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Abstract

We search for various things every day – food, information on
the Internet or someone’s name in memory. Despite the dif-
ferent nature of these tasks, they all have a common feature –
a final goal with an unknown location in a complex environ-
ment. This property of the search raises a problem of trade-off
between exploration of new opportunities and exploitation of
the known information. We used the data from the semantic
fluency task experiment to investigate how humans switch be-
tween exploration and exploitation strategies when they search
in memory and whether they do it optimally. On comparing
four different search models, the one that assumes that humans
switch search strategies according to the semantic quality of
the current neighbourhood best fits the data. Moreover, par-
ticipants who set higher thresholds for the words with better
quality of the neighbourhood tend to retrieve more words from
memory. We also used regression analysis to find out which
factors affect efficiency of both search strategies.
Keywords: Semantic memory; Memory search; Exploration
and exploitation

Introduction
Search tasks can be classified into three broad categories
(Hills & Dukas, 2012): (a) external physical search (for ex-
ample, animals which are foraging for food), (b) external in-
formation search (e.g., visual search), and (c) internal infor-
mation search (such as search in memory). At first glance,
these domains do not have much in common. However, it
turns out that characteristics of these environments and strate-
gies that individuals use are quite similar. One of the cru-
cial properties that these strategies should have is the ability
to successfully deal with the exploitation-exploration trade-
off. Too much exploration can prevent a searching subject
from maximizing the short-term reward, whereas redundant
exploitation can lead to decreasing long-term reward.

The marginal value theorem (MVT) is formal description
of optimal patch leaving rules for animals foraging in envi-
ronments with well-defined patches (Charnov, 1976). It states
that in a patchy system an animal should leave the patch when
its food intake drops below the average long-term level expec-
tation. The elements of this theory have been applied gener-
ally across a number of domains with patchy environmental
structure, such as the search for digital information (Pirolli &
Card, 1999) and, what we focus on here, search in semantic
memory (Hills, Jones, & Todd, 2012).

In one test of semantic memory, the semantic fluency task
(SFT), participants are given a fixed amount of time to pro-
duce as many words from a category (e.g. animals) as they
can. Hills et al. (2012) suggested that semantic memory is
organized as a spatial environment, where similar words are

grouped in patches. To measure the distance between words
in this space, different measures of semantic similarity have
been implemented. Hills et al. (2012) used the BEAGLE
model (Jones & Mewhort, 2007): Here a word is represented
by two vectors – a random initial vector and a memory vector.
As the text corpus is being processed, every time a particular
word is encountered in a corpus, its memory vector is up-
dated by adding the sum of the random vectors of the other
words that appear with it. Final similarity between two words
is calculated as the dot product between their resulting mem-
ory vectors. One of the advantages of this model is that two
words might be recognized as semantically similar even if
they rarely occur in context with one another, but nonetheless
share similar contexts (e.g., bee and wasp).

The SFT is often analysed by looking at the time be-
tween successful retrievals, namely interresponse time or IRT
(Davelaar & Raaijmakers, 2012). Using BEAGLE memory
representation and hand-coded categories of animals, Hills et
al. (2012) showed that IRTs increase up to the long-term aver-
age IRT, when participants then leave patches. This suggests
that cognition is responding strategically to the structure of
semantic memory.

Another approach to search in semantic memory finds that
the same retrieval patterns can be generated by a random walk
in memory (Abbott, Austerweil, & Griffiths, 2015). However,
this study potentially confounds the search process with the
representation (Jones, Hills, & Todd, 2015), and it remains
unclear whether or not people search in memory strategi-
cally or how they might respond strategically to local memory
structure. People may adapt their memory search strategies
according to the properties of the environment (Hills, Kalff,
& Wiener, 2013). The aim of the current study is to expand
research in this area by creating a comprehensive model of
search that incorporates the potential influence of local mem-
ory structure.

This study does this by incorporating the concept of prox-
imity, which measures how semantically similar words are to
the most recent retrieval. This measure roughly describes the
quality of the local neighbourhood of a word. In particular,
we find support for the cognitive influence of a maximally lo-
cal measure of proximity, which we call maximum proximity;
that is, how similarity of the nearest word.

The paper is organized as follows. In Section 2, we give
a full description of several competing computational models
of semantic memory search. In Section 3, we describe the
details of the experimental study used for analysis. Section
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4 includes the results of the model fitting. In Section 5, we
discuss these results and give our conclusion in Section 6.

Model description
We begin by defining a formal model of the retrieval pro-
cess. We assume that there are n words in semantic space
that form the set W = {w1,w2, ...,wn}, and each transition
from the word wa to the word wb can be written as wa→ wb.
There are also 1, ..., i, ...,M participants, and each of them
has retrieved Ni words. The retrieval sequence of each par-
ticipant can be described by vector Ri = (ri

1, ...,r
i
j, ...,r

i
Ni
),

where each element is an element of W . For example, vector
Ri =(w5,w4,w8) would mean that participant i retrieved three
words – word 5, then word 4, and word 8. Finally, there are
vectors Ti = (t i

1, ..., t
i
j, ...t

i
Ni
) for each participant that contain

retrieval times of each word.

Dynamic retrieval model
To describe a stochastic process of retrieving items from
memory, we use a dynamic Luce choice rule (Luce, 1959),
similar to the SAM model (Raaijmaikers & Shiffrin, 1981).
Given a set of cues, this model allows us to calculate the
probability of retrieving a particular word from the set of the
possible alternatives. We used the dynamic model that im-
plies switching between exploitation (local search, denoted
by L) and exploration (global search, G). In this context, ex-
ploitation is an attempt to find semantically similar words in
the local neighbourhood, whereas exploration is associated
with ”jumps” across memory that do not rely on similarity
between words but on individual word frequency. Probability
of retrieval of item j+1 after item j of vector Ri is calculated
as:

Pi(ri
j→ ri

j+1|L) =
Fαi

ri
j+1

Sβi
ri

j ,r
i
j+1

∑Fαi
wk Sβi

ri
j ,wk

, wk /∈ {ri
1, ...r

i
j} (1)

Pi(ri
j→ ri

j+1|G) =
Fγi

ri
j+1

∑Fγi
wk

, wk /∈ {ri
1, ...r

i
j} (2)

for the local and global search cases respectively. The numer-
ator represents retrieval strength of the word r j+1, and cue
intensities of all the not yet retrieved words are added up in
the denominator. αi, βi, and γi represent the attention weights
assigned to the given cue; Fri

j+1
stands for log-frequency of

the word ri
j+1; Sri

j ,r
i
j+1

is semantic similarity between words

ri
j and ri

j+1.
The likelihood function is as follows:

Liki(αi,βi,γi) =
Ni

∏
j=1

[Pi
j(L)P(r

i
j→ ri

j+1|L,αi,βi)+

+Pi
j(G)P(ri

j→ ri
j+1|G,γi)]

(3)

Unfortunately, we are not able to directly observe which type
of strategy (local or global) was used for retrieval of each

word. However, we can use the idea of the search thresholds,
which is described in the next subsection, to obtain Pi

j(L) and
Pi

j(G).

Search threshold modelling

Humans do not have to use only one of the strategies (lo-
cal or global) within one retrieval attempt and do not have to
make the decision about which strategy to use just after re-
trieval of the new word. In this study, we assume that the
subject always starts by browsing in the local neighbourhood
in an attempt to find a similar word in semantic space (local
search). After a certain amount of time, if this attempt fails,
the subject switches to the global strategy. Analogously, for-
aging animals do not leave a patch immediately after finding
a new piece of food, but rather do it when the rate of resource
intake from this patch falls below a long-term average level
(or at another chosen moment).

The maximum amount of time the subject is willing to
spend on the local search we call the search threshold. Ac-
cording to Marginal Value Theorem, this threshold should be
set to the moment when intake from the current patch be-
comes equal to the long-term average retrieval rate. How-
ever, some assumptions of MVT are often not satisfied in real-
world environments (McNamara & Houston, 1987). For ex-
ample, MVT assumes that individuals experience a smooth,
continuous flow of rewards, whereas in reality rewards are of-
ten discrete. In addition, recent work showed that switching
between local and global search increases over time and this
may indicate that patch quality reduces as individuals retrieve
from successive patches (Hills, Todd, & Jones, 2015). More-
over, MVT ignores the idea that a forager might be able to
estimate the quality of the current patch and use this informa-
tion to improve his strategy. With this in mind, we compare
several competing threshold models:

1. Static (infinite threshold) model. This model assumes that
there is no switching between strategies, and both cues
(similarity and frequency) are always used. Therefore, the
threshold is

X i
j = ∞ (4)

2. Fixed threshold model. According to this model, partici-
pants use constant thresholds. Participant i will switch to
the global search strategy if he fails to find a similar word
within ai seconds.

X i
j = ai (5)

3. MVT threshold model. Marginal Value Theorem predicts
that the subject leaves the patch when the retrieval rate in
the current patch drops to the average long-term rate of
retrieval in the memory space as a whole. The instanta-
neous retrieval rate from the patch is calculated as the av-
erage cumulative reward obtained in the patch (McNamara
& Houston, 1987). We can then calculate the threshold by
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equalling these two rates:

Ni

∑
Ni
k=1 t i

k

=
NP

T P+X i
j

(6)

X i
j =

NP ∑
Ni
k=1 t i

k
Ni

−T P, (7)

where NP is the number of words retrieved from the cur-
rent patch, TP is the time spent in the current patch, X i

j is
the search threshold, Ni

∑
Ni
k=1 t i

k

is the final long-term retrieval

rate1.

4. Maximum Proximity threshold model. This model is based
on the hypothesis that people will switch to the global
strategy faster if they sense that there are no semantically
similar words nearby. For instance, the words orangutan
and octopus have roughly the same frequency in language.
However, humans might be able to almost instantaneously
understand that orangutan has very similar words in the
semantic space (for example, other monkeys), whereas oc-
topus does not. Hence, they may switch to global search
faster for octopus. To model this hypothesis, we find
the not yet retrieved word that has the maximum simi-
larity with the current word, and use this measure (maxi-
mum proximity) as a factor in the model. Furthermore, we
use an exponential transformation of the similarity space
(Shepard, 1987).

X i
j = e

ai+bi maxk Sri
j ,wk , wk /∈ {ri

1, ...r
i
j} (8)

Where a and b are parameters fitting the exponential
and maxkS represents the maximum proximity. We also
checked how the fit of the model changed if we used other
measures of the quality of the local neighbourhood. In par-
ticular, we fit the models where we use the total similarity
of 10, 20, 30, etc. nearest words as a factor in the threshold
model.

Using the above models (Equations 4-8), we can then cal-
culate Pi

j(L) and Pi
j(G) using the following rule:

Pi
j(L) =

{
1, if X i

j ≥ t i
j

0, otherwise
(9)

Pi
j(G) =

{
1, if X i

j < t i
j

0, otherwise
(10)

That is, if the subject did not manage to retrieve a word
within the threshold time X i

j, he or she switches to the global
strategy (G). We can now rewrite our likelihood function
(Equation 3). For example, for the Maximum Proximity

1We also fit models using constantly updating long-term retrieval
rates, but this produced inferior models to those presented here.

threshold model, it will look like this:

Liki(αi,βi,γi,ai,bi) =
Ni

∏
j=1

[Pi
j(L|ai,bi)P(ri

j→ ri
j+1|L,αi,βi)+

+Pi
j(G|ai,bi)P(ri

j→ ri
j+1|G,γi)]

(11)

We can now find the values of parameters that maximize
this likelihood function and compare the fit of the different
models.

Search times analysis
To investigate which factors affect efficiency of local and
global strategies, we used regression modelling. Each thresh-
old model was used to classify all retrievals into one of two
groups, L (local) or G (global). After categorising all re-
trievals, we calculated the time of local retrieval(TLi

j) and the
time of global retrieval (TGi

j) for each observation:

TLi
j =

{
t i

j, if X i
j ≥ t i

j

X i
j, otherwise

(12)

TGi
j =

{
t i

j−X i
j, if X i

j < t i
j

NA, otherwise
(13)

We then used regression modelling to find the relationships
between TLi

j and TGi
j and different predictors, such as maxi-

mum proximity of the current word, time elapsed from the be-
ginning of the task, etc. However, we need to remember that
observations where X i

j < t i
j, are censored in the local case. We

cannot calculate the actual time of retrieval because the strat-
egy switch occurred before the local search was successful.
For the further analysis we removed these observations from
the dataset, although other approaches are also possible2. The
dependent variable is positive and has a skewed distribution.
Gamma GLM is often used for modelling such cases.

The following set of potential predictors was used:

• Maximum proximity – it should be easier to retrieve the
word if MP of the word is higher.

MPi
j = max

k
Sri

j ,wk
, wk /∈ {ri

1, ...r
i
j} (14)

• Current elapsed time – this variable was used to control for
the different time effects, such as fatigue or time pressure.
We also used a squared term of this variable as its effect
might be non-monotonic.

TT i
j =

j

∑
k=1

t i
k (15)

2For example, Cox proportional hazards model (Cox & Oakes,
1984) could be used as it can account for the censored observa-
tions. However, this model requires proportional hazard assumption
to hold, and it is in general less robust than gamma GLM (Basu,
Manning, & Mullahy, 2004).
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• Total remaining frequency – retrievals should become
slower after more frequent words are retrieved from mem-
ory

RFi
j =

n

∑
k=1

Fwk , wk /∈ {ri
1, ...r

i
j} (16)

• Average interresponse time (IRT) – we use this measure
as a proxy of each participant’s overall retrieval speed in-
stead of adding a dummy variable for each participant to
the model.

IRTi =
∑

Ni
k=1 t i

k
Ni

(17)

• Global – a binary variable that indicates whether this re-
trieval was a result of the local (0) or global (1) search. We
also added interactions of this variable with other predic-
tors to the model.

Estimation results are described in the Results section.

Method
The dataset used in this study was initially collected for Hills
et al. (2012) and is available online. Participants were 141 un-
dergraduate students at Indiana University, who participated
for course credit. Participants used computers for completing
the task. They were asked to type in as many animals as they
could remember in three minutes. One participant was elim-
inated from the current analysis because he produced a word
that was not encountered in the Wikipedia text corpus used
for training the BEAGLE model. Moreover, participants were
allowed to type the last word after three minutes had passed,
and we have removed the words retrieved after the deadline
from consideration. This leaves us with n = 354 unique an-
imals and a 354x354 semantic similarity matrix. This ma-
trix gives us a spatial representation of the semantic memory.
More detailed description of the experiment can be found in
Hills et al. (2012).

Analysis
Evaluation of models
First, using the maximum likelihood method, we estimated
parameters for the four threshold models (Equations 4-8). We
then calculated individual AICs (Akiake Information Crite-
rion) for each participant. Table 1 includes AIC summed
across the subjects, the number of participants for whom each
model achieves the minimum AIC, and average number of re-
trieved words of these participants. As we can see, the max-
imum proximity model is the best fit, and the MVT model
is the worst. Furthermore, performance of participants who
are better described by the MP models is on average higher
than performance of the other participants. Additionally, we
included Bayesian Information Criterion (BIC) values in this
table, and they support our findings.

We now consider only the Maximum Proximity model that
best fit the data. This model is not completely identifiable, as

Table 1: Comparison of the threshold models

Model AIC ∆i Number of people with min AIC Number of retrieved words BIC
Exp. maximum proximity threshold 46453.96 0.00 105 35.25 47499.21
Fixed threshold 46965.22 511.26 26 33.81 47801.42
Static model 47739.86 1285.90 9 34.22 48157.96
Marginal Value Theorem threshold 48894.71 2440.75 0 – 49521.86

for given values αi,βi,γi there are many combinations of pa-
rameters ai and bi that lead to the same value of the likelihood
function. For the analysis of the effect of the coefficients, we
used median value of bi for each participant as a point estima-
tor. When calculating thresholds below, we used an average
value of the thresholds predicted by all equally likely models.

84 participants have positive median values of the co-
efficient bi, which means that they to a global strategy
more quickly when the maximum proximity of the word is
lower. These participants produced on average 36.18 words,
whereas participants with negative median bi retrieved on av-
erage 33.20 words, and a Wilcoxon rank sum test indicated
that this difference was statistically significant (z = 2.22, p <
.05). After that, we split participants in five roughly equal
groups based on the value of bi. Figure 1 demonstrates that
average performance grows as a function of bi, reaches its
maximum in bi = [3;5] interval and then drops again. This
suggests that setting higher thresholds for words with high
MP is beneficial for task performance, but only up to a certain
point. This is consistent with U-shaped performance func-
tions proposed for many tasks that rely on attentional control
(Hills & Hertwig, 2011).

Interval of the coefficient b
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Figure 1: Relationship between number of retrieved words
and the coefficient bi

Next, we analysed how the fit of this threshold model de-
pends on the measure that is used to estimate the quality of
the local neighbourhood. We varied the number of nearest
items that we included in the local neighbourhood and refit
the model. As Figure 2 demonstrates, the goodness of fit is
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decreasing as a function of the number of the words, and the
maximum proximity model that used only the nearest word
fits the data the best. Sensitivity of the model to the choice
of this quality measure also indirectly demonstrates that the
model outperforms its competitors not just due to the greater
number of the free parameters.

Number of words in the local neighbourhood
0 20 40 60 80 100 120

Lo
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ke

lih
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d
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-22570
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Figure 2: Connection between the quality of fit and the num-
ber of words in the local neighbourhood

Results of the GLM model estimation3 are presented in Ta-
ble 2. The results suggest that higher maximum proximity on
average leads to faster retrievals. However, the effect of re-
maining frequency is important only for the global search, in-
dicating a potential separation of frequency between local and
global search. Interaction of the global search and remaining
frequency variables is significant, and the magnitude of this
effect is much larger than for the other variables. The effect
of elapsed time is non-monotonic; we suppose that this form
of the relationship might be caused by various time effects,
such as fatigue and time pressure (e.g., participants might
start making more effort closer to the end of the task).

Discussion
Overall, the results of analysis support the idea that search
in memory is not purely random, bur rather sensitive to the
structure of environment. Humans seem to be adapting their
search strategy to the current state of the semantic space. We
provided the following evidence to support this claim.

First, the retrieval process was best described by models
with a finite threshold, which implies switching between lo-
cal and global strategies. The infinite threshold model had
the lowest AIC for only 6% of participants. Furthermore, the
best model assumes that the time of this switching depends on
the quality of the local neighbourhood, which can be approx-
imated by a maximally local measure of proximity, MP. The
MP model has the lowest AIC for 75% of participants. This

3Variables were standardized prior to the estimation.

Table 2: Regression modelling

Standardized coefficients:

Intercept 1.30∗∗∗

(0.02)

Maximum proximity −0.05∗∗

(0.02)

Time elapsed 0.18∗∗∗

(0.05)

(Time elapsed)2 −0.13∗∗∗

(0.01)

Remaining frequency −0.04
(0.05)

Average IRT 0.18∗∗∗

(0.02)

Global search 0.005
(0.03)

Global search ×Maximum proximity −0.02
(0.02)

Global search × Remaining frequency −0.36∗∗∗

(0.08)

Global search × Average IRT 0.23∗∗∗

(0.03)

Global search × Time elapsed −0.18∗

(0.07)

Observations 4,758
Nagelkerke R2 0.18
Log Likelihood −10,181.250

Standard errors are in parentheses ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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finding supports the idea that humans use additional infor-
mation about the current state of the environment to improve
their retrieval process.

The poor fit of the MVT suggests that memory foraging
strategies people use may involve more (or different) infor-
mation than that described for the MVT. Going back to an-
imal foraging, Iwasa, Higashi, and Yamamura (1981) noted
that if additional information about the quality of the cur-
rent patch (neighbourhood) is available, then simple strate-
gies, such as MVT or constant threshold, will no longer be
optimal. In our case, people might be able to estimate re-
maining richness of the neighbourhood in order to improve
their search strategy. Similar to animals, they would be more
prone to exploration in poor neighbourhoods and to exploita-
tion in rich environments.

Next, participants who set higher thresholds for the words
with greater MP tend to retrieve more words from memory.
However, setting thresholds that are too high seems to hurt
the performance. These results suggest that at least some par-
ticipants were capable of quickly estimating quality of the se-
mantic neighbourhood without directly accessing the words
in it. The mechanism and efficiency of such estimation are
both of great interest. One of the possible explanations is
that people store ”pre-harvest information” about quality of
the different neighbourhoods and are capable of quickly ac-
cessing this information during the retrieval process (Valone,
1991).

Finally, regression analysis showed that remaining fre-
quency of semantic space has strong effect only on the speed
of the global search, whereas local search is affected only by
the quality of the local neighbourhood. This finding supports
the idea that these are two distinctive search strategies, and
that they have the different nature.

Conclusion
Undoubtedly, search in memory involves a fair amount of
randomness. However, calling this process purely random
seems to be an overstatement. In this study, we attempted
to show that humans might use certain methods to improve
their performance in situations when they are required to re-
trieve words from a semantic category, such as names, coun-
tries or animals. In particular, we might be capable of say-
ing that some words have more similar items in memory than
other words, and of using this information for optimal strat-
egy switching. Further research is necessary to understand
how accurate these estimations are and what they are based
on.
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