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ARTICLE

2D association and integrative omics analysis in
rice provides systems biology view in trait analysis
Wenchao Zhang1, Xinbin Dai1, Shizhong Xu 2 & Patrick X. Zhao 1

The interactions among genes and between genes and environment contribute significantly

to the phenotypic variation of complex traits and may be possible explanations for missing

heritability. However, to our knowledge no existing tool can address the two kinds of inter-

actions. Here we propose a novel linear mixed model that considers not only the additive

effects of biological markers but also the interaction effects of marker pairs. Interaction effect

is demonstrated as a 2D association. Based on this linear mixed model, we developed a

pipeline, namely PATOWAS. PATOWAS can be used to study transcriptome-wide and

metabolome-wide associations in addition to genome-wide associations. Our case analysis

with real rice recombinant inbred lines (RILs) at three omics levels demonstrates that 2D

association mapping and integrative omics are able to provide a systems biology view into

the analyzed traits, leading toward an answer about how genes, transcripts, proteins, and

metabolites work together to produce an observable phenotype.
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Trait analysis, especially genome-wide trait analysis, is cen-
tered on how genetic variation gives rise to phenotypic
variation1. This type of analysis relies on statistical meth-

ods and tools to perform association mapping between causal
genetic variants and resulting phenotypes, which can determine
the heritability of a trait at a subset of genetic variants (typically
referred to as single-nucleotide polymorphisms, or SNPs) and
delineate regions of the genome that control the trait, thereby
providing markers that can be utilized to accelerate breeding by
marker-assisted selection2. Because of the great success of
genome-wide association studies (GWAS), hundreds of SNPs
conferring genetic variation of complex traits have been identified
and reported3. However, the genetic structures of most traits
remain unexplained, as associated SNPs detected from GWAS
explain only a small fraction of heritability (e.g., <40% in schi-
zophrenia studies)4 and a much smaller percentage of the total
phenotypic variance. This is mainly because a number of these
studies employed only additive models that fail to account for
epistasis, or the interaction between multiple loci and the envir-
onment4–6.

Xu et al.7 proposed a new linear mixed model (LMM) for
mapping quantitative loci (QTL) by incorporating multiple
polygenic covariance structures. Based on this model, a pipeline
for estimating epistatic effects (PEPIS) was developed to com-
prehensively estimate additive effects, dominance effects, and
interaction effects between multiple genetic loci. PEPIS allows
analysis of genome-wide genetic architectures, including genotype
interaction effects (GxG), and can thereby explain more than 80%
of phenotypic variance8.

Compared with standard GWAS tools that consider only
additive effects, the PEPIS pipeline is equipped with a more
complex polygenic linear model that can explain more pheno-
typic variance. However, neither of these methods can explain
nearly 100% of phenotypic variance, as neither considers the
interaction between genotypes and environments (GxE). Today,
the predominant thinking in biology is that the orchestrated
expression of many genes in different environmental conditions
affects the transcriptome, proteome, and metabolome to produce
a final observable phenotype9. Recent work in Saccharomyces
cerevisiae suggests that GxE can occur at the individual locus level
and the group level for multiple loci, leading to environment-
dependent epistatic interactions10–12. Although Muir et al.13

conceptualized the partitioning of GxE into two possible inter-
action types, our mathematical understanding of the genetic and
molecular mechanisms by which GxE collectively gives rise to
phenotypes is still incomplete14.

The central dogma of biology is that the genome, tran-
scriptome, proteome, and metabolome are cascading and con-
nected to the end phenome15. The development of life science
technologies enables transcriptomic, proteomic, and metabolomic
events to be analyzed in detail within the same biological system,
allowing the systematic study of a complete biological system16.
Out of all the omic data from the same biological system, genomic
data generally remain constant across environments, although the
same genotype subjected to different environments can produce a
wide range of phenotypes by triggering the expressions of dif-
ferent genes, downstream enzymes, and metabolites17. Most
current association methods and analysis tools perform associa-
tion mapping based on fundamental relationships between DNA
sequence variation and phenotypic variation without addressing
environmental variation. GxE can be understood by observing
and measuring the expression of genes or metabolites. Harper
et al.2 developed an associative transcriptomic approach to study
complex traits in the polyploidy crop species Brassica napus by
correlating trait variation with the quantitative expression of
genes and sequence variation of transcripts, with the consistent

physical positions of the two kinds of associative markers
allowing the identification of high-confidence transcription factor
candidates2,18. However, their method is based on a pure additive
model only, and they make no mention of interaction effects
between biomarkers or their contribution to phenotypic variation.

To overcome the limitation of standard GWAS that fails to
consider the GxG and GxE effects, we extend associative geno-
mics and transcriptomics into a broader associative omics by
systematically integrating all available omic data into one analy-
tical model. Here we propose a new LMM and describe the
development of a pipeline for analyzing traits through ome-wide
association studies (PATOWAS) to implement the model. The
proposed LMM considers not only the additive effects of each
biological marker but also the interaction effect of each marker
pair. The marker pairs’ interaction effect introduced here corre-
sponds to two-dimensional (2D) association mapping, which is
complementary to one-dimensional (1D) association mapping in
regular GWAS. Consequently, the proposed model and PATO-
WAS pipeline are not limited to GWAS for genotype-to-
phenotype mapping (G2P); instead, they are capable of per-
forming multiple types of ome-wide association studies, such as
transcriptome-wide association studies (TWAS) for transcript-to-
phenotype mapping (T2P) and metabolome-wide association
studies (MWAS) for metabolite-to-phenotype mapping (M2P).

We submit a rice recombinant inbred line (RIL) dataset with
three omics markers and two agronomic traits to PATOWAS for
comprehensive analyses of associative omics. The results
demonstrate that our proposed LMM and the pipeline PATO-
WAS can effectively address the GxG effect and the GxE effect,
perform multiple-level associative omics in one platform, and
innovatively provide a systems biology view into the traits
analyzed.

Results
Associative omics, PATOWAS, and integrative omics. We
aimed to systematically integrate multiple associative omic results
to provide more biological insights into the phenotypic traits to
be analyzed. We first collected a dataset of 210 rice RILs geno-
typed with 1619 marker bins, profiled with 22,584 transcripts and
1000 metabolites, and phenotyped with two agronomic traits
(Table 1). The phenotypic traits (Supplementary Data 1–2) were
yield (YIELD) and (kilo-) thousand grain weight (KGW), and the
omic quantitative markers (Supplementary Data 3–5) were bin-
based genotype data, Affymetrix RNA microarray-based gene
expression data, and mass spectrometry-based profiling of
metabolite abundance data. We presumed that expressed tran-
scripts, proteins, and metabolites are prone to vary when sub-
jected to the environments, while the genetic variants are
considerably stable. Therefore, compared with genome-wide
genotypic data, we further presumed that measured gene
expression and metabolite abundance contain both gene and
environment information and expect that associative tran-
scriptomics (T2P or TWAS) or metabolomics (M2P or MWAS)
could explain more phenotypic variance (Supplementary Fig. 1).

Motivated by our consideration of genetic epistasis and our
desire to explain more phenotypic variance, we next proposed a

Table 1 Summary of phenotypic trait data and omic marker
data

Trait data (1D vector) Omics marker data (2D matrix)

YIELD KGW Binned
genotype

Expression gene
transcript

Metabolite
abundance

210 × 1 210 × 1 1619 × 210 22,584 × 210 1000 × 210
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statistical LMM that considers not only the additive effects of
each marker variant but also the interaction effects of each
marker pair. Based on this linear model, we developed a
PATOWAS pipeline to analyze traits through multiple ome-
wide association studies. Therefore, the proposed model and
PATOWAS can be used to study not only GWAS for G2P but
also TWAS for T2P and MWAS for M2P, which is progress
toward an integrative omics (Fig. 1a).

To test this presumption and verify our consideration, we
used PATOWAS to analyze the rice RIL datasets with two
agronomic traits and three different omics markers. PATOWAS
accepts 2D omics marker matrix data and 1D phenotypic trait
data as inputs (Fig. 1b). PATOWAS results for one specific
associative omics mainly include three parts: variance component
analysis for the partition of phenotypic variance, a 1D association
map for the direct biological markers, and a 2D association map
for the interaction of biological marker pairs (Fig. 1b). Of the
three variance components, the additive component for the
markers’ direct effects and the additive–additive component for
the marker pairs’ interaction effects are biologically meaningful
and can be explained by the linear model. The higher the sum of

the two components, the lower the residual component and the
more phenotypic variance can be explained by the model. Of
all markers’ and marker pairs’ effects, those with higher −log10(p)
values indicate markers or marker pairs that are more relevant
to the phenotypic trait.

In the present study, we sequentially submitted three omic
marker datasets to PATOWAS to analyze the two field traits,
YIELD and KGW. We downloaded the results after completion of
the analyses. Based on these results, multiple associative omics
and the biological insight can be compared and integrated. For
example, the combination of 1D association mapping across
G2P and T2P can help identify the genotype and expressed gene
transcript markers with consistent physical positions; comparison
of the metabolites from 1D M2P association mapping can
uncover the biochemical relevance of tissue-specific metabolites
and traits to be analyzed; and the investigation of major
biomarker pairs from 2D association mapping can be used to
build an association network. All these together provide a systems
biology view into the analyzed traits, leading toward an answer
about how genes, transcripts, proteins, and metabolites work
together to produce an observable phenotype.

2D transcript expression
matrix data
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Fig. 1 Biological concept of the PATOWAS pipeline and biological insight of an example association mapping resulting from PATOWAS. a Three types of
omic markers to phenotype association mappings, e.g., (1) genome-wide sequence/genotype variation to phenotypic variation mapping (G2P or GWAS),
(2) transcriptome-wide gene expression variation to phenotypic variation mapping (T2P or TWAS), and (3) metabolome-wide metabolite abundance
variation to phenotypic variation mapping (M2P or MWAS), can be analyzed using the unified linear mixed model in PATOWAS. b PATOWAS needs 2D
omics marker matrix data and 1D phenotypic trait data as input. Specific PATOWAS results include (1) variance component analysis result showing two
biologically meaningful components: additive, additive–additive, and residual; (2) 1D association mapping for the Additive component; and (3) 2D
association mapping for the Additive–Additive component, and further, the significant omics marker pairs extracted by thresholding
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Variance component analysis. Based on the variance component
analysis results, we generated six pie charts displaying the three
variance components of the two traits across associative geno-
mics, associative transcriptomics, and associative metabolomics
(Fig. 2).

We found that the two biologically meaningful variance
components accounted for nearly all of the phenotypic trait
variance in associative transcriptomics and associative metabo-
lomics but not in associative genomics. Also, YIELD was a more
complex trait than KGW, as the two biologically meaningful
variance components accounted for only 66% of the total
phenotypic variance in associative genomics but nearly 100% of
the total phenotypic variance in associative transcriptomics and
metabolomics (Fig. 2). These findings demonstrate that a chain of
environmentally responsive genes and metabolites can be
observed and explained at the transcriptomic and metabolomic
levels but not at the genomic level.

Here we noticed that the marker number for transcripts was
obviously one-order of scale higher than the other two. Consider
the marker-by-marker interactions: The pairwise number of
transcripts will reach to ~250 million, which is about two-order of
scale larger than the other two kinds of omic markers.

To test whether the higher ratio of biological explanatory
components observed in the TWAS result is not due to the larger
numbers of transcripts used in TWAS, we further produced a
reduced transcript gene set with a number scale comparable to
the genotypes and metabolites. We separately submitted the
reduced transcript gene set to PATOWAS and checked the
variance component analysis result.

The procedures to generate a reduced gene set are described as
follows: First we mapped the 22,584 transcript genes into the
1619 genotype bins (Supplementary Data 6); one genotype bin
may contain none to hundreds of transcript genes. Based on the
1D association mapping result, at most only one representative
transcript in one bin was selected. We chose the transcript with
the highest −log10(p) as the representative transcript of a
genotype bin. Then we generated a reduced transcript gene set
for each phenotypic trait, which essentially is a data matrix with a
dimension of 1543 × 210 (Supplementary Data 7–8). Its number
of markers was comparable to those in the analyzed genotypes

and metabolites. The same approaches were also used to generate
two positional comparable 1D G2P and T2P association mapping
results in the following section.

We submitted the reduced transcript data and the two
phenotypic traits, KGW and YIELD, to PATOWAS for further
study. Based on the variance component analysis results, two
additional pie charts displaying the three variance components of
the two traits in associative transcriptomics were plotted
(Supplementary Fig. 2). Again, we observed that the two
biologically meaningful components explained nearly 100% of
the phenotypic variance, with only a fluctuation between the two
components. Thus, we conclude that the much larger numbers of
transcripts used in TWAS is not the reason for the higher
explanatory ratio of phenotypic variance in associative
transcriptomics.

Our proposed LMM involve two biologically meaningful
variance components: σ2a, σ2aa. To measure the portion of
phenotypic variance that can be explained by the model, we
define the broad-sense heritability by

H ¼ σ2a þ σ2aa
σ2a þ σ2aa þ σ2

ð1Þ

Modern GWAS application often involves a panel with
hundreds of thousands, or even millions, of genetic variants
under only several hundred individual samples19. The statistical
modeling of such cases is usually challenging because the sample
size is substantially smaller than the number of covariates. This is
well-known as a “large p small n” problem20 and requires careful
assessment of the statistical characteristics21.

Our proposed method really can explain more of phenotypic
variance, but the cost is that it generates a large number of
pairwise covariates. Therefore, it is worthwhile to assess the
heritability of the proposed LMM, particularly at the high-
dimensional data.

First, the predictability22 that is represented by the squared
correlation coefficient between the observed and predicted
phenotypic value was applied. The squared correlation is
approximately equal to R2= 1−PRESS/SS, where PRESS is the
predicted residual error sum of squares and SS is the total sum of

b
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a

Fig. 2 Pie chart illustrations of variance component analysis results for traits YIELD (a) and KGW (b) across associative genomics, transcriptomics, and
metabolomics. Three components in each pie chart are colored with blue, brown, and yellow and represent the three estimated variance ratios of additive,
additive–additive, and residual, respectively
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squares of the phenotypic values. In principle, we treated each
transcript or metabolite marker as an intermediate phenotypic
trait and predicated all of these intermediated phenotypic values
from all the genotypic data. Therefore, each transcript or
metabolite will have an R2 value, predictability (PRED). We
then used the HAT method23 to calculate the PREDs for all
transcripts and metabolites (Supplementary Data 9–10), applied a
series of variable thresholds to the PREDs, and selected the
transcript and metabolite markers. Finally, we submitted the
subsets of selected transcript genes and metabolites to PATO-
WAS for variance component analysis and calculated the broad-
sense heritability, H. Figure 3 shows the assessment result of the
broad-sense heritability (H) with the selected markers by PRED
thresholding. We found that the number of selected markers
continued decreasing as the PRED threshold increased; however,
the broad-sense H provides us with a very different perspective
of different traits and different associative omics. It needs
only ~1000 and fewer than 100 transcripts to explain more
than 97% of the phenotypic variance in traits YIELD and KGW,
respectively. In associative metabolomics, only 30 metabolites
are enough to explain more than 90% of the phenotypic variance.
In general, trait KGW is more conserved than trait YIELD, and
associative metabolomics is more conserved than associative
transcriptomics.

Variance component analysis provides us with a big picture
by partitioning the phenotypic variation into three components.
The two biologically meaningful components for individual
markers’ direct effects and the marker pairs’ interaction effects
can be further illustrated by 1D and 2D association mapping,
respectively.

1D association mapping. 1D association mappings from
PATOWAS across different associative omics can be combined,
integrated, and compared, providing biological insights in trait
analysis on both system and molecular biology levels.

Consistency of 1D G2P mapping using PATOWAS and other
GWAS tools. Conventional GWAS tools such as TASSEL24,
GCTA1, and PLINK25 can build associations between genotypes
and phenotypes by calculating and outputting a p-value or
−log10(p) value for each genotypic marker. The linear model
adopted usually considers only the marker’s direct effect, which
is mostly additive. This process essentially is 1D association
mapping. PATOWAS is based on our proposed LMM, which
considers not only the additive effect for each marker but also
the additive × additive interaction effect for each marker pair.
Therefore, PATOWAS calculates and outputs a p-value for each
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marker and a p-value for each marker pair, which essentially
provides both 1D and 2D association mapping.

Regarding G2P mapping, 1D association mapping using
PATOWAS can be compared with other GWAS tools26. We
submitted the same RIL rice genotype and two phenotypic trait
data to PATOWAS and TASSEL. We compared the 1D p-values
returned from both tools and found that the results are very
consistent. The Manhattan and Q–Q plots using the same
genotype and phenotypic trait data from PATOWAS and
TASSEL are illustrated in Supplementary Fig. 3.

Positional alignment and molecular validation across 1D G2P
and T2P mapping. Harper et al.2 developed an associative
transcriptomic approach to analyzing traits of the polyploid
crop B. napus. Their method combines SNP-based and gene
expression-based association results to identify high-confidence
transcription factor candidates. As mentioned before, the 1D
p-values returned from PATOWAS correspond to the additive
effects for the individual markers, and can be used to generate
a 1D Manhattan plot. To generate comparable plots between
associated genotypic markers and transcript gene markers
along their chromosomal position, we first mapped transcript
genes to genotype bins and then selected the minimum p-value
as the representative p-value of a bin (Supplementary Data 6).
This mapping process between genotype bins and transcript
genes ensured that there would be 1619 p-values for the two
associative omic markers, making it possible to generate aligned
1D plots of −log10(p) values along the markers’ chromosomal
positions.

We could easily find the positional consistency between
genotype and expressed gene markers (Fig. 4). For YIELD,
there was one local maximum region matched between G2P
and T2P located in chromosome 1 and bounded with two
red lines (Fig. 4a). By contrast, for KGW, most local maximum
regions were matched between G2P and T2P (Fig. 4b). Therefore,
as KGW is a more specific trait that is less affected by
external environmental factors than YIELD, its high genotype
variation regions always correspond to high gene expression

variation regions pinpointed with high −log10(p) values in both
G2P and T2P.

According to the −log10(p) values, we focused on trait YIELD
and picked up the top 10 transcript gene markers for a deep
molecular function investigation. The top 10 transcript gene
markers are distinguished with a unique index and can be
identified by its gene locus ID. Through a literature search, we
found that at least five of the top 10 transcript markers have been
reported to biologically affect rice YIELD (Supplementary
Table 1). For example, marker T_2925 (LOC_Os01g62860) was
reported to be related to seed shattering27; marker T_3229
(LOC_Os01g67580) was reported to be related to drug resis-
tance28; and markers T_6368 (LOC_Os03g03070) and T_13429
(LOC_Os06g11330) were reported to control or delay flowering
time29,30. Marker T_11921 (LOC_Os05g31040) in particular
acquired the highest significance value (−log10(p)= 7.53) and
was reported as the CKX9 plant hormone gene that could lead to
the accumulation of cytokinin and the increased tiller
number31,32. All these literature-validated gene markers demon-
strate that our PATOWAS has the capability to perform trusted
association mapping between causal expressed transcript variants
and the resulting phenotypes. We annotated and marked these
five genes to the 1D T2P association mapping plot and found
that most of them belong to high association peaks (Supple-
mentary Fig. 4). The aims of associative genomics or transcrip-
tomics are to find the genetic variants or expressed transcript
variant, which can obviously affect the phenotypic trait. There-
fore, the high genotype variation or high gene expression
variation regions warrant further study. For YIELD, there is only
one obvious consistent matched region between G2P and T2P,
and it falls into the surroundings of markers T_2925 and
T_3229. However, other transcript gene markers, such as
T_11921 with its highest significance value of 7.5309, do not
fall into the high genotype variation region (Supplementary
Fig. 4, Region C). Therefore, we could conclude that PATOWAS
and the associative transcriptomics capture not only the
inheritable genetic information from the genome but also the
intermediated environmental information at the transcriptome
level.
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1D M2P association mapping and comparison of metabolite
markers between leaf and seed. In the present study, we used
PATOWAS to analyze the association of 1000 metabolites with
traits YIELD and KGW and then plotted the 1D M2P association
results across individual metabolites (Fig. 5).

In genetic association analysis, determining the correct p-value
threshold is always critical and subjective33. To tell a methodol-
ogy story, we tentatively set the threshold as p= 0.001, and the
metabolite marker could be considered significant if
�log10ðpÞ � 3:0. Obviously, we could observe that there were
more significant (−log10(p) ≥ 3.0) metabolite markers from leaf
than from seed for YIELD (Fig. 5a), whereas there were more
significant (−log10(p) ≥ 3.0) metabolite markers from seed than
from leaf for KGW (Fig. 5b).

Further, we picked up variable top n significant metabolite
markers from the total 1000 metabolites and classified them as

metabolites from leaf and seed. Table 2 gives the relationship of
the variable top n with the number of significant (−log10(p) ≥
Significance_Th) leaf and seed metabolites. Considering that
there are 683 and 317 metabolites from leaf and seed, respectively,
we set 0.683 and 0.317 as two meaningful ratio thresholds for
significant metabolites from leaf and seed. From Table 2, we
found that (1) for YIELD, when top n < 25, significant leaf
metabolites against total top n metabolites always have a ratio
higher than 0.683; and (2) for KGW, when top n < 500, the
significant seed metabolites against the total top n metabolites
usually produce a ratio higher than 0.317.

All these results suggest that leaf metabolites are more relevant to
YIELD, while seed metabolites are more relevant to KGW, which is
consistent with the findings of Xu et al.34. This could be explained
by the fact that the photosynthesis process takes place mainly in leaf
tissue and is the main factor determining rice yield35.
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Fig. 5 Illustration of the 1D M2P association mapping results. Scatter plot of the 1D M2P association mapping for traits YIELD (a) and KGW (b). The M2P
analysis in this study includes 683 leaf metabolites and 317 seed metabolites, and the two kinds of metabolites are colored with blue and red in the two
scatter plots. A tentative significance threshold bar (−log10(p)= 3.0) is set up to show the relevance of the metabolite markers with the phenotypic trait

Table 2 Summary of variable top n significant (−log10(p)≥ Significance_Th) metabolites from leaf and seed across two traits

Top# YIELD KGW

Significance_Th No. of leaf
metabolites

No. of seed
Metabolites

Significance_Th No. of leaf
metabolites

No. of seed
metabolites

5 3.0904 4 1 3.9283 1 4
10 2.8044 9 1 3.2709 3 7
15 2.5274 12 3 3.0274 4 11
20 2.4269 15 5 2.8044 5 15
25 2.2298 17 8 2.5503 9 16
30 2.1278 19 11 2.3214 11 19
50 1.6936 33 17 2.0310 22 28
100 1.2402 64 36 1.4739 49 51
200 0.8616 134 66 0.9114 110 90
500 0.3310 333 167 0.3669 312 188
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Further, we focused on the top 10 significant metabolites for
deep molecular function investigation. Based on a literature
search, the identification and classification of the top 10
metabolites are summarized in Supplementary Table 2. Of the
10 metabolites, five were identified and two were further classified
as flavonoid, of which content was reported as an assessment of
the crop yield36.

2D association mapping. The biological interpretation of 2D
association mapping for marker pairs’ interaction effect can be
illustrated by visualizing the 2D association matrix directly, sig-
nificance thresholding, and constructing weighted association
networks, etc.

Illustration of marker pairs’ interaction effect and its sig-
nificance thresholding. For trait YIELD, three 2D association
mapping results were analyzed, and each association matrix was
illustrated as a scaled image with pseudocolor (Fig. 6). By com-
parison, we found that genotypic markers were neighbor-
dependent, as evidenced by the clustering of dots, whereas
expressed transcript gene and metabolite markers were neighbor-
independent, as evidenced by a random distribution of dots. This
phenomenon could be explained by the existence of linkage
disequilibrium (LD) blocks in population genetics37.

We are usually interested in the significant (−log10(p) ≥
Significance_Th) marker pairs instead of all the marker pairs.
Similar to 1D association mapping, we could set a significance
threshold to generate a binarized version of the 2D association
matrix (Supplementary Fig. 5). We further zoomed in to a
specified local region for each associative omics and found that
associative genomics demonstrated a 2D local rectangular array
while the associative transcriptomics and associative metabolo-
mics showed a 1D local strip (Supplementary Fig. 5 inset). The
specificity of the 2D local structure pattern for associative
genomics was due to the existence of LD blocks in genomics
level. Further, the dimension size of 2D local rectangular array
corresponds to the LD block size.

Conditional 1D association mapping and weighted association
network. To a specific omics marker pair, say, markers X and Y,
there is a p(X, Y) value and its significance measured by −log10(p
(X, Y)), which shows how much the omics marker pair is relevant
to the phenotypic trait to be studied. If we pinpoint a marker pair
(X, Y) to the image illustrated for 2D association mapping, there
surely are two specific lines recorded by 1D association sig-
nificance values (Supplementary Fig. 6). To each associative

omics, we selected a representative marker pair, and for each
representative marker pair, we marked the two specific lines as
white and red and generated two corresponding conditional 1D
association mapping plots (Supplementary Fig. 6, middle and
bottom). Here, the conditional 1D association mapping originally
came from the 2D association matrix, which biologically means
how much the other omics markers interconnected with the
selected marker to affect the studied phenotypic trait. We found
that the conditional 1D associative genomics mapping could
provide us with some obvious QTLs, while the conditional 1D
associative transcriptomics and metabolomics mapping showed
us random association mapping.

Further, if we focus on one specific omics marker and set a
significance threshold, its interactive pairs along the vertical or
horizontal axes with higher −log10(p) values can be considered
relevant regulators of that specific marker. Then an association
network centered on the specific omics marker could be
constructed. The tie connecting two omics marker nodes
has an assigned association significance values. This could be
called a weighted association network, which is very different
from the co-expression-based gene regulation network38 due to
it having a direct biological meaning with the phenotypic trait
to be studied.

According to the marker pairs’ significance values, we picked
up top 10 associative transcript and metabolite marker pairs.
To acquire a deep molecular-level investigation, we conducted
a comprehensive literature search and function annotation for
two types of associative omics marker pairs (Supplementary
Tables 3–4).

Of the top 10 transcript marker pairs, most of the expressed
transcripts are molecularly functional relevant to plant growth,
plant hormones, cold and drought stress, etc. (Supplementary
Table 3), which can finally affect the phenotypic trait YIELD.
In addition, five transcript marker pairs are interconnected with
one hub transcript T_8111(LOC_Os03g45280). Therefore, a hub
transcript T_8111 (LOC_Os03g45280)-centered expressed gene
association network has been tentatively constructed (Fig. 7).

Although the current knowledge about metabolite identifica-
tion is very limited, we found that most of the identified
metabolites from the top 10 metabolite marker pairs were
classified into flavonoid or phenolic (Supplementary Table 4).
There have been reports that the total phenolic and flavonoid
content was comparably relevant to the crop final product yield36.
Of the top 10 association metabolite marker pairs, we found four
marker pairs were centered on unknown metabolite marker
M_195 and two marker pairs were centered on flavonoid
metabolite marker M_311 (Supplementary Fig. 7).
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Discussion
We extended the concept of genome-wide association to a
broader concept of ome-wide association. To overcome the lim-
itations of regular additive GWAS models that fail to consider
epistatic and environmental interaction effects, we proposed a
new LMM and successfully developed a new PATOWAS pipeline
for ome-wide association studies.

We presume that the measured data of gene expression in
the transcriptome and metabolite abundance in the metabolome
contain not only heritable, stable genetic information but also
fluctuating environmental information. Thus, the systematic
integration and analysis of multiple levels of associative omics
data can provide panoramic insight for complex trait analysis.

To test and validate our presumption, we analyzed a dataset of
210 RILs of rice consisting of genomic, transcriptomic, and
metabolomic markers as well as two agronomic phenotypic traits
using PATOWAS. The results of the three associative omics
analyses were integrated and compared to perform complete trait
analysis.

Compared with the genotype-based G2P association, the var-
iance component analysis of gene expression-based T2P and
metabolite abundance-based M2P association explained nearly
100% of the phenotypic variance, supporting our presumption
that measured gene expression and metabolite abundance
data contain both gene and environment information. For
KGW, genotype-based G2P association explained >98% of
the phenotypic variance, suggesting that this is a simple trait
that is less affected by the environment. Of the two types of

biologically meaningful variance components, the additive com-
ponent corresponding to individual genetic markers accounted
for 80% of the phenotypic variance, further suggesting that
KGW is a more heritable trait that can be easily manipulated
by breeding. However, for YIELD, genotype-based G2P associa-
tion explained only 66% of the phenotypic variance, suggesting
that it is a more complex trait that is easily affected by the
external environment. In addition, the additive genetic compo-
nent accounted for only 28% of the phenotypic variance, sug-
gesting that YIELD is more difficult to manipulate by breeding.
However, as YIELD may be the most important agronomic trait,
environmental factors that affect the transcriptome and meta-
bolome should be carefully considered to produce improvements
in this trait.

We found obvious consistencies in genome coordinates
between associated genotype markers and expressed gene tran-
script markers, allowing us to identify high-confidence, co-
verified genotype and transcript markers for the same trait and
suggesting the presence of correlations between SNP-based gen-
otype data and transcriptomic data. Compared with trait YIELD,
trait KGW had more consistent regions between G2P and T2P,
indicating that more correlated information was transferred
from the genomic level to the transcriptomic level.

We also investigated inconsistent regions between the G2P and
T2P plots for YIELD (Supplementary Fig. 4). On chromosome 3,
there was a local maximum peak in the G2P plot but not in the
T2P plot (Supplementary Fig. 4, Region B), whereas on chro-
mosome 5, there was a local maximum peak in the T2P plot but
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not in the G2P plot (Supplementary Fig. 4, Region C). We have
verified that the latter was the CKX9 plant hormone gene, which
could lead to the accumulation of cytokinin and affect the rice
grain yield31,32. We speculate that these inconsistencies occurred
because of environmental fluctuations resulting in the down-
regulation of genes located in Region B, and the upregulation of
the CKX9 gene located in Region C.

Our associative metabolomic results from PATOWAS
indicated that there were more leaf metabolites than seed meta-
bolites relevant to YIELD and vice versa for KGW, suggesting
that significantly associated metabolites are tissue-specific and
trait-specific. In contrast to Xu et al.’s method 34, which
provides only global information, our PATOWAS results provide
details about how relevant each metabolite is to YIELD
and KGW.

Although there are more than 200,000 different metabolites
in the plant kingdom39, only a few hundred have been able to
be measured in one experiment. Furthermore, because of tech-
nical bottlenecks in metabolite identification, most measured
metabolites are unannotated40. If we can increase the number
of measured and identified metabolites, the metabolome-wide
association results from PATOWAS will become more accurate.
Furthermore, if we can link associated genes with known meta-
bolites, we can find and explain new pathways connecting
enzymatic genes with their eventual metabolites.

The 2D p-value scanning results from PATOWAS can be
used to construct an association network. Such an association
network is trait-related and also can be constructed and
analyzed for different ome-wide association studies. The inte-
gration of multiple layers of ome-wide association networks,
together with other results of PATOWAS analysis, can
provide panoramic biological insight for trait analysis, leading
toward an answer to the question of how genes, transcripts,
proteins, and metabolites work together to produce an observable
phenotype.

Methods
Statistical method. A new LMM incorporating additive and interaction effects: We
proposed a new LMM for multiple associative omics, mathematically described
below, that incorporates all markers’ direct additive effects and marker pairs’
interaction effects.

Let y be an n × 1 vector of a quantitative phenotypic trait and Z be an m × n
marker matrix for a quantitative omic dataset, such as coded genotypic data,
transcript gene expression data, or metabolite abundance data. Coded genotypic
data can be acquired by sequencing and genotyping a population41, gene
expression data can be acquired by microarray hybridization or mRNA-seq
experiments, and metabolite abundance data can be acquired by gas
chromatography–mass spectrometry or liquid chromatography–mass spectrometry
followed by metabolite feature extraction, annotation, alignment, and
quantification42–44.

The LMM that incorporates the markers’ additive effects and marker pairs’
interaction effects can be represented as

y ¼ Xβþ
Xm
i¼1

Ziai þ
Xm�1

i¼1

Xm
j¼iþ1

Wijγij þ e ð2Þ

where X is an n × 1 vector of unity and β is the intercept; Ziis the ith column of
matrix Z, and ai is the ith marker’s additive effect on the trait; Wij ¼ Zi � Zj is the
element-wise product of vectors Zi and Zj; γij is the interaction effect between
marker i and markerj; and e is an n × 1 vector of residual error.

We treat each marker’s effect as a randomly distributed normal variable with a
mean of zero and a common variance across all markers or pairs of markers, as
shown by ai � Nð0; σ2aÞ and γij � Nð0; σ2aaÞ. The residual errors are of

e � Nð0; σ2Þ. The total additive and interaction effects are denoted by:
Pm
i¼1

Ziai and

Pm�1

i¼1

Pm
j¼iþ1

Wijγij , respectively.

The expectation of the model is E(y)= Xβ, and the variance is

var yð Þ ¼ Kaσ
2
a þ Kaaσ

2
aa þ Iσ2 ð3Þ

where Ka and Kaa are marker-generated additive and epistatic kinship matrices with
values calculated by formulas (4) and (5).

Ka ¼ 1
da

Pm
i¼1

ZiZ
T
j

Kaa ¼ 1
daa

Pm�1

i¼1

Pm
j¼iþ1

WijW
T
ij

ð4Þ

where

da ¼ 1
n tr

Pm
i¼1

ZiZ
T
j

� �

daa ¼ 1
n tr

Pm�1

i¼1

Pm
j¼iþ1

WijW
T
ij

 ! ð5Þ

are normalization factors that allow the K matrices to have diagonal elements as
close to unity as possible.

The model involves three variance components, σ2a , σ
2
aa, and σ2, which can be

estimated by the restricted maximum likelihood (REML) method for dissection of
phenotypic variance.

Estimating variance components using the REML method. The model to esti-
mate variance component is

y ¼ Xβþ ξ þ ζ þ e ð6Þ

where ξ and ζ are the additive and interaction effects, respectively. The expectation
of the model is E(y)= Xβ, and the variance is

var yð Þ ¼ var ξð Þ þ var ζð Þ þ var eð Þ ¼ Kaσ
2
a þ Kaaσ

2
aa þ Iσ2 ð7Þ

The restricted log-likelihood function is

Lðβ; σ2a ; σ2aa; σ2Þ ¼ � 1
2
ln Vj j � 1

2
ln XTV�1X
�� ��� 1

2
ðy � XβÞTV�1ðy � XβÞ ð8Þ

Given σ2a , σ
2
aa, and σ2, we can solve for β by

β̂ ¼ ðXTH�1XÞ�1XTH�1y ð9Þ

Substituting Eq. (9) into Eq. (8) gives

Lðσ2a ; σ2aa; σ2Þ ¼ � 1
2 ln Hj j � 1

2 ln XTH�1X
�� ��� 1

2σ2 ðy � XβÞTH�1ðy � XβÞ
þ n�rðXÞ

2 lnðσ2Þ
ð10Þ

Therefore, the defined likelihood function has three unknowns. Calling any
optimization subroutine, we can obtain the REML estimates of the three variance
components.

After the three variance components are acquired, we fix the variance ratio
λ̂a ¼ σ̂2a=σ̂

2, λ̂aa ¼ σ̂2aa=σ̂
2 and estimate and test the additive effects and interaction

effects by conducting 1D scanning across all markers and 2D scanning across all
marker pairs, respectively.

1D and 2D scanning to estimate additive and interaction effects. We define
model I and use it to estimate the additive effect of marker Zi as shown below:

y ¼ Xβþ Ziai þ e ð11Þ

The expectation of this model is

EðyÞ ¼ Xβþ Ziai ð12Þ

We also define model II and use it to estimate the interaction effect of marker
pair Wij as shown below:

y ¼ Xβþ Ziai þ Zjaj þWijγij þ e ð13Þ

The expectation of this model is

EðyÞ ¼ Xβþ Ziai þ Zjaj þWijγij ð14Þ

When (λa,λaa) are fixed, the two models are fixed models and can be solved
using the weighted least-squares method. The variance of each model can be
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written as

V ¼ varðyÞ ¼ Kaσ
2
a þ Kaaσ

2
aa þ Iσ2

¼ Kaλa þ Kaaλaa þ Ið Þσ2
¼ H þ Ið Þσ2

ð15Þ

Furthermore, we define a parameter matrix P and a vector b as the following:

P ¼
XjjZi½ � Model I

XjjZijjZjjjWij

h i
Model II

(
ð16Þ

b ¼
β==ai½ � Model I

β==ai==aj==γij

h i
Model II

(
ð17Þ

where P is a n × 2 or n × 4 matrix that concatenates all matrices horizontally and b
is a 2 × 1 or 4 × 1 vector that concatenates all regression coefficients vertically. The
generalized least square estimate of b is

b̂ ¼ ðPTV�1PÞ�1PTV�1y ð18Þ

Note that

V�1 ¼ ðH þ IÞ�1=σ2 ð19Þ

Therefore,

b̂ ¼ ðPT ðH þ IÞ�1PÞ�1PT ðH þ IÞ�1y ð20Þ

Note that when (λa,λaa) are fixed, the following matrix is a constant matrix and can
be simplified using Eigen decomposition:

ðH þ IÞ�1 ¼ ðUDUT þ IÞ�1 ¼ UðDþ IÞ�1UT ð21Þ

where D (a diagonal matrix) holds the eigenvalues of H, and U (a matrix) holds the
eigenvectors of matrix H. The inverse of D+ I is simply

ðDþ IÞ�1 ¼ diag
1

δi þ 1

� �
ð22Þ

Rewriting Eq. (20) gives

b̂ ¼ ðPT ðH þ IÞ�1PÞ�1PT ðH þ IÞ�1y ¼ ðP�TWP�Þ�1P�TWy� ð23Þ

where

P� ¼ UTP

y� ¼ UTy

W ¼ ðDþ IÞ�1

8><
>: ð24Þ

The residual error variance is estimated using

σ̂2 ¼ 1
n� rðPÞ ¼ ðy� � P�b̂ÞTWðy� � P�b̂Þ ð25Þ

where r(P)= 2 and r(P)= 4 for model I and model II, respectively. The variance
matrix of the estimated effects is

varðb̂Þ ¼ ðP�TWPÞ�1σ̂2 ð26Þ

For model I,

varðb̂Þ ¼ varðβ̂Þ covðβ̂; âiÞ
covðâi; β̂Þ varðâiÞ

" #
ð27Þ

and the Wald test for H0: ai= 0 is

Wald ¼ â2i
varðâiÞ

ð28Þ

For model II,

varðb̂Þ ¼

varðβ̂Þ covðβ̂; âiÞ covðβ̂; âjÞ covðβ̂; γ̂ijÞ
covðâi; β̂Þ varðâiÞ covðâi; âjÞ covðâi; γ̂ijÞ
covðâj; β̂Þ covðâj; âiÞ varðâjÞ covðâj; γ̂ijÞ
covðγ̂ij; β̂Þ covðγ̂ij; âiÞ covðγ̂ij; âjÞ varðγ̂ijÞ

2
666664

3
777775 ð29Þ

and the Wald test for H0: γij= 0 is

Wald ¼ γ̂2ij
varðγ̂ijÞ

ð30Þ

The p-value for a marker’s additive effect or the interaction effect of a marker
pair is calculated using

p ¼ 1� Prðχ21<WaldÞ ð31Þ

PATOWAS pipeline. PATOWAS was developed for analyzing traits through ome-
wide association studies. The PATOWAS is composed of two primary sub-
pipelines. Sub-pipeline 1 consists of one module designed for kinship matrix cal-
culation, and sub-pipeline 2 is designed for association mapping and integrates
three related analysis modules: one for the three variance component analysis,
another for 1D p-value scanning for all markers’ direct additive effects, and a third
for 2D p-value scanning for all marker pairs’ interaction effects. The four modules
are designated km_cal, vc_anal, ps_main, and ps_inter, respectively. The modules
were coded with C/C++ using Code::Blocks in a Linux environment and compiled
into four separate executable commands. Several Perl and Linux C shell scripts
were developed to function as a wrapper to streamline the complete analysis
pipeline. Briefly, when the coded genotype data, transcript gene expression data, or
metabolite abundance data are provided, module km_cal calculates and delivers the
corresponding kinship matrix. When phenotypic quantitative trait data are pro-
vided, module vc_anal estimates and delivers the three variance component ratios
utilizing both the quantitative trait data and the available kinship matrices. After
performing various information aggregation procedures, including kinship matrix
weighing and matrix eigen-decomposition, modules ps_main and ps_inter calcu-
late and return 1D p-values for all markers and 2D p-values for all marker pairs,
respectively (Fig. 8a).

PATOWAS accepts 2D omic marker matrix data and 1D phenotypic trait
data in.csv format as inputs (Fig. 8b). After data submission, PATOWAS
calculates kinship matrix Ka, Kaa and uses the intermediate kinship matrix and
phenotypic trait data to estimate the variance component ratio λa, λaa. Finally, a
Wald test is employed to scan the 1D and 2D p-values for the markers’ additive
effects and the interaction effects of marker pairs, respectively (Fig. 8a). The
PATOWAS analysis output includes the kinship matrix, estimated variance
components, and 1D and 2D p-values for the markers’ additive effects and marker
pairs’ interaction effects (Fig. 8c). Based on the results, the three variance
components accounting for phenotypic variance and the −log10(p) values for the
markers’ additive effects and marker pairs’ interaction effects can be visualized and
further analyzed.

To increase the flexibility of analyses, users are allowed to run only a portion of
the PATOWAS pipeline according to the input data and user-configured
parameters (e.g., users can perform only kinship matrix calculations and the three
variance component analyses or only kinship matrix calculations). Such
configuration flexibility enables users to utilize PATOWAS to generate specific
data, such as a kinship matrix, for their own genetic data analysis.

Similar to PEPIS8, PATOWAS was implemented in C/C++ programming
language. Furthermore, its computationally demanding analysis modules were
implemented using parallel computing techniques, which effectively divide large
computational tasks into smaller jobs that are distributed to nodes on networked
Linux clusters to accelerate computing.

Let n be the number of individuals and m be the number of omic markers. The
total number of effects is m+ C(m,2)=m(m+ 1)/2. According to the kinship
matrix calculation formula7 and complexity analysis8, the multiplications to
calculate the kinship matrix Ka and Kaa are mn(n+ 1)/2 and m(m−1)n(n+ 1)/4,
respectively. These calculation complexities demonstrate the enormity of the
multiplication demand associated with kinship matrix calculations, especially when
both n and m are large. However, the procedure used to calculate each matrix cell
value is the same; thus, all n(n+ 1)/2 loops for matrix cell calculation can be
parallelized.

The variance component analysis module essentially needs only one
optimization for a three-parameter log-likelihood estimation. The 1D additive
effects p-value scanning module needs m Chi-square calculations and Wald tests,
and the 2D interaction effects p-value scanning module needs m(m−1)/2 Chi-
square calculations and Wald tests. However, the procedure to calculate the p-
values is the same, so the m times additive effect p-value calculation and m(m−1)/2
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times interaction effect p-value calculation can also be parallelized. The strategy
utilized in the PATOWAS for parallel high-performance distributed computing is
summarized in Table 3.

Rice omics data. We analyzed YIELD and KGW from 210 RILs of rice described
by Hua et al.45,46. The 210 RILs were derived by single-seed descent from a cross
between the Zhenshan 97 and Minghui 63 rice hybrids. Field phenotypic data
pertaining to YIELD and KGW were collected from replicated field trials on the
Huazhong Agricultural University Experimental Farm in Wuhan, China.

Ome-wide quantitative marker data consisted of bin-based genotype data,
Affymetrix RNA microarray-based gene expression data, and mass spectrometry-
based profiling metabolite abundance data. Over 270,000 high-density SNP
markers were used to infer recombination breakpoints (crossovers), which were
then used to construct a total of 1619 genotype bins41. Each bin was treated as
a new synthetic marker for association studies, and the bin map was constructed
by genotyping the RIL population sequences.

The transcriptomic data originally consisted of 24,994 expressed genes, which
were sampled and measured from flag leaves for all 210 RILs in 2008. Each line
had two biological replicates, but RNA extracted from the two replicates was
mixed at a 1:1 ratio before microarray expression profiling. The original
expression levels were then log2-transformed before analysis47. Of the 24,994
genes, 22,584 were clearly matched to 1619 genotype bins. We found only minor

and inconsequential differences between the analysis results for 24,994 versus
22,584 genes.

The metabolomic data consisted of 683 metabolites measured from flag leaves
and 317 metabolites measured from germinated seeds48. Metabolomic data were
collected in 2009 and 2010. Before mass spectrometry-based metabolic profiling,
germinated seeds were sampled in one biological replicate in 2009 and one in 2010,
and flag leaves were sampled in two biological replicates in 2009. For both tissues,
the abundance level of each metabolite was log2-transformed. For each line, we
took the average of two replicates’ abundance levels as the measurement of the
metabolite.

In summary, the bin genotype data, microarray-based gene expression data, and
mass spectrometry-based metabolite data were acquired and stored in three
matrices as dimensions of m × n= 1619 × 210, m × n= 22,584 × 210, and m × n=
1000 × 210, respectively (Table 1). Here, m and n represent the number of markers
and individuals, respectively.

Code availability. The PATOWAS pipeline and source code are freely available at
http://bioinfo.noble.org/PATOWAS/. In addition, the source code of PATOWAS
has been deposited into the public repository GitHub at https://github.com/
ZhaoBioinformaticsLab/PATOWAS. We are committed to maintaining and
improving the specific function modules per user comments and
suggestions.
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Fig. 8 PATOWAS data analysis flowchart and the user interfaces. a PATOWAS data analysis flowchart. PATOWAS includes four processing models, need
omics marker matrix data and phenotypic trait data as input, and output results kinship matrix, variance component ratios, 1D and 2D p-values for main
and interaction effects. b User interface for submitting data. c User interface for downloading results

Table 3 Summary of parallel strategy of PATOWAS for high-performance distributed computing

Computing module Computation complexity description Repetitive parallelizable
calculation unit

Allocated job for each CPU node
with p parallelizable nodes

Kinship matrix calculation nðnþ1Þ
2 Loops for each of the 2 kinship

matrix’s cell calculations
Kinship matrix cell calculations nðnþ1Þ

2p loops for each matrix’s cell
calculations

p-Value scanning for
main effects

m times Wald test and Chi-square
calculation

2 degrees of freedom Wald test
and Chi-square calculation

m
p times 2 degrees of freedom Wald
test and Chi-square calculation

p-Value scanning for
interaction effects

mðm�1Þ
2 times Wald test and Chi-square

calculation
4 degrees of freedom Wald test
and Chi-square calculation

mðm�1Þ
2p times 4 degrees of freedom

Wald test and Chi-square calculation
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Data availability
All datasets, including presented case analysis data and results, are freely available at
http://bioinfo.noble.org/PATOWAS/Download.gy.
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