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Abstract 

The Seiberg-Witten map for noncommutative Yang-Mills theories is 
studied and methods for its explicit construction are discussed which are 
valid for any gauge group. In particular the use of the evolution equation is 

.described in some detail and its relation to the cohomological approach is 
elucidated. Cohomological methods which are applicable to gauge theories 
requiring the Batalin-Vilkoviskii antifield formalism are briefly mentioned. 
Also, the analogy of the Weyl-Moyal star product with the star product of 
open bosonic string field theory and possible ramifications of this analogy 
are briefly mentioned. 

*email address: BLCerchiai@lbl.gov 
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1 Introduction 

Noncommutative field theories have recently received much attention. Seiberg 
and Witten [1] have argued that certain noncommutative gauge theories are 
equivalent to commutative ones and iri particular that there exists a map from 
a commutative gauge field to a noncommutative one, which is compatible with 
the gauge structure of each. This map has become known as the Seiberg'-Witten 
(SW) map. 

In two recent papers [2, 3] we have discussed a cohomological method for 
constructing explicitly this map.· Here we describe a slightly modified proce
dure based on the idea that the structure equations of the gauge group of t~e 
noncommutative theory are a deformation of those of the gauge group of the 
commutative theory. We will consider gauge theories on the noncommutative 
space defined by 

(1) 

where 8 is a constant Poisson tensor. The "*" operation is the associative 
Weyl-Moyal product 

/ 

(2) 

We believe that our methods are much more general, and cari• in fact be used 
even when 8 is not constant; but in this paper we shall make use of the fact 
that the xi derivative 8; of functions satisfieS the Leibniz rille with respect to 
the star product 

8;(! *g) = (8d) * g -i-f* (8;g), (3) 

just as it does with respect to the ordinary product. This simple relation requires 
8 to be constant. 

2 Structure Equations 

The structure equations of a gauge group can be expressed in terms of a ghost 
field A(x) and the gauge potential a;(x) by giving the action of the BRST 
operators 

SA 
sa; 

iA ·A, 

8;A .:._ ia; · A + iA · a; . 

(4) 

(5) 

Here A and ai are valued in a Lie algebra and can be represented by matrices, 
the matrix elements of the ghost field being anticommuting functions of x. In a 
representation the product would imply matrix multiplication. The operator s 
is an odd superderivation of ghost number one 

s(f. g) 
s2 

(sf) · g ± f · sg, 

0, 

1 

(6) 

(7) 



which commutes with the derivatives 

SO;= O;S. (8} 

As usual, the signs in (6) depend on the parity of f. Our task is to deform the 
above structure equations into 

sA 

sA; 

iA*A, 

a;A- i[A; ~A], 

(9} 

(10} 

where A;= A;(a,aa,a2a, .. . ) is an even localfunctional of a;, of ghost number 
zero, and A = A(A, a A, ... , a, aa, .. . ) is an odd local functional of a; and A, of 
ghost number one (like A). We takes to be undeformed and to satisfy (7}, (8} 
and 

(11} 

The solution consists in finding explicit expressions for the functionals A; and 
A. This can be done as expa~ions in B 

A A(o) +A (I) + ... , . A (o) = A , 

A;. A}Ol .f. A~ I) + ... ' A~o) = a; . 

The first order terms were given already in [1] 

A(I) 1 kl . . . . . 

4o {akA,at}, 

where 

(12} 

(13} 

(14} 

(15} 

(16} 

is the commutative field strength, and expressions for A <2> and A}2l are known [2, 
4, 6], see also below. 

A systematic way to obtain the expansion. in 8 was described in [2, 3] and 
the consistency of the procedure was demonstrated in [7]. Each order in 8 is 
manifestly local. 

One sees already from (14} and (15) that A and A; cannot be Lie algebra 
valued .in general, and we foilow [5, 6fby allowing them to be in the enveloping 

. algebra of the Lie alg~bra of A and a;. A representation of this Lie algebra lifts 
naturally to a representation of its enveloping algebra. 

3 Evolution Equations · 

There. is an alternative approich for the study of the SW map, which is based 
on a differential equation [1]. Let u8 introduce a "time" parameter t in front 
of8, in such a way that Oii --'+ tOii, A--:-+ A(t) and A;--:-+ A;(t)., while keeping 

• • ! . . • . . • 
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s independent oft. Notice that A and A; acquire a t-dependence through fJ. 
Differentiating the structure equations (9) and (10) with respect tot, we obtain1 

. 
sA 

sA;. 

where 

i A * A + iA * A +iA ; A, 

A;* A+ A* A; +D; A -iA;; A+ iA; A;, 

D; = a; - i[A; ~ · ] 

(17) 

(18) 

(19) 

is the covariant derivative at time t. The star product itself depends on the 
evolution parameter t, and therefore it has also to be differentiated 

(20) 

Explicitly this yields 

(21) 

Notice that for simplicity we have restricted ourselves to a linear path iri fJ-space, 
i.e. we are considering a linear one-parameter family of deformations of fJ. In 
principle it would be possible to consider an arbitrary variation with respect to 
fJ corresponding to an arbitrary path in fJ-space, like e.g. in [4]. 

The structure of the right hand side of (17) and (18) leads in a natural way 
to the definition of a new operator2 at time t: 

{ 

s-i{A~·} 
~t= 

s-i[A~·] 

on odd quantities, 
(22) 

on even quantities. 

It has the following properties 

~tA; = a;A, ~; = 0, [~t, D;] = 0, 

~t(!I *h) = (~t!I) * h ±!I* (~th), 

(23) 

(24) 

i.e. ~t is nilpotent, it commutes with the covariant derivative at time t and it 
satisfies a super-Leibniz rule. This is a consequence of the fact that 

sa;= a;s, (25) 

·and of the associativity of the star product. Therefore, ~t can be interpreted 
as· a coboundary operator in a suitably defined cohomology. 

Using the operators ~t and D; the equations (17) and (18) can be rewritten 
as 

1 kl 1 kl -;l akA* azA = - 2B Bk * B~, (26) 

• 1 ~ • 1 ~ 
~t A; D; A +-fJ {akA;~ azA} = D; A +"2fJ {akA;~ Bz}. (27) 

1 As customary the dot denotes differentiation with respect to t. 
2 .C.t is a simple generalization of the operator t. int~oduced in [2], which now should be 

called .O.o. Also, what was called & in [3] should now be called t>.1. 
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Here we have introduced·the notation 

(28) 

which is useful because only derivatives of A enter in the right hand side of (26) 
and (27), but never A itself. The action of ~t in terms of these new variables 
Ak and Bk takes· a particularly simple form 

(29) 

With this action the conSistency condition that ~t applied to the right hand 
side of equation (26) vanishes is verified. For (27) we find that ~t on the right 
hand side gives 4llk1 [~tFki ~ Bt]. We will comment on this later in section 4. 

The differential evolution equations which provide a solution to the equations 
(26), (27) are given by [1] 

. 
A 
. 

Ai 

where 

(30) 

(31) 

(32) 

is the noncommutative field strength. This can be easily checked by substituting 
the8e' exprbsio~ in (26) and (27). 

4 The Homotopy Operator 

There is .a way of computing the expressions (30) for A and (31) for 1L through ... ' .. 
a suitably defined homotopy operator Kt. Clearly, it is not possible to invert 
~t, because it is nilpotent, but if we construct an operator such that 

(33) 

then an equation of the form 
~d=m, (34) 

with··.: 
(35) 

has a solution of the type 
(36) 

.because. 
(37) 

The solution (36) is not unique: Ktm + ~th, with some appropriate h, is also 
a solution, since ~F = 0. This is the same method we applied for t = 0 in 

4 



[2, 3], which closely follows the ideaS developed in [8] to study anomalies in 
chiral gauge theories. 

Let us construct such a homotopy operator Kt explicitly. We start by defin
ing a linear operator Kt such that 

(38) 

On both Ak and Bk it satisfies 

Kttlt + t:.tkt = 1. (39) 

Further, we require that it is a super-derivation 

(40) 

and that it commutes with D; and anticommutes with s 

(41) 

Notice that due to (39) Kt has to be odd and it" decreases the ghost number 
by one. Moreover, it is nilpotent on A;, B; 

K'f=O. · (42) 

On monomials of hlgher order in Ak and Bkl the homotopy ope~ator Kt 
cannot satisfy the Leibniz rule. If d is the total o~der cif such a monomial m, 
then the action of Kt on it has to be defined as 

(43) 

It is extended to general polynomials by linearity. Then Ki satisfies· (33) and 
from (42) it follows that 

K'f=O. (44) 

Now, we can use Kt to recover the solutions (30), (31) of the equations (26), 
(27). For A this is straightforward. We apply Kt to the right hand side of (26) 
and we get 

. 
A (45) 

which coincides with (30). 
For the gauge potential, however, there is a complication. If we apply tlt to 

the right hand side of (27) we obtain 

( 
. 1 kl{ . }).:· 1 kl. l 

tlt D; A +28 8kA; ~ B1 · = 28 [tltFki ~ B1 , (46) 
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where fl.tFki = DkBi- DiBk + i(Bk, Ai] + i(Ak,Bi]. This expression vanishes 
only if we impose the condition that 

(47) 

This property is true if we explicitly use the definition (28) of B; = 8;A, but 
it has to be set as an additional constraint in the algebra generated by the A;, 
the B; and their derivatives. In other words, such an algebra is not free. The 
homotopy operator Kt can be defined only on B. In order to solve this problem, 
we can add to the right hand side of(27) a term which is zero by the constraint 
·(47), but which makes the fl.t of it vanish algebraically. For this purpose we can 
choose e~g. ~8k1 {fl.tFki ~ Az} and consider the expression 

(48) 

Then . 
(49) 

algebraically and. we can apply.the homotopy_ operator to Ui and obtain (31). 
This is the same procedure we have proposed in (2] and (3] to treat t~e analogous 
difficulty. 

5 Solutions to higher order In(} 

Observe that we can recover the first order in the 8 expansion as 

A(t) (50) 

(51) 

which yields the well-known solution found by Seiberg and Witten [1]. More in 
general, once we have the expressions (30) and (31) to first order, the evolution 
equations provide a useful method for computing the terms of higher order in 8 
by just noticing that 

(52) 

Therefore, by simply differentiating with respect to t, we cari ·compute. A (n) and 
A~n). This is an alternative and easier technique than applying the homotopy 
operator order by order as suggested in [2, 3]. 

In particular to second ·order ~e get 

A 

A; 

6 

(53) 

(54) 



Notice that the equation for ~~~ contains· a;t~~1;, while the equation for a;t~; 
depends only on a;t1; , k = 0, ... , n- 1. This means that the equations for A are 
independent from those for A. We need to compute A first and only afterwards 
we can substitute it in the expression for A. If we use the homotopy operator, 
exactly the opposite happens, we ·need the expression Ior "A (n) first in order to 

obtain A~n). If we insert the expressions {30) for .A and {31) for A1 w~ obtain 

A = 1~oii{Jkl ({{a; akA~ Aj} + {a;A ~ akAj} A,J 

- {8;A nAk ~ 8tAi+ Flj}} (55) 

+2i [8;8kA ~ 8iAd). 

6 Ambiguities 

The solution {55) has to be compared to other known solutions of the SW map 
at the second order, like e.g. (4] or (6]. Before doing that, let us remark that 
the solutions of (26) and (27) are not unique. This has been commented on by 
a number of authors (2, 3, 4, 6, 9, 14]. 

If we start with the structure equations (9), (10) 

sA iA*A, 

sA; 8;A- ~[A; ~A], 

and consider a change in (} by an amount §(}, then we see that 

1 kl .6. OA = - 2oo 8kA*8tA, (56) 

where the star product and the fields are at t = 1 and where & is the same as 
.6.t fort= 1. Therefore, given a solution (c5A) 0 of this equation, 

c5A = (OA)0 + .6.H (57) 

is also a solution; because of the nilpotency of .6.. 
Similarly, for the gauge potential a change in (} induces a change in A; 

. determined by 

(58) 

Therefore, given a solution (c5A;) 0 corresponding to (c5A)0 , the solution corre-
sponding to (c5A)o + .6.H is . ' 

(59) 

where S; is :an arbitrary local functional of ghost number 0 satisfying 

.6.8; = 0. (60) 
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This is a consequence of the fact that .6. commutes with the covariant derivative: 
D;.6. = .6.D;. The ambiguities determined by H are of the form of a gauge 
transformation. 

Due.,to the definition of .6. the condition (60) means that S; transforms 
covariantly 

(61) 

This covariant ambiguity is of a different type from the gauge ambiguity. It can 
be interpreted as a field dependent redefinition of the gauge potential. 

The ambiguities of gauge type are an infinitesimal version of the Stora in
variance (3] of the structure equations (9), (10) 

A -> a-1 *A*G+iG-1 *sG, 

A; -> a-1 *A;* G+iG-1 *8;G, (62) 

where G is an arbitrary local functional of ghost number 0. 
If we compare the solution to second order given in (55) fort= 0 

(2) 1 •• 
A . = 2 Alt=O (63) 

with the solution A'(2 ) found in (4] we see that 

A(2l..,-A'(2
) = 6~eklemn~o({{Dmak+Dkam-fkm,an},ai} (64) 

.. - [[ak, am], fnl]), 

which is an ambiguity of the gauge type. 

7 Actions 

Until this point, we have discussed the defonhatiim of gauge structures and 
their representations in terms of Yang·Mills fields, without any reference to the 
dynamics of the fields themselves. To specify the dynamics, we must construct 
actions that are invariant under the deformed gauge transformations 

sAi = 8;A- i[A; ~A], 
sF;i = -i[F;i ~ Aj. 

(65) 

The procedure is analogous to the construction of commutative Yang-Mills 
theory. One arrives at the expression · · · 

(66) . 

where F;j is the noncommutative field strength given by (32), and the trace is 
the ordinary matrix trace in the appropriate representation. The proof of the 
invariance of (66) under (65) is based on the properties 

J dx f * g = J dx f g = J dx g * !, 
f dx Tr M * N = f dx Tr N * M, 

8 

(67) 



the latter of which is valid for any pair of matrix valued functions, when surface 
terms are ignored. Hence, the integral of the trace is invariant under any cyclic 
permutation of its factors, also in the presence of the star product. Since the 
fields A and F are generally valued in the enveloping algebra, we have to use 
the Seiberg-Witten map in order to make sense of (66) as a theory with a 
finite number of degrees of freedom, namely those of a;. To first ~rder in the 
deformation parameter B, we find 

YM 1 J 4 . . 1 kl J ·. .,., . : 
S = - 4 d xTr /;j/'1 + 

16
B . cJ:ixTr /kd;i/'1 -

-~Bkl J d4~Tr f;kfidkl + O(B2), (68) 

where fii is the commutative field strength given by (16). 
We would like to remark that at the level of free fields there is no differ

ence between commutative and noncommutative theoriE\s; because the proper
ties (67) guarantee that the star product disappears from arty quadratic action. 
It is only when interaction terms are present that the commutative and the 
noncommutative theories are in fact different. However, interaction terms are 
always present in the action (66), even if the gauge group is U(1), because of 
the star commutator teqn in the ·expression (32) for F: · 

In addition to the pure Yang-Mills theory, one can construct a noncommu
tative version of any action With a gauge-invariance, simply by replacing each 
ordinary product of functions With a star product, leaving the matrix multipli
cation and the trace unchanged, and finally expanding each noncommutative 
field by means of the Seiberg-Witten map associated With the deformed gauge 
structure. In particular, Yang-Mills theories with matter fields in various rep
resentations have been considered by several authors. 

Another gauge-invariant action that can be constructed in terms of gauge 
potentials only is the Chern-Simons action in three dimel1Sions. Hs deformed 
counterpartis obtained as described. above and is · 

(69) 

where the subscript t refers to the parameter of the evolution equation described 
in section 3. . 

If one were to expand (69) by means of the Seiberg~ Wjtten map, one would 
find that it is in fact identical to the undeformed action [iO]. 'In other words 

sf8 [A] = Sf8 [a]. (70) 

This can be proven to hold at all orders in the deformation parameter, by 
showing instead 

d cs[ ] . 
dt St A = 0, Vt. (71) 

The total t-derivative is computed using 

(72) 
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and the evolution equation for A 

A• - 1 rs{ * 8 A } k- -48 Ar , s k + Fsk . (73) 

In this context, itis worth noting that the WZW model in two dimensions shares 
the same property, namely the identity of the actions for the commutative and 
the noncommutative version [11], and that the WZW model in two dimensions 
is related to the Chern-Siinons action in three. 

8 Concluding remarks 

In this paper we have limited ourselves to gauge theories of the Yang-Mills type 
and have based our analysis on the structure equations {4) and (5) (which involve 
BRST transformations) and their deformation. This formulation is sufficient 
for Yang-Mills theories, but for gauge theories with reducible gauge transfor
mations, such as theories with gauge potentials which are differential forms of 
degree higher than one, it is appropriate to use the antifield formalism of Batalin 
~~d'Vilkoviskii (BV). The deformation of the g~uge structure should then be 
studied by defining generalized Seiberg-Witten maps in the context of the BV 
formalism [12, 13, 14] .. The use of the master equation couples intimately the 
gauge transformations and the dynamics, i.e. the action functional. 

The existence of the SW map, together with the understanding of its ambi
guities, can be interpreted as a kind of ''rigidity" of the structure of the gauge 
group, analogous to the rigidity of serriisimple Lie algebras under smooth defor
mations of the structure constants: the structure constants can be brought back 
to their original values by performing a linear transformation on the generators. 
In the case of gauge groups the deformed structure equations can be reduced to 
the undeformed equations by expressing the deformed fields (e.g. Ai and A) as 
local functionals of the undeformed fields (ai and .A). Strictly speaking, we have 
discussed only infinitesimal gauge transformations iri a context in which only 
the space-time coordinates are.deformed. Thus, we have ignored all questions 
for which the topology of the gauge group may be relevant when the gauge fields 
are quantized [15). 

As explained in the introduction, throughout this paper we have considered 
the ca.S~ of (Jii · independent of x. Techniques of deformation quantization are 
availabl~ for an x-dependent Poisson tensor (see, e.g. [16, 17), and references 
therein, where general coordinate transformations for quantized coordinates are 
also studied). It would be interesting to extend to that case the results described 
in the. previous sections. 

Recently, several authors have pointed out the analogy of the Weyl-Moyal 
star product with the associative, noncommutative star product which enters in 
the formulation of Witten's bosonic open string field theory [18, 19, 20, 21, 22, 
23). It .would be interesting if methods of deformation quantization developed 
in the context ofthe Seiberg-Witten map, would turn out to be useful in string 
field theory. 

10 
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