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Sample size, statistical power, and false conclusions in infant 
looking-time research

Lisa M. Oakes
UC Davis

Abstract

Infant research is hard. It is difficult, expensive, and time consuming to identify, recruit and test 

infants. As a result, ours is a field of small sample sizes. Many studies using infant looking time as 

a measure have samples of 8 to 12 infants per cell, and studies with more than 24 infants per cell 

are uncommon. This paper examines the effect of such sample sizes on statistical power and the 

conclusions drawn from infant looking time research. An examination of the state of the current 

literature suggests that most published looking time studies have low power, which leads in the 

long run to an increase in both false positive and false negative results. Three data sets with large 

samples (>30 infants) were used to simulate experiments with smaller sample sizes; 1000 random 

subsamples of 8, 12, 16, 20, and 24 infants from the overall samples were selected, making it 

possible to examine the systematic effect of sample size on the results. This approach revealed that 

despite clear results with the original large samples, the results with smaller subsamples were 

highly variable, yielding both false positive and false negative outcomes. Finally, a number of 

emerging possible solutions are discussed.

There has been much discussion in the scientific literature broadly, and increasingly in the 

psychological literature in particular, about whether or not there exists a replication crisis in 

science (Crandall & Sherman, 2016; Open Science Collaboration, 2015; Pashler & Harris, 

2012; Stroebe & Strack, 2014). Although it is debated whether the problem has arisen to the 

level of a crisis, one outcome of this discussion is an increased awareness of the effect of 

conventional scientific practices on the conclusions we draw from our studies. One area that 

has received attention is the effect of less-than-optimal sample sizes on false positive and 

false negative conclusions (Button et al., 2013; Fraley & Vazire, 2014; Schweizer & Furley, 

2016; Vadillo, Konstantinidis, & Shanks, 2015). This is particularly an issue in fields or 

areas of inquiry in which subject populations are difficult to identify or recruit, or in which 

the testing of individual subjects is time consuming and expensive. Research involving 

infants as participants fits these criteria, and thus it is important to carefully consider how 

sample sizes are established and whether our current conventions should be adjusted.

There have been discussions and debate about the issue of sample sizes in science broadly, 

and how decisions about sample size contribute to statistical power (see, e.g., Desmond & 

Glover, 2002). Button et al. (2013), for example, examined the effect of low powered studies 

on the field of neuroscience. They argue for changes in research practices to deal with low 
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power, arguing that this is important for drawing strong conclusions from studies. Low 

power not only reduces the sensitivity to detect true differences, it also increases the 

likelihood of observing a false positive result (as a result of the bias to publish significant 

effects). Thus, studies with low power not only create the problem of having difficulty 

interpreting nonsignificant small effects, but also increase the proportion of studies in which 

a spurious effect is taken to reflect the truth.

That is, it is not often recognized that sample size—and statistical power—directly relate to 

the likelihood of making both Type 1 and Type 2 errors. By convention, we select our Type 1 

error rate (e.g., the likelihood of concluding falsely that a difference exists) as 5%—or p = .

05. We select our Type 2 error rate (e.g., the likelihood of failing to detect a true difference) 

as 20%–or power of .80. However, we rarely consider how factors, such as sample size, 

influence these rates. Moreover, although our estimates of power appear to be independent 

of our Type 1 error rate, in reality p values are much more variable (and less reliable) with 

low power (Halsey, Curran-Everett, Vowler, & Drummond, 2015), and p-values get smaller 

with increased sample size (Motulsky, 2015).

It would be unproductive to insist that all studies have very large sample sizes. Power and p-

value depends both on the size of the effect and the sample size. If the true effect is large, a 

smaller sample would provide sufficient power to detect that effect. Moreover, power 

analyses are imperfect and requiring large samples may make it impossible for some 

research to be conducted at all (Bacchetti, 2013). More controversial is the possibility that 

extremely large samples may yield many statistically significant but very small effects that 

are not meaningful (Quinlan, 2013). Thus, it is important to not only consider the sample 

size, but also the effect size.

It is also to point out that studies with small sample sizes (and lower power) can be an 

important part of scientific discovery, and it is critical that we not abandon or reject all 

studies with low power. But, it is clear that researchers must carefully consider the 

implications of target sample sizes, both for the time and expense of conducting research 

and for the conclusions that can be drawn from the study once the target sample has been 

obtained. The bottom line message here is that it is important that a field not depend 

exclusively on studies with small samples, and that research with small samples be 

considered in the context of a larger body of research.

The discussion of small samples and underpowered studies is particularly relevant to the 

study of infant development. Infant research is hard. Many variables can affect our 

measurement and our conclusions—we must identify and use reliable and valid measures, 

develop sensitive measurement procedures, train and maintain well trained experimenters. 

Problems in any of these will influence our measurement and may cause us to draw an 

incorrect conclusion. Another source of difficulty is the ability to recruit adequate samples 

of infant subjects. Ain other areas of research with specialized populations or expensive and 

highly technical methods, it can be difficult, time consuming, and expensive to identify, 

recruit, and test a large number of infant research participants. As a result, researchers 

examining infant development often opt for testing as few infants as possible per cell or 

condition. In this demonstration, I focus on studies with infants using looking time as the 
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dependent measure. I focus on these studies because they are widely used across many areas 

of infant development, they have been in use for decades (and thus standards and 

conventions are well established), and because of the relative ease of use, these methods are 

likely to continue to be a primary way of assessing infant development. To be clear, the 

specific conclusions drawn here about power levels and conventional sample size can only 

be directly applied to research using these methods; but the general conclusions about the 

relations between power, sample size, and conclusions can be applied to other methods.

Standards and conventions have evolved such that most published research using infant 

looking time is conducted with 8 to 24 infants per cell (see later section). However, it is not 

clear that these sample sizes were chosen on the basis of formal power analyses, nor it is 

clear that these sample sizes provide sufficient power to test the hypotheses under study. It 

might seem that only large and robust effects would be significant in studies with low power, 

and so we should have even more confidence in results from such studies (see Friston, 

2012). However, given the bias to publish significant results and not non-significant results, 

low power actually increases the proportion of false positive results across the field (see later 

section).

The goal of this paper is to evaluate sample sizes in infant research by undertaking a careful 

consideration of looking time research. In this context, I will delineate the effect of those 

sample sizes on effect sizes, statistical power, and the incidence of false positive and false 

negative conclusions in the literature. Several caveats must be made. First, the goal is not to 

advocate only for very large samples—this would eliminate much of the important work in 

infant development, and would mean that only some researchers could contribute to this 

field (and there is some concern about over-powered studies, see Friston, 2012; Quinlan, 

2013). Rather, this paper is intended to inspire discussion within labs, among researchers, 

and across the field about the consequences of the decisions we make, how to best decide on 

what samples we should use, and about alternative approaches to data collection and 

analysis.

Second, although for simplicity I focus here on a relatively narrow set of studies from a 

methodological standpoint (i.e., only studies that measured infant looking time), the message 

here is not only about how to improve research using this method. Instead, the present 

discussion about these issues in a very well constrained problem provides a model for 

thinking about sample size, statistical power, and conclusions more broadly.

Finally, the goal is to provide a starting point for changing conventions, and for setting 

standards for reporting and interpreting results. The bottom line is that we should be 

considering not only p-values, but also effect sizes and power when drawing conclusions 

from our research (Fraley & Vazire, 2014).

The paper includes three sections. The first section is a discussion of the influence of sample 

size on statistical power in infant research. This is not a mathematical discussion of power, 

or a discussion of different ways to calculate power—there are other good sources for that 

information (J. Cohen, 1992; Halsey et al., 2015; Krzywinski & Altman, 2013). Rather, this 

section focuses on broader conceptual issues, discussing how low powered studies might 
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impact the field of infant development in non-obvious ways. The second section is a 

description of the state of the field with respect to power and samples size in infant looking-

time studies. In this section, 70 papers are reviewed, examining the power and sample size 

for a single effect reported in each paper (typically the first or main statistical test reported 

for the first experiment in the paper). The goal of this description is to demonstrate that 

sample sizes in this field are determined by convention rather than by formal estimates of 

power. Although the main conclusion from this section is that infant looking time studies 

have low power, the goal is not to cast doubt on the conclusions from this body of work. 

Indeed, the assumption is that many reported studies provide an accurate understanding of 

infants’ development. Rather, the goal is to describe common practices in the field as a 

starting point for a discussion of how the field might evolve in beneficial ways, and ways 

that would allow more confidence about the reproducibility of reported findings as well as in 

the conclusions we draw from our reported results.

In the final section, three example data sets are explored to establish the influence of sample 

size on the conclusions that are drawn from a given study. All three data sets were collect in 

my lab and are relatively large for this field (> 30 infants per cell). The large numbers of 

infants included in these data sets provide the opportunity to examine how the results would 

vary as a function of sample size. Specifically, by randomly drawing subsamples of different 

sizes from these larger samples, we simulate experiments with smaller samples, and can 

directly see what effect the sample size would have on the conclusions that could be drawn.

Sample size and infant research

Our understanding of infant development was dramatically altered by the development of 

looking time measures by Robert Fantz in the 1950s and 1960s (Fantz, 1958, 1963, 1964). 

Adapting methods developed for use with chimpanzees, Fantz demonstrated that young 

infants’ looking behavior is systematically related to sensory and cognitive factors. Fantz’s 

first studies demonstrated that infants prefer to look at patterned stimuli than at unpatterned 

stimuli (Fantz, 1958, 1963), and that early preferences were for stimuli that resembled 

human faces (Fantz & Nevis, 1967). Although these revelations seem modest now, this early 

worked opened the door for the study of cognitive and perceptual abilities in infants, and led 

the way to the current state of the field in which we use looking time to draw conclusions 

about infants’ perception of emotions (Peltola, Leppänen, Palokangas, & Hietanen, 2008; 

Young-Browne, Rosenfeld, & Horowitz, 1977), theory of mind (Onishi & Baillargeon, 

2005), understanding of physical relations (Muentener & Carey, 2010; Spelke, Breinlinger, 

Macomber, & Jacobson, 1992), categorization (Oakes & Ribar, 2005), word learning (Graf 

Estes, Evans, Alibali, & Saffran, 2007), and much, much more.

Despite the advances that have allowed us to dig deeper into infants’ developing abilities, 

there are many challenges to conducting infant work. In addition to the problem of working 

with uncooperative subjects who have few motor or voluntary abilities (e.g., we can’t ask 

them to fill out a questionnaire or complete a task on a computer), infant researchers must 

identify a pool of potential research participants, effectively recruit participants from that 

pool, and maintain a lab with trained personnel to conduct the studies. Each of these tasks is 

time consuming, expensive, and difficult. Few infant researchers feel awash with data. Many 
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researchers struggle to test enough infants to meet their goals at critical career points, such a 

completing a dissertation, conducting a body of work substantial enough to be awarded 

tenure, or making sufficient progress on a grant-funded project to be awarded a renewal.

An informal poll of the members of the International Congress for Infant Studies (via the 

listserv) in September 2016 revealed a significant amount of variability in the rate at which 

infant researchers can collect data. Some researchers indicated that it was impossible for 

them to recruit infant research participants and they had given up on testing infants 

altogether. Other labs reported being quite productive, testing 20 to 40 infants per week. 

However, to test large numbers of infants, a lab will simultaneously test infants of different 

ages and conduct several studies—often a lab is conducting 10 or more studies 

simultaneously. Indeed, although one lab indicated that a single experiment could be 

completed in a month, the most productive labs generally indicated that takes at least 3 and 

often 6 months to complete a single experiment. Many researchers reported that they could 

test 10 infants (or fewer) in a given week (typically by recruiting multiple ages at once). 

These researchers feel lucky if they can accumulate data from 300 to 400 infants in a year, 

divided among many different studies. Even when the acquisition rate is low, labs are 

running several studies simultaneously and testing infants of several different ages. Given 

attrition, pilot testing, and other factors, this means that it may take many months to 

complete a single experiment even when sample sizes are low. Indeed, some researchers 

indicated that data collection for a single experiment can take a year or more. Because many 

papers include the data from multiple experiments, researchers must often collect data for 

over a year to complete the data collection for a single paper.

As a result of these difficulties, we are a field that values effects observed with relatively 

small samples. In 2014, Wally Dixon conducted a survey of researchers in child 

development, asking them to endorse papers published since 1960 that were important, 

revolutionary, fascinating, or controversial. He published in SRCD Developments (the 

newsletter of the Society for Research in Child Development), a series of articles reporting 

these results in a series of the “Twenty most _________ studies in child psychology” lists— 

the 20 most important, revolutionary, fascinating, and controversial studies. Several infant 

looking time studies appeared on these lists, in particular Baillargeon (1987), Baillargeon et 

al. (1985), Hamlin et al. (2007), Onishi and Baillargeon (2005), Saffran et al. (1996), and 

Wynn (1992). Clearly this is not an exhaustive list of all infant looking time studies, and 

many other studies have had a significant impact on the field. However, given that these 

papers were identified as controversial, fascinating, important, and/or revolutionary, these 

studies have clearly had a significant impact. The sample sizes in these studies ranged from 

12 per cell (Baillargeon, 1987; Hamlin et al., 2007) to 24 per cell (Saffran et al., 1996). 

These papers were published in top journals, have been widely cited, and have been the 

source of considerable discussion and debate in the field.

These studies illustrate the range of sample sizes of highly visible, influential studies of 

infant looking. If the field has relied on rules of thumb and convention to determine sample 

sizes, researchers will rely on studies like those in the previous paragraph to provide a 

standard for target sample sizes. Indeed, as described in the review of the recent literature 
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described in the next section, these are the samples sizes that are most commonly used in 

infant looking studies.

However, relying on convention and rules of thumb—rather than formal power analyses—to 

determine sample sizes can result in studies with low power. It is well understood that this 

may be a problem for detecting a true effect—that is, lower power by definition means lower 

likelihood that a real effect will be statistically significant. Counterintuitively, however, low 

power also decreases the likelihood that significant effects are true effects (Button et al., 

2013). In other words, the proportion of published results with significant effects that reflect 

true effects will be lower if we decrease the probability that studies with true effects are 

significant. To make this more concrete imagine that 200 studies are conducted. Let’s further 

assume that in 100 of these studies the null hypothesis is true and in the other 100 the null 

hypothesis is false. With the conventional alpha of .05, 5% of the 100 studies in which the 

null hypothesis is true will yield a significant effect (i.e., a false positive). However, consider 

what happens if we have only 0.2 power for the 100 studies in which the null hypothesis is 

false. In this case, we expect a significant effect. With 0.2 power, only 20 of the 100 studies 

will yield a significant result (i.e., a true positive). Further, given publication biases, we 

expect that only the studies with significant effects would be published, the 5 false positives 

and the 20 true positives. Thus, of the 25 published studies with significant effects, 5 of 25 

(20%) would be false positives, which is far higher than the 5% rate one might expect with 

an alpha of .05. Moreover, because our hypothetical studies had low power, 80 studies were 

conducted that led to false negatives, and the published literature misrepresents the status of 

real and potentially important effects.

Of course this is an extreme example, and (as will be clear later) power is usually higher 

than 0.2. However, the conclusion remains the same: p-values are not independent of power 

(Halsey et al., 2015), and p-values should not be considered without also considering the 

sample size (Royall, 1986). Of course, power analyses are not without controversy (see 

McShane & Böckenholt, 2014 and; Muthén & Muthén, 2009 for alternative ways to calcuate 

and determine power and sample size), making it even more difficult to know how to 

evaluate a body of literature. However, it is important to characterize a research area using 

standard methods to examine the power and effect sizes in a collection of studies. This will 

allow us to better understand the scope of the problem. This was the goal of the next section.

Power and sample size

Why do we care about sample sizes? Given that the highly influential studies described 

above yielded positive results with samples that ranged from 12 to 24 infants per cell, why is 

it a problem to use samples of this size? One might conclude that the nature of infant 

research, only large effects can be reliably detected, and therefore 12 to 24 infants per cell is 

a sufficient convention. Indeed, studies—such as the classic important studies referenced 

earlier—with such sample sizes have made significant and key contributions to the field. 

Moreover, error in measurement and experimental design also contribute to false 

conclusions in infant research. Investigators must carefully consider how the reliability and 

validity of their measurement, as well as other factors in their experimental design or 

procedure, make them more or less confident in their conclusions.
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But sample size can have powerful effects on outcomes and is subject to conventions. As 

will become clear in the following paragraphs, conventional sample sizes have yielded many 

published infant looking time studies with low power, potentially inflating the publication of 

false positive results. Indeed, it is possible that some controversies in the field—for example 

about infants’ developing numerical abilities (L. B. Cohen & Marks, 2002; McCrink & 

Wynn, 2004; Simon, Hespos, & Rochat, 1995; Wynn, 1992)—reflect at least in part the use 

of small samples combined with a bias to publish positive findings. We may observe fewer 

conflicting results if power was routinely considered as a factor in evaluating work, 

especially when considering a body of research. To be clear, there may be cases when a 

study with a relatively small sample makes an important contribution to the literature. What 

I am advocating here is considering the consequences for the field when most studies have 

small samples, and adjusting our conventions accordingly.

The focus here is on infant looking time studies and as a result the conclusions about 

specific samples sizes can only be applied to studies using those methods. However, the 

issues discussed here likely can be applied broadly to studies with infants using a variety of 

methods, and the examples and methods presented here may provide a model for evaluating 

other approaches. For the purposes of the present discussion, I focused on a constrained set 

of methods, measures, and procedures. Different methods, measures, and subject 

populations yield different levels of variability, there will be variation in effect sizes and 

sample size requirements as a function of what method is used or what measures are 

analyzed. For these reasons, the evaluation presented here focused narrowly on infant 

looking time studies.

The general point is that statistical power is critically important for interpreting the results of 

empirical studies. Higher power is not only important for sufficient sensitivity to detect true 

effects, higher power also is associated with more accurate estimates of effect sizes and 

lower probability of false positive results (Fraley & Vazire, 2014). However, behavioral 

scientists often lack a clear understanding about the importance of statistical power for 

interpreting their findings (Vankov, Bowers, & Munafò, 2014), or even what sample sizes 

are required to obtain sufficient power (Bakker, Hartgerink, Wicherts, & van der Maas, 

2016). Moreover, it is tempting to conclude that when a field is restricted to small sample 

sizes, our science is more likely to report only large effects. However, the bias to publish 

only significant results means that the published literature likely over-estimates effect sizes, 

and the reported effects in published papers may be twice the true effect sizes (Brand, 

Bradley, Best, & Stoica, 2008; Lane & Dunlap, 1978; Open Science Collaboration, 2015).

Despite the possibility that publication practices and biases may create inaccuracies in our 

understanding of phenomena, the problem of low power may be pervasive in science. Recent 

reviews suggest that many published studies have low power in neuroscience (Button et al., 

2013) and psychology (Fraley & Vazire, 2014). Given the difficulty of recruiting infant 

subjects, it would not be surprising if the conventional sample sizes in infant looking time 

studies often yield relatively low power. However, this topic has not been discussed much in 

the context of infant looking time studies.
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Table 1 lists all 70 articles using looking time studies published in the years 2013 to 2015 in 

a collection of psychology journals that publish large numbers of articles focusing on 

infants. The articles were published in Child Development (N = 11), Cognition (N = 3), 

Cognitive Development (N = 3), Developmental Psychology (10), Developmental Science 
(4), Frontiers in Psychology (N = 3), Infancy (N = 7), Infant Behavior and Development (N 
= 13), Journal of Cognition and Development (N = 3), and Journal of Experimental Child 
Psychology (N = 13). Although there are other journals in which the kind of data evaluated 

here might be reported, I focused on journals that commonly publish this type of work. 

These papers were scrutinized by experts in infant research in the peer review process, and 

we can have confidence that the methods reported have “passed muster” by a broad set of 

experts from our peer group. Thus, although this is not an exhaustive list of all looking time 

studies published during these 3 years, I selected all the studies published in the journals 

listed above that met the criteria listed in the following paragraphs (I sincerely apologize if I 

inadvertently omitted from this list any papers published in the listed journals that did meet 

those criteria). Thus, this sample will provide a good indication of standard, accepted 

practices in the field.

The goal was to narrow the range of variability to allow us to evaluate the effect of sample 

size on a well-defined, constrained set of studies. Thus, the articles in this list were selected 

using the following inclusion criteria. First, because it is plausible that sample size 

requirements and effect sizes change with the age of the subjects, I included papers only if 

the infants tested were younger than 18 months. Second, the method involved must have 

involved observer-recorded looking time. Although I included studies that used a wide range 

of methods used to record looking time—e.g., online recording by one or more observer, 

offline coding in real time, frame-by-frame coding from recordings of the session—in all of 

the papers included here the dependent measure was related to looking time (e.g., the 

duration of looking, the proportion of looking, or difference in looking). Other measures—

such as reaction time, number of looks, etc.—may have different levels of variability, and 

therefore the sample size requirements may be different. In addition, I excluded studies in 

which an eye tracker was used. In these studies, eye gaze is recorded quite differently than 

when coded by a human observer, and the scale of measurement is often quite different (e.g., 

millisecond level recording with eye trackers as compared to tenths of second recordings by 

human observers). Moreover, eye tracking procedures often involve more trials, finer spatial 

resolution, and other factors that change both the nature of the measure and the variability 

observed. Factors such as the validity and reliability of looking time measures may also 

differ when looking time is coded by human observers versus automatically by an eye-

tracker. Future work may examine the effects of power and sample size in eye-tracking 

studies. In all the studies evaluated here, infants’ a priori preference, changes in preferences 

(after familiarization), or response to novelty was assessed. These procedures have been 

widely used in the field.

There were several other inclusion criteria. Only work that examined development in 

typically developing, healthy, full-term infants was included. In addition, papers were 

excluded if their main focus was individual differences or if they tested infants 

longitudinally. In these instances, the hypotheses were quite different from the studies listed 

in Table 1, making it difficult to know how power and effect size would compare. It would 
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be extremely useful for a future investigation to examine such studies. Finally, only a single 

statistical test was evaluated in each study. For many studies, multiple experiments were 

reported. In this case, only information about the first experiment reported was included. 

Often this experiment reported the main finding of the study. In 3 papers, the first 

experiment reported was a control condition or included adults as participants. In these 

cases, I included the information about the second reported experiment.

For the present purposes, I selected a single statistical test that was key for the conclusions 

of the paper. Typically, this was the first reported test that evaluated infants’ responding on 

the test trials. However, if there were multiple analyses, the statistical test associated with the 

largest effect size was selected. This decision was made to bias the sample toward larger 

effects, which will favor smaller samples. In two cases a non-significant effect is included 

because that effect was critical for the conclusions of the paper. The specific test used is 

listed in Table 1. The distribution of group or cell samples sizes is presented in Figure 1. 

This histogram indicates the frequency of each sample size across the 70 studies.

Several things are immediately apparent. First, the data in Table 1 show that only 4 of the 

experiments had 10 or fewer subjects per cell; in three of these experiments conclusions 

were drawn by comparing two groups of infants (14 to 20 infants total). Ironically, such 

between-subjects comparisons typically require larger sample sizes to achieve the same 

power as within-subjects comparisons (Bramwell, Bittnerjr, & Morrissey, 1992; Charness, 

Gneezy, & Kuhn, 2012), and thus these studies probably should have had larger sample 

sizes. Just 11 (15%) of the experiments had 25 or more infants per cell. The vast majority of 

the experiments had between 11 and 24 infants per cell.

Why have we adopted the convention of testing 11 to 24 infants per cell in this type of 

study? One possibility is that the controversial, fascinating, important, and revolutionary 

studies described earlier used similar sample sizes, and thus a convention was established 

because of these influential studies. It is also possible that these sample sizes reflect 

sufficient power to detect the kinds of effects typically observed in infant research—so the 

convention is not based on an arbitrary decision, but actually reflects the kind of power 

needed to detect the true effects that exist. Indeed, in the original studies and most of the 

studies listed in Table 1, significant effects were observed with these sample sizes. But, 

conclusions about sample size and power must be drawn carefully when relying solely on 

published findings. The widespread bias to publish only significant effects makes it much 

more difficult to determine what the true effect s is, and therefore whether the power in these 

studies was sufficient. It is commonly understood that the bias to publish significant effects 

creates a file drawer problem, in which non-significant findings are not reported. When 

studies have low power, it is likely that there are more such file drawer studies, making it 

even less likely that the significant finding reflects a true effect. To be clear, assuming the 

absence of p-hacking (or engaging in practies that inflate the p-value, see Head, Holman, 

Lanfear, Kahn, & Jennions, 2015; Lakens, 2015; Ulrich & Miller, 2015), many published 

findings must reflect true effects. The problem is that the level of power influences our 

confidence about whether a particular finding reflects a true effect. Thus, if the convention in 

a field is to conduct low powered studies, it becomes less clear what proportion of published 

findings reflect true effects.
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This discussion raises an interesting paradox regarding the pressures of difficult-to-obtained 

subject populations on conducting studies with low power. If in fact running studies with 

small sample sizes is more likely to yield non-publishable, file-drawer results, researchers 

may get more bang for their buck if they ran fewer studies with larger sample sizes. To be 

clear, I am not advocating for a complete rejection of studies with small samples sizes—

there may be some cases and some study populations where small samples sizes are the only 

option. However, it may be that our reliance on small sample sizes in general has actually 

created a more difficult situation for researchers who have limited access to infants. That is, 

by creating a culture in which small sample sizes are widely accepted, researchers who have 

difficulty recruiting infants may fall into the trap of testing many underpowered studies that 

become “file drawer” studies; these researchers may have more success in general if our 

conventional sample size yielded studies with higher power. Changing our convention to 

expect larger samples sizes in general would obviously mean that it take longer to collect the 

data for a single study. However, these better powered studies may be more likely to yield 

interpretable (and publishable) findings, reducing the number of file drawer studies.

To address the question of whether our conventional sample sizes provide sufficient power, I 

calculated the observed effect size in each study using the approach described by Lakens 

(2013). Although effect size was reported in many studies, Lakens’s method was used to 

calculate the effect size for all the statistics listed here to ensure that effect size was 

calculated in the same way for all experiments. A handful of calculated effect sizes differed 

from those reported in the published papers (indicated by an * in the table), perhaps 

reflecting a different method for calculating effect sizes, an error in calculation, or a typo. 

The incidence of these inconsistencies suggests that editors and reviewers often are satisfied 

with the presence of effect sizes, and do not doublecheck the effect sizes (note that there has 

recently been a discussion of the prevalence of errors in statistical reporting more broadly, 

Nuijten, Hartgerink, Assen, Epskamp, & Wicherts, 2015). The development of a tool like 

statcheck (Epskamp & Nuijten, 2016, a package for R that operates like spellcheck, except 

for statistical reporting, but does not evaluate effect size) that could detect such errors would 

be a significant benefit to the field.

Figure 2 provides a histogram of the frequency of the calculated Cohen’s d scores for the 49 

t tests reported in Table 1. We chose to plot only Cohen’s d because they were more 

numerous than the ηp
2 reported for F tests. To make sure that the data included in the 

following figures and discussion were comparable, my evaluation focused only on t tests, as 

they were the most frequent statistic sampled from the studies (many studies reported both 

ANOVAs and t tests, but main conclusions were drawn from t tests comparing infant’s 

looking at two tests, or comparing infant’s preference to chance). Recall that, by convention, 

Cohen’s d of .2 is a small effect, .5 is a medium effect, and .8 is a large effect (J. Cohen, 

1992). Sawilowsky (2009) further suggested that d scores of 1.2 and 2 be considered very 

large and huge effect sizes respectively. These effect sizes indicate that the means differ by 

at least 1.2 standard deviations, and indeed are quite large.

Figure 2 shows that 28 of the 49 effect sizes (57%) falling between .4 and .8, and thus fall 

the medium category, with. Fourteen effect sizes (29%) were between .8 and 1.2 (large), and 

only 5 effect sizes (10%) were very large or huge. The 2 small effect sizes were the two 
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cases in which the t test did not reveal a significant difference, and conclusions were drawn 

based on a null finding. Thus, these data suggest that the impression that ours is a field of 

large effect sizes is incorrect. Moreover, given that effects sizes are typically overestimated 

in studies with small sample sizes (Hedges & Vevea, 1996; Lane & Dunlap, 1978), the data 

presented here suggests that research evaluating infants looking times is (at best) mainly a 

field of medium estimated effect sizes, and is likely a field in which actual effect sizes are 

often small.

What does this mean about the conclusions that we can draw from the reported results? 

After all, these t tests were significant. Perhaps this means that the sample sizes used 

provided sufficient power to detect those effects, assuming the effect sizes were an accurate 

estimate of the true effect size (which is likely a generous assumption). To test this 

possibility, I used G*Power to determine the sample size need to achieve the conventional 

power level of .80 (assuming alpha = .05) using the estimated effect sizes listed in Table 1. 

In addition, because observed effect sizes are often twice as large as true effect sizes when 

small sample sizes are used (Lane & Dunlap, 1978; Open Science Collaboration, 2015), 

Table 1 also includes effect sizes that are 50% of the observed effect size, as well as the 

sample sizes need to achieve .80 power for these reduced effect sizes.

Figure 3 presents the distribution of sample sizes in the original studies (A), the sample sizes 

required to achieve .80 power to detect the calculated effect sizes (B), and the sample sizes 

required to achieve .80 power to detect 50% of those calculated effect sizes (C). It is 

immediately clear that the three distributions are quite different. Most published studies 

included 24 or fewer infants per cell (over 80%). However, the histogram in Figure 3B 

shows that these sample sizes would have provided sufficient power to detect 67% of the 

observed effect sizes. The samples used in the published studies were rarely large enough to 

achieve .80 power given the reduced effect sizes (e.g., if the true effect sizes were 50% of 

those observed in the published studies). Moreover, although few of the original studies had 

sample sizes of over 32, these larger samples were required to achieve .80 power for 

detecting a significant effect in the vast majority (81%) of cases if we assume the reduced 

effect sizes. Thus, assuming that the reported effect sizes are approximately twice the size of 

the true effect (Lane & Dunlap, 1978; Open Science Collaboration, 2015), it is clear that 

studies using infant looking time generally have low power.

What is the takeaway message from this analysis? Given that the reported studies tend to 

have low power, it seems that in this area of research, like many areas of psychological 

research, has relied on convention and rules of thumb to determine sample sizes. It is 

tempting to argue that this is not a problem because we are a field of large effects—that is, 

our sample sizes give us the sensitivity to detect relatively large effects. However, inspection 

of Table 1 shows that even when experiments yield relatively large effects (greater than .60), 

the studies often still have low power. Clearly the likelihood that a true positive effect is 

observed decreases with decreased power (see Krzywinski & Altman, 2013 for a nice 

description). However, because p-values vary more in low powered studies (Halsey et al., 

2015), decreased power may be problematic for conclusions from both positive and null 

findings. The particular effect of sample size on effect size and power is further explored in 

the final section through the examination of three different data sets collected in my lab.
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An exploration of 3 datasets

One challenge with analyses based on published studies is that they necessarily reflect the 

biases of the publication process (e.g., the strong tendency to focus on significant effects). 

Moreover, one cannot easily explore the effects of sample sizes in published studies because 

many other factors may covary with sample size. This section therefore examines the 

relationship between power and sample size in three relatively large datasets, using a Monte 

Carlo approach in which experiments with smaller sample sizes were simulated by selecting 

random subsets of the subjects from these actual experiments.

I selected three studies with relatively large samples sizes; 33 in the first set (published in 

Kwon, Luck, & Oakes, 2014, Experiment 2), and 32 in the other two sets (Experiment 

Action and Experiment Sound, both unpublished). The relevant details of each study will be 

described below. Importantly, because these are real datasets, the true effect size is unknown. 

But, because the sample sizes are relatively large (in the context of most infant research with 

looking time as the dependent measure), it is possible to simulate the effects with a variety 

of sample sizes smaller than the original sample.

The first experiment was a paired preference study with 6-month-old infants; the data 

represent their preferences on two types of trials. Experiments Action and Sound were 

habituation experiments with 10-month-old infants; the data represent their looking time to 

familiar and novel test items following a habituation sequence. All data reported were from 

infants who met the relevant inclusion criteria (e.g., completed all 6 trials in the Kwon e al. 

experiment; met the habituation criterion in Experiments Action and Sound). All infants 

were healthy, full term, and had no history of vision problems. No infants were statistical 

outliers (e.g., all responding was within 3 SD of the mean).

To demonstrate the effect of sample size in these experiments, 1000 subsamples of 8, 12, 16, 

20, and 24 infants were drawn without replacement from the full dataset using the samp 
function in R (yielding 5000 subsamples in total for each experiment). These sample sizes 

were selected to be representative of the sample sizes used in the published literature. As 

seen in Figure 1, most studies have sample sizes between 6 and 24 infants per cell. The goal 

here was to examine the mean response and t values across the subsamples of a given size, 

making it possible to determine how variations in sample size could influence the outcome 

of the experiment. The simulated sample sizes were based on the typical range of values 

from the meta-analysis described earlier, and the sample sizes selected for these simulations 

approximate those that are typically used in the recent literature. By varying the sample size 

systematically within this range (8 to 24 infants per cell) it is possible to see how power and 

p-values change over this range (e.g., is the change linear).

Example 1

Kwon et al. (2014) reported the results of a simultaneous streams change detection task with 

33 6-month-old infants (Experiment 2). Infants were presented with 6 trials, in which a 

changing stream was paired with a non-changing stream (see Figure 4). On each trial, 

infants’ preference for the changing stream was assessed by measuring how long they 

looked to each stream. A change preference score was calculated by dividing the amount of 
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time infants looked at the changing stream by their total looking (e.g., the changing and non-

changing streams combined). If infants significantly preferred the changing stream, their 

preference score would be significantly greater than chance, or .50 (i.e., equal looking to the 

two streams). We tested infants’ preference for the changing stream when each stream 

contained only a single item (set size 1; left side of Figure 4 and when each stream contained 

two items (set size 2; right side of Figure 4s).

Statistical analyses of the entire group of infants showed that infants significantly preferred 

the changing stream at set size 1, t(32) = 3.07, p = .004, d = .54 (see Figure 5), but they 

failed to prefer the changing stream at set size 2, t(32) = −.34, p = .84, d = .06. We are 

assuming that the preference is a true effect at set size 1 and a null (or negligible) effect at 

set size 2, and these assumptions are based on two sources of evidence. First, several 

previous studies have found significant effects at set size 1 but not at set size 2 in 6-month-

old infants using variants of this procedure (Oakes, Baumgartner, Barrett, Messenger, & 

Luck, 2013; Ross-Sheehy, Oakes, & Luck, 2003). Second, we conducted a Bayes factor 

analysis (Rouder, Speckman, Sun, Morey, & Iverson, 2009) which indicated that the data 

from set size 1 were 8.9 times more likely to arise from a true effect than to arise from a null 

effect, and the data from set size 2 were 5.1 times more likely to arise from a null effect than 

from a true effect. Thus, we are justified in assuming that the data from this experiment 

reflect a true effect at set size 1 and a null or negligible effect at set size 2.

The estimates of the sample size needed to have 80% power given these effect sizes 

(assuming alpha = .05) is 18 for set size 1. Although infants as a group preferred the 

changing side at set size 1 (the blue circles) but not at set size 2 (the red circles), it is also 

clear that there was significant variability in infants’ responding (the individual circles in the 

graph). Moreover, one infant appears to be an outlier at set size 1; his or her mean 

responding was .233, which is 2.62 SDs below the mean. However, our standard exclusion 

criterion is for values that are 3 SD from the mean, and deciding whether and how to 

exclude outliers after having looked at the results can significantly affect the probability of 

Type 1 error (Bakker & Wicherts, 2014a, 2014b). Therefore, we did not exclude this infant 

from our analyses.

As a first step, we extracted from this sample of 33 infants two non-overlapping subsamples 

of 16 infants to simulate what might happen in experiments with a sample size of only 16 

infants. The results from these two subsamples presented in Figures 5B and 5C. Note that 

we would have drawn different conclusions if we had sampled only one of these two sets of 

infants. Specifically, for the first sample of 16 infants, the t test comparing mean preference 

score at set size 1 was not significant, t (15) = 1.07, p = .30, d = .268 (excluding the potential 

outlier infant changed the t test to t (14) = 1.99, p = .07, d = .52). The t test comparing the 

infants’ mean change preference score for set size 2 trials to chance was not significant, t 
(15) = −.07, p = .94, d = .02. Thus, from this sample, the results are ambiguous at best, and 

do not provide clear evidence that infants prefer the changing stream. For the second sample, 

the t test comparing infants’ set size 1 preference scores to chance was significant, t (15) = 

3.22, p = .006, d = .81, indicating that they did prefer the changing stream. Their preference 

for the changing stream at set size 2 was not significant, t(15) = −.07, p = .94, d = .02. If we 

had tested only the first sample of infants, we would have concluded that we had no 
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evidence that infants significantly preferred a change at set size 1—despite the fact that most 

of the infants in that sample had change preference scores above .50.

Of course, it’s possible that these two subsamples are not representative of what would 

typically occur with a sample size of 16 in this experiment. The first subsample described 

may have been particularly non-representative, and the results may have been non-

representative of subsamples of 16 infants in general. To test this possibility, we examined 

the effect of sample size more systematically using the Monte Carlo approach described 

earlier. For each of five different sample sizes (N = 8, N = 12, N = 16, N = 20, and N = 24), 

1000 experiments were simulated by randomly sampling (without replacement) from the 

larger sample of 33 infants. The result was 5000 subsamples of infants, and each subsample 

contained the data from 8, 12, 16, 20, or 24 infants. For each subsample, the mean change 

preference scores for both set sizes, as well as the t and p values when comparing each mean 

score to chance, were calculated. The distributions of mean change preference scores for set 

size 1 and set size 2 are presented in Figure 6. Each simulated experiment is represented in 

the figure as an individual diamond (one representing the mean change preference score for 

set size 1 and another representing the mean change preference score for set size 2). 

Importantly, when selecting infants to include in a subsample, their change preference scores 

for both types of trials were selected. Thus, the mean change preference scores for set size 1 

and set size 2 presented in Figure 6 represent the change preferences from the same 

subsamples; any differences between the scores do not reflect differences in the samples 

selected, but rather reflect differences in how those same subsets of infants responded on the 

two types of trials.

This visualization illustrates that the size of the sample has a significant impact on the 

distributions of the mean change preference for the samples. The distribution of the means 

for the simulated experiments with 8 infants has a larger spread than the distribution of 

means for the simulated experiments with larger numbers of infants—for both the positive 

outcome (set size 1) and the negative outcome (set size 2). This is further illustrated in 

Figure 7, which presents the proportion of subsamples with means in particular ranges. Note 

that many subsamples of 16 or fewer infants yielded mean change preferences scores that 

are below .55 at set size 1 (33% of the subsamples of 8 infants, 26% of the subsamples of 

12, and 22% of the subsamples of 16 infants) and above .55 at set size 2 (9% of the 

subsamples of 8 infants and 3% of the subsamples of 12 infants). If one of these subsamples 

had been the sample reported in the paper, we may have concluded that infants failed to 

detect a change at set size 1 and/or did detect a change at set size 2. Of course, this may be a 

legitimate conclusion for individual infants, but what is clear from the subsamples that 

included at least 20 infants, the group of infants as a whole did not show this pattern of 

responding.

The issue is further illustrated by the distribution of p-values when comparing the mean 

change preference scores for each subsample to chance (.50). This distribution is presented 

in Figures 8 and 9. In Figure 8, it is clear that the distribution of the p-values changes as the 

sample size increases. In Figure 9, it is clear that this is particularly true for set size 1. 

Interestingly, as the sample size decreases, the proportion of p-values that are less than .05 
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decreases for set size 1 and increases for set size 2, confirming that low powered studies 

both decrease true positives and increase false positives.

The take-home message is clear. If our study had included one of these randomly selected 

sets of 8, 12, or 16 infants in the actual experiment (rather than the entire group of infants), 

there is a non-trivial chance we would have concluded that we have no evidence of change 

detection at set size 1 or that we have evidence of change detection at set size 2. In other 

words, by having a sample size that is too small, we increase the likelihood of a study with 

ambiguous or false results. Considering again the problem of researchers whose abilities to 

recruit infants is limited. The data presented here suggests that collecting the data from a 

single study with 24 infants would be more likely to yield interpretable results than 

collecting the data from two studies with 12 infants each.

Examples 2 and 3

To confirm that these observations were not specific to a single study, sample, procedure, 

and/or dependent measure, we took this same approach in evaluating two unpublished 

datasets from my lab. These second and third samples are two experiments that were 

conducted using the same audio-visual stimuli in habituation procedures using the switch 
design. In each experiment, 32 10-month-old infants were habituated to two multimodal 

dynamic events; infants saw these events until they reached a habituation criterion of a 50% 

decrement of their initial looking to the events. Following habituation, infants were tested 

with one of the two familiar events and a switched event, in which the features of the two 

events were combined in a new way. The two experiments only differed in the ways the 

features were combined; in the first Experiment infants’ attention to the Action was 

observed and in the second infants’ attention to the Sound was observed. Therefore, in the 

following discussion I will refer to them as Experiment Action and Experiment Sound.

Mean looking times for test events in Experiment Action are presented in Figure 10; the 

results from the whole sample is presented in Figure 10A, and the results of two non-

overlapping subsamples of 16 infants are presented in Figures 10B and 10C. Statistical 

analyses of the whole sample revealed that this groups of infants significantly increased their 

looking to the novel stimulus compared to the familiar, t (31) = 3.36, p = .002, d = .59. The 

Bayes factor indicated that the data were 17.1 times more likely to come from a true 

difference than to come from a null effect, so we can be quite confident that these data 

reflect a real increase in looking. The first of the two subsamples of 16 infants showed 

ambiguous results; their increase to the novel event was marginally significant, t (15) = 2.09, 

p = .054, d = .522. The second subsample of 16 infants significantly increased their looking 

to the switch test, t (15) = 3.19, p = .006, d = .797.

The distributions of the mean difference scores (looking at switch – looking at familiar) 

obtained from the 1000 simulated experiments with subsamples of 8, 12, 16, 20, and 24 

infants are presented in Figure 11A. Again, these distributions differed as a function of 

sample size. The number of subsamples with means near the center increased as the number 

of infants in the subsamples increase. This is even clearer when looking at the distributions 

in Figure 11C. For the larger subsamples of infants, the mean difference between the switch 

and the test item is rarely less than 2 s (only 1% of the subsamples of 20 infants), whereas 
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this occurred with some frequency with smaller subsamples (e.g., 14% of the subsamples of 

8 infants had difference scores less than 2 s). Moreover, over 99% of the subsamples of 24 

infants and 97% of the subsamples of 20 infants had difference scores of greater than 4 s.

The results of the t tests comparing infants’ responding to the two tests confirmed the 

impression that larger sample sizes consistently more accurately represent the group of 

infants as a whole. The distribution of p-values from those t tests are presented in two forms 

in Figure 12. In Figure 12A, it is clear that although the p-values for larger subsamples 

rarely was over p = .05, there were many instances of larger p-values with subsamples of 

fewer infants. This is confirmed in the alternative way of visualizing these distributions in 

Figure 12C.

Experiment Sound was similar to the Experiment Action, except that the particular 

combination of features used differed. In this case, as illustrated in Figure 13, the group as a 

whole failed to significantly dishabituate to the switch event relative to the familiar event, t 
(31) = 1.46, p = .15, d = .26. The Bayes factor analysis favored the null hypothesis by a 

factor of 2.0, so it is likely that either the null hypothesis is true or the actual effect is quite 

small.

Two simulated experiments with non-overlapping subsamples of 16 infants showed different 

patterns. The first subsamples of 16 infants significantly dishabituated to the novel item, t 
(15) = 2.21, p = .018, d = .666. The second subsample of 16 infants as a group failed to 

respond differently to the familiar and switch tests, t (15) = .42, p = .68, d = .10, and actually 

looked slightly less to the switch than to the novel test event. Once again, we would have 

drawn very different conclusions from these two subsamples. If we had tested only the 16 

infants in the first subsample, we would have concluded that infants do dishabituate to the 

switch event, and they learned the association embodied by the habituation events. The null 

finding in the second sample of 16 infants casts doubt on this conclusion. The question is 

which of these findings more closely resembles the “true” effect?

The distribution of dishabituation scores to the switch from the simulations is revealing. 

Figure 11B shows how the distribution of difference scores changes with sample size. Note 

the differences in the distributions for Experiment Action and Experiment Sound. Although 

the two non-overlapping samples depicted in Figure 13 suggests that there may be some 

significant dishabituation, the distributions of the simulations presented in Figure 11D reveal 

that this significant dishabituation was rare. Moreover, large differences in looking to the 

switch and familiar test trials were more frequent in the subsamples of fewer infants than in 

the subsamples of more infants.

This observation is corroborated by the distributions of t values and the p-values. The 

distribution of p-values is presented in Figure 12. The effect of the size of the subsample is 

much subtler here than in the previous experiment. Across all subsample sizes, few 

subsamples yielded significant results (8% of subsamples of 8 infants, 12% of subsamples of 

12 infants, and 10% of subsamples of 16, 20, and 24 infants. Regardless of subsample size, 

more than 55% of the subsamples yielded p-values greater than .20.
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Conclusions

This paper has described the state of the field with respect to sample size in studies of infant 

looking time. The conclusions should be considered in light of several facts. First, the target 

sample sizes were based on an evaluation of all the published studies recording infants’ 

looking time in the top journals that publish much of this work. Second, the conclusions 

about specific sample sizes are only directly applicable to infant looking time studies—work 

that involves more trials, different dependent measures, automatic observation, etc., may 

yield different amounts of variability and effect sizes. Thus, although the conclusions about 

the importance of power and sample size are generally true, the specific sample and effect 

sizes reported here are representative only of this subset of the literature. Third, as is true for 

many areas of science, samples sizes appear to have been determined in large part by rule of 

thumb and convention. Unfortunately because data collection with infants is difficult, 

expensive, and time consuming, this has meant that many reported studies have relatively 

low power.

The problem of low power and relatively small sample sizes is not unique to this area of 

research. There has been significant debate about the effect of sample size on research, 

whether increasing sample sizes without making other changes will be effective, and about 

how best to calculate power. However, the simulations shown here are revealing. They show 

how the studies run in my lab would have differed if we had collected data from subsamples 

of different sizes. This is an important demonstration. For each of these studies, we could 

have had a target of only 16 infants per cell, and we would have stopped collecting data after 

just the first 16 infants tested. Note, moreover, that in the two positive cases, the effect sizes 

were medium—between .5 and .6. Thus, although when smaller subsamples showed 

significant differences, the effect sizes observed clearly over-estimated the true effect size. 

Thus, by using smaller sample sizes, the outcomes in many cases would have been different 

from the ones we ultimately observed. To be clear, the subsamples did yield the same results 

as was observed from the full sample more frequently than any other outcome—and most 

outcomes that differed only differed by a small amount. However, in these examples smaller 

samples would have increased the likelihood of observing ambiguous results—or even 

results that led to a very clear but different conclusion than the conclusion drawn from the 

full sample. Thus, by adopting the convention of using relatively small sample sizes in our 

work, we as a field are increasing the chances that the outcome of any single study is 

difficult to interpret or not representative of the most likely outcome from the study.

So what do we do? One obvious solution is to increase sample sizes. Of course, given how 

difficult it is to identify, recruit, and test infant research participants, it is unlikely that all 

infant looking time studies will involve very large samples. Moreover, it is not clear that all 

studies should have very large samples Indeed, it has been argued that for some areas of 

science, sample sizes should be determined by considering cost efficiency in addition to 

power (Bacchetti, Simon, Mcculloch, & Segal, 2009; Miller & Ulrich, 2016). It is not cleart, 

however, hat radical changes need to be made to the standard sample size in infant looking 

time studies to address the power problem, in general. Figure 14 illustrates the change in the 

power to observe effects of different sizes (these are Cohen’s d for paired comparison 2-

tailed t tests, alpha = .05). Note that although samples sizes of 8 provide insufficient power 
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to detect any of the effect sizes depicted, samples of 20 or 24 infants will provide sufficient 

power for effect sizes of approximately .60 and higher. Thus, it is not clear that the field 

needs to adopt a convention of testing hundreds of infants per cell, but we may have more 

consistent results if we relied on sample sizes of 20 to 32 per cell, rather than 12 to 24 

infants per cell.

Moreover, the cost of consistently relying on small sample sizes and low powered studies 

may be too high. For researchers who have difficulty collecting data from infants, spending 

the time to collect the data for a single study with 24 or 32 infants is likely to consistently 

yield more interpretable, replicable results than spending that same time collecting the data 

for 2 studies each with 12 or 16 infants—and collecting the data from 48 infants in one study 

will clearly yield more precise results than 4 samples of 12. Given the data presented here, it 

seems likely that by having larger target sample sizes, researchers may actually end up with 

fewer file drawer studies, and their efforts may yield more published products in the long 

run.

Increasing sample sizes is not the only solution, however, and other approaches to this 

general problem may be fruitful. A compromise might be found in the use of careful 

sequential hypothesis analyses (Lakens, 2014). In this approach, researchers identify a target 

final sample size (e.g., 48 infants), but conduct a test of their hypothesis at some interim 

point in data collection (e.g., 24 infants). By adopting a clear stopping rule and an approach 

that adjusts for the increase in Type 1 error, this method may allow researchers to efficiently 

conduct high-powered studies even with difficult samples such as infant subjects. 

Importantly, these designs depend on planned interim data analysis, as flexible, undisclosed 

interim data analysis and stopping rules may lead to an increase in the publication of false 

positive results (see Simmons, Nelson, & Simonsohn, 2011). The point is that by adopting 

ethical, transparent means of “peeking” at the data (see Sagarin, Ambler, & Lee, 2014, for a 

suggestion), researchers may more effectively and efficiently obtain the samples sizes 

required to have sufficient power to draw strong conclusions from their results.

There are other solution to the problem of small sample sizes, as described by Tressoldi and 

Giofré (2015). The use of Bayes factors instead of p-values has been increasingly described 

as one solution. The Bayes factor can be used to indicate the relative likelihood of the 

observed results arising from the null versus alternative hypotheses (Jarosz & Wiley, 2014; 

Rouder et al., 2009; Wagenmakers et al., 2015). It may be possible to combine this approach 

with sequential hypothesis testing (Schönbrodt, Wagenmakers, Zehetleitner, & Perugini, 

2015). Others have argued abandoning traditional testing altogether, with some suggesting 

that estimation statistics may be a reasonable alternative to traditional t tests (Claridge-

Chang & Assam, 2016). Others have explored the value of p-curving, or the evaluation of 

the distribution of p-values across a set of experiments (Lakens & Evers, 2014; Simonsohn, 

Nelson, & Simmons, 2014a, 2014b). This may be one way researchers can look at the data 

across a collection of relatively small sample studies to assess their value. Other alternatives 

are to conduct resampling analyses to evaluate the replicability of an observed result, for 

example using a Jackknife approach (Ang, 1998), or permutation analyses (Berry, Johnston, 

& Mielke, 2011; Huo, Heyvaert, Van Den Noortgate, & Onghena, 2014). For such 

approaches to be successful, authors, editors, and reviewers need to be open to other ways of 
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evaluating data, and using other approaches as the basis of our conclusions about those data. 

However, adopting new approaches may be critical for increasing our confidence about the 

conclusions we can draw from any particular finding, and as a result what conclusions we 

draw in general about our work. Although I have focused here on a narrow slice of infant 

research, these issues are important across methods, measures and questions.

Future work will make specific recommendations about how to address the issue of small 

sample sizes in infant looking time studies, or any subarea of infant development. Here I 

have illustrated an issue that we as a field need to address. In addition, by describing some of 

the approaches that are being considered in other areas of research, the hope is that infant 

researchers will expand the set of tools they use to evaluate their research to help draw the 

strongest conclusions from whatever sample sizes programs of research can support.
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