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Improvements in high-throughput sequencing makes targeted amplicon analysis
an ideal method for the study of human and environmental microbiomes by
undergraduates. Multiple bioinformatics programs are available to process and interpret
raw microbial diversity datasets, and the choice of programs to use in curricula is largely
determined by student learning goals. Many of the most commonly used microbiome
bioinformatics platforms offer end-to-end data processing and data analysis using a
command line interface (CLI), but the downside for novice microbiome researchers
is the steep learning curve often required. Alternatively, some sequencing providers
include processing of raw data and taxonomy assignments as part of their pipelines.
This, when coupled with available web-based or graphical user interface (GUI) analysis
and visualization tools, eliminates the need for students or instructors to have extensive
CLI experience. However, lack of universal data formats can make integration of these
tools challenging. For example, tools for upstream and downstream analyses frequently
use multiple different data formats which then require writing custom scripts or hours
of manual work to make the files compatible. Here, we describe a microbial ecology
bioinformatics curriculum that focuses on data analysis, visualization, and statistical
reasoning by taking advantage of existing web-based and GUI tools. We created
the Program for Unifying Microbiome Analysis Applications (PUMAA), which solves
the problem of inconsistent files by formatting the output files from several raw data
processing programs to seamlessly transition to a suite of GUI programs for analysis
and visualization of microbiome taxonomic and inferred functional profiles. Additionally,
we created a series of tutorials to accompany each of the microbiome analysis curricular
modules. From pre- and post-course surveys, students in this curriculum self-reported
conceptual and confidence gains in bioinformatics and data analysis skills. Students
also demonstrated gains in biologically relevant statistical reasoning based on rubric-
guided evaluations of open-ended survey questions and the Statistical Reasoning in
Biology Concept Inventory. The PUMAA program and associated analysis tutorials
enable students and researchers with no computational experience to effectively analyze
real microbiome datasets to investigate real-world research questions.

Keywords: microbiome, 16S rRNA, software tool, GUI (Graphical User Interface), undergraduate education,
curriculum, data visualisation, targeted amplicon sequencing
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INTRODUCTION

Engaging undergraduates in research has been consistently
demonstrated to increase students’ performance, attitudes, and
retention in sciences (Lopatto, 2004; Russell et al., 2007; Eagan
et al., 2013). In particular, course-based undergraduate research
experiences (CUREs) have been touted as an inclusive and
scalable model to bring these benefits to a diverse set of student
populations (Harrison et al., 2011; Bangera and Brownell, 2014;
Corwin et al., 2015; Shapiro et al., 2015; Hanauer et al., 2017).
Microbiome research using marker gene metabarcoding is an
attractive direction for CUREs, as sample collection is relatively
straightforward and advances in sequencing technologies and
reduced cost have made the acquisition of marker gene
microbiome data easier than ever (Clooney et al., 2016; Jovel
et al., 2016). The large microbiome datasets using a combination
of marker genes targeting bacteria and archaea (16S), eukaryotes
(18S), and fungi (ITS) give students an opportunity to ask a
variety of questions ranging from the composition of their own
oral microbiome to plant–microbe interactions (Rosenwald et al.,
2012; Sanders and Hirsch, 2014; Wang et al., 2015; Weber et al.,
2018; Parks et al., 2020; Sewall et al., 2020).

We designed a microbial ecology CURE as part of the
interdepartmental Competency-Based Research Laboratory
Curriculum at the University of California, Los Angeles
(Shapiro et al., 2015). In this two-term (two 10-week quarters)
curriculum students work in teams to conduct self-directed
research projects, with a focus on developing critical thinking
and quantitative skills. Under the umbrella of an instructor
designated overarching research question, students in the
microbial ecology CURE formulate and test hypotheses about
the microbiomes of different environments. The functional
profiles of microbial communities are just as important as the
taxonomic composition (Langille, 2018), and the questions of
“who is there?” and “what are they doing there?” are the guiding
questions for the curriculum. In the first wet-lab term they use
both cultivation-dependent techniques such as isolating bacteria
from the soil and characterizing their functional capabilities,
and cultivation-independent techniques such as extraction of
environmental DNA (eDNA) for 16S rRNA (16S) sequencing. In
the second computer-lab term they use a variety of phylogenetics
programs and bioinformatics tools for analysis of microbiome
taxonomic community profiles and Piphillin predicted functional
profiles (Narayan et al., 2020).

A major challenge for the development of microbiome
research for undergraduates is that marker gene amplicon
microbiome data provided by sequencing providers requires
a number of bioinformatic processing steps before it can be
easily analyzed and visualized, a process with which not all
instructors or researchers have familiarity (Carey and Papin,
2018; Garcia-Milian et al., 2018). Many of the available end-to-
end data analysis packages such as Quantitative Insights Into
Microbial Ecology (QIIME/QIIME 2) (Caporaso et al., 2010;
Bolyen et al., 2019), mothur, and the Pipeline for Environmental
DNA Metabarcoding Analysis (PEMA) (Zafeiropoulos et al.,
2020) have steep learning curves, requiring at least some
command line interface (CLI) programming skills, or familiarity

with R (R: The R Project for Statistical Computing) in the
case of phyloseq (McMurdie and Holmes, 2013, 2015) and
PEMA, in order to perform data analysis and visualization.
Teaching these skills may be outside the scope of the average
undergraduate microbiology classroom. Fortunately, there are
several microbiome data analysis and visualization tools that
do not require command line, such as the Shiny web app
ranacapa (Kandlikar et al., 2018) or locally installed programs
with graphical user interfaces (GUIs) such as Statistical Analysis
of Metagenomic Profiles (STAMP) (Parks and Beiko, 2010; Parks
et al., 2014) and Cytoscape (Shannon et al., 2003). These are
attractive tools for use in the undergraduate bioinformatics
classroom where there is lack of time to devote to the steep
learning curve necessary for installation and use of command line
programs (Mangul et al., 2017).

Even with the increasing availability of GUI analysis tools,
there is still the problem that the data output file formats from
QIIME or custom commercial and academic pipelines such as
MrDNA (mrdnalab, 2020) and Anacapa (Curd et al., 2019) do
not match the data input file formats required for the GUI
and web-based analysis and visualization tools. Formatting the
different analysis pathway files into a single pipeline is a non-
trivial task requiring either running scripts or hours of manual
reformatting. To address this problem, we created PUMAA,
the Program for Unifying Microbiome Analysis Applications,
which takes the output files from QIIME, Anacapa, or MrDNA
and reformats them directly for use in downstream GUI or
web-based applications for microbiome analysis. Additionally,
PUMAA both prepares files for upload to Piphillin for prediction
of functional genes from the 16S taxonomy data, and queries
the KEGG database to annotate the Piphillin gene predictions
(Iwai et al., 2016; Narayan et al., 2020). Inferring functional
profiles from 16S rRNA marker genes using programs like
PiCRUSt (Langille et al., 2013; Douglas et al., 2020) or Piphillin
are accessible options for researchers without the resources to
perform full functional metagenomics (Laudadio et al., 2019).

Since classroom time is limited and our curriculum learning
objectives focus on microbiome data analysis, visualization,
and statistical reasoning rather than learning programming
languages, the instructional staff runs the PUMAA program to
generate the files necessary for several different GUI or web-
based tools and provide them to students. The bioinformatics
curriculum is scaffolded such that the students’ progress in their
microbiome research from phylogenies of individual bacterial
isolates, to simple microbial community qualitative analyses,
to quantitative diversity metrics, to statistical analysis of the
microbial community profiles. We developed accompanying
instructional modules, video tutorials, and a lab manual to
teach students both the theory behind the analysis tools and
the skills needed for visualizing and performing biostatistical
methods on the data. The key tools and tutorials include
inferring phylogenetic trees, analyzing community profiles and
diversity metrics using Microsoft Excel pivot tables and ranacapa,
statistical analysis of taxonomic and inferred functional profiles
using STAMP, and using KEGG to assign functions to genes.

The curriculum was assessed using entry/exit surveys designed
to gauge the students’ confidence in integrating computational
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analysis with microbiology, and the Statistical Reasoning in
Biology Concept Inventory (SRBCI) (Deane et al., 2016). Analysis
of entry and exit surveys saw an increase in students’ self-reported
conceptual understanding and confidence levels in using the
analysis tools, as well as improved competencies with biostatistics
as demonstrated by improvement in the SRBCI post-test. The
PUMAA program and associated instructional materials provide
a scaffolded learning experience for undergraduate students
and make microbiome bioinformatics analyses accessible to
novice researchers.

PUMAA – PROGRAM FOR UNIFYING
MICROBIOME ANALYSIS APPLICATIONS
OVERVIEW

Analyzing metabarcoded microbiome data is a complex multi-
step process. Next-generation sequencing produces a variety of
data files, which then need to be processed and quality checked
before assigning taxonomic profiles (Zhang, 2016; Almeida et al.,
2018). Most sequencing providers include basic bioinformatic
processing in their pipelines, and provide taxonomic abundance
tables and sequence FASTA files along with the raw data. These
files can be then used in downstream analysis and visualization
applications. However, each taxonomic assignment platform and
analysis or visualization tool may have different data input and
output formats that need to be reconciled, or have significant
data pre-processing steps that need to occur before the various
analyses can be performed.

Some sequencing providers, such as MrDNA (mrdnalab,
2020), produce taxonomy abundance tables that must be
rearranged in order to be compatible with most visualization
programs, but even for those that are in the right general format,
many tools have specific formatting requirements. For example,
the STAMP tool enforces a “strict hierarchy” requirement where
no classification of taxonomy can exist at a lower level than
one which was left unclassified. The following classification,
from phylum to species: “Proteobacteria, Gammaproteobacteria,
Enterobacteriales, unclassified, Escherichia, unclassified,” will
produce errors in STAMP because the family is unclassified
even though the genus is classified. In addition, STAMP requires
that all unclassified columns must be labeled so and cannot
be left blank. Another tool, Cytoscape, requires that each
sample identification and taxonomic identification be a unique
row where the weight corresponds to the quantity of the
given instance in order to create a network type visualization.
Web server-based programs such as Piphillin (Iwai et al.,
2016) may have file size upload limitations, necessitating sub-
setting of the data. These formatting and processing steps
need to be carried out independently on the taxonomy or
functional data for each of the desired analysis and visualization
platforms (Figure 1A).

PUMAA, the Program for Unifying Microbiome Analysis
Applications, provides the solution to these problems by
integrating all of the formatting and pre-processing steps
required for the platforms and tools discussed here into a single
unified protocol with an easy installation procedure (Figure 1B).

In addition, PUMAA is easily expandable as it provides the
ability to add a new analysis tool or taxonomic ID platform
with one added operation. The PUMAA protocol unifies existing
data analysis and visualization tools by formatting common
amplicon (16S/18S/ITS) taxonomic data outputs from a variety
of sources to be compatible with the input formats required
for multiple basic and advanced microbiome analysis tools.
Additionally, PUMAA integrates Piphillin inferred functional
microbiome composition from the 16S taxonomy data. PUMAA
provides both a CLI as well as a GUI to accommodate a
spectrum of potential users. A CLI version is implemented
to allow users with UNIX experience, or those who are
interested in learning, to customize their analysis and build
upon/automate the provided scripts (Mangul et al., 2017). The
GUI is ideal for novice microbiome researchers with little
experience on UNIX based systems, who are interested in
quickly visualizing their microbiome marker gene amplicon data.
Initial installation of the GUI does require running a small
set of terminal installation commands, but subsequent usage is
straightforward.

PUMAA Supports Input From Various
Microbiome Data Pipelines
Currently PUMAA supports three microbiome raw data
processing platforms and/or services: MrDNA, Anacapa, and
QIIME 2 (Bolyen et al., 2019; Curd et al., 2019; mrdnalab, 2020).
PUMAA formats the taxonomic abundance tables and sequence
files created by these platforms for any marker gene amplicons,
including 16S, 18S, ITS, and others, for downstream analysis and
visualization (Figure 2).

MrDNA
MrDNA is a commercial full-service next generation sequencing
provider that offers 16S, 18S, and ITS amplicon sequencing on
a variety of platforms. Regardless of the sequencing platform,
MrDNA provides free comprehensive taxonomic analysis in
addition to raw data processing using their proprietary pipeline.
The pipeline generates operational taxonomic unit (OTU)
abundance tables with taxonomic identities and representative
FASTA sequence files at each taxonomic level (kingdom, phylum,
class, order, family, genus, species).

Anacapa
Anacapa is a software tool kit developed to process
environmental DNA (eDNA) sequence data and assign taxonomy
data for six marker genes targeting bacteria, archaea, algae, fungi,
protozoa, plants, and animals (Curd et al., 2019). Anacapa
creates a custom reference library for marker genes, generates
amplicon sequence variants (ASV), and assigns taxonomies at
each taxonomic level (domain, phylum, class, order, family,
genus, species). ASVs have been proposed as a finer resolution
replacement for OTU clustering based on sequence similarity
(Callahan et al., 2017). Anacapa output includes a detailed
taxonomy table with sequences and abundances for each ASV,
as well as tables with taxonomies summarized at various percent
confidence intervals.
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FIGURE 1 | The problem presented and the PUMAA solution. (A) The current problem is lack of unification of outputs from different taxonomic identification or
functional inference platforms (MrDNA, Anacapa, QIIME, etc.) and the input data required by prospective analysis and visualization tools (ranacapa, STAMP, QIIME,
Cytoscape, etc.). (B) PUMAA is a streamlined pipeline unifying the output files from multiple platforms and converting them to the input files necessary for varied
analysis and visualization tools.

QIIME
QIIME is a powerful and widely adopted package for processing
microbiome data, from raw sequences through taxonomy and
data visualization. Tutorials and published protocols are available
to walk users through standard data processing (Kuczynski et al.,
2011), but the scope of QIIME may be daunting for novice
users, even with the availability of the QIIME 2 Studio graphical
interface (Bolyen et al., 2019). It also remains difficult to convert
to other analysis/visualization platforms since QIIME provides
users with OTU files and sequence files in the ‘.qza’ format, which
is unique to its platform.

PUMAA Supports Piphillin for Inferred
Functional Profile Analysis
PUMAA formats taxonomic abundance (OTU or ASV) tables
and representative sequence files for prediction of metagenomic

content by Piphillin, which uses nearest-neighbor matching of
16S rRNA amplicons and full genomes (Iwai et al., 2016).
Piphillin has the added benefits of a web interface and the ability
to use any standard abundance table and representative sequence
FASTA file, rather than relying on taxonomic assignments
assigned from a specific reference phylogenetic tree, as in
PiCRUSt (Langille et al., 2013). PiCRUSt2 has an extended
database of reference genomes and broader compatibility, but
still requires use of the command line for implementation
(Douglas et al., 2020). A drawback to Piphillin is the 10 MB
limit placed on uploaded file sizes in the web version. PUMAA
addresses this by producing subset abundance and FASTA files
that comply with these limits. The subset files are uploaded
to the Piphillin server1, and reference database and percent
identity cutoffs are chosen [PUMAA currently only supports

1https://piphillin.secondgenome.com/
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FIGURE 2 | Protocol of the PUMAA software. (A) The first panel as part of the “User File Input” displays the simple protocol to be performed by the user such as
uploading metadata and various data formats of supported operational taxonomic unit, sequence, and functional file types. (B) The second panel as part of the “User
File Input” displays the two forms of user interaction with PUMAA, through the GUI and CLI, which will enable community and functional profile analysis. (C) “User
Analysis” shows the possible platforms for visualizing community/functional composition data enabled by user input such as STAMP, Excel, QIIME 2, and Cytoscape.

KEGG (Kanehisa, 2000; Kanehisa et al., 2004)], then results are
emailed to the user as compressed.tar files. The other drawback
to Piphillin is that it provides abundance tables for all predicted
genes and pathways (identified by K and KO numbers), but
not the associated annotations to assign biological information
to the K/KO numbers. To address this, the PUMAA inferred
function protocol also performs queries to the KEGG database
in order to properly annotate the genes and pathways returned
by Piphillin. Prior to PUMAA, this annotation process required
command-line experience or labor-intensive manual curation.

PUMAA Supports a Variety of Analysis
and Visualization Platforms
There are a wide variety of research questions that can be
addressed using amplicon microbiome data, and the methods
used for data analysis and visualization will vary based on the
needs of the researcher. PUMAA focuses on processing and
formatting user data to be compatible with a suite of readily
available web-based or GUI data analysis and visualization
tools. Using the PUMAA supported tools, researchers can
explore data and test hypotheses by linking groups of samples
or environmental parameters, otherwise known as metadata,
to diversity metrics, community composition, and inferred
functional profiles.

We have integrated PUMAA into a broad range of research
analysis options (from simple to advanced) and visualization
types (from bar charts to network analyses). In addition, PUMAA
has options to complete data processing such as rarefaction
subsampling to normalize for variation in sequence numbers

between samples (McMurdie and Holmes, 2014; Willis, 2019),
multiple sequence alignment (MSA) using MUSCLE (Edgar,
2004), and inference of phylogenetic trees using FastTree
(Price et al., 2010).

Microsoft Excel
Microsoft Excel pivot tables are an easy way to begin
to summarize the massive amounts of data in taxonomic
abundance tables for visualizations of the overall community
profile of different samples at different taxonomic levels (i.e.,
kingdom/domain, phylum, class, order, family, genus, species).
Excel can also be easily used to make simple (non-statistical)
comparisons of sample abundances at different taxonomic levels.

ranacapa
ranacapa (Kandlikar et al., 2018) is a user-friendly Shiny web
application designed to explore biodiversity using environmental
DNA metabarcoding data. It includes interactive visualizations
and brief explanations of sequencing depth, alpha and beta
diversity, and taxonomy distribution analyses such as bar plots
and heatmaps. ranacapa was developed as an extension of the
Anacapa toolkit (Curd et al., 2019), but can prove slightly
difficult to access from other taxonomic identification platforms,
like that of MrDNA.

STAMP (Statistical Analysis of Metagenomic Profiles)
STAMP (Parks et al., 2014) is a downloadable graphical interface
that can quickly generate publication-quality graphics for
differential abundance analysis of either taxonomy or functional
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pathway data without the need to write code or use command-
line interface. STAMP supports parametric and nonparametric
statistical hypothesis testing for two-sample, two-group, and
multiple-group comparisons. It emphasizes the use of effect size
and confidence intervals in assessing biological relevance, and
supports a variety of visualizations, including heatmaps, PCA
plots, extended error bar plots, box plots, and bar plots.

QIIME 2 (Quantitative Insights Into Microbial Ecology)
QIIME 2 (Bolyen et al., 2019) provides numerous interactive and
advanced data visualization tools and plugins for evaluation of
metagenomic profiles (Caporaso et al., 2010; Kuczynski et al.,
2011). Although QIIME can be used for end-to-end data analysis,
some researchers may receive data processed by other platforms
(e.g., MrDNA or Anacapa) and wish to feed the data back into the
QIIME pipeline for analysis.

Cytoscape
Cytoscape (Kohl et al., 2011) is a unique open-source
locally downloadable tool that enables the visualization of
networks between community and functional profiles. Basic
network analysis and visualization can be performed with
the core distribution, with many additional features available
as Cytoscape Apps.

Methods – PUMAA Protocol
Overview
The user executes a single script for both the GUI and
CLI versions in order to execute the program. The PUMAA
protocol consists of two key parts: (1) Production of all files
for taxonomic community analysis, and (2) production of all
files required for inferred functional analysis. PUMAA solves
the problem of going from any of the taxonomic identification
platforms to the multitude of visualization and analysis tools
available by enforcing standardized files as part of the unification
process. The user first obtains input files from one of the three
supported pipelines (MrDNA, Anacapa, or QIIME2), identifies
the metadata necessary for identifying and comparing samples
(Figure 2A), and chooses to run PUMAA through either the GUI
or CLI (Figure 2B). PUMAA verifies that the metadata sample
IDs match the input data, then produces output files that can be
used for a variety of analysis platforms (Figure 2C).

Protocol: PUMAA Installation and Requirements
PUMAA is freely available under the Apache-2.0 license at
https://github.com/keithgmitchell/PUMAA and is supported by
MacOSX and Linux; in addition, PUMAA works on Windows
machines after installing the Linux subsystem Comprehensive
installation instructions are provided on the Github page. Given
software install is handled using conda, all versions of MacOSX
and Linux that support the conda environment management
software are viable options for usage and make for consistent and
user-friendly install (Mangul et al., 2019). Issues or questions with
the software can be submitted using the github issues feature:
https://github.com/keithgmitchell/PUMAA/issues.

PUMAA is written in Python and the application’s GUI
is written using the Django web framework running locally.

The example datasets all run on a laptop and use <1GB
of memory when the MSA and Phylogenetic tree production
is set as false. The QIIME 2 and MrDNA datasets run on
a laptop and use <1GB of memory when the MSA and
Phylogenetic tree production is set as true. The Anacapa
dataset was unsuccessful on a laptop with 16GB RAM and
was evaluated using a high-performance computing (HPC)
cluster with 32GB of RAM and 3 h of runtime. Therefore,
to produce a MSA and phylogenetic tree for datasets of
this size, access to an HPC cluster, experience with CLI,
and experience running jobs on HPC clusters may be
required (Table 1).

Protocol: PUMAA Verifies Metadata
The user uploads their metadata describing the samples,
taxonomy abundance (OTU or ASV) table and sequences from
any given supported platform. The first part of the PUMAA
protocol verifies the metadata and the taxonomy table to be sure
the two files have consistent, alphanumeric sample identifiers
which are unique compared to other forms of metadata validation
(Rideout et al., 2016). This is a critical step as identifiable
metadata is necessary for many downstream analysis steps, and
some tools limit the types of characters accepted in the sample
identifiers (e.g., underscores, but not periods, are acceptable in
sample IDs in ranacapa).

Protocol: PUMAA Produces Files for Community
Profile Analysis
PUMAA performs a variety of functions on the taxonomic
abundance and sequence files in order to support the suite
of tools discussed above. These functions include optional
sample rarefaction at a user defined depth and number
of iterations (max = 10) (Weiss et al., 2017), multiple
sequence alignment by MAFFT (Katoh and Standley, 2013),
phylogenetic tree construction via FastTree 2 (Price et al.,
2010), and file formatting and annotation for ranacapa, STAMP,
QIIME 2, Piphillin, and Excel. The protocol produces files
for community profile analysis in the folder ‘output,’ or
some other specified directory as an argument in the CLI.
The output folder contains time-stamped subfolders for each
PUMAA run, each containing subfolders with ready-to-run files
for community profile analyses in Microsoft Excel, STAMP,
ranacapa, and Cytoscape. In addition, pre-processed feature
table (taxonomy), metadata, and phylogenetic tree files are
created that can be imported directly into the QIIME 2 pre-
configured virtual machine. A variety of analyses such as
alpha- and beta-diversity can be performed in QIIME 2, as
well as principal component analysis based on phylogenetic
diversity metrics.

Protocol: PUMAA Produces Files for Inferred
Functional Profile Analysis
The PUMAA protocol consists of three steps necessary
for the generation and visualization of inferred functional
profiles. The first step is automatically performed at the
same time as the generation of the community profile
analysis files. PUMAA creates a “piphillin” subfolder in
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TABLE 1 | Dataset size, runtime, and memory usage with no rarefaction performed across the three example datasets.

Dataset Dataset size
(ASV/OTU count

*10,000)

Fasta file size
(MB)

Runtime
(minutes)

FastTree/MAFFT
peak memory

usage (GB)

Python memory
usage (GB)

MrDNA examples 0.3229 0.868 0.0778 0.207 0.02

QIIME 2 examples 0.0759 0.115 0.00517 0.044 0.02

Anacapa examples 3.6 1.789 1.24 12 0.075

the time-stamped output subfolder. This folder contains the
original data formatted as a ‘phiphillinotu.csv’ taxonomic
abundance table and a ‘phiphillinseqs.fasta’ representative
sequence file. If the FASTA file exceeds the file size limit of
10 MB enforced by the Piphillin server, PUMAA subsamples
the data into the number of necessary file sets of ‘.fasta’
and ‘.csv’ files (e.g., piphillinseqs1.fasta; piphillinseqs2.fasta;
piphillinotu.csv1.csv; piphillinotu.csv2.csv). Second, each of the
sets of Piphillin files in the output directory are uploaded to the
Piphillin functional inference web server, which returns ‘.tar’ files
to the user via email.

Finally, the ‘.tar’ files can then be run directly in the
PUMAA protocol, which produces files for functional analysis
that can be visualized using many of the same tools used
for community profile analysis, including STAMP, Excel, and
QIIME 2. Importantly, the PUMAA protocol also performs
queries to the KEGG database using the KEGG genes to
pathway API in order to properly annotate the Piphillin gene
estimations (Kawashima et al., 2003). The BRITE hierarchy
file of the KEGG database is downloaded and used to
evaluate the functional hierarchy based on Piphillin pathway
estimations. This ensures that estimated gene expression levels
and hierarchy levels are inferred using the actively updated
information. Annotating the genes and pathway expression from
Piphillin is necessary when producing data visualizations with
informative identifiers, and greatly reduces the need for manual
querying of KEGG.

PUMAA produces a timestamped output subfolder for
the functional profile files, including a gene description and
functional hierarchy file designated for use in STAMP and Excel.
This file contains annotated gene names and functional pathways,
as opposed to just “K number” identifiers, and vastly increases the
efficiency and ease of data analysis and visualization. PUMAA
also produces weighted functional network files for usage in
Cytoscape, which is a platform for visualizing important gene
networks between samples.

Sample Data
The sample data used here and in the tutorials was generated
by UCLA students in the winter and spring quarters of 2018,
where they investigated the effect on rhizosphere microbial
communities following the Skirball wildfire of December
2017 (Skirball Fire, 2020). Sample collection kits and sample
sequencing were provided by the California Environmental
DNA (CALeDNA) program, a community science initiative
monitoring California’s biodiversity through eDNA (Meyer et al.,
2019), and the 16S sequences were processed using the Anacapa

toolkit (Curd et al., 2019). The sample data for QIIME 2 is
the same as the “moving pictures” human microbiome example
dataset available on the QIIME 2 website2.

Results
PUMAA Input and Output Files
The PUMAA pipeline creates output files formatted specifically
for the needed input files for each of the data analysis and
visualization platforms described in Supplementary Table 1.

PUMAA – CURRICULUM OVERVIEW

The Microbiology, Immunology, and Molecular Genetics
(MIMG) undergraduate degree program at UCLA requires the
completion of a two-quarter authentic research experience. An
option to fulfill this requirement is to take the MIMG 109AL/BL:
Research Immersion Laboratory in Microbiology series. This
laboratory series is designed to prepare its students with the
proper background and training to work in microbiology
research, and has been demonstrated to improve their critical
thinking and research skills as part of the life science curriculum
(Shapiro et al., 2015). The 109AL/BL laboratory curriculum is
discovery-based and driven by student-generated hypotheses
tested using both cultivation-dependent and cultivation-
independent techniques. The first term emphasizes experimental
design and isolation of bacteria in a wet lab environment, and
the second term focuses on the analysis of 16S sequencing data
from individual isolates and 16S rRNA microbial community
profiles. Students work in teams to conduct an original research
project within the context of an overarching research question
for the microbial ecology course, focusing on the interactions
between plants and soil-associated bacteria. Recent course
projects have involved collaborations with researchers at
UCLA and beyond studying plant–microbe interactions in
California grasslands (Kandlikar et al., 2020), analysis of the
soil microbial communities of a Los Angeles urban farm (St.
Clair et al., 2020), and a longitudinal study on the recovery of
soil microbial communities following the 2017 Skirball fire in
Los Angeles, CA, United States. The Skirball fire project was
conducted in conjunction with the California Environmental
DNA (CALeDNA) program’s efforts to catalog California’s
biodiversity (Meyer et al., 2019).

In order for the MIMG 109AL/BL lab series to respond to
the need for more computationally minded scientists (Bialek and
Botstein, 2004; Campbell et al., 2007; Brewer and Smith, 2011), it

2https://docs.qiime2.org/2020.2/tutorials/moving-pictures/
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was necessary to introduce new modules and tutorials that would
sufficiently integrate bioinformatics and statistics with biology in
ways that aspiring undergraduate researchers can comprehend
(Aikens and Dolan, 2014). We created a comprehensive set
of step-by-step tutorials (documents, presentations, and videos)
designed to provide students with the necessary theory and
skills to use the GUI analysis and visualization tools described
in Section 2.3 (Excel, ranacapa, and STAMP), as well as the
theory behind inference of metagenomic functional profiles using
Piphillin. Although not a biostatistics course, the PUMAA-
associated curriculum allows these students to learn about the
computational tools available to researchers and the importance
of integrating their knowledge of microbiology with statistical
and quantitative support.

All tutorials are publicly available at https://sites.google.com/
g.ucla.edu/pumaa/home.

First Term – Sample Collection and
Bacterial Isolation/Characterization
The first term of the curriculum takes place in the wet lab and
closely follows the cultivation-dependent experiments described
in units 1–4 of the “I, Microbiologist” (Sanders and Miller, 2010)
course textbook and lab manual. In brief, students collect bulk
soil and decide on enrichment strategies for isolation of bacteria
related to their research questions (e.g., antibiotic production and
resistance or plant growth-promoting properties). Students then
perform phenotypic characterization of bacterial isolates and 16S
rRNA PCR and sequencing. In addition to collecting bulk soil for
cultivation-dependent experiments, students also collect separate
soil samples for environmental DNA (eDNA) extraction and
16S rRNA high-throughput sequencing for bacterial community
profile analysis.

Second Term – Bioinformatics Analysis
of 16S rRNA Genes Using PUMAA
In the second term, students use bioinformatics to interpret,
expand, or refine 16S rRNA gene datasets generated in
MIMG 109AL. Students generate 16S rRNA phylogenetic
trees to assign taxonomic identities to their isolates and
use statistical tools to make comparisons of the microbial
communities from different environments. The course is
divided into five Core Concept Modules. The first module
(Phylogenetic Trees) concludes the analysis of bacterial isolates,
and the other four modules focus on microbiome data
analysis and visualization using the PUMAA output files:
Community Profiles, Diversity Metrics, Statistical Analysis of
Taxonomic Profiles, and Inferring Metagenomic Functional
Profiles (Figure 3A). Students could also elect to perform
optional advanced independent analysis on their data using
QIIME or Cytoscape. Each of the modules includes written
and/or video tutorials and was assessed with a combination of
reading assessments and reflection questions (Figure 3B). This
bioinformatics course was assessed using pre- and post-course
concept inventories and surveys. Learning objectives, activities,
and tutorials for each of the Core Concept Modules are outlined
in Supplementary File 1.

Curriculum Assessment Methods
Study Sample
The study sample consisted of six cohorts of junior and senior
level students who enrolled in MIMG 109BL (Advanced Research
in Microbiology) in Spring 2016, Spring 2017, Winter 2018,
Spring 2018, Winter 2019, and Spring 2019. This yielded an
initial population of 143 students. Table 2 provides a summary
of demographic characteristics for these students. Instructor
J.M.P. taught the spring cohorts and instructor A.F. taught the
winter cohorts. Prerequisites for enrollment in MIMG 109BL
included MIMG 109AL (Research Immersion in Microbiology)
and either Statistics 13 (Introduction to Statistical Methods
for Life and Health Sciences) or Life Sciences 40 (Statistics of
Biological Systems).

Assessment Data Collection and Analyses
The study utilized two sources of data: student assignments
and self-report surveys. Data collected included qualitative and
quantitative measures. UCLA’s Institutional Review Board (IRB)
gave approval to work with human subjects on all aspects of the
assessment (IRB #10-000904).

Administration of Self-Report Surveys
Two self-report surveys were administered to all students in
the course. Surveys included a broad collection of open- and
closed-ended questions, some developed by the instructors and
evaluation team. Students were given the entry survey at the
start of the second term and asked to indicate how well
they thought they understood key learning goals related to
data analysis and their confidence in their ability to analyze
data using various visualization plots. The exit survey was
completed at the end of the term and had matched questions
to the first survey, as well as additional survey questions asking
them to assess the quality and usefulness of the tutorials and
instructional materials. Both surveys also included open-ended
content-related questions. The surveys were piloted in 2016
and 2017 and were given to students anonymously through the
course management system as low-stakes (completion points)
assessments to increase response rate and reduce response
bias (Furnham, 1986). Starting in Winter 2018, these items
were added to a comprehensive curricular assessment plan
administered electronically by external evaluators (see Shapiro
et al., 2015) for details on survey data collection). Of the 143
students who took the course between Spring 2016 and Spring
2019, 141 completed the first survey (98.6% response rate) and
132 completed the second survey (92.3% response rate). The
surveys are available as Supplementary File 2.

Administration of SRBCI Concept Inventory
The Statistical Reasoning in Biology Concept Inventory (SRBCI)
is a series of multiple-choice questions to test students on
concepts including statistical significance, basic graph/trend
interpretation, and assessing hypotheses based on results (Deane
et al., 2016). The twelve questions on the SRBCI pre- and post-
tests are designed to identify students’ common misconceptions
in statistical analysis and track their learning progress as a
result of the pedagogical interventions. The concept inventory
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FIGURE 3 | Microbiome analysis course schedule with pedagogical interventions. (A) The progress of the course followed the concept goals as outlined in yellow.
(B) The pedagogical interventions are described, with tutorials in blue and assessment materials in purple.

TABLE 2 | Study sample demographics.

Number of
students (N)

Percent of
students (%)

Female 81 56.6%

Transfer studenta 34 23.8%

URMb 34 23.8%

Pell Grant Recipientc 53 37.1%

Total 143 100%

Academic terms: Spring 2016, Spring 2017, Winter 2018, Spring 2018, Winter
2019, Spring 2019. aTransfer to UCLA, usually from a 2-year institution. bUnder-
Represented Minority (URM) students include American Indian, Native American,
Black Non-Hispanic, and Hispanic students. cReceived Pell Grant for one or
more terms while enrolled at UCLA; Pell Grant Recipient is a proxy for low
socioeconomic status.

was administered as an anonymous low-stakes (ungraded) in-
class activity at the start and end of the second term to the
first two cohorts of students in Spring 2016 and Spring 2017.
The study design, intended to gauge authentic learning gains
across the curriculum by reducing “math anxiety” (Ashcraft
and Moore, 2009), necessarily resulted in the inability to
assess individual student learning gains using this metric.
The pre-test and post-test were administered to a total of
52 and 50 students, respectively. Statistical reasoning gains
between the pre-test and post-test groups were assessed using
descriptive and Mann–Whitney nonparametric tests to account
for variations in sample size.

Analyses of Closed-Ended Quantitative Survey Data
The closed-ended survey questions quantitatively ranked the
students’ agreement with a statement or confidence with a certain
concept using a five-point Likert scale ranging from “Not at
all” to “Very well/Very confident.” Scores for matched questions
were averaged across all participants to compare results from
the Entry and Exit Surveys. Survey items asking students about
the usefulness of learning activities were rated on a five-point
Likert scale where 1 = “Don’t remember,” 2 = “Not useful,”
3 = “Somewhat useful,” 4 = “Very useful,” and 5 = “Essential.”
Descriptive analyses of matched pre/post-survey close-ended

items were conducted to explore students’ change in self-
reported confidence and changes in their self-reported levels
of understanding. To test for statistical differences between the
overall means of the Entry and Exit Survey items, descriptive
and Mann–Whitney nonparametric tests were performed on the
combined survey data from all cohorts to account for variations
in sample size. Because the responses for the Spring 2016 and
Spring 2017 surveys were anonymous, we were unable to pair the
data by student. Wilcoxon signed ranks (paired nonparametric)
tests were conducted on just the surveys administered by the
external evaluators from Winter 2018 to Spring 2019, in order
to see if there were differences between the all the data and the
matched data. Since both sets of tests were significant, we were
confident in using the aggregated data and the Mann–Whitney
nonparametric tests to report our results.

Analyses of Open-Ended Qualitative Survey Data
Open-ended questions related to course content were included
in the Entry and Exit surveys, allowing students to respond in
their own words. Of particular interest was a question that asked
students to describe the relationship between p-value (statistical
significance) and effect size (biological significance). A 4-point
rubric assessing students’ level of proficiency with statistical
concepts was used to gather direct evidence of student learning
gains (Supplementary File 3). Student responses to open-ended
questions were scored on a scale of 1 point = no familiarity
(i.e., students indicated that they are not familiar with the
concept), and 2–4 points for novice, intermediate, and advanced
proficiency, respectively. Responses left blank were unscored.
All student responses (both pre and post) were randomized
and pooled by the external evaluator, then provided to the
raters. The rubric was developed and refined by J.R., A.F., and
J.M.P. through iterative rounds of scoring a subset of sample
responses followed by consensus discussion. All responses were
scored independently by all three raters, and interrater reliability
(IRR) as determined by Randolph’s free-marginal multirater
kappa, was 0.49 (61.8% overall agreement) indicating moderate
agreement. To account for the IRR variations, the median score
for each response was used to assess whether pre-post gains
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were statistically significant between the groups using both the
Mann–Whitney nonparametric test and a t-test.

Curriculum Assessment Results
Conceptual and Confidence Gains From
Self-Reported Surveys
We wanted to assess if students would be able to formulate and
statistically test hypotheses linking environmental parameters

(metadata) to diversity metrics, community composition, and
inferred functional profiles. Students were assessed using
entry/exit surveys designed to gauge the students’ comfort with
integrating computational analysis with microbiology. At the
beginning of the term the students reported, on average, “very
little” understanding of key learning objectives such as how to
use and assess the results of bioinformatics databases, and which
statistical tests to use and how to interpret them (Figure 4A).
By the end of the term students reported they understood these

FIGURE 4 | Average ranked responses to selected entry and exit survey questions. In self-reported survey questions, students were asked to indicate (A) their level
of understanding of key learning goals, (B) their confidence in their ability to analyze common data plots, and (C) their confidence in their ability to analyze aspects of
phylogenetic trees. Average scores on a five-point Likert scale are reported for matched questions. A score of 1 = Not at all, 2 = Very little/Not very, 3 = Fairly
well/confident, 4 = Quite well/confident, and 5 = Very well/confident. Students reported significant gains in their understanding and confidence in all categories
(p < 0.001).
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TABLE 3 | Ranked usefulness of STAMP learning activities.

STAMP learning activity Average score on
five-point Likert
Scale (N = 131)

Hands-on use of the program 4.5

One-on-one discussions with instructional staff 4.3

Tutorials (documents and videos) 3.6

Reading/reading assessment of STAMP user guide or articles 3.0

concepts on average “fairly well” to “quite well,” a statistically
significant change based on Mann–Whitney nonparametric tests
for all measures (p < 0.001). Of note, students were generally
less confident of their understanding of “the advantages and
limitations of various statistical tests (e.g., Do you know when
to use a T-test over a one-way ANOVA)?” at the end of the term.
This result was somewhat to be expected because the statistical
analysis tool they used, STAMP, aims to promote best practices
by suggesting a statistical hypothesis test based on the input data
(Parks and Beiko, 2010). Therefore, students had limited practice
with this particular skill.

In addition to performing statistical tests, STAMP generates
a variety of data visualization plots, and we wanted to assess
how confident students were in their ability to analyze these
plots (Figure 4B). Mann–Whitney results indicated a statistically
significant change in students’ self-reported levels of confidence
(p < 0.001). Specifically, at the start of the term students
reported being “fairly” to “quite” confident in their ability
to analyze common plots such as scatter plots, bar plots,
and histograms. They had much less confidence, however, in
their ability to interpret principal component analysis (PCA),
heat maps, and extended error bar plots. By the end of
the term they were “quite confident” on average in their
ability to analyze most of the plots, and had dramatically
improved their confidence in PCA, heat map analyses, and
extended error bar plots. Another key learning objective of
the course was the ability to interpret phylogenetic trees and
analyze their statistical support (Figure 4C). At the start of
the term, students reported being “not very” confident in their
ability to assess bootstrap or resampling values, which are an
indication of the of statistical confidence in a clade (Efron et al.,
1996), and “not very” to “fairly” confident in their ability to
interpret topology and evolutionary distances. By the end of
the term, students had significantly increased their confidence
in their ability to analyze all aspects of phylogenetic trees
(p < 0.001).

Tutorials
STAMP was an essential component of the curriculum and was
central for many of the student data analysis and visualization
learning outcomes. We wanted to find out which learning
activities the students found to be the most helpful in preparing
them to use and interpret data in STAMP. Students reported
that tutorials we created were useful, but perhaps unsurprisingly,
it was actual use of the program and discussing it with
the instructional staff that the students found to be essential

(Table 3). All tutorials are publicly available at https://sites.
google.com/g.ucla.edu/pumaa/home.

Statistical Reasoning and Conceptual Gains
Measured by the SRBCI and Open-Ended Survey
Responses
We used the SRBCI to directly assess student learning gains in
core concepts related to repeatability of results, variations in data,
hypotheses and predictions, and sample size. Students took the
pre-test in the first week of the term and the post-test at the end of
the term following the completion of all of the analysis modules.
Scores for the pre-tests and post-tests were binned by number of
correct responses and plotted to compare the overall distribution
of scores (Figure 5). The distribution of the post-test scores is
more skewed to the right, demonstrating overall improvement on
the SRBCI for the combined cohorts. Statistical reasoning gains
between the pre-test and post-test groups were assessed using
a Mann–Whitney nonparametric test. There was a statistically
significant increase in pre-test (Mean = 58.7%, Mean Rank = 44.3,
N = 52) to post-test (Mean = 69.3%, Mean Rank = 59.0, N = 50)
scores (p = 0.01) on the SRBCI.

A rubric-guided assessment of an open-ended survey
question was used to determine whether the curricular
interventions resulted in an increased understanding of the
relationship between statistical significance (p-value) and
biological significance (effect size). At the beginning of the term,
63.9% of students had no familiarity with the concept or held
novice understanding, meaning the responses indicated they
didn’t know, or they had multiple or complete misconceptions
(Figure 6). By the end of the term, 78.4% of students held
intermediate to advanced levels of understanding, and were able
to demonstrate conceptual understanding of the relationship
to varying degrees. The rubric scores from the Exit survey
(Mean = 3.14, Mean Rank = 164.4, N = 125) were significantly

FIGURE 5 | Distribution of Student scores on the SRBCI pre-test and
post-test. The number of students plotted on the vertical axis is binned by the
number of correct responses shown on the horizontal axis. The blue columns
represent the pre-test scores and yellow columns represent the post-test
scores. There was a significant increase in the SRBCI scores from the pre-test
to the post-test (p = 0.01).
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FIGURE 6 | Conceptual gains in understanding the relationship between statistical and biological significance. Student responses to the open-ended question were
evaluated using a rubric to assign them a level of competency from 1 = No familiarity, 2 = Novice, 3 = Intermediate, and 4 = Advanced. The primary axis indicates the
percent of student responses demonstrating each level of competency for the entry and exit surveys. Blue indicates lower competency levels and yellow indicates
higher competency levels. The secondary axis indicates the average score for all responses; there was a significant increase in the average score from the entry
surveys to the exit surveys (p < 0.001).

higher than the Entry survey (Mean = 2.26, Mean Rank = 96.7,
N = 135) by both the Mann–Whitney and t-tests (p < 0.001).
These results demonstrate the shift from lower levels of
competency to higher levels of competency in understanding the
relationship between statistical and biological significance.

DISCUSSION

The increased availability of microbiome and other “big
data” data sets has coincided with calls for life science
undergraduates to have bioinformatics “minimum skill sets” or
“core competencies” in order to meet the growing demand to
analyze that data (Tan et al., 2009; Welch et al., 2016; Mulder
et al., 2018; Sayres et al., 2018). PUMAA has been in use in the
Research Immersion in Microbiology undergraduate laboratories
at UCLA for a number of years, resulting in the development of
a suite of instructional materials and tutorials to train students
in many of the bioinformatics skills necessary to meet this
demand. This curriculum focused on quantitative literacy, which
is the intersection of critical thinking, math/statistics, and real-
world contexts, and has been highlighted by the Association
of American Colleges and Universities as an essential skill
for undergraduates (Elrod, 2014). The PUMAA curriculum
and associated analysis and visualization tools gave students
opportunities to use multiple bioinformatic approaches to
analyzing their data. Repeated practice with tools and integration
of said tools into student-driven research projects increased self-
reported confidence with data visualization and analysis. For
example, use of STAMP enabled students to perform statistical
tests on microbiome community and functional profiles, and
improved their competence with statistical concepts such as
statistical significance and biological significance. This was of

particular interest due to the tendency of notice researchers to
over interpret p-values and disregard the importance of effect
sizes and confidence intervals (Nakagawa and Cuthill, 2007;
Martínez-Abraín, 2008).

PUMAA presents a user-friendly, time-and-cost-effective
approach to processing, analyzing, and visualizing marker gene
microbiome data. It improves the accessibility and range of
available microbiome investigations by providing users with
a simple way to unify the output of various taxonomic
identification platforms with a suite of tools for data analysis
and visualization. The protocol accomplishes this by producing
properly configured, formatted, and annotated files for analysis of
taxonomic community profiles and inferred functional profiles.
This process of data manipulation can often be performed by
sequencing services for additional fees or completed by users
with significant time commitment, both of which could be
barriers for those with funding or time constraints. PUMAA
is an open-source solution which is highly accessible to a wide
spectrum of users, including undergraduates or other researchers
interested in learning to conduct microbiome analyses, as it
can be used as a GUI as well as a CLI. It provides an easy
and flexible interface for a variety of users requiring a clear
and brief interface for production of files needed for diversity
analysis and data visualization for analysis of targeted amplicon
sequencing studies. The demand for tools that meet this need
is evidenced by the recent development of DNA metabarcoding
data processing tools like the web-based SLIM (Dufresne et al.,
2019) and minimal coding-required PEMA (Zafeiropoulos et al.,
2020). Both of these tools produce OTU and/or ASV tables from
raw metabarcode data that could be incorporated into the PUMA
input pipeline for downstream data analysis and visualization.

In practice, the instructional staff runs the PUMAA program
and provides students with files ready for use in Excel, ranacapa,
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STAMP, and other tools. One limitation of this approach is
that students do not get direct experience with command-
line bioinformatics, which is one of the core competencies
for undergraduate life sciences education described by several
different bioinformatics curriculum committees (Tan et al., 2009;
Welch et al., 2016; Mulder et al., 2018; Sayres et al., 2018).
However, the International Society for Computational Biology’s
Curriculum Task Force has refined their core competencies
and designated different user profiles requiring different
levels of competency (Mulder et al., 2018). For example,
an undergraduate in a 10-week microbial ecology course
may be considered a “bioinformatics user,” rather than a
“bioinformatics scientist” or “bioinformatics engineer,” and the
steep learning curve required to gain CLI skills may not be
practical with the limited time available. We focused instead
on training students to perform all of the bioinformatic
analyses needed for an authentic course-based undergraduate
research experience in microbial ecology. PUMAA is not
intended to replace comprehensive CLI tools such as QIIME
or mothur, but rather serve as an entry point for novice
researchers to analyze and visualize their datasets. Students
that express interest in expanding their bioinformatics skills
can be directed to a wealth of tutorials and resources for
learning to code.

The PUMAA program and the curriculum described here
have the potential to have a wide impact by making marker
gene microbiome research accessible to researchers with multiple
levels of experience, and with the included instructional module
documents, it can be practically implemented in a classroom
setting for undergraduates.
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