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Abstract

Sleep staging serves as the foundation for sleep assessment
and disease diagnosis, constituting a crucial aspect of sleep
research. The related work on automatic sleep staging has
achieved numerous satisfactory outcomes. However, cur-
rent research predominantly focuses on using sleep informa-
tion as classification features, e.g. employing time-domain
or frequency-domain measures as local features, and compre-
hensive brain network information across channels as global
features, while overlooking the spontaneous regularities in
brain activity. Simultaneously, brain microstates are consid-
ered closely linked to brain activity and can be used to inves-
tigate the regular variations in the overall brain potential. To
explore the regular changes in the microstates of brain function
during sleep stages based on electroencephalogram (EEG), es-
pecially the regular changes in sleep structure, we initially
conduct microstate clustering, followed by characterizing the
sleep structure of the participants based on these microstates.
Subsequently, we integrate the sleep structure with traditional
sleep information features and perform automatic sleep stag-
ing. Our experiments make the following contributions: (1)
Being the first to introduce the use of sleep structure for au-
tomatic sleep staging. (2) When there are 7 or more than 7
microstate classes, the model performs well, and the best clas-
sification accuracy reaches 89.50%. (3) Proposing a sleep au-
tomatic staging model that integrates sleep structure and sleep
information.
Keywords: automated sleep staging; EEG; microstate; sleep
structure

Introduction
Sleep is an essential part of everyone’s life and consists
of multiple sleep cycles. The R&K Rules categorize sleep
into wake (W), rapid eye movement (REM), and non-REM
(NREM) phases. Within the NREM phase, there are addi-
tional subdivisions, including S1, S2, S3, and S4, based on
the depth of sleep (Wolpert, 1969). In 2007, the American
Academy of Sleep Medicine (AASM) made modifications to
the staging criteria proposed by R&K. They combined S3
and S4 into a single stage and divided NREM into N1, N2,
and N3 stages (Iber, Ancoli-Israel, Chesson, & Quan, 2007).

Sleep staging plays a crucial role in research areas like sleep
quality assessment and the diagnosis of disorders, such as in-
somnia and obstructive sleep apnea (Wulff, Gatti, Wettstein,
& Foster, 2010).

Sleep staging is characterized by temporal sequence, peri-
odicity, and close association with brain activity. EEG sig-
nals, as real-time recorded scalp electrophysiological signals,
are highly suitable for sleep staging. EEG is widely used
in clinical settings for the detection of seizure (Chen, 2014),
assessing of depression (Acharya et al., 2018), Alzheimer’s
classification (Kim & Kim, 2018) and bullying indices de-
tection (Baltatzis, Bintsi, Apostolidis, & Hadjileontiadis,
2017). In the field of automated sleep staging, there are
also several applications of EEG, such as frequency-domain
with SVM (Lajnef et al., 2015), time-domain with SVM
(Sharma, Goyal, Achuth, & Acharya, 2018), raw signal sam-
ples with CNN (Sors, Bonnet, Mirek, Vercueil, & Payen,
2018), and statistical and spectral features with LSTM-RNN
(Michielli, Acharya, & Molinari, 2019). However, existing
automated sleep staging methods based on EEG primarily
rely on raw signal, frequency-domain, and time-domain in-
formation, without utilizing the inherent regularity and pe-
riodicity of sleep to construct sleep structure for automated
sleep staging.

The construction of sleep structure presents some chal-
lenges. For instance, extracting a time-domain or frequency-
domain feature from each sampling point for classification
may easily lead to feature dimension explosion. Conversely,
merging too many sampling points into a segment may cause
the model to overlook some short but important temporal in-
formation. Microstate analysis, as a method that analyzes
the global pattern of scalp potential topographies while con-
sidering each sampling point, is well-suited for constructing
sleep structure. It utilizes the global field power (GFP) to per-
form clustering analysis on brain topographic maps at each
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Figure 1: Framework of our proposed method.

moment. Therefore, based on the framework of microstates,
this paper proposes a method for extracting structural changes
during sleep staging phases.

To our best knowledge, this is the first work to extract the
sleep structure information for sleep staging. We proposed a
computation method based on EEG micro-state framework.
Specifically, the sleep structure matrix is calculated like ad-
jacency matrix in graph theory, e.g. each class is taking as
a node and the transition relationship between classes is ex-
pressed as edges. The weight of an edge is determined by
the frequency of transitions between two classes. After con-
structing the sleep structure, we analyze each microstate class
independently. For each microstate class, the time domain
and frequency domain features are extracted. Finally, the hy-
brid feature integrated by sleep structure matrix, time and fre-
quency features is used for classification.

Method
Framework of Our Method
In this study, we proposed an automated sleep staging method
with EEG-based sleep structure computation, as illustrated in
Figure.1. This method comprises six modules:

Preprocessing module: This module applies filtering and
downsampling operations to the raw EEG signal to remove
unnecessary noise and reduce computational load.

Microstates module: Utilizing the Microstate analysis plu-
gin from the EEGLAB toolbox (Poulsen, Pedroni, Langer, &
Hansen, 2018), this module extracts scalp potential topogra-
phies and clusters them to obtain microstates from the EEG

signal.
Traditional Features module: Here, we extract zero-

crossing rate, potential standard deviation, and Power Spec-
tral Density (PSD) for each microstate category.

Sleep Structure module: In this module, we construct a
sleep structure matrix based on the transition relationships
between microstates.

Fusion Features module: Traditional features are inte-
grated with sleep structure matrix to form fusion features.
We concatenate traditional features onto the flattened one-
dimensional sleep structure to form fusion features.

Classification module: We use the support vector machine
(SVM) with the Gaussian kernel.

Dataset & Pre-processing
The data utilized in this paper is sourced from the publicly
available CAP Sleep Database (Goldberger et al., 2000). It
includes 16 healthy subjects without neurological disorders
and drug-related issues. The number of EEG channels ranges
from 3 to 12. Considering the completeness of sleep stages
and channel coverage, we selected subjects (namely n3, n5,
n10, and n11, respectively) who were recorded with 12 EEG
channels, aged between 23 and 35 years old. Following
the International 10–20 System, the bipolar electrodes were
placed at Fp2-F4, F4-C4, C4-P4, P4-O2, F8-T4, T4-T6, Fp1-
F3, F3-C3, C3-P3, P3-O1, F7-T3, and T3-T5, as shown in
Figure 2. The data was sampled at a rate of 512 Hz. Each sub-
ject’s continuous recorded sleep EEG spanned approximately
9 hours, from 10:30 p.m. to 7:30 a.m. The sleep stages were
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Figure 2: These 12 electrodes are used for EEG signal collec-
tion from subjects.

annotated by experts following the standard rules outlined by
R&K every 30 seconds. Sleep is a cyclical process, with each
cycle lasting approximately 90 to 110 minutes. Typically, hu-
mans undergo 4 to 5 sleep cycles per night.

In the pre-processing stage, we first conducted filtering to
extract EEG signals within the 0.5–40Hz range. This includes
six frequency bands: delta (0.5–4 Hz), theta (4–8 Hz), alpha
(8–13 Hz), beta1 (13–22 Hz), beta2 (22–30 Hz), and gamma
(30–40 Hz). Subsequently, to reduce computational load, we
downsampled the data from 512Hz to 100Hz.

Sleep Structure Extraction-microstates
The global activity of brain can be characterized using the
global field power (GFP), defined as the root of the mean of
the squared potential differences between each electrode (i.e.,
Vi(t)) and the mean of instantaneous potentials across k elec-
trodes (i.e., Vmean(t)) (Lehmann & Skrandies, 1980).

GFP =

√√√√( k

∑
i
(Vi (t)−Vmean (t))

2

)
/k (1)

Peaks in the GFP curve denote instances of maximum
field intensity and optimal topographic signal-to-noise ratio.
Within microstate analysis, the electric field topographies at
these peaks in the GFP curve are regarded as distinct states of
the EEG, with the signal’s progression viewed as a sequence
of these states.

Studying microstates holds potential significance for un-
derstanding regular brain activity patterns. One possibility is
that during certain brain activities, such as sleep, neurons emit
electrical signals as a coordinated whole according to specific
structured patterns, with close interconnections between indi-
vidual neurons. This leads to the presence of a global pattern
in the EEG signals recorded from the entire scalp. Based on
this hypothesis, we propose a method for constructing sleep
structures to facilitate automated sleep staging.

In the process of constructing the sleep structure, we inte-
grated principles from graph theory. In graph theory, a graph

is a mathematical structure composed of nodes (vertices) and
edges, used to describe relationships between objects. The
weighted adjacency matrix serves as a representation of a
graph, with its size being n*n (where n is the number of nodes
in the graph). Each element of the matrix represents the con-
nection between two nodes, typically the weight of the edge.
In this study, we regard the entire sleep process as a directed
graph, where each microstate class is considered as a node,
and the number of transitions from one microstate to another
serves as the weight of the directed edge. Thus, we construct
the sleep structure matrix accordingly.

Time-domain and Frequency-domain Features
Time-domain analysis and frequency-domain analysis are
two commonly used methods in EEG signal processing. The
time domain refers to the process of analyzing signals along
the time axis. The frequency domain refers to the process
of analyzing the frequency content of signals. Sleep staging
based on sleep structure is an analysis method independent of
time-domain analysis and frequency-domain analysis. How-
ever, we also hope to combine traditional methods of extract-
ing time-domain and frequency-domain features to construct
sleep characteristics more comprehensively. In this study,
we selected zero-crossing rate and standard deviation of raw
EEG as two time-domain features, and PSD as a frequency-
domain feature, to supplement the sleep structure.

Zero-crossing rate (ZCR) is a feature commonly used in
signal processing to characterize the frequency of changes in
the sign of a signal. It measures the rate at which a signal
crosses the zero axis or changes its sign within a given time
window.

Power spectral density (PSD) represents the power con-
tained within specific frequency components of a signal. It
quantifies the distribution of signal power as a function of
frequency. It is often calculated using techniques such as the
Fast Fourier Transform (FFT) or Welch’s method.

Classifier
We adopts SVM to classify different EEG sleep stages uti-
lizing the Gaussian kernel function in the LIBSVM library
(Chang & Lin, 2011). The One-against-one strategy was em-
ployed to accomplish multi-class classification, and the five
fold cross validation is used for classifier training.

Results
Due to the distinct differences between the wakefulness (W)
stage and other sleep stages, which are not the primary fo-
cus of automated sleep staging, we provides our discussion in
this section with the experimental results of N1, N2, N3, and
REM stages.

For a more in-depth analysis and a clearer presentation of
sleep structure, we will extensively discuss the amount of mi-
crostates in each stage and visualize the sleep structure matrix
which represents the transition status between microstates.
We conducted classification experiments with the classes of
microstate from 4 to 10. In addition, to test the model’s
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Figure 3: Result obtained from Topographical maps and the number of microstates. (a)-(d) stands for n3, n5, n10 and n11
respectively.

performance with fewer channels, we conducted classifica-
tion experiments using electrodes from both the left and right
hemispheres under the condition of a microstate number of 7
with 6 channels.

Average Amount of Each Microstate for Different
Sleep Stages
For the subject n3 (as shown in Figure 3 (a) ), the number
of microstates during REM stage is extremely low for No. 4
microstate; whereas during N3 stage, No. 1 microstate has
the highest count among all stages. Across all stages, No.
1 microstate consistently has the highest count within each
stage. In the N1 stage, No. 2 and No. 7, No. 3 and No. 5,
No. 3 and No. 7, No. 4 and No. 6, No. 5 and No. 7 show
significant differences according to ANOVA test. In the REM
stage, No. 2 and No. 5, No. 5 and No. 7 exhibit significant
differences.

For subject n5 (as shown in Figure 3 (b) ), there is generally
a large variance in the count of each microstate. Significant
differences in count are observed for No. 4 and No. 7 in the
N1 stage, No. 6 and No. 7 in the N3 stage, and No. 4 and No.
5 in the REM stage.

For subject n10 (as shown in Figure 3 (c) ), this participant
is quite distinctive as it has very few samples labeled as N1,
rendering significant analysis within N1 impossible. Signif-
icant differences in count are observed for No. 2 and No. 4
during REM, No. 2 and No. 3 during N2, and No. 3 and No.

5 during N3.
For subject n11 (as shown in Figure 3 (d) ),there are a large

number of occurrences of No.7 in its N1 stage, while the oc-
currences of No.5 are particularly few. Significant differences
are observed for No. 1 and No. 7 during N1, No. 3 and No.
7 during N3, and No. 3 and No. 7 during REM.

Average Amount of Transitions between Microstates
The sleep structure matrices of the subjects are shown respec-
tively in Figure 4. For n3, n5, and n10, it can be observed
that the sleep matrices of N1 and N2 stages are very similar,
which to some extent leads to difficulty in distinguishing be-
tween N1 and N2. The sleep matrices of all subjects during
N3 stage are relatively flat, indicating inactive state transi-
tions in the brain during N3 stage. The shape of the REM
stage is similar to that of N1 and N2 stages, but there may be
differences in the positions of the maximum values.

Classification Performance of Different Numbers of
Microstates
From Table 1, the classification performance is relatively bet-
ter under the 7 microstates circumstance for both n3 and n5.
While for n10 and n11, it is the second highest and very close
to the highest accuracy. In the process of microstate number
ranging from 4 to 10, the accuracy generally shows an initial
increase, approaching the peak at 7, and fluctuating to some
extent between 7 and 10. The amounts of microstates exceed-
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Figure 4: Sleep structure matrix based on the transition relationships between microstates, the height of the bars represents the
average number of transitions between different microstates.

Table 1: The average accuracy of our model between different number(amount) of microstates(%).

Amount n3 n5 n10 n11
4 86.78±0.30 85.80±0.42 86.20±0.51 83.22±0.47
5 88.04±0.42 85.97±0.33 86.91±0.23 84.69±0.52
6 88.80±0.31 86.67±0.60 87.88±0.52 84.81±0.38
7 89.50±0.12 86.93±0.29 89.40±0.22 87.40±0.44
8 88.02±0.21 86.28±0.55 88.52±0.29 86.17±0.34
9 88.28±0.37 86.58±0.58 88.73±0.25 87.51±0.38

10 88.66±0.30 86.63±0.24 89.41±0.42 83.38±0.29

Table 2: The average accuracy of our model with cerebral hemisphere channels(%).

Subject right left
n3 88.08±0.12 87.14±0.18
n5 85.26±0.11 85.92±0.12

n10 88.48±0.26 88.72±0.26
n11 87.52±0.20 86.76±0.25
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ing 10 are not discussed in this paper due to limitations in the
data: some individual subjects were unable to consistently
cluster into 11 microstate classes.

Classification Performance of Cerebral Hemisphere
EEG Signal
To test the model’s performance with fewer channels, we con-
ducted experiments using 6 channels from both the left and
right hemispheres under the condition of a microstate number
of 7. The experimental results are shown in Table 2. It can
be observed that the model’s performance decrease insignifi-
cantly compared to when using 12 channels. Additionally, the
classification accuracy of the left and right hemispheres of the
brain is similar, without significant hemispheric differences.
Therefore, the used channels could be further decreased such
as using half hemisphere signals for future practical applica-
tions.

Conclusions
In this paper, we propose a method for automatic sleep stag-
ing using sleep structure matrix computation. We use mi-
crostates to construct the sleep structure, then extract features
based on each microstate. The sleep information is fused
with the sleep structure to obtain fusion features for classi-
fication. We investigate the effects of sleep structure and dif-
ferent information on automatic sleep staging through exper-
iments with a small number of channels and varying amounts
of microstates. We obtain the following three points:

1. Constructing sleep structure using microstates is an ef-
fective approach.

2. As the amount of microstates used by the model in-
creases, the accuracy gradually rises from 4 to 7 microstates
and there is no clear upward or downward trend in accuracy
from 7 to 10 microstates, but rather some fluctuation.

3. Sleep structure can be fused with sleep information to
improve classification tasks.
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