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A Neurobiologically Motivated Analysis of Distributional Semantic Models

Akira Utsumi (utsumi@uec.ac.jp)
Department of Informatics, The University of Electro-Communications

1-5-1, Chofugaoka, Chofushi, Tokyo 182-8585, Japan

Abstract

The pervasive use of distributional semantic models or word
embeddings is due to their remarkable ability to represent the
meanings of words for both practical application and cognitive
modeling. However, little has been known about what kind of
information is encoded in text-based word vectors. This lack of
understanding is particularly problematic when distributional
semantics is regarded as a model of semantic representation
for abstract concepts. This paper attempts to reveal the internal
knowledge encoded in distributional word vectors by the anal-
ysis using Binder et al.’s (2016) brain-based vectors, explicitly
structured conceptual representations based on neurobiologi-
cally motivated attributes. In the analysis, the mapping from
text-based vectors to brain-based vectors is trained and predic-
tion performance is evaluated by comparing the estimated and
original brain-based vectors. The analysis demonstrates that
social and cognitive information is predicted with the highest
accuracy by text-based vectors, but emotional information is
not predicted so accurately. This result is discussed in terms of
embodied theories for abstract concepts.

Keywords: Distributional semantic models; Word vectors;
Brain-based representation; Embodied cognition; Emotional
and social information; Abstract concepts

Introduction

One of the most important advances in the study of seman-

tic processing is the development of distributional semantic

models for representing word meanings. In the distributional

semantic model, words are represented as high-dimensional

vectors, which can be learned from the distributional statistics

of word occurrence in large collections of text. Any words

that occur in the corpus can be learned regardless of their part-

of-speech class, abstractness, novelty and familiarity. This is

an important advantage of text-based distributional semantic

models over other spatial models of semantic representation

such as feature-based (Andrews, Vigliocco, & Vinson, 2009)

and image-based vectors (Silberer, Ferrari, & Lapata, 2017).

Word vectors have been employed in a variety of research

fields and many successful results have been obtained. In the

field of natural language processing (NLP), deep learning has

recently been applied to a number of NLP tasks such as ma-

chine translation and automatic summarization, and achieved

the impressive performance as compared to the traditional

statistical methods. One of the reasons for the successful re-

sults is the use of word vectors as semantic representations for

the input and output of recurrent neural networks (Goldberg,

2017). Research on cognitive science also benefits greatly

from distributional semantic models (Jones, Willits, & Den-

nis, 2015). Word vectors have been demonstrated to explain

a number of cognitive phenomena relevant to semantic mem-

ory or mental lexicon, such as word association (Jones, Grue-

nenfelder, & Recchia, 2017; Utsumi, 2015), semantic prim-

ing (Mandera, Keuleers, & Brysbaert, 2017), semantic trans-

parency (Marelli & Baroni, 2015) and conceptual combina-

tion (Vecchi, Marelli, Zamparelli, & Baroni, 2017). Further-

more, recent brain imaging studies have demonstrated that

distributional word vectors have a powerful ability to predict

the neural brain activity in cerebral cortex evoked by lexi-

cal processing (Mitchell et al., 2008; Huth, de Heer, Griffiths,

Theunissen, & Gallant, 2016; Anderson, Kiela, Clark, & Poe-

sio, 2017). These findings show that distributional seman-

tic models reflect the representational structure of semantic

knowledge in the brain.

Despite the fact that successful results are obtained in many

research fields, relatively little has been known about what

kind of information or knowledge is encoded in word vec-

tors. Some existing studies have addressed this question,

demonstrating that text-based word vectors reflect perceptual

(Louwerse & Connell, 2011; Riordan & Jones, 2011), emo-

tional (Recchia & Louwerse, 2015; Tillmand & Louwerse,

2018), and social (Hutchinson & Louwerse, 2018) informa-

tion. However, no direct comparison among a wide variety

of information has been made with respect to the representa-

tional ability of distributional semantic models. This lack of

understanding makes distributional semantic models unable

to predict human language behavior and performance at the

same level of detail and precision of other cognitive models.

It also limits further improvements on the practical perfor-

mance of word vectors for many NLP tasks.

In this paper, therefore, we attempt to reveal the internal

knowledge encoded in text-based word vectors by compre-

hensively exploring their representational ability of various

types of information. Our approach to this problem is to

simulate a brain-based semantic representation (Binder et al.,

2016) using text-based vectors. This semantic representation

comprises 65 attributes (listed in Table 1) based entirely on

functional divisions in the human brain. Each word is repre-

sented as a 65-dimensional vector and each dimension rep-

resents the salience of the corresponding attribute, namely

the degree to which the concept referred to by that word is

related to that attribute. Because these attributes are based

on not only sensorimotor experiences but also affective, so-

cial, and cognitive experiences, we can analyze distributional

word vectors considering a wide variety of information. In

the analysis, we trained the mapping from the text-based vec-

tors to the brain-based vectors, by which brain-based vectors

of untrained words are predicted.

The secondary purpose of this paper is to discuss the rela-

tionship between the embodied theory for abstract concepts

and distributional semantic models from the results of the

analysis. Recently, it has been accepted that language or lin-

guistic experience is much more important for representing

and acquiring abstract concepts than for concrete concepts,

because abstract concepts are unlikely to be grounded in per-

ceptual and sensorimotor experiences (Borghi et al., 2017). 1

A number of approaches have been proposed to explain the
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Table 1: 65 attributes used in brain-based vectors

Domain Attributes

Vision Vision, Bright, Dark, Color, Pattern, Large, Small,
Motion, Biomotion, Fast, Slow, Shape, Complexity,
Face, Body

Somatic Touch, Temperature, Texture, Weight, Pain

Audition Audition, Loud, Low, High, Sound, Music, Speech

Gustation Taste

Olfaction Smell

Motor Head, UpperLimb, LowerLimb, Practice

Spatial Landmark, Path, Scene, Near, Toward, Away, Num-
ber

Temporal Time, Duration, Long, Short

Causal Caused, Consequential

Social Social, Human, Communication, Self

Cognition Cognition

Emotion Benefit, Harm, Pleasant, Unpleasant, Happy, Sad,
Angry, Disgusted, Fearful, Surprised

Drive Drive, Needs

Attention Attention, Arousal

Table 2: Example of words represented as brain-based vectors

Category Word Category Word

plant apricot, rose, tree human actor, girl, parent

vehicle car, subway, boat social action celebrate, help

place airport, lake, lab visual property black, new, dark

role of language as a simple shortcut (Barsalou, Santos, Sim-

mons, & Wilson, 2008) or indirect grounding in perceptual

or sensorimotor experiences (Louwerse, 2011; Dove, 2014),

and the need for other information such as emotional (Kousta,

Vigliocco, Vinson, Andrews, & Del Campo, 2011) and social

information (Borghi & Binkofski, 2014). Because text-based

word vectors can be regarded as realizations of linguistic ex-

periences, the analysis of internal knowledge encoded in text-

based word vectors is expected to provide implications for

recent embodied approaches to abstract concepts.

Method

In order to explore the information encoded in distributional

word vectors, we evaluated how accurately they can simulate

Binder et al.’s (2016) brain-based vectors. The simulation

was performed by training the mapping from text-based vec-

tors to brain-based vectors and applying the trained mapping

to the text-based vectors of untrained words. Prediction per-

formance was evaluated by comparing the estimated brain-

based vectors with the original brain-based vectors.

Brain-based Vectors

As mentioned above, we used Binder et al.’s (2016) brain-

based componential representation of words as a gold stan-

dard. They provided 65-dimensional vectors of 535 words

comprising 434 nouns, 62 verbs and 39 adjectives, some of

which are listed in Table 2. The 65 dimensions listed in

Table 1 correspond to neurobiologically plausible attributes

1Note that there are some suggestions that some abstract con-
cepts are grounded in sensorimotor experiences (Connell & Lynott,
2012; Dreyer & Pulvermüller, 2018).

whose neural correlates have been well described. These

attributes were selected according to two fundamental prin-

ciples; they correspond to distinguishable neural processors

that can be identified by an extensive body of evidence from

brain imaging and neurological studies, and they can con-

tribute to concept acquisition and composition.

Elements of the brain-based vector represent the degree of

salience of attributes for the target word. Binder et al. (2016)

collected these values using Amazon Mechanical Turk. Par-

ticipants of the survey were given a single word and ques-

tions such as “To what degree do you think of this thing as

a characteristic or defining color ” (for the attribute Color)

with some examples, and asked to rate the degree on a 7-point

scale ranging from 0 to 6. Collected ratings were averaged for

each word and attributed after data screening, and these mean

ratings were used in brain-based vectors.

Word Vectors

In order to ensure the generality of the findings obtained

through the analysis, we constructed six semantic spaces,

which were obtained from the combinations of three distri-

butional semantic models (SGNS, GloVe, PPMI) and two

corpora (COCA and Wikipedia). As distributional seman-

tic models, we used three representative models, namely

skip-gram with negative sampling (SGNS; Mikolov, Chen,

Corrado, & Dean, 2013), GloVe (Pennington, Socher, &

Manning, 2015) and positive pointwise mutual information

(PPMI) with SVD (Bullinaria & Levy, 2007). SGNS and

GloVe are prediction-based models that train word vectors

by predicting context words on either side of a target word,

while PPMI is a counting-based model that trains word vec-

tors by counting and weighting word occurrences. We set a

vector dimension d = 300 and a window size w = 10 for all

semantic spaces.

Two corpora used in the analysis were English Wikipedia

dump of enwiki-20160601 (Wiki) and Corpus of Contempo-

rary American English (COCA). The Wiki and COCA cor-

pora include 1.89G and 0.56G word tokens, respectively. We

built a vocabulary from frequent words that occur 50 times

or more in Wiki corpus 2, or 30 times or more in COCA cor-

pus. As a result, the vocabulary of Wiki and COCA contained

291,769 and 108,230 words, respectively. These two cor-

pora differ in that Wiki is a raw text corpus that is untagged

and unlemmatized, while COCA is a fully tagged and lemma-

tized corpus. For Wiki corpus, raw texts were extracted from

the dump files using WikiExtractor.py 3 and no other pre-

processing such as lemmatization was applied.

Learning Methods for the Mapping

We used two learning methods, namely linear transformation

(LT) and multi-layer perceptron (MLP). LT trains a mapping

matrix M such that B=WM where B is the matrix with brain-

based word vectors as rows and W is a matrix with text-based

word vectors as rows. MLP trains a neural network with one

2Out of 535 words for brain-based vectors, only one word “jovi-
ality” was not selected as frequent words for Wiki corpus. Hence,
we added it to the vocabulary for Wiki corpus.

3http://medialab.di.unipi.it/wiki/Wikipedia Extractor
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Table 3: Mean correlations over all attributes

SGNS GloVe PPMI

Wikipedia MLP 0.576 0.522 0.483

LT 0.549 0.450 0.429

COCA MLP 0.634 0.554 0.440

LT 0.598 0.494 0.454

hidden layer comprising 150 sigmoid units and a linear out-

put layer. In both methods, the mapping was trained by min-

imizing the mean squared error, and gradient descent with

AdaGrad was used as an optimization method.

Estimation of brain-based vectors from text-based vectors

was performed by a leave-one-out cross validation proce-

dure. For each of the 535 words, we trained the mapping

between brain-based and text-based vectors of the remaining

534 words and estimated a brain-based vector for the target

word using the trained mapping. By repeating this procedure

for all words as a target, we obtained B̂ with estimated brain-

based vectors as rows.

Performance Measure

Prediction performance of the estimated vectors was mea-

sured using Spearman’s rank correlation ρ between the esti-

mated brain-based matrix B̂ and the original matrix B. 4 We

performed two analyses: column-wise and row-wise matrix

correlation. The column-wise matrix correlation indicates

the estimation accuracy for each attribute, while the row-wise

correlation indicates the accuracy for each word.

Result

Correlation Analysis by Attribute

We evaluated the prediction accuracy for attributes by com-

puting column-wise matrix correlations between the esti-

mated and original brain-based vector spaces. Figure 1 shows

correlation coefficients for 65 attributes. In addition, these

results are summarized in Figure 2, which depicts mean cor-

relations averaged over attributes of the same domain.

Although in this paper we are not concerned with the per-

formance difference between word vectors, Table 3 shows

that SGNS achieved the best prediction performance in the

three models, and word vectors trained using the COCA cor-

pus were superior to those of the Wiki corpus. In addition,

as expected, MLP trained better mappings than LT. A three-

way ANOVA on Fisher’s z-transformed correlations revealed

that all these differences were significant, F (2, 128)=261.3,

p<.001 for model; F (1, 64)=66.8, p<.001 for corpus; and

F (1, 64)=186.4, p<.001 for learning method.

Despite these differences of overall performance, Figures 1

and 2 demonstrate that relative performance among attributes

did not differ, regardless of distributional semantic model,

corpus and training method. To confirm this statistically, we

4Mean squared error can also be a measure for prediction perfor-
mance. However, we are interested in the similarity of order, rather
than of absolute value, between the original and estimated vectors,
and thus we used rank correlations in this paper.
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Figure 1: Correlations between the estimated and original

brain-based vectors for 65 attributes. Each row corresponds

to the results of an attribute and each column shows the re-

sults of combinations of models (SGNS, GloVe, PPMI), cor-

pora (COCA, Wiki) and training methods (MLP, LT).

computed Spearman’s correlations of 65 attribute correlations

for all pairs of 12 different results. Correlations of correla-

tions (ranging from 0.58 to 0.97) were all statistically signif-

icant (p<.01, false discovery rate corrected).

Attributes in Causal, Cognition, Social, and Attention do-
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Figure 2: Mean correlations per attribute domain. Only the

results for MLP are shown for simplicity.

mains were generally predicted with higher accuracy; their

correlations of SGNS+COCA+MLP exceeded 0.7. In par-

ticular, Causal and Cognition domains achieved significantly

higher correlations than all other domains. 5 The correla-

tions of Social and Attention domains were also significantly

higher than those of nine domains (from Drive to Gustation in

Figure 2). In other words, the information of these attributes,

which primarily characterize abstract concepts (Binder et al.,

2016), is likely to be encoded in text-based word vectors.

This finding seems to suggest that abstract concepts can be

largely acquired through linguistic experiences.

Although more difficult to predict than these attributes, per-

ceptual attributes in Vision, Somatic, Audition, and Olfaction

and motor attribute in Motor can be somewhat predicted from

text-based word vectors. Correlations of all these domains

were significantly higher than spatiotemporal domains Tem-

poral and Spatial and one perceptual domain Gustation. Fur-

thermore, Figure 1 shows that some sensorimotor attributes

such as Vision, Pattern, Shape, Texture and Practice were pre-

dicted as accurately as abstract attributes. These findings sug-

gest that text-based word vectors can encode some kinds of

sensorimotor information; this is consistent with some exist-

ing findings (e.g., Louwerse & Connell, 2011). On the other

hand, spatiotemporal attributes in Temporal and Spatial were

most difficult to predict from text-based vectors. This sup-

ports the embodied view that spatial information is heavily

grounded in perceptual experiences (Zwaan & Yaxley, 2003).

A somewhat surprising result was that emotional attributes

were not predicted as accurately as social and cognitive ones,

although a large number of NLP studies have demonstrated

5After confirming that a one-way ANOVA on Fisher’s z-
transformed correlations showed a significant main effect of at-
tribute, F (13, 143) = 60.5, p < .001, we assessed the statistical
significance of pairwise comparisons using Bonferroni adjustment
(p<.05).
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Figure 3: Mean correlations between the estimated and orig-

inal brain-based vectors for 47 word categories. Each row

corresponds to the results of a word category.

successful results of sentiment analysis (Taboada, 2016) and

emotional judgment (Recchia & Louwerse, 2015). The do-

main Emotion showed significantly higher correlations than

only the domains Temporal, Spatial and Gustation. This re-

sult implies that emotional information is more likely to be

acquired from direct emotional experiences than from lin-

guistic ones. It is consistent with the recent embodied view

that emotional experiences are required for grounding ab-

stract concepts (Kousta et al., 2011; Vigliocco et al., 2014).

Correlation Analysis by Word

We computed row-wise correlations between the estimated

and original brain-based matrices, and then averaged these

535 correlations according to 47 word categories. These word

categories are provided a priori by Binder et al. (2016) and re-

flect grammatical classes (i.e., noun, verb, adjective) and se-

mantic classes. 6 Figure 3 shows mean correlations per word

category. As in the case of the attribute analysis, relative per-
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formance differences of word categories were similar among

semantic spaces and training methods. Spearman’s correla-

tions of 47 category correlations (ranging from 0.27 to 0.92)

were almost significant (p < .05, false discovery rate cor-

rected), although three out of 66 correlations of correlations

were not significant.

The overall result was that brain-based vectors for human-

related categories such as mental action, social action, human

and social event were relatively better predicted from text-

based word vectors. Emotional and cognitive categories such

as emotion and cognitive property were predicted well, but

with lower accuracy than human-related categories. These re-

sults are consistent with the findings obtained by the attribute

analysis. On the other hand, other abstract concepts, in par-

ticular many categories of action and property, were difficult

to predict from text-based word vectors. One possible reason

for this result may be that the number of verbs and adjectives

in the vocabulary is much smaller as compared to nouns, and

thus verbs and adjectives are difficult to train. It can also be

interpreted as suggesting that distributional semantic models

may be insufficient for representing some kinds of abstract

concepts, and other experiences than linguistic one would be

required (e.g., Borghi et al., 2017).

Interestingly, many artifact categories such as instruments,

food, and vehicle, and some natural objects such as plant and

animal showed higher prediction performance. There is no

doubt that, as the embodied theory of language argues, these

concrete words or concepts are grounded in perceptual and

sensorimotor experiences, but some kinds of concrete con-

cepts, in particular artifacts, may be able to be represented

(or indirectly grounded) by text-based word vectors.

Discussion

In this paper, we have demonstrated that text-based distribu-

tional word vectors can predict social and cognitive informa-

tion quite accurately, but the accuracy of emotional informa-

tion is not so high. Given the existing empirical findings on

the importance of emotion for abstract concepts (Vigliocco et

al., 2014; Buccino, Colagè, Gobbi, & Bonaccorso, 2016), this

result suggests that direct emotional experiences are neces-

sary for grounding abstract concepts, and thus lends support

to some embodied theories (Kousta et al., 2011; Vigliocco

et al., 2014). On the other hand, some other embodied the-

ories such as WAT theory (Borghi & Binkofski, 2014) have

argued that social experiences also play an important role in

representation of abstract concepts. However, the result of

our analysis that social information can be conveyed by lan-

guage may diminish the importance of social experiences for

abstract concepts. Note also that the need of social-cognitive

ability is not specific to abstract concepts; concrete concepts

are acquired and processed through social abilities such as a

Theory of Mind (e.g., Bloom, 2000).

It was also found from the analysis that perceptual, sen-

sorimotor and spatiotemporal information is relatively less

likely to be encoded in word vectors. This difficulty often

6Note that word categories provided online slightly differ from
those listed in Binder et al.’s (2016) article. In this paper, we used
the online version of word categories.

leads to the criticism that distributional semantic models are

inadequate models of semantic representation (Glenberg &

Robertson, 2000). This result is also consistent with the find-

ings of multimodal distributional semantics that inclusion of

visual information improves semantic representation for con-

crete words (e.g., Kiela, Hill, Korhonen, & Clark, 2014).

Nevertheless, the analysis also showed the possibility that

some perceptual information and representation of some con-

crete concepts can be derived from distributional linguistic

statistics, as already demonstrated by other studies (Louwerse

& Connell, 2011; Riordan & Jones, 2011). This possibility

suggests that the role of language in semantic representation

of concrete concepts is more important than what the embod-

ied theories of meaning have expected.

Of course, the analysis presented in this paper has some

limitations. One important limitation is that the brain-based

vectors represent the salience of attributes that characterize

concepts, but do not necessarily represent the value of salient

attributes. For some attributes such as Bright and Happy, their

value is indistinguishable from their salience, but many other

attributes such as Color and Human have distinct values in-

dependent of their salience. Hence, the analysis in this paper

cannot reveal the representational power of attribute values.

Our analysis is also limited within a small set of vocabulary

words. To generalize and refine the findings presented in this

paper, we have to evaluate a much larger set of vocabulary

words that are not included in Binder et al.’s (2016) dataset.

Further research is needed to overcome these limitations.
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