula 1 race tracks.

CHAPTER 5. HIERARCHICAL PREDICTIVE LEARNING 103

System and Task Description

Consider a small RC car3 whose dynamics are modeled in the curvilinear abscissa reference
frame [94] with a nonlinear Pacejka tire model, with states and inputs at time step k:

xk = [vxk vyk ψ̇k eψk
sk eyk]> (5.34)

uk = [ak δk]
>,

where vxk , vyk , and ψ̇k are the vehicle’s longitudinal velocity, lateral velocity, and yaw rate,
respectively, at time step k, sk is the distance traveled along the centerline of the road, and
eψk

and eyk are the heading angle and lateral distance error between the vehicle and the
path. The inputs are longitudinal acceleration ak and steering angle δk.

The system dynamics are described using an Euler discretized dynamic bicycle model
[101]. The vehicle is subject to system-imposed state and input constraints given by

X =

x :


0

−10 m/s
−π

2
rad

−π
3

rad
− l

2
m

 ≤

vx
vy
wz
eψ
ey

 ≤


10 m/s
10 m/s
π
2

rad
π
3

rad
l
2

m


 (5.35)

U =

{
u :

[
−1 m/s2

−0.5 rad/s2

]
≤
[
a
δ

]
≤
[

1 m/s2

0.5 rad/s2

]}
,

where l = 0.8 is the track’s lane width.
The car’s task is to drive around a race track as quickly as possible while satisfying all

system and environmental state and input constraints. Each control task T i corresponds to
a new track, described using the environment descriptor function Θi which maps the current
position along the i-th track to a description of the upcoming track curvature. For training
and testing, we use scaled Formula 1 tracks whose geospatial coordinates were made publicly
available in [9].

We choose two similar strategy states for the racing task as for the robot navigation task:

x̃k = [∆sk, eyk], (5.36)

where ∆sk = sk − sk−T measures the distance traveled along the track centerline in the last
N timesteps.

The safety controller is an MPC controller which tracks the centerline of the race track at
a constant velocity of 5 meters per second. The safe set XE induced by this safety controller
is estimated from Monte Carlo simulations.

3http://www.barc-project.com/

http://www.barc-project.com/

CHAPTER 5. HIERARCHICAL PREDICTIVE LEARNING 104

Hierarchical Predictive Learning Results

We construct ten different 1/10-scale Formula 1 tracks from [9], and then calculate the
minimum-time trajectory for each track using a continuous-time vehicle model. The dis-
cretized racelines from seven tracks are used to create training data for our strategy, while
the remaining three tracks are used for evaluating the performance of the HPL control algo-
rithm.

GPs using the squared-exponential kernel are trained on these racelines for each of the
two strategy states. As described in Sec. 5.4, the environment forecast does not have to
be parameterized by time. Indeed, for the racing task we use an environment forecast
parameterized by a constant distance along the track centerline, regardless of the vehicle’s
velocity:

θik:k+N = [Θi(sik),Θ
i(sik + 2) . . . ,Θi(sik + 2T)],

where sik is the total distance traveled along the centerline of the track at time k. Given the
vehicle’s current state (5.34) and this environment forecast, the learned GP strategy predicts
the target values of the strategy states (5.36) at N = 2 seconds into the future. The forecast
and control horizon were chosen by examining past task data and estimating how close an
environment change had to be in order to impact the vehicle’s locally optimal trajectory.
Training two GPs using GPyTorch on a 2017 MacBook Pro with 2.8 GHz Quad-Core Intel
Core i7 took 494 seconds. Evaluating these GPs took an average of 0.004 seconds on the
same processor.

Figure 5.10 compares two states (vx and ey) of the HPL closed-loop trajectory on a
new task (the “AE” track from [9]) with those of the optimal minimum-time trajectory.
These two states are most informative on whether a good strategy was learned, since they
correspond most closely with the chosen strategy states. The learned strategy performs well
on this new task, and is able to pick up the pattern between track curvature and the raceline.
the GP trained to predict how far the vehicle should travel in the next N steps (affecting
the resulting vx values) performs slightly better than the GP trained to predict deviation
from the centerline (ey). This trend was found in all three test tracks, and is likely due to
deviations in optimal steering on straightaways, where the angle of the raceline depends on
a longer environment forecast than considered.

The HPL trajectory is plotted and compared to the track’s raceline in Fig. 5.11, with a
colormap indicating how quickly the car drives in various sections of the track. Confirming
the trend in Fig. 5.10, the plot shows the HPL control accurately predicts the ideal vehicle
speed, speeding up and slowing down in the same sections of the racetrack as the optimal
raceline. It is also clear that the system has learned various smart driving rules introduced
in Sec. 5.3, including steering out before cutting the insides of corners and taking direct
routes between two curves. More examples of the HPL closed-loop trajectory, with snippets
from all three test tracks, are depicted in Fig. 5.12, and further plots are included in the
Appendix.

CHAPTER 5. HIERARCHICAL PREDICTIVE LEARNING 105

0 100 200 300 400 500
s [m]

−1.0

−0.5

0.0

0.5

1.0

e y
[m

]

AE T ack T ajecto y Compa ison

0 100 200 300 400 500
s [m]

0

2

4

6

8

10

v x
[m

/s
]

HPL
Raceline

Figure 5.10: The two strategy GPs, trained using minimum-time trajectory data
from seven race tracks, are able to predict (red) the centerline deviation and longi-
tudinal velocity of a new, unseen track’s raceline (blue).

The HPL control architecture results in feasible and fast executions for all three tested
race tracks. Because the learned strategy GPs were able to predict the velocity trend so well
(see Fig. 5.10), the three task durations were all within 5% of the respective raceline time
(see Table 5.1). We again stress the ability of the strategy GPs to extrapolate patterns seen
during training despite the tracks’ very varied curvature.

In order to evaluate the benefit of using a hierarchical control framework, we also tested
a controller with higher risk factor. As described in Sec. 5.5, this type of controller (β = 1)
does not take the safety set XE into account when creating the target set. As a result, the
MPC terminal set constrains the strategy states to be in the GP’s predicted set and the
remaining state to simply be in the allowable state space. The safety set XE is not used to
guide the process of lifting the reduced-dimension strategy set into the full-dimensional target
set. This means there are no guarantees that predicted terminal state will be in the domain
of our safety control, and therefore it is possible to lose feasibility later in the task. Indeed,
in the racing task (just as in the robotic manipulation task in Sec. 5.9), the simple high-risk
controller was unable to complete a single lap without becoming infeasible. These failures
occurred early in each of the three test tracks (in the first 10% of the tracks), during sharp
corners where the safety controller was required but infeasible. This again demonstrates the

CHAPTER 5. HIERARCHICAL PREDICTIVE LEARNING 106

−50 0 50
x [m]

0

25

50

75

100

y
[m

]

AE Track wi h HPL Con rol

2

4

6

8

10

v x
 [m

/s
]

−50 0 50
x [m]

0

25

50

75

100

y
[m

]

AE Track Raceline

2

4

6

8

10

v x
 [m

/s
]

Figure 5.11: The HPL controller is able to match the speed profile and shapes
of the minimum time trajectory, slowing down in curves and speeding up to the
maximum allowable velocity on straight segments.

value of using both data-driven and physics-based components, and a hierarchical framework
for integrating them in a structured manner.

Track HPL Lap Time [s] Raceline Lap Time [s]
AE 87.6 85.1
BE 92.3 89.3
US 85.6 83.3

Table 5.1: The HPL controller results in lap times less than 5% longer than
the minimum-time trajectory, demonstrating that an effective racing strategy was
learned.

Neural Network as Strategy

An additional trial was run where a neural network, rather than a GP, was used to represent
the strategy. The training data was constructed in the same way as described in Sec. 5.10,

CHAPTER 5. HIERARCHICAL PREDICTIVE LEARNING 107

−40 −30 −20 −10 0 10 20
x [m]

20

30

40

50

60

y
[m

]

AE Track

(a)

−100 −80
x [m]

−110

−100

−90

−80

−70

y
[m

]

BE Track

(b)

−10 0 10 20 30 40
x [m]

−5
0
5

10
15
20
25
30

y
[m

]

US Track

(c)

Figure 5.12: The HPL controller uses learned strategies to cut corners in all three
test race tracks.

CHAPTER 5. HIERARCHICAL PREDICTIVE LEARNING 108

−50 0 50
x [m]

0

25

50

75

100

y
[m

]

AE Track with HPL (NN) C ntr l

2

4

6

8

10

v x
 [m

/s
]

−50 0 50
x [m]

0

25

50

75

100
y
[m

]
AE Track Raceline

2

4

6

8

10

v x
 [m

/s
]

Figure 5.13: The HPL controller is able to match the speed profile and shapes of
the minimum time trajectory

and a neural network with five linear hidden layers was trained using the python SKLearn
library. One network could be trained to predict both strategy states, requiring 15 seconds
of training time using Torch on a Pro 2017 MacBook Pro with 2.8 GHz Quad-Core Intel
Core i7.

The resulting HPL trajectory on the AE track is shown and compared to the minimum-
time trajectory in Figs. 5.13-5.14. Overall, the neural network strategy performs well, result-
ing in a lap time of 89.4 seconds, only slightly slower than the GP lap time (87.6 seconds)
and the optimal lap time (85.1 seconds). This success validates that the HPL algorithm can
easily be used with the designer’s choice of strategy parameterizations, keeping in mind the
considerations described in Sec. 5.4.

Interestingly, the ey and vx differences between the HPL trajectories (both of the GP and
neural network) and the minimum time trajectories (as shown in Figs. 5.14 and 5.10) occur
in similar regions of the track, including around the s = 100 and s = 300 meter marks, which
are both long straightaway sections. The fact that both strategy parameterizations, the GP
and the neural network, mischaracterized the race line in the same track section suggests
that the training data could not be successfully exploited to race this section of the new
track. Indeed, the ideal raceline along long straightaway sections is determined by the shape
of the closest upcoming curve, which may lie beyond the environment forecast horizon and
therefore unknown to the HPL control algorithm. One approach to resolve this would be
extending the environment forecast horizon, but this inevitably increases the computational
complexity of both the offline training and online implementation of the HPL algorithm.

CHAPTER 5. HIERARCHICAL PREDICTIVE LEARNING 109

0 100 200 300 400 500
s [m]

−1.0

−0.5

0.0

0.5

1.0

e y
[m

]

AE (NN) Track Trajectory Compariso

0 100 200 300 400 500
s [m]

0

2

4

6

8

10

v x
[m

/s
]

HPL (NN)
Raceli e

Figure 5.14: A strategy parameterized as a neural network can also capture the true
raceline reasonably well, but with more errors in the predicted centerline deviation
than the strategy GP.

5.11 Application 3: Flappy Bird

We use Hierarchical Predictive Control to improve performance in the Flappy Bird computer
game4. Here, the task is to steer a small bird around a series of pipe obstacles by controlling
the timing of its wing flaps. The pipe obstacles come in pairs from the bottom and top of
the screen, leaving a gap for the bird to carefully fly through. As the bird moves through
the task, it sees only a fixed distance ahead: the screen only the shows the two upcoming
pairs of pipes. The strategy behind Flappy Bird lies in planning short-term trajectories that
are robust to randomness in the heights of the future pipe obstacles still hidden beyond the
screen (see Fig. 5.15).

4https://flappybird.io

https://flappybird.io/

CHAPTER 5. HIERARCHICAL PREDICTIVE LEARNING 110

Figure 5.15: The goal of Flappy Bird is to guide the bird through a series of pipe
obstacles. Only the pipes visible in the game screen (dashed rectangle) are visible
to the bird at any time.

System and Task Description

We use a Flappy Bird simulator designed by Philip Zucker in [139] for our experiments.
Following Zucker’s work, we model the bird as a simple three-state system with dynamics

xk+1 = xk + 4, (5.37)

yk+1 = yk + vyk
vyk+1 = vyk − 1 + 16uk,

where xk and yk are the horizontal and vertical position of the bird. The bird moves with
constant horizontal velocity, while the vertical velocity vyk is subject to a constant gravita-
tional force and the wing flap control uk ∈ {0, 1}, where uk = 1 implies a wing flap at time
k. For each pair of pipe obstacles the bird flies through without crashing, a point is earned.

Different tasks T i correspond to different sequences of pipe obstacles, described using
Θi, where Θi maps the bird’s state (xk, yk) to the set of pipe obstacles Pk visible at time k.

We choose the strategy states to be the vertical distances between the bird and the two
closest upcoming pipe gaps:

x̃k = [yp,1k − yk, y
p,2
k − yk], (5.38)

where yp,1k and yp,2k are the heights of the two closest upcoming lower pipe obstacles. Note
that because the bird has a constant horizontal velocity, we only need to consider strategy
states that describe the bird’s height - the bird’s horizontal movement is predetermined, and
not regulated by a strategy. The safety control (5.21) is an MPC tracking the interpolated
centerline of the visible pipe gaps.

CHAPTER 5. HIERARCHICAL PREDICTIVE LEARNING 111

Hierarchical Predictive Learning Results

We collect task executions that solve a series of 15 control tasks {T 1, . . . , T 15}, with each
control task corresponding to a new instance of the Flappy Bird game. The executions are
used to create training data for a GP, using an environment forecast of T = 45 and a control
horizon of N = 30 time steps (with a sampling frequency of 30 Hz.). This represents an
environment forecast of two-thirds of the screen. Because the horizontal velocity is fixed in
these tasks, we only train a single strategy GP to predict the target vertical distance to the
nearest pipe gap, (yp,1k+N − yk+N). The GP training took 327 seconds in GPyTorch with a
2017 MacBook Pro with 2.8 GHz Quad-Core Intel Core i7.

After training the GP model, the HPL algorithm is used to solve 50 different new Flappy
Bird games. For comparison, we also evaluate a publicly available center-pipe tracking
controller [139] with the same control horizon on the same set of 50 games. Statistics of the
scores earned by each controller during the 50 games are recorded below in Table 5.2.

Mean Score Med. Score Min. Score
Standard MPC 28 23 1
HPL Control 161 105 38
pseudo-HPL 74 46 10

Table 5.2: The HPL controller is compared with a publicly available standard MPC
controller [139]. In a trial of 50 tasks, the HPL controller significantly outperformed
the standard controller.

The HPL controller vastly outperforms the center-pipe tracking controller, with a mean
score of 161 (versus 28). In fact, the HPL controller’s minimum recorded score (38) is larger
than the average score achieved by the standard controller. In the 50 evaluated games, there
was only a single instance of the standard controller either outperforming or achieving the
same score as the HPL controller on a specific task.

HPL is able to outperform the standard controller by utilizing the safe set XE to construct
the terminal set at each time step, and ensure that the short-term trajectory plans lead to
feasible solutions in future time steps. This is particularly important in the Flappy Bird
task, because the pipe heights of two consecutive pipe obstacles are completely uncorrelated.
Unlike in the autonomous racing task, where environments change gradually, the Flappy
Bird controller needs to consider all possible future pipe heights at each time step.

Figure 5.16 compares the open-loop trajectory predictions for the HPL controller (left
image, in red) and the standard controller (right image, in blue) while solving the same
task. At the time step shown, the oncoming pipe is still beyond the control horizon (both
controllers use the same control horizon). However, because the HPL controller plans trajec-
tories that will be feasible for any kind of upcoming pipe obstacle, its open-loop trajectory
aims downwards, towards the center of the screen. From this end position, the controller is
more likely to find a feasible next trajectory regardless of the shape of the next obstacle.

CHAPTER 5. HIERARCHICAL PREDICTIVE LEARNING 112

Figure 5.16: The open-loop trajectories of the HPL controller (left image, in red)
and the standard MPC controller (right image, in blue) are compared. The HPL
controller uses the pre-determined safety set XE to plan trajectories that will be
feasible regardless of the upcoming pipe obstacle height, resulting in a trajectory
towards the center of the screen.

In contrast, the standard controller continues to track the center of the pipe, without
explicitly considering that the upcoming obstacle may be of a different shape. Because the
control can only increase the rate of acceleration, whereas the bird’s downward acceleration
due to gravity is fixed, it is dangerous to plan for wing flaps close to still-unknown obstacles.
Crashing into the side of pipe obstacle pipes as a result of too-close wing flaps was the most
common failure mode of the standard controller in the games considered. These crashes can
only be prevented by using a standard controller if the control horizon N is extended, but
this will increase the computational complexity of the controller. Therefore it is clear that
in Flappy Bird, the controller that plans ahead using strategies and a safety set outperforms
one that does not.

Discussion

It is worth noting that in this particular application, there is no difference between safety and
performance. As long as the bird satisfies all environmental constraints, the score increases;
there are no additional points for playing with a minimum number of wing flaps. Such an
additional objective could, of course, be specified in an optimal control design, but it is not
intrinsic to the game.

This direct correlation between Flappy Bird performance and Flappy Bird safety suggests
that while the learned strategies may be useful for solving the task, they are not necessary

CHAPTER 5. HIERARCHICAL PREDICTIVE LEARNING 113

in order to gain higher scores. In fact, a pseudo-HPL controller which only requires that
the terminal state is in the safe set XE, without applying any learned strategies, also out-
performed the standard controller (see Table 5.2). This is likely due to the fact that a good
approximation for the true XE could be found and implemented in the safety controller
alone. It is clear that in tasks with more complex dynamics or environments, where only
rougher approximations of the safe set XE can be determined, the additional incorporation
of strategies to guide the system away from constraint violation will improve performance
even further. Therefore, even when performance is directly linked to safety (as in Flappy
Bird), all components of the HPL architecture play critical roles.

5.12 Discussion

The HPL algorithm provides a structured framework for solving tasks in new environments.
Here, we would like to emphasize the benefits of the algorithm’s key features.

Incorporating Human Intuition

Our proposed characteristics of strategy outlined in Sec. 5.3 define strategies as mapping to
target sets in a reduced dimension known as strategy space. As detailed in Sec. 5.4, there
are myriad ways of determining appropriate strategy states and inputs for a particular task,
including using human intuition to select them.

In some cases it can be tedious (or impossible) to hand-design features for control design;
indeed this motivates much of the rise in ML for control. However, providing structured
opportunities for incorporating human intuition wherever it may be available is still of great
benefit. Only in rare cases will real-world systems be deployed with no understanding of
their own dynamics or objectives in unknown and time-varying environments. We believe it
is much more realistic to have a control framework in mind that offers modular possibilities
for human intuition to help shape control parameters whenever that intuition exists, such as
the strategy states or forecast horizons in the HPL framework.

Ease of Interpretation

One benefit of choosing intuitively meaningful strategy states is that it makes it easier to
interpret the status of the learned strategies. If we can visualize the learned strategy sets
and compare them to our human intuition about the task, we can easily understand if more
training data is needed, or if the strategy mapping is logical. This analysis is an especially
useful tool when trying to pinpoint a failure in the entire HPL control framework.

CHAPTER 5. HIERARCHICAL PREDICTIVE LEARNING 114

Using Data Safely

The hierarchical approach of HPL allows for some separation between maximizing perfor-
mance and ensuring feasibility: effective task performance is encouraged using learned strate-
gies, and feasibility is ensured via the safety controller and safe set projections. (As discussed
in Sec. 5.11, there is some overlap between the two, especially in complex systems.)

In our proposed approach, these two hierarchical levels align with the algorithm’s bound-
aries between data-driven and physics-based models. We use the physical model of the
system in order to guarantee feasibility, and we use learning to represent complex objectives
whose exact relationships are difficult characterize. This framework allows for responsible in-
tegration of data, using it to guide long-term behaviors rather than decide immediate control
actions.

By varying the risk factor β in our controller formulation, we were able to evaluate the
benefits of using a physical model and safety controller to move from reduced-dimension
strategy space to full-dimensional space. In all tested applications (see Sec. 5.9-Sec. 5.10),
relying only on the data-driven strategy led to incomplete and infeasible task executions.
These results emphasize the usefulness and importance of the hierarchical control framework,
which allows for a structured combination of data-driven and physics-based methods.

5.13 Conclusion

A data-driven hierarchical predictive learning architecture for control in unknown environ-
ments is presented. The HPL algorithm uses stored executions that solve a variety of previous
control tasks in order to learn a generalizable control strategy for new, unseen tasks. Based
on a local description of the task environment, the learned control strategy proposes regions
in the state space towards which to aim the system at each time step, and provides input
constraints to guide the system evolution according to previous task solutions. We prove
that the resulting policy is guaranteed to be feasible for the new tasks, and evaluate the
effectiveness of the proposed architecture in a simulation of a robotic path planning task.
Our results confirm that HPL architecture is able to learn applicable strategies for efficient
and safe execution of unseen tasks.

CHAPTER 5. HIERARCHICAL PREDICTIVE LEARNING 115

5.14 Additional Results

The plots comparing the HPL controller trajectory to the optimal minimum-time trajectory
for the remaining two test tracks (BE and US tracks) are shown here. As also shown in
the figures in Sec. 5.10, the HPL controller using short-sighted environmental forecasts in
conjunction with strategy GPs results in a close-loop trajectory very similar to the raceline.

−100 0 100
x [m]

−150

−100

−50

0
y
[m
]

BE Track ith HPL Control

2

4

6

8

10

v x
 [m

/s
]

−100 0 100
x [m]

−150

−100

−50

0

y
[m
]

BE Track Raceline

2

4

6

8

10

v x
 [m

/s
]

Figure 5.17: The HPL controller matches the speed profile and shape of the mini-
mum time trajectory on the BE track.

CHAPTER 5. HIERARCHICAL PREDICTIVE LEARNING 116

0 100
x [m]

0

50

100

150

y
[m
]

US Track with HPL Control

2

4

6

8

10

v x
 [m

/s
]

0 100
x [m]

0

50

100

150

y
[m
]

US Track Raceline

2

4

6

8

10
v x
 [m

/s
]

Figure 5.18: The HPL controller matches the speed profile and shape of the mini-
mum time trajectory on the US track.

117

Chapter 6

Discussion

We presented four methods for approaching the changing environment problem. In each
chapter, we consider a discrete-time nonlinear dynamical system solving a series of tasks in
different environments. While the state and input constraints are constant across tasks, each
task environment imposes additional task-specific constraints, described via an environment
descriptor function Θ. Our goal was to use a set of n trajectories solving n previous tasks
in different environments in order to find a safe and effective MPC policy for a new task
environment described according to Θn+1.

Each proposed method makes specific assumptions about the system or constraints, and
is applicable to situations where the functions Θ have particular properties (e.g. piecewise
constant, time-invariant). Here we review and compare the presented approaches.

6.1 Task Decomposition

Problem Assumptions

1. Assumptions on the system dynamics:

a) Time-invariant system dynamics.

2. Assumptions on the system constraints:

a) Time-invariant system constraints.

3. Assumptions on Θ:

a) Θ is known before beginning the new control task.

b) Θ is time-invariant.

c) Each task T i can be divided into an ordered sequence of subtasks {Sj}Mj=1, defined
over a subtask workspace Xj ⊆ X . In each subtask, the environment descriptor
function Θi

j is the restriction of Θi onto Xj.

CHAPTER 6. DISCUSSION 118

d) All considered tasks can be split into different ordered sequences of the same M
subtasks, e.g.

T 1 = {S1
j }Mj=1, T 2 = {S1

lj
}Mj=1, [l1, l2, ..., lM] = shuffle([1, 2, ...,M]).

4. Assumptions on recorded executions:

a) The recorded trajectories include state and input trajectories as well as informa-
tion about the cost-to-go for each state-input pair.

b) In each recorded trajectory, the controller was optimizing the same objective
function. This ensures that the recorded costs-to-go are comparable.

MPC Formulation

Task Decomposition provides a method for using stored executions of previous tasks in order
to find a safe set SSn+1 for a task in a new environment Θn+1. Note that the algorithm also
finds the costs-to-go SQn+1 for each point in the safe set, as well as a safe input to apply
SUn+1. Once these safe sets are found for the new task using Alg. 1, a safe set based ILMPC
policy solves the following optimal control problem at each time k of solving the new task:

u? = min
uk|k,...,uk+N−1|k

N−1∑
t=0

p(xk+t|k, uk+t|k) + SQn+1(xk+N |k) (6.1)

s.t. xk+t+1|k = f(xk+t|k, uk+t|k)

uk+t|k ∈ U , ∀t ∈ {0, . . . , N − 1}
xk+t|k ∈ X (Θ), ∀t ∈ {0, . . . , N}
xk|k = xk

xk+N |k ∈ SSn+1 ∪ Pn+1.

The controller searches for an input sequence over the planning horizon N that controls
the system to the state in the determined safe state set or task target set with the lowest
cost-to-go reachable from the current state xk. The controller formulation includes both a
data-driven cost estimate (via SQn−1) and a data-driven terminal set SSn+1. Thus, the
task decomposition algorithm utilizes stored trajectory data to ensure both the safety and
performance of the new task’s controller.

The complexity of solving (6.1) depends in part on the linearity or convexity of the system
dynamics, constraints, and stage cost function p. Note that both the terminal constraint and
terminal cost require a binary variable: the last predicted state is exactly equal to one entry
in SSn−1, and the terminal cost is equal to the stored cost of the chosen entry. Thus, (6.1)
is a mixed integer program (MIP). MIPs can be handled by off-the-shelf solvers, though this
formulation does provide an additional layer of run-time complexity.

We also emphasize that formulating the controller (6.1) requires knowing the entire new
safe set SSn−1. Thus while the controllability analysis of Alg. 1 can be carried out offline,

CHAPTER 6. DISCUSSION 119

the resulting safe set must be stored online while solving the new control task. While a large
set SSn−1 can improve the closed-loop cost of the resulting execution, it should be noted
that the number of entries in the safe set is inversely correlated with the solve time of (6.1).

6.2 Task Decomposition for Piecewise Linear Systems

Problem Assumptions

1. Assumptions on the system dynamics:

a) Each task T i can be divided into an ordered sequence of subtasks {Sj}Mj=1, defined
over a subtask workspace Xj ⊆ X . Within each subtask workspace, the system is
governed by time-invariant linear dynamics.

2. Assumptions on the system constraints:

a) Within each subtask workspace, the system constraints are time-invariant and
convex.

3. Assumptions on Θ:

a) Θ is known before beginning the new control task.

b) Θ is time-invariant.

c) In each subtask, the environment descriptor function Θi
j is the restriction of Θi

onto Xj. All considered tasks can be split into different ordered sequences of the
same M subtasks, e.g.

T 1 = {S1
j }Mj=1, T 2 = {S1

lj
}Mj=1, [l1, l2, ..., lM] = shuffle([1, 2, ...,M]).

d) Within each subtask workspace, the environment constraints defined byE(Θj(x, u))
are convex.

4. Assumptions on recorded executions:

a) The recorded trajectories include state and input trajectories as well as informa-
tion about the cost-to-go for each state-input pair.

b) In each recorded trajectory, the controller was optimizing the same objective
function. This ensures that the recorded costs-to-go are comparable.

CHAPTER 6. DISCUSSION 120

MPC Formulation

In the reformulation of Task Decomposition for piecewise linear systems, a similar low-level
controller emerges. At each time k of solving the new task, the controller solves the optimal
control problem:

u? = arg min
uk|k,...,uk+N−1|k,I,K

k+N−1∑
t=k

p(xk+t|k, uk+t|k) + SQ(xk+N |k) (6.2)

s.t. xk+t+1|k = f(xk+t|k, uk+t|k)

uk+t|k ∈ Ui, ∀t ∈ {0, . . . , N − 1}
xk+t|k ∈ X (Θ), ∀t ∈ {0, . . . , N}
xk|k = xk

xk+N |k ∈ CKI,K ∪ P ,

which searches for an input sequence such that the last predicted state is in a time-indexed
convex hull safe set for the new task, found using Alg. 2. The key difference between (6.2)
and (6.1) is that (6.2) stores multiple smaller convex safe sets, rather than one discrete safe
set for the entire task. The last predicted state is then constrained to be anywhere inside
one such time-indexed convex hull set. There is no binary variable required to constrain the
terminal state to be exactly equal to one stored state, but a binary variable is required to
indicate which time-indexed convex hull set the terminal state is in. Thus, the reformulation
is still an MIP. However, the dimension of the required binary variable is smaller than in
(6.1) by up to a factor of n, the number of previously stored task trajectories.

6.3 Probabilistically Safe Controllable Sets

Problem Assumptions

1. Assumptions on the system dynamics:
None to apply method. However, probabilistic guarantees only hold for systems with
(time-varying or time-invariant) linear dynamics.

2. Assumptions on the system constraints:
None to apply method. However, probabilistic guarantees only hold for systems whose
constraints are convex at each time-step.

3. Assumptions on Θ:

a) In each task, Θ maps a state xk and time step k to a scenario parameter zk.
This scenario parameter evolves according to a task-invariant scenario dynamics

CHAPTER 6. DISCUSSION 121

function:

Θi(xk, k) = zik

= φ(zik−1, k − 1)

= φ(Θi(xk−1, k − 1), k − 1).

b) Θ need not be known before beginning the new control task, but at each time step
k of solving a task, a limitedN -step scenario parameter forecast, [zk, zk+1, . . . , zk+N],
is known. This forecast is considered to be correct.

4. Assumptions on recorded executions:

a) Each recorded trajectory is of length T .

b) All tasks share a common goal set XT .

MPC Formulation

We train GPs to represent strategy functions, learned from stored task trajectories. Given
a local forecast of the time-varying environment, these strategy GPs are used to construct a
set that is (with high probability) controllable to the task’s target set. At each time k, we
solve:

u?(xk, zk:k+N) = arg min
uk|k,...,uk+N−1|k

N−1∑
k=0

p(xk+t|k, uk+t|k) + q(xk+N |k) (6.3)

s.t. xk+t+1|k = f(xk+t|k, uk+t|k)

uk+t|k ∈ U , ∀t ∈ {0, . . . , N − 1}
xk+t|k ∈ X ∩ X (zk+t), ∀t ∈ {0, . . . , N}
xk|k = xk

xk+N |k ∈ XN(sk).

In contrast with (6.1) and (6.2), the optimal control problem (6.3) does not require explicitly
storing previous trajectories or a collection of safe states. Instead, we store nx ·T GPs, where
nx is the dimension of the system state and T the length of the task.

At each iteration of the controller, nx GPs have to be evaluated in order to construct
XN(sk) and solve (6.3). Evaluating each GP requires a matrix inverse and a matrix multi-
plication operation—however, the matrix inverse operation relies only on previous task data
and can thus be completed offline before beginning the new control task. Once the GP is
evaluated, a convex terminal set is constructed. Thus, if the system dynamics are linear and
the objective and constraints are convex, (6.3) is a convex optimization problem (in contrast
to 6.1 and 6.2).

CHAPTER 6. DISCUSSION 122

Unlike the two Task Decomposition approaches, the controller in (6.3) does not use a
data-driven objective function. Here we are only concerned with controllability and ensuring
constraint satisfaction of the system, and not necessarily maximizing performance. The
control designer is therefore free to select any stage and terminal costs p and q.

6.4 Hierarchical Predictive Learning

Problem Assumptions

1. Assumptions on the system dynamics:

a) Time-invariant system dynamics.

2. Assumptions on the system constraints:

a) Time-invariant system and input constraints.

3. Assumptions on Θ:

a) Θ need not be known before beginning the new control task, but at each time
step k of solving a task, a limited N -step environment forecast, [θk, θk+1, . . . , θkN],
is known. This forecast is considered to be correct.

4. Assumptions on recorded executions:

a) In each recorded trajectory, the controller optimizes the same objective function
to a satisfactory degree.

MPC Formulation

A generalization of learning data-driven controllable sets, Hierarchical Predictive Learning
uses GPs to represent reduced-dimension target sets for navigation tasks. A total number of
nx̃ GPs are trained from stored trajectories; one for each reduced-dimension strategy state.
At each time k of solving the new task, the controller evaluates the GPs in order to construct
a hyperrectangular terminal set, and then solves:

u?(xk) = arg min
uk|k,...,uk+NMPC

k
−1|k

NMPC
k −1∑
j∈Sk

dist
(
xj|k,Xk+j

)
(6.4)

s.t. xk+t+1|k = f(xk+t|k, uk+t|k)

uk+t|k ∈ U , ∀t ∈ {0, . . . , N − 1}
xk+t|k ∈ X (Θn+1), ∀t ∈ {0, . . . , N}
xk|k = xk

xk+NMPC
k |k ∈ Xk+NMPC

k
.

CHAPTER 6. DISCUSSION 123

At each iteration of the controller, nx̃ GPs have to be evaluated. Note that since we expect
nx̃ < nx, these are fewer GP evaluations than are required for (6.3) at each time step. The
matrix inversion operation can again be pre-computed, for improved online optimization
speed. Note that in addition to evaluating the GPs, (6.4) also requires finding a new MPC
horizon at each time step—but this is computationally trivial.

Whereas (6.3) only uses data to construct a terminal set, (6.4) also alters the MPC’s
objective function. This encourages the system to track the strategy target sets found at
previous time steps. Since the terminal set is a hyperrectangular (and thus convex) set, and
the distance function a convex function, the convexity of (6.4) is determined by the system
dynamics.

6.5 Performance Comparison

Table 6.1 concisely compares the four proposed control methods on the basis of their algo-
rithm outputs, the ways in which they manipulate the low-level MPC controller, and the
time requirements for the proposed online calculations. Specifically, “Online Set Comp.”
considers the worst-case online terminal set computation time required by each method as
a function of the number of previously stored trajectories n, the number of system states
nx, and the length of each stored trajectory Dmax. Note that because the task decomposi-
tion approaches discussed in Ch. 2-3 calculate a safe set offline, the online set computation
is negligible. The PSCS and HPL approaches, on the other hand, require evaluating GPs
online at each time step of solving the new task. The resulting terminal constraints for these
two methods, however, are convex constraints and therefore easy to solve. The terminal
constraints in TDMPC and TDMPC-PWL are mixed-integer linear constraints; these are
typically NP-hard to solve. Thus there is a trade-off between computation required to find
the terminal set and computation required to solve the resulting MPC problem.

Another key difference of note is that TDMPC and TDMPC-PWL require knowing the
entire environment description a priori, whereas PSCS and HPL only require a local forecast
of the environment. Similarly, TDMPC and TDMPC-PWL learn safe sets that are specific
to the new task environment Θn+1; if the task changes again, to a new Θn+2, the TDMPC
and TDMPC-PWL algorithms need to be repeated to find yet another safe set. This is
not the case for HPL or PSCS, whose algorithms produce policies that rely on a local
environment description to generalize between a variety of tasks. Once trained on a set of n
task trajectories, the learned HPL or PSCS strategy functions can be utilized in as many new
task environments as desired. As a result, if the goal is to use stored trajectories to quickly
adapt to a variety of new tasks, either PSCS or HPL should be chosen. If on the other hand
a safe trajectory is needed to warm-start a controller of a desired form for a single new task,
the TDMPC or TDMPC-PWL approaches will be of use, since these methods immediately
provide a safe trajectory for the new task along with the safe control policy.

CHAPTER 6. DISCUSSION 124

TDMPC
TDMPC-

PWL
PSCS HPL

Θ Props

Required
Forecast

Entire
Task

Entire
Task

Local Local

Time-
Invariant

Alg. Output
Trajectory

Policy

MPC Impact

Provides
Cost Fnc.

Provides
Term. Set

Online Set
Comp.

O(1) O(1)
O(nxn

2) +
O(NLP)

O(nx(nDmax)2)

Term.
Constraint

MILP MILP QCQP LP

Table 6.1: Comparing various features of the presented control methods.

125

Bibliography

[1] T. Alamo et al. “On the Computation of Robust Control Invariant Sets for Piecewise
Affine Systems”. In: Assessment and Future Directions of Nonlinear Model Predic-
tive Control. Ed. by Rolf Findeisen, Frank Allgöwer, and Lorenz T. Biegler. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2007, pp. 131–139.

[2] Tzanis Anevlavis et al. “Controlled invariant sets: implicit closed-form representations
and applications”. In: arXiv preprint arXiv:2107.08566 (2021).

[3] Suguru Arimoto, Masahiro Sekimoto, and Sadao Kawamura. “Task-space iterative
learning for redundant robotic systems: Existence of a task-space control and conver-
gence of learning”. In: SICE Journal of Control, Measurement, and System Integration
1.4 (2008), pp. 312–319.

[4] Ashley A Armstrong and Andrew G Alleyne. “A Multi-Input Single-Output iterative
learning control for improved material placement in extrusion-based additive manu-
facturing”. In: Control Engineering Practice 111 (2021), p. 104783.

[5] Christopher G Atkeson and Jun Morimoto. “Nonparametric representation of policies
and value functions: A trajectory-based approach”. In: Advances in Neural Informa-
tion Processing Systems. 2003, pp. 1643–1650.

[6] Stanley Bak and Parasara Sridhar Duggirala. “Hylaa: A tool for computing simulation-
equivalent reachability for linear systems”. In: Proceedings of the 20th International
Conference on Hybrid Systems: Computation and Control. ACM. 2017, pp. 173–178.

[7] Somil Bansal et al. “Hamilton-Jacobi reachability: A brief overview and recent ad-
vances”. In: 2017 IEEE 56th Annual Conference on Decision and Control (CDC).
IEEE. 2017, pp. 2242–2253.

[8] Somil Bansal et al. “Hamilton-jacobi reachability: A brief overview and recent ad-
vances”. In: 2017 IEEE 56th Annual Conference on Decision and Control (CDC).
IEEE. 2017, pp. 2242–2253.

[9] Jonathan Beliën. jbelien/F1-Circuits. url: https://github.com/jbelien/F1-

Circuits.

[10] Dmitry Berenson, Pieter Abbeel, and Ken Goldberg. “A robot path planning frame-
work that learns from experience”. In: 2012 IEEE International Conference on Robotics
and Automation. IEEE. 2012, pp. 3671–3678.

https://github.com/jbelien/F1-Circuits
https://github.com/jbelien/F1-Circuits

BIBLIOGRAPHY 126

[11] Dmitry Berenson, Pieter Abbeel, and Ken Goldberg. “A robot path planning frame-
work that learns from experience”. In: 2012 IEEE International Conference on Robotics
and Automation. IEEE. 2012, pp. 3671–3678.

[12] Dimitri P Bertsekas. “Feature-Based Aggregation and Deep Reinforcement Learning:
A Survey and Some New Implementations”. In: arXiv preprint arXiv:1804.04577
(2018).

[13] Dimitri P Bertsekas and Ian B Rhodes. “On the minimax reachability of target sets
and target tubes”. In: Automatica 7.2 (1971), pp. 233–247.

[14] Dimitris Bertsimas and Bartolomeo Stellato. The Voice of Optimization. 2018. arXiv:
1812.09991 [math.OC].

[15] Franco Blanchini. “Set invariance in control”. In: Automatica 35.11 (1999), pp. 1747–
1767.

[16] Ruxandra Bobiti and Mircea Lazar. “Automated-sampling-based stability verification
and DOA estimation for nonlinear systems”. In: IEEE Transactions on Automatic
Control 63.11 (2018), pp. 3659–3674.

[17] Shaunak D Bopardikar, Francesco Bullo, and Joao P Hespanha. “A cooperative homi-
cidal chauffeur game”. In: Automatica 45.7 (2009), pp. 1771–1777.

[18] F. Borrelli, A. Bemporad, and M. Morari. Predictive Control for linear and hybrid
systems. Cambridge University Press, 2017.

[19] Francesco Borrelli, Alberto Bemporad, and Manfred Morari. Predictive control for
linear and hybrid systems. Cambridge University Press, 2017.

[20] Douglas A Bristow, Marina Tharayil, and Andrew G Alleyne. “A survey of iterative
learning control”. In: IEEE Control Systems Magazine 26.3 (2006), pp. 96–114.

[21] M. Bujarbaruah, X. Zhang, and F. Borrelli. “Adaptive MPC with Chance Constraints
for FIR Systems”. In: 2018 Annual American Control Conference (ACC). June 2018,
pp. 2312–2317.

[22] Jesús Velasco Carrau et al. “Efficient implementation of randomized MPC for minia-
ture race cars”. In: 2016 European Control Conference (ECC). IEEE. 2016, pp. 957–
962.

[23] A. Chakrabarty et al. “Data-Driven Estimation of Backward Reachable and Invariant
Sets for Unmodeled Systems via Active Learning”. In: 2018 IEEE Conference on
Decision and Control (CDC). 2018, pp. 372–377. doi: 10.1109/CDC.2018.8619646.

[24] Ankush Chakrabarty et al. “Data-driven estimation of backward reachable and in-
variant sets for unmodeled systems via active learning”. In: 2018 IEEE Conference
on Decision and Control (CDC). IEEE. 2018, pp. 372–377.

[25] Y. Chen et al. “Data-Driven Computation of Minimal Robust Control Invariant Set”.
In: 2018 IEEE Conference on Decision and Control (CDC). 2018, pp. 4052–4058. doi:
10.1109/CDC.2018.8619312.

https://arxiv.org/abs/1812.09991
https://doi.org/10.1109/CDC.2018.8619646
https://doi.org/10.1109/CDC.2018.8619312

BIBLIOGRAPHY 127

[26] Yuxiao Chen and Necmiye Ozay. “Data-Driven Computation of Robust Control In-
variant Sets With Concurrent Model Selection”. In: IEEE Transactions on Control
Systems Technology (2021).

[27] Ignasi Clavera et al. “Learning to adapt in dynamic, real-world environments through
meta-reinforcement learning”. In: arXiv preprint arXiv:1803.11347 (2018).

[28] Adam Coates, Pieter Abbeel, and Andrew Y Ng. “Learning for control from multiple
demonstrations”. In: Proceedings of the 25th international conference on Machine
learning. ACM. 2008, pp. 144–151.

[29] M. K. Cobb et al. “Iterative Learning-Based Path Optimization for Repetitive Path
Planning, With Application to 3-D Crosswind Flight of Airborne Wind Energy Sys-
tems”. In: IEEE Transactions on Control Systems Technology (2019), pp. 1–13. doi:
10.1109/TCST.2019.2912345.

[30] Isidro Cortés-Ciriano and Andreas Bender. “Deep confidence: a computationally ef-
ficient framework for calculating reliable prediction errors for deep neural networks”.
In: Journal of chemical information and modeling 59.3 (2018), pp. 1269–1281.

[31] Tianyu Dai and Mario Sznaier. “A Moments Based Approach to Designing MIMO
Data Driven Controllers for Switched Systems”. In: 2018 IEEE Conference on Deci-
sion and Control (CDC). 2018, pp. 5652–5657.

[32] Benjamin Decardi-Nelson and Jinfeng Liu. “Computing robust control invariant sets
of constrained nonlinear systems: A graph algorithm approach”. In: Computers &
Chemical Engineering 145 (2021), p. 107177.

[33] Alex Devonport and Murat Arcak. “Estimating reachable sets with scenario opti-
mization”. In: Learning for dynamics and control. PMLR. 2020, pp. 75–84.

[34] Ludvig Doeser et al. “Invariant Sets for Integrators and Quadrotor Obstacle Avoid-
ance”. In: 2020 American Control Conference (ACC). IEEE. 2020, pp. 3814–3821.

[35] Jian Dong and Bin He. “Novel Fuzzy PID-Type Iterative Learning Control for Quadro-
tor UAV”. In: Sensors 19.1 (2019). issn: 1424-8220. doi: 10.3390/s19010024. url:
https://www.mdpi.com/1424-8220/19/1/24.

[36] Parasara Sridhar Duggirala et al. “C2E2: A verification tool for stateflow models”. In:
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer. 2015, pp. 68–82.

[37] Ioannis Exarchos, Panagiotis Tsiotras, and Meir Pachter. “UAV collision avoidance
based on the solution of the suicidal pedestrian differential game”. In: AIAA Guid-
ance, Navigation, and Control Conference. 2016, p. 2100.

[38] M. Fiacchini, T. Alamo, and E.F. Camacho. “On the computation of convex robust
control invariant sets for nonlinear systems”. In: Automatica 46.8 (2010), pp. 1334–
1338. issn: 0005-1098. doi: https://doi.org/10.1016/j.automatica.2010.05.
007. url: https://www.sciencedirect.com/science/article/pii/S000510981000213X.

https://doi.org/10.1109/TCST.2019.2912345
https://doi.org/10.3390/s19010024
https://www.mdpi.com/1424-8220/19/1/24
https://doi.org/https://doi.org/10.1016/j.automatica.2010.05.007
https://doi.org/https://doi.org/10.1016/j.automatica.2010.05.007
https://www.sciencedirect.com/science/article/pii/S000510981000213X

BIBLIOGRAPHY 128

[39] Mirko Fiacchini and Mazen Alamir. Computing control invariant sets is easy. 2017.
arXiv: 1708.04797 [cs.SY].

[40] Mirko Fiacchini, Teodoro Alamo, and Eduardo F Camacho. “On the computation
of convex robust control invariant sets for nonlinear systems”. In: Automatica 46.8
(2010), pp. 1334–1338.

[41] Nathanaël Fijalkow et al. “On the decidability of reachability in linear time-invariant
systems”. In: Proceedings of the 22nd ACM International Conference on Hybrid Sys-
tems: Computation and Control. 2019, pp. 77–86.

[42] Tesca Fitzgerald et al. “Human-guided Trajectory Adaptation for Tool Transfer”. In:
Proceedings of the 18th International Conference on Autonomous Agents and Multi-
Agent Systems. AAMAS ’19. 2019, pp. 1350–1358.

[43] Tesca Fitzgerald et al. “Human-guided Trajectory Adaptation for Tool Transfer”. In:
Proceedings of the 18th International Conference on Autonomous Agents and Multi-
Agent Systems. AAMAS ’19. 2019, pp. 1350–1358.

[44] Alexander Formalskii and A. Sirotin. “On the Geometric Properties of Reachable and
Controllable Sets for Linear Discrete Systems”. In: Journal of Optimization Theory
and Applications 122 (Aug. 2004), pp. 257–284. doi: 10.1023/B:JOTA.0000042521.
51456.01.

[45] Thommen George Karimpanal and Roland Bouffanais. “Self-organizing maps for stor-
age and transfer of knowledge in reinforcement learning”. In: Adaptive Behavior (Dec.
2018), p. 105971231881856. doi: 10.1177/1059712318818568.

[46] Monique Guignard and Aykut Ahlatcioglu. “The convex hull heuristic for nonlinear
integer programming problems with linear constraints and application to quadratic
0–1 problems”. In: Journal of Heuristics 27.1 (2021), pp. 251–265. doi: 10.1007/
s10732-019-09433-w. url: https://doi.org/10.1007/s10732-019-09433-w.

[47] Monique Guignard and Aykut Ahlatcioglu. “The convex hull relaxation for nonlinear
integer programs with convex objective and linear constraints”. In: Proceedings of
the European Workshop on Mixed Integer Nonlinear Programming. Citeseer. 2010,
pp. 149–158.

[48] Ahmed El-Guindy, Dongkun Han, and Matthias Althoff. “Estimating the region of
attraction via forward reachable sets”. In: 2017 American Control Conference (ACC).
IEEE. 2017, pp. 1263–1270.

[49] Osman Güler and Filiz Gürtuna. “The extremal volume ellipsoids of convex bodies,
their symmetry properties, and their determination in some special cases”. In: arXiv
preprint arXiv:0709.0707 (2007).

[50] Lukas Hewing, Juraj Kabzan, and Melanie N Zeilinger. “Cautious model predictive
control using Gaussian process regression”. In: IEEE Transactions on Control Systems
Technology (2019).

https://arxiv.org/abs/1708.04797
https://doi.org/10.1023/B:JOTA.0000042521.51456.01
https://doi.org/10.1023/B:JOTA.0000042521.51456.01
https://doi.org/10.1177/1059712318818568
https://doi.org/10.1007/s10732-019-09433-w
https://doi.org/10.1007/s10732-019-09433-w
https://doi.org/10.1007/s10732-019-09433-w

BIBLIOGRAPHY 129

[51] David J Hoelzle, Andrew G Alleyne, and Amy J Wagoner Johnson. “Basis task ap-
proach to iterative learning control with applications to micro-robotic deposition”.
In: IEEE Transactions on Control Systems Technology 19.5 (2010), pp. 1138–1148.

[52] Matthias Hofer, Lukas Spannagl, and Raffaello D’Andrea. “Iterative learning control
for fast and accurate position tracking with an articulated soft robotic arm”. In:
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
IEEE. 2019, pp. 6602–6607.

[53] Roberto Horowitz. “Learning control of robot manipulators”. In: Journal of Dynamic
Systems, Measurement, and Control 115.2B (1993), pp. 402–411.

[54] Achin Jain et al. “Learning and Control Using Gaussian Processes: Towards Bridging
Machine Learning and Controls for Physical Systems”. In: Proceedings of the 9th
ACM/IEEE International Conference on Cyber-Physical Systems. ICCPS ’18. 2018,
pp. 140–149.

[55] Mehdi Jalalmaab et al. “Model predictive path planning with time-varying safety
constraints for highway autonomous driving”. In: 2015 International Conference on
Advanced Robotics (ICAR). IEEE. 2015, pp. 213–217.

[56] Juraj Kabzan et al. “Learning-Based Model Predictive Control for Autonomous Rac-
ing”. In: IEEE Robotics and Automation Letters 4.4 (2019), pp. 3363–3370.

[57] Eric C Kerrigan and Jan M Maciejowski. “Invariant sets for constrained nonlinear
discrete-time systems with application to feasibility in model predictive control”.
In: Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.
00CH37187). Vol. 5. IEEE. 2000, pp. 4951–4956.

[58] Maike Ketelhut et al. “Iterative learning control of ventricular assist devices with
variable cycle durations”. In: Control Engineering Practice 83 (2019), pp. 33–44.

[59] A. Khosravi et al. “Lower Upper Bound Estimation Method for Construction of Neu-
ral Network-Based Prediction Intervals”. In: IEEE Transactions on Neural Networks
22.3 (2011), pp. 337–346. doi: 10.1109/TNN.2010.2096824.

[60] Edgar D Klenske et al. “Gaussian process-based predictive control for periodic er-
ror correction”. In: IEEE Transactions on Control Systems Technology 24.1 (2015),
pp. 110–121.

[61] Juš Kocijan. Modelling and control of dynamic systems using Gaussian process models.
Springer.

[62] Soonho Kong et al. “dReach: δ-reachability analysis for hybrid systems”. In: Interna-
tional Conference on TOOLS and Algorithms for the Construction and Analysis of
Systems. Springer. 2015, pp. 200–205.

[63] George Konidaris, Ilya Scheidwasser, and Andrew Barto. “Transfer in Reinforcement
Learning via Shared Features”. In: The Journal of Machine Learning Research 13
(Mar. 2012), pp. 1333–1371.

https://doi.org/10.1109/TNN.2010.2096824

BIBLIOGRAPHY 130

[64] Alexandar Kozarev et al. “Case studies in data-driven verification of dynamical sys-
tems”. In: Proceedings of the 19th International Conference on Hybrid Systems: Com-
putation and Control. 2016, pp. 81–86.

[65] Krisada Kritayakirana and J Christian Gerdes. “Using the centre of percussion to
design a steering controller for an autonomous race car”. In: Vehicle System Dynamics
50.sup1 (2012), pp. 33–51.

[66] Michal Kvasnica et al. “Multi-parametric toolbox (MPT)”. In: International Work-
shop on Hybrid Systems: Computation and Control. Springer. 2004, pp. 448–462.

[67] J.B. Lasserre. “Reachable, controllable sets and stabilizing control of constrained lin-
ear systems”. In: Automatica 29.2 (1993), pp. 531–536. issn: 0005-1098. doi: https:
//doi.org/10.1016/0005-1098(93)90152-J. url: https://www.sciencedirect.
com/science/article/pii/000510989390152J.

[68] A Lederer, J Umlauft, and S Hirche. “Uniform Error Bounds for Gaussian Process
Regression with Application to Safe Control”. In: Conference on Neural Information
Processing Systems (NeurIPS). 2019.

[69] Jay H Lee and Kwang S Lee. “Iterative learning control applied to batch processes:
An overview”. In: Control Engineering Practice 15.10 (2007), pp. 1306–1318.

[70] Lucas Liebenwein et al. “Sampling-Based Approximation Algorithms for Reachability
Analysis with Provable Guarantees”. In: (2018).

[71] Pedro F Lima, Jonas Mårtensson, and Bo Wahlberg. “Stability conditions for linear
time-varying model predictive control in autonomous driving”. In: 2017 IEEE 56th
Annual Conference on Decision and Control (CDC). IEEE. 2017, pp. 2775–2782.

[72] Chenggang Liu and Christopher G Atkeson. “Standing balance control using a tra-
jectory library”. In: 2009 IEEE/RSJ International Conference on Intelligent Robots
and Systems. Citeseer. 2009, pp. 3031–3036.

[73] Zonglin Liu and Olaf Stursberg. “Recursive feasibility and stability of MPC with time-
varying and uncertain state constraints”. In: 2019 18th European Control Conference
(ECC). IEEE. 2019, pp. 1766–1771.

[74] Jingyi Lu et al. “110th Anniversary: An Overview on Learning-Based Model Predic-
tive Control for Batch Processes”. In: Industrial & Engineering Chemistry Research
58.37 (2019), pp. 17164–17173.

[75] Ian M. Mitchell and Yoshihiko Susuki. “Level Set Methods for Computing Reachable
Sets of Hybrid Systems with Differential Algebraic Equation Dynamics”. In: Apr.
2008. doi: 10.1007/978-3-540-78929-1_51.

[76] T Manrique et al. “MPC-based tracking for real-time systems subject to time-varying
polytopic constraints”. In: Optimal Control Applications and Methods 37.4 (2016),
pp. 708–729.

https://doi.org/https://doi.org/10.1016/0005-1098(93)90152-J
https://doi.org/https://doi.org/10.1016/0005-1098(93)90152-J
https://www.sciencedirect.com/science/article/pii/000510989390152J
https://www.sciencedirect.com/science/article/pii/000510989390152J
https://doi.org/10.1007/978-3-540-78929-1_51

BIBLIOGRAPHY 131

[77] David Q Mayne et al. “Constrained model predictive control: Stability and optimal-
ity”. In: Automatica 36.6 (2000), pp. 789–814.

[78] Samy Missoum, Palaniappan Ramu, and Raphael T. Haftka. “A convex hull ap-
proach for the reliability-based design optimization of nonlinear transient dynamic
problems”. In: Computer Methods in Applied Mechanics and Engineering 196.29
(2007), pp. 2895–2906. issn: 0045-7825. doi: https://doi.org/10.1016/j.cma.
2006.12.008. url: https://www.sciencedirect.com/science/article/pii/
S0045782507000813.

[79] Ian M Mitchell, Alexandre M Bayen, and Claire J Tomlin. “A time-dependent Hamilton-
Jacobi formulation of reachable sets for continuous dynamic games”. In: IEEE Trans-
actions on automatic control 50.7 (2005), pp. 947–957.

[80] Ofir Nachum et al. “Data-efficient hierarchical reinforcement learning”. In: Advances
in neural information processing systems. 2018, pp. 3303–3313.

[81] Ashutosh R Nandeshwar. “Models for calculating confidence intervals for neural net-
works”. In: (2006).

[82] Quan Nguyen et al. “Dynamic walking on stepping stones with gait library and control
barrier functions”. In: Arbor 1001 (2016), p. 48109.

[83] Takashi Ohhira and Akira Shimada. “Model predictive control for an inverted-pendulum
robot with time-varying constraints”. In: IFAC-PapersOnLine 50.1 (2017), pp. 776–
781.

[84] Tom Oomen and Cristian R Rojas. “Sparse iterative learning control with application
to a wafer stage: Achieving performance, resource efficiency, and task flexibility”. In:
Mechatronics 47 (2017), pp. 134–147.

[85] Myle Ott et al. Analyzing Uncertainty in Neural Machine Translation. 2018. arXiv:
1803.00047 [cs.CL].

[86] Georgios Papadopoulos, Peter J Edwards, and Alan F Murray. “Confidence estima-
tion methods for neural networks: A practical comparison”. In: IEEE transactions on
neural networks 12.6 (2001), pp. 1278–1287.

[87] Alexandros Paraschos, Gerhard Neumann, and Jan Peters. “A probabilistic approach
to robot trajectory generation”. In: 2013 13th IEEE-RAS International Conference
on Humanoid Robots (Humanoids). IEEE. 2013, pp. 477–483.

[88] Krzysztof Patan and Maciej Patan. “Neural-network-based iterative learning control
of nonlinear systems”. In: ISA transactions 98 (2020), pp. 445–453.

[89] Vern I. Paulsen and Mrinal Raghupathi. An Introduction to the Theory of Reproduc-
ing Kernel Hilbert Spaces. Cambridge Studies in Advanced Mathematics. Cambridge
University Press, 2016. doi: 10.1017/CBO9781316219232.

https://doi.org/https://doi.org/10.1016/j.cma.2006.12.008
https://doi.org/https://doi.org/10.1016/j.cma.2006.12.008
https://www.sciencedirect.com/science/article/pii/S0045782507000813
https://www.sciencedirect.com/science/article/pii/S0045782507000813
https://arxiv.org/abs/1803.00047
https://doi.org/10.1017/CBO9781316219232

BIBLIOGRAPHY 132

[90] Karime Pereida, Mohamed K Helwa, and Angela P Schoellig. “Data-efficient mul-
tirobot, multitask transfer learning for trajectory tracking”. In: IEEE Robotics and
Automation Letters 3.2 (2018), pp. 1260–1267.

[91] Luka Petrović, Šandor Iles, and Jadranko Matuško. “Self-learning model predictive
control based on the sequence of controllable sets”. In: 2017 19th International Con-
ference on Electrical Drives and Power Electronics (EDPE). IEEE. 2017, pp. 359–
364.

[92] Noelia Pizzi et al. “Probabilistic ultimate bounds and invariant sets in nonlinear
systems”. In: Automatica 133 (2021), p. 109853.

[93] André Platzer and Edmund M Clarke. “The image computation problem in hybrid
systems model checking”. In: International Workshop on Hybrid Systems: Computa-
tion and Control. Springer. 2007, pp. 473–486.

[94] Rajesh Rajamani. Vehicle dynamics and control. Springer Science & Business Media,
2011.

[95] Saša V. Rakovic and Miroslav Baric. “Parameterized Robust Control Invariant Sets
for Linear Systems: Theoretical Advances and Computational Remarks”. In: IEEE
Transactions on Automatic Control 55.7 (2010), pp. 1599–1614. doi: 10.1109/TAC.
2010.2042341.

[96] Stefan Ratschan and Zhikun She. “Safety verification of hybrid systems by con-
straint propagation-based abstraction refinement”. In: ACM Transactions on Em-
bedded Computing Systems (TECS) 6.1 (2007), p. 8.

[97] Alexander Robey, Hamed Hassani, and George J Pappas. “Model-Based Robust Deep
Learning”. In: arXiv preprint arXiv:2005.10247 (2020).

[98] U. Rosolia and F. Borrelli. “Learning Model Predictive Control for Iterative Tasks:
A Computationally Efficient Approach for Linear System”. In: 20th IFAC World
Congress. IFAC. 2017.

[99] Ugo Rosolia and Francesco Borrelli. “Learning Model Predictive Control for Iterative
Tasks”. In: CoRR abs/1609.01387 (2016). arXiv: 1609.01387. url: http://arxiv.
org/abs/1609.01387.

[100] Ugo Rosolia and Francesco Borrelli. “Learning model predictive control for iterative
tasks. a data-driven control framework”. In: IEEE Transactions on Automatic Control
63.7 (2017), pp. 1883–1896.

[101] Ugo Rosolia, Ashwin Carvalho, and Francesco Borrelli. “Autonomous racing using
learning model predictive control”. In: 2017 American Control Conference (ACC).
IEEE. 2017, pp. 5115–5120.

[102] Ugo Rosolia, Andrew Singletary, and Aaron D. Ames. Unified Multi-Rate Control:
from Low Level Actuation to High Level Planning. 2020. arXiv: 2012.06558 [eess.SY].

https://doi.org/10.1109/TAC.2010.2042341
https://doi.org/10.1109/TAC.2010.2042341
https://arxiv.org/abs/1609.01387
http://arxiv.org/abs/1609.01387
http://arxiv.org/abs/1609.01387
https://arxiv.org/abs/2012.06558

BIBLIOGRAPHY 133

[103] Ugo Rosolia, Xiaojing Zhang, and Francesco Borrelli. “Simple Policy Evaluation for
Data-Rich Iterative Tasks”. In: 2019 American Control Conference (ACC). 2019,
pp. 2855–2860. doi: 10.23919/ACC.2019.8814765.

[104] Matthias Rungger and Paulo Tabuada. “Computing Robust Controlled Invariant
Sets of Linear Systems”. In: IEEE Transactions on Automatic Control 62.7 (2017),
pp. 3665–3670. doi: 10.1109/TAC.2017.2672859.

[105] Matthias Rungger and Paulo Tabuada. “Computing Robust Controlled Invariant Sets
of Linear Systems”. In: IEEE Transactions on Automatic Control 62.7 (July 2017),
pp. 3665–3670. issn: 1558-2523. doi: 10.1109/tac.2017.2672859. url: http:

//dx.doi.org/10.1109/TAC.2017.2672859.

[106] Karsten Scheibler, Stefan Kupferschmid, and Bernd Becker. “Recent Improvements
in the SMT Solver iSAT.” In: ().

[107] Stefan Schupp et al. “Current challenges in the verification of hybrid systems”. In:
International Workshop on Design, Modeling, and Evaluation of Cyber Physical Sys-
tems. Springer. 2015, pp. 8–24.

[108] Dong Shen and Xuefang Li. “A survey on iterative learning control with randomly
varying trial lengths: Model, synthesis, and convergence analysis”. In: Annual Reviews
in Control 48 (2019), pp. 89–102.

[109] Yasser Shoukry et al. “Closed-form controlled invariant sets for pedestrian avoidance”.
In: 2017 American Control Conference (ACC). IEEE. 2017, pp. 1622–1628.

[110] M.W. Spong and M Vidyasagar. Robot Dynamics And Control. Jan. 1989.

[111] Niranjan Srinivas et al. “Information-Theoretic Regret Bounds for Gaussian Process
Optimization in the Bandit Setting”. In: IEEE Transactions on Information Theory
58.5 (2012), pp. 3250–3265. doi: 10.1109/TIT.2011.2182033.

[112] Ingo Steinwart. “On the influence of the kernel on the consistency of support vector
machines”. In: Journal of machine learning research 2.Nov (2001), pp. 67–93.

[113] Martin Stolle and Christopher Atkeson. “Finding and transferring policies using
stored behaviors”. In: Autonomous Robots 29.2 (2010), pp. 169–200.

[114] Martin Stolle and Christopher Atkeson. “Finding and transferring policies using
stored behaviors”. In: Autonomous Robots 29.2 (2010), pp. 169–200.

[115] Walid Taha et al. “Acumen: An Open-source Testbed for Cyber-Physical Systems
Research”. In: Oct. 2015.

[116] Yuval Tassa, Tom Erez, and William D Smart. “Receding horizon differential dy-
namic programming”. In: Advances in neural information processing systems. 2008,
pp. 1465–1472.

[117] Andrea Tirinzoni et al. Importance Weighted Transfer of Samples in Reinforcement
Learning. May 2018.

https://doi.org/10.23919/ACC.2019.8814765
https://doi.org/10.1109/TAC.2017.2672859
https://doi.org/10.1109/tac.2017.2672859
http://dx.doi.org/10.1109/TAC.2017.2672859
http://dx.doi.org/10.1109/TAC.2017.2672859
https://doi.org/10.1109/TIT.2011.2182033

BIBLIOGRAPHY 134

[118] Ufuk Topcu, Andrew Packard, and Peter Seiler. “Local stability analysis using sim-
ulations and sum-of-squares programming”. In: Automatica 44.10 (2008), pp. 2669–
2675.

[119] L. Torrey and J. Shavlik. “Transfer learning”. In: Handbook of Research on Machine
Learning Applications (Jan. 2009). doi: 10.4018/978-1-60566-766-9.ch011.

[120] Spyros G Tzafestas. Introduction to mobile robot control. Elsevier, 2013.

[121] Charlott Vallon and Francesco Borrelli. “Data-driven hierarchical predictive learning
in unknown environments”. In: 2020 IEEE 16th International Conference on Automa-
tion Science and Engineering (CASE). IEEE. 2020, pp. 104–109.

[122] Charlott Vallon and Francesco Borrelli. “Task Decomposition for Iterative Learning
Model Predictive Control”. In: [Submitted] (2019). url: http://arxiv.org/abs/
1903.07003.

[123] Charlott Vallon and Francesco Borrelli. “Task Decomposition for Iterative Learning
Model Predictive Control”. In: 2020 American Control Conference (ACC). IEEE.
2020.

[124] Charlott Vallon and Francesco Borrelli. “Task Decomposition for MPC: A Compu-
tationally Efficient Approach for Linear Time-Varying Systems”. In: IFACPapersOn-
Line (2020).

[125] Giorgio Valmorbida and James Anderson. “Region of attraction estimation using
invariant sets and rational Lyapunov functions”. In: Automatica 75 (2017), pp. 37–
45.

[126] Jur Van Den Berg et al. “Superhuman performance of surgical tasks by robots using
iterative learning from human-guided demonstrations”. In: 2010 IEEE International
Conference on Robotics and Automation. IEEE. 2010, pp. 2074–2081.

[127] V. T. Vasudevan, A. Sethy, and A. R. Ghias. “Towards Better Confidence Estima-
tion for Neural Models”. In: ICASSP 2019 - 2019 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). 2019, pp. 7335–7339. doi:
10.1109/ICASSP.2019.8683359.

[128] N Wada, H Tomosugi, and M Saeki. “Model predictive tracking control for a linear
system under time-varying input constraints”. In: International Journal of Robust
and Nonlinear Control 23.9 (2013), pp. 945–964.

[129] Ying Chung Wang, Chiang Ju Chien, and Chi Nan Chuang. “Backstepping adaptive
iterative learning control for robotic systems”. In: Applied Mechanics and Materials.
Vol. 284. Trans Tech Publ. 2013, pp. 1759–1763.

[130] Youqing Wang, Furong Gao, and Francis J Doyle III. “Survey on iterative learning
control, repetitive control, and run-to-run control”. In: Journal of Process Control
19.10 (2009), pp. 1589–1600.

https://doi.org/10.4018/978-1-60566-766-9.ch011
http://arxiv.org/abs/1903.07003
http://arxiv.org/abs/1903.07003
https://doi.org/10.1109/ICASSP.2019.8683359

BIBLIOGRAPHY 135

[131] Zheming Wang and Raphaël M Jungers. “Data-driven computation of invariant sets
of discrete time-invariant black-box systems”. In: arXiv preprint arXiv:1907.12075
(2019).

[132] Zheming Wang and Raphaël M. Jungers. Data-driven computation of invariant sets
of discrete time-invariant black-box systems. 2020. arXiv: 1907.12075 [eess.SY].

[133] Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. “A survey of transfer learn-
ing”. In: Journal of Big data 3.1 (2016), p. 9.

[134] Guofan Wu and Koushil Sreenath. “Safety-critical geometric control for systems on
manifolds subject to time-varying constraints”. In: IEEE Transactions on Automatic
Control (TAC), in review (2016).

[135] Xuning Yang et al. “Online adaptive teleoperation via motion primitives for mobile
robots”. In: Autonomous Robots 43.6 (Aug. 2019), pp. 1357–1373.

[136] Dailin Zhang, Zining Wang, and Tomizuka Masayoshi. “Neural-Network-Based Itera-
tive Learning Control for Multiple Tasks”. In: IEEE Transactions on Neural Networks
and Learning Systems (2020).

[137] Weiming Zhi et al. OCTNet: Trajectory Generation in New Environments from Past
Experiences. 2019. arXiv: 1909.11337 [cs.RO].

[138] Fuzhen Zhuang et al. “A comprehensive survey on transfer learning”. In: arXiv
preprint arXiv:1911.02685 (2019).

[139] Philip Zucker. philzook58/FlapPyBird-MPC. url: https://github.com/philzook58/
FlapPyBird-MPC.

[140] Jurgen van Zundert, Joost Bolder, and Tom Oomen. “Optimality and flexibility in
iterative learning control for varying tasks”. In: Automatica 67 (2016), pp. 295–302.

https://arxiv.org/abs/1907.12075
https://arxiv.org/abs/1909.11337
https://github.com/philzook58/FlapPyBird-MPC
https://github.com/philzook58/FlapPyBird-MPC

136

Appendix A

Proofs

A.1 Proofs from Chapter 2

Proof of Thm. 1

Proof. At every state xk, the ILMPC policy (2.10) searches for a sequence of inputs such
that, when applied to the system (4.1), the resulting state xk+N is in SS0

[l1→lM] or the target
set RlM .

Since all states in SS0
[l1→lM] are either stored as part of feasible trajectories to RlM or

are directly in RlM , such a sequence of inputs can always be found, and (2.9) always has a
solution:

∀ xk ∈ SS0
[l1→lM], ∃ [uk, uk+1, ..., uk+N−1] ∈ U : xk+N ∈ SS0

[l1→lM] ⊆ X .

As the terminal constraint set in 2.9 is itself an invariant set, recursive feasibility follows
from standard MPC arguments [19]. It follows that the policy πILMPC

[l1→lM] produces feasible

trajectories for T 2.

Proof of Thm. 2

Proof. Define the vectors

x1 = SS1
[1→M] ⊆ SSJ[1→M] (A.1a)

u1 = π0(x1) = SU1
[1→M] ⊆ SUJ[1→M], (A.1b)

to be the stored state and input trajectory associated with the implemented policy π0(·).
Since π0(·) is also feasible for T 2, when Algorithm 1 is applied, the entire task execution
can be stored as a successful execution for T 2 without adapting the policy. It follows that
SS1

[1→M] ⊆ SS0
[l1→lM] and SU1

[1→M] ⊆ SU0
[l1→lM], and the returned sample safe sets for T 2

are non-empty.

APPENDIX A. PROOFS 137

At the initial state x0, the ILMPC policy (2.10) optimizes the chosen input so as to
minimize the remaining cost-to-go. Consider an MPC planning horizon of N = 1 (though
this extends directly for any N ≥ 1). Trivially,

min
u

h(x0, u) + V j(xjp) ≤ h(xk, π
0(x0)) + V j(xjp)

s.t. u ∈ U s.t. f(x0, π
0(x0)) = xjp.

f(x0, u) = xjp.

It follows that the cost incurred by a Task 2 execution with πILMPC
[l1→lM] is no higher than an

execution with πILMPC
π0 .

A.2 Proofs from Chapter 3

Proof of Thm. 3

Proof. We will use induction to prove the feasibility. First, we show that the ILMPC (3.7-
3.8) is feasible at time step k = 0 of the j-th execution of T 2. By assumption, CK0

[l1→lM]

is not empty. From (3.5) we have that CK0
[l1→lM] ⊆ CK

j−1
[l1→lM] ∀j ≥ 1, and consequently

CKj−1[l1→lM] is not empty. Therefore, x0 ∈ CK0
[l1→lM] ⊆ CK

j−1
[l1→lM], and there exist I?, K?, and

multipliers λ?p such that

x0 =

|CKj−1
I?,K? |∑
p=1

λ?pxp, xp ∈ CK
j−1
I?,K? .

We define
ū = λ?pup ∈ UI? (A.2)

where up is the input associated with the state xp ∈ CKj−1I?,K? in a previous task execution of
T 1. Now, note that we have

x̄ = AI? +BI?ū =

|CKj−1
I?,K?−1

|∑
p=1

λ?pxp

xp ∈

{
CKj−1I?,K?−1 K? ≥ 1

CKj−1I?+1,K?? K? = 0,

(A.3)

for some K??. The second case (K? = 0) follows directly from Alg. 2. This procedure (A.2-
A.3) can be repeated N times in order to find a feasible input sequence for the initial state
x0 satisfying (3.7). Therefore there exists a feasible solution to the ILMPC (3.7 - 3.8) at
time step k = 0 of the j-th execution of T 2.

Next, we show that the policy is recursively feasible. Assume that at time step k of the
j-th iteration the ILMPC (3.7 - 3.8) is feasible, and let x?,jk:k+N |k and u?,jk:k+N |k be the optimal

APPENDIX A. PROOFS 138

trajectory and input sequence according to (3.7). From (3.8), the realized state and input
at time k of the j-th iteration are given by

xjk = x?,jk|k, u
j
k = u?,jk|k,

and the terminal constraint in (3.7) enforces x?,jk+N |k ∈ CK
j−1
I′,K′ for some I ′, K ′, where CKj−1I′,K′

contains states from the previous j − 1 trajectories. As in (A.2-A.3), define an input and
corresponding state

u′ = λ?pup ∈ UI′
x′ = AI′x

?,j
k+N |k +BI′u

′ ∈ CKj−1I′,K′−1.

We therefore have
xjk+1 = x?,jk+1|k.

It follows that at time step k + 1 of the j-th T 2 execution, the input sequence and related
feasible state trajectory

[u?,jk+1|k, u
?,j
k+2|k, ..., u

?,j
k+N−1|k, u

′]

[x?,jk+1|k, x
?,j
k+2|k, ..., x

?,j
k+N−1|k, x

′]
(A.4)

satisfy input and state constraints in (3.7). Therefore, (A.4) is a feasible solution for (3.7)
at time step k + 1.

We have shown that at the j-th iteration of T 2, ∀j ≥ 1, the ILMPC is feasible at time
step k = 0 and that if the ILMPC is feasible at time step k, it must also be feasible at time
step k + 1. We can conclude by induction that (3.7 - 3.8) is feasible ∀j ≥ 1 and k ∈ Z0+

when initialized with sets output by Alg. 2.

A.3 Proofs from Chapter 4

Proof of Lem. 1

Proof. Using the S-procedure, we have that the containment Ê ⊆ E is equivalent to the
existence of λ > 0 such that

λ

[
P̂−1 −P̂−1ĉ
−ĉ>P̂−1 ĉ>P̂−1ĉ− 1

]
−
[

P−1 −P−1c
−c>P−1 c>P−1c− 1

]
� 0[

λP̂−1 − P−1 P−1c− λP̂−1ĉ
c>P−1 − λĉ>P̂−1 λ(ĉ>P̂−1ĉ− 1)− (c>P−1c− 1)

]
� 0.

Assume that λP̂−1 − P−1 � 0. Then using the Schur complement, the above expression is
equivalent to

λ(ĉ>P̂−1ĉ− 1)− (c>P−1c− 1)

− (P−1c− λP̂−1ĉ)>(λP̂−1 − P−1)−1(P−1c− λP̂−1ĉ) ≥ 0,

APPENDIX A. PROOFS 139

which we can rewrite using the matrix inversion lemma as

(ĉ− c)>(P − 1

λ
P̂)−1(ĉ− c) + (λ− 1) ≤ 0. (A.5)

The first term in (A.5) can be upper-bounded using the error bound on the predicted ellipsoid
center and the lower bound on the size of the shape matrix:

(ĉ− c)>(P − 1

λ
P̂)−1(ĉ− c) ≤ (ĉ− c)>(Γ− 1

λ
P̂)−1(ĉ− c)

≤ ‖(Γ− 1

λ
P̂)−1‖2‖ĉ− c‖22

=
λε2

λmin(λΓ− P̂)
,

where λmin(A) denotes the minimum eigenvalue of A. Therefore, if there exists P̂ � 0 and
λ > 0 such that

λΓ− P̂ � 0

λε2

λmin(λΓ− P̂)
+ (λ− 1) ≤ 0,

it holds that (A.5) is satisfied and we can follow the previous equivalences to reach the
conclusion that Ê ⊆ E .

Proof of Thm. 4

Proof. First, note we can write our joint state-parameter system using the augmented state
x̄ = [x, z]:

x̄k+1 =

[
A 0
0 C

]
x̄k +

[
B
0

]
uk (A.6)

= Āx̄k + B̄uk, (A.7)

with joint constraints [
Hx 0
0 Hz

]
x̄k ≤

[
hx
hz

]
(A.8)

Huuk ≤ hu. (A.9)

Since x̄n+1
0 ∈ Co(E0), it can be written as a weighted sum of the points x̄i in E0, which

all satisfy the joint system and environment constraints and are T -step controllable to the
task goal:

x̄n+1
0 =

|E0|∑
i=1

λix̄i, λi ≥ 0,
∑
i

λi = 1. (A.10)

APPENDIX A. PROOFS 140

Each of these stored points x̄i has an associated input ui (satisfying Huui ≤ hu) that was

applied during a previous task trajectory. Applying the new input un+1
0 =

∑|E0|
i=1 λiui at the

current state x̄n+1
0 results in a new state

x̄n+1
1 = Āx̄n+1

0 + B̄

|E0|∑
i=1

λiui (A.11)

= Ā

|Dn|∑
i=1

λix̄i + B̄

|E0|∑
i=1

λiui (A.12)

=

|E0|∑
i=1

λi(Āx̄i + B̄ui) (A.13)

∈ Co(E1), (A.14)

which is also in the convex hull of stored data from time step t = 1: x̄n+1
1 ∈ Co(E1). It is

easily verified that both x̄n+1
1 and un+1

1 satisfy all system and environmental state and input
constraints.

Continuing to apply the convex combination of previously recorded inputs will result in
a feasible closed-loop trajectory from x̄n+1

0 that interpolates at each time step between the
stored trajectories in Dn. Since all stored trajectories end in the task goal set XT per Asm. 6,
the resulting trajectory in T n+1 also ends in the task goal set.

Thus, if x̄n+1
0 ∈ Co(E0), the state is T -step controllable to the task goal set:

Co(E0) ⊆ KT .

It follows that for systems satisfying Asms. 6-9, the ellipsoids X̃k(zk) formed as described in
Sec. 4.4, which are subsets of Co(Ek), are all (T − k)-step controllable sets to the task goal
set. Specifically, this means that the center of the ellipse, φk(zk), is (T −k)-step controllable
to the task goal set.

The stored ellipse centers φk(zk) make up the GP training data in Sec. 4.5. Each training
data point represents a sample from a function gk which maps an augmented state y = [x, z]
to the center ck(zk) of the ellipse Xk+N(zk+N). From Lem. 2, for a chosen βB(δ)

P[||gk(yk)− µ(yk)||2 ≤ σ̂(yk)
√
βB] ≥ (1− δ),

where gk(yk) is the center and shape matrix of the ellipse Xk+N(zk+N) and µ(yk) is the GP
mean function evaluated at the new augmented state. Thus with probability (1 − δ), the
evaluated mean is within a bounded distance of a controllable state gk(yk).

It follows from Lem. 1 that the ellipsoid Ell(ĉk, P̂k), which is centered at µ(yk) and
constructed according to Sec. 4.6, is thus entirely contained within X̃k+N(zk+N) ⊆ KT−(k+N)

with the chosen probability (1− δ). This completes the proof.

APPENDIX A. PROOFS 141

Proof of Thm. 5

Proof. We use induction to prove that for all 0 ≤ k ≤ K, the MPC controller (5.25) finds
an input uk such that the resulting closed-loop trajectory satisfies system and environment
constraints.

Initialization: At time k = 0 of the new task T n+1, the augmented state is in the
convex hull of previous data, x̄n+1

0 = [xn+1
0 , zn+1

0] ∈ Co(E0). We consider two cases:
Case 1: the MPC (5.25) using the GP-constructed terminal set (4.18) is feasible at time

k = 0. In this case, the optimal input sequence calculated by the MPC is a feasible input
sequence that satisfies system and environment constraints, and the first input can be safely
applied.

Case 2: the MPC (5.25) is not feasible at time k = 0, and the safety control must be
applied. Since x̄n+1

0 ∈ Co(E0), there exist convex hull multipliers λi ≥ 0,
∑

i λi = 1 such
that

x̄n+1
0 =

|E0|∑
i=1

λix
i
0.

Then, one feasible input sequence satisfying this requirement is the interpolation of stored
input trajectories,

un+1
j =

|E0|∑
i=1

λiu
i
j, j ∈ {0, N − 1}.

Thus we have shown that if x̄n+1
0 = [xn+1

0 , zn+1
0] ∈ Co(E0), there exists a feasible N -step

input sequence satisfying all state and task constraints.
Recursion: Next, we show that if a feasible N -step input sequence was found for a state

xn+1
k at time k,

un+1
k:k+N−1 = [ūn+1

k , ūn+1
k+1 , . . . , ū

n+1
k+N−1],

then Alg. 3 will also find an N -step input sequence at time k + 1.
If at time k+ 1, the MPC with GP-constructed terminal set Xk+1+N(zk+1+N) is feasible,

the calculated MPC input sequence satisfies all state and task constraints, and can be safely
applied. However, if the MPC is not feasible, the safety control is applied. Here we show
that the safety control will always have a feasible solution. Again, we consider two cases:

Case 1: The MPC with GP-constructed terminal set was feasible at time k, and thus
applying the input sequence un+1

k:k+N−1 results in a state x̄n+1
k+N ∈ Xk+N(zn+1

k+N). By Thm. 4, this
set Xk+N(zn+1

k+N) is with probability (1− δ) a subset of the controllable set, and, particularly,
a subset of Ek+N . Therefore, there exist convex hull multipliers λi ≥ 0,

∑
i λi = 1 such that

x̄n+1
k =

|Ek|∑
i=1

λix
i
k.

APPENDIX A. PROOFS 142

Then, one feasible input sequence satisfying the safety control requirement is the interpola-
tion of stored input trajectories,

un+1
k+1 = [un+1

k+1:k+N−1,

|Ek|∑
i=1

λiu
i
k+N].

Since at least one solution exists, the safety control will find a feasible input trajectory.
Case 2: The MPC with GP-constructed terminal set was infeasible at time k, but the

safety control was feasible. Therefore, applying the input sequence un+1
k:k+N−1 results in a state

x̄n+1
k+N ∈ Co(Ek+N). Thus, there again exist convex hull multipliers λi ≥ 0,

∑
i λi = 1 such

that

x̄n+1
k =

|Ek|∑
i=1

λix
i
k.

Then, one feasible input sequence satisfying the safety control requirement is the interpola-
tion of stored input trajectories,

un+1
k+1 = [un+1

k+1:k+N−1,

|Ek|∑
i=1

λiu
i
k].

Since at least one solution exists, the safety control will find a feasible input trajectory.
Thus we have shown that if a feasible N -step input sequence was found for a state xn+1

k

at time t, then Alg. 3 will with probability at least (1−δ) also find an N -step input sequence
at time k + 1.

We have shown that i) Alg. 3 finds a feasible input at time step k = 0, and ii) if the loop
finds a feasible input at time step k, it must also find a feasible input at time k + 1. We
conclude by induction that the closed-loop control described by Alg. 3 finds a feasible input
uk∀k ∈ {0, T} in the new task T n+1. This results in a feasible execution of T n+1.

A.4 Proofs from Chapter 5

Proof of Thm. 6

Proof. We use induction to prove that for all k ≥ 0, the iteration loop (Lines 10-23) in
Alg. 4 finds an input uk such that the resulting closed-loop trajectory satisfies system and
environment constraints.

At time k = 0 of the new task T n+1, the target set list can contain at most one non-empty
set, XT (5.22). If XT is non-empty, and the resulting (5.25) is feasible, then there exists an
input sequence [u0|0, . . . , uN−1|0] calculated by (5.25) satisfying all state and input constraints

APPENDIX A. PROOFS 143

(5.3), with xN |0 ∈ XN . However, if XN is empty or (5.25) is infeasible, we instead apply the
safety control law u0 = πe(x0,Θ). By assumption, x0 ∈ XE, so this input is feasible. Thus
we have shown that the iteration loop in Alg. 4 is feasible for k = 0.

Next, we show that the iteration loop of Alg. 4 is recursively feasible. Assume that at time
k > 0, the low-level policy (5.25-5.27) is feasible with horizon NMPC

k , and let x?
k:k+NMPC

k |k
and u?

k:k+NMPC
k −1|k be the optimal state trajectory and input sequence according to (5.25),

such that

uk = u?k|k (A.15)

x?k+NMPC
k |k ∈ Xk+NMPC

k
. (A.16)

If at time k + 1 a non-empty target set Xk+N+1 is constructed according to (5.22) such that
(5.25) is feasible, then there exists a feasible input sequence [uk+1|k+1, . . . , uk+N |k+1] satisfying
all state and input constraints such that xk+N+1 ∈ Xk+N+1.

If at time k+ 1 the target set is empty, or (5.25) is infeasible, we must consider two cases
separately:

Case 1: The MPC horizon at time step k is NMPC
k > 1. In the absence of model uncer-

tainty, when the closed-loop input uk (A.15) is applied, the system (5.1) evolves such that

xk+1 = x?k+1|k. (A.17)

According to Alg. 4, when the empty target set Xk+N+1 is added to the target set list (5.24),
the MPC horizon is shortened and the most recent non-empty target set is used again.
Since NMPC

k > 1, we are guaranteed at least one non-empty target set in (5.24) that may
used as a feasible terminal constraint in the low-level controller (5.25). At time step k + 1,
the shifted input sequence u?

k+1:k+NMPC
k −1|k will be optimal for this shifted horizon optimal

control problem (with a corresponding state trajectory x?
k+1:k+NMPC

k |k). At time step k + 1,

Alg. 4 applies the second input calculated at the previous time step: uk+1 = u?k+1|k.

Case 2: NMPC
k = 1. In this scenario, the target set list (5.24) at time step k+ 1 is empty,

resulting in NMPC
k+1 = 0 (5.26). However, combining the fact that NMPC

k = 1 with (A.16)
and (A.17), we note that

xk+1 ∈ Xk+1 ⊆ XE,

by construction of the target set (5.22). This implies that at time step k+ 1, system (5.1) is
necessarily in the safe set (5.20), and so application of the safety controller (5.21) will result
in a feasible input, uk+1 = πe(xk+1,Θ).

We have shown that i) the online iteration loop (Lines 10-23) in Alg. 4 finds a feasible
input at time step k = 0, and ii) if the loop finds a feasible input at time step k, it must
also find a feasible input at time k+ 1. We conclude by induction that Alg. 4 finds a feasible
input uk ∀k ∈ Z0+ in the new task T n+1. This results in a feasible execution of T n+1.

	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Problem Formulation
	Dissertation Outline and Contributions
	List of Publications
	Preliminaries

	Task Decomposition
	Introduction
	Problem Formulation
	Task Decomposition for ILMPC
	Properties of TDMPC Policies
	Application 1: Autonomous Racing
	Application 2: Robotic Path Planning
	Discussion
	Conclusion
	Additional Results

	Task Decomposition for Piecewise Linear Systems
	Introduction
	Problem Formulation
	Safe Set Based ILMPC for Piecewise Linear Systems
	Task Decomposition for Piecewise Linear ILMPC
	Properties of the PWL-TDMPC Policy
	Application: Robot Path Planning
	Conclusion

	Probabilistically Safe Controllable Sets
	Introduction
	Problem Formulation
	Probabilistically Safe Controllable Sets
	Approximating Controllable Sets
	Learning Strategies To Approximate Controllable Sets
	Applying Learned Strategies
	Low-Level Controller
	Properties of PSCS Policies
	Application: Integrator System
	Discussion
	Conclusion

	Hierarchical Predictive Learning
	Introduction
	Problem Formulation
	Hierarchical Predictive Learning Control
	Learning Strategies From Data
	Safely Applying Learned Strategies
	Low-level Controller Design
	The HPL Algorithm
	Properties of HPL Conrol
	Application 1: Robotic Manipulator Navigation
	Application 2: Formula 1 Racing
	Application 3: Flappy Bird
	Discussion
	Conclusion
	Additional Results

	Discussion
	Task Decomposition
	Task Decomposition for Piecewise Linear Systems
	Probabilistically Safe Controllable Sets
	Hierarchical Predictive Learning
	Performance Comparison

	Bibliography
	Proofs
	Proofs from Chapter 2
	Proofs from Chapter 3
	Proofs from Chapter 4
	Proofs from Chapter 5

