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Estrogen-Induced Uterine
 Vasodilation in
Pregnancy and Preeclampsia
Yan Li1, Baoshi Han2, Alejandra Garcia Salmeron3, Jin Bai3, Dong-bao Chen3,∗
Abstract
Normal pregnancy is associated with dramatically increased estrogen biosynthesis whose role is believed to raise uterine blood flow
to facilitate the bi-directional maternal-fetal exchanges of gases (O2 and CO2), to deliver nutrients, and exhaust wastes to support fetal
development and survival. Constrained uterine blood flow in pregnancy is a leading cause of preeclampsia with fetal growth
restriction, rendering investigations of uterine hemodynamics to hold a high promise to inform pathways as targets for therapeutic
interventions for preeclampsia. The mechanisms of estrogen-induced uterine vasodilation in pregnancy have long been attributed to
enhanced endothelium production of nitric oxide, but clinical trials targeting this pathway that dominates uterine hemodynamics have
achieved no to little success. Emerging evidence has recently shown a novel proangiogenic vasodilatory role of hydrogen sulfide in
regulating uterine hemodynamics in pregnancy and preeclampsia, provoking a new field of perinatal research in searching for
alternative pathways for pregnancy disorders especially preeclampsia and intrauterine growth restriction. This minireview is intended
to summarize the nitric oxide pathway and to discuss the emerging hydrogen sulfide pathway in modulating estrogen-induced
uterine vasodilation in pregnancy and preeclampsia.

Keywords: Estrogens; Uterine vasodilation; Nitric oxide; Hydrogen sulfide; Pregnancy; Preeclampsia
Introduction

Normal pregnancy is associated with profound uterine
artery (UA) dilation, reflected as ∼20–50-fold rises in
uterine blood flow (UtBF) in late pregnant (P) vs.
nonpregnant (NP) state, resulting in a large volume of
maternal blood to be delivered to the maternal-fetal
interface.1–3 UtBF carries out the bidirectional maternal-
fetal gas (ie, O2 and CO2) exchanges and provides the sole
nutrient sources to support fetal and placental growth and
survival.2–4 Abnormal UA Doppler flow is linked to
preeclampsia5 and constrained UtBF results in intrauterine
growth restriction (IUGR),5,6 clearly demonstrating that
UtBF is the rate-limiting factor for pregnancy health.
Investigation of the mechanisms and pathways controlling
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UA vascular adaptations to pregnancy has been one of the
major focuses of perinatal research because they can
inform therapeutical and/or preventive targets for treating
preeclampsia and IUGR.
Three periodic rises in UtBF occur in pregnancy; the first

is associated with vasodilation and initiation of an increase
in microvascular volume probably due to ovarian
hormones, that is, estrogen and progesterone, which are
necessary for optimizing the intrauterine environment for
embryo implantation. Once the embryo is implanted and
during placentation de novo formation of the placental
vascular bed further remodels the maternal uteroplacental
vascular bed, resulting in the second up to 2–4-fold rise in
UtBF during this time in ovine pregnancy. The third
exponential rise in UtBF occurs in the third trimester of
gestation, which is essential for the nutrient delivery
required for the exponential fetal growth that occurs at
this time and maintenance of fetal well-being. This third
peak rise in UtBF is due to vasodilation of thematernal UAs
because at the time theuterine vascular bedexhibitsminimal
growth although the fetal placental vascular bed continues
to grow.7

Decades of extensive studies have identified many
endocrine regulatory pathways and UA local autocrine
and paracrine factors that regulate uterine hemodynamics,
including steroid hormones estrogen and progesterone,
angiogenic growth factors, and endothelium-derived
vasodilators such as nitric oxide (NO). Unfortunately,
clinical trials targeting all known pathways controlling
UtBF, including the NO pathway that dominates the field
since the 1990s, have to date achieved no to little success.
Inadequate understanding of how UA hemodynamics is
regulated during normal pregnancy and how this is
impaired in preeclampsia must be blamed for this major
obstacle in developing effective treatments for preeclamp-
sia with IUGR. Nonetheless, more studies to identify new
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pathways that contribute to the physiological UA vascular
adaptations to normal pregnancy and their maladapta-
tions to preeclampsia are warranted. This minireview is
intended to discuss uterine hemodynamic regulation in
normal pregnancy and preeclampsia with a focus on the
physiological roles of estrogens and the underlying
mechanisms.
Hemodynamic adaptations of UA in normal
pregnancy

Once conceived, the blood volume and flow rate in the
main UAs increase gradually with the placental and fetal
growth rates in the first and second trimesters; however, in
the third trimester, the flow rate explodes proportionally
so that a huge amount of blood is delivered to perfuse the
placenta, essentially keeping pace with the exponential
fetal growth rate. This is evidenced by the fact that
compared to 1%–2% of total cardiac output is distributed
to the uterine circulation in NP ewes, approximately 15%–
20% of total cardiac output is distributed to the uterine
circulation in late (day 130 in gestation, term ∼145 days,
equivalent to the third trimester in humans) pregnant
ewes.2 The blood delivered from the UA to the maternal-
fetal unit provides the sole sources of nutrients and O2
needed to support fetal and placental development and
survival during pregnancy.Meanwhile, the uterine veins in
parallel circulate the low oxygen blood back to the
mother’s circulation so that the metabolic wastes and
respiratory gas (CO2) of the fetus can be exhausted.
Therefore, the uterine circulatory system is the lifeline for
the fetus and UtBF is the rate-limiting factor for maternal
and fetal well-being during pregnancy. To accommodate
the dramatic pregnancy-dependent increase in UtBF, the
UAs must undergo significant structural and functional
changes adaptive to pregnancy.
In eutherian mammals including humans, UAs arise

from the internal iliac arteries. Blood delivered by these
arteries, joined by a blood supply from the ovarian
arteries, are the principal transportation system for
delivering the oxygen/nutrient-rich arterial blood to the
arcuate branches within the myometrium and to the radial
arteries continuing as the distal spiral arteries in the uterine
endometrium.8 Collectively these vessels with descending
sizes form the uterine vascular system, composed of
endothelial cells (ECs) covering the inner luminal surface,
vascular smooth muscle cells (SMCs) forming the thick
layer of vessel wall, and extracellular matrix that stabilizes
the vessels. During pregnancy, UA is remodeled to be with
increased lumen diameter and length and reduced
myogenic tone leading to lower vascular resistance, thus
resulting in increased UtBF. Pregnancy-dependent UA
vascular remodeling has been recently detailed in an
excellent review article by Osol andMoore,9 in which they
have also discussed the underlying mechanisms.

Estrogen-induced UA vasodilation in pregnancy

During the menstrual cycle, UtBF increases gradually
from early or middle proliferative to secretory phase,
from 22.4±7.3 mL/min in the proliferative phase to
30.7±13.7 mL/min in secretory phase, in association with
53
maximumperfusion occurring in themid-secretory phase in
NP women.10,11 Interestingly, blood flow in radial arteries
does not parallel the changes in UtBF.11 The regional
changes in blood flow in the uterine vascular tree indicate
that not only are vascular adaptations in the main UAs and
thus UtBF under the control of specific mechanisms but also
changes in steroid hormones (ie, estrogens and progester-
one) are speculated to be critical physiological regulators of
UtBF during the menstrual cycle. There are, however,
conflicting findings regarding the correlation of UtBF with
maternal circulating estradiol and progesterone in the
menstrual cycle. For example, some studies reported no
significant correlation of serum estradiol with uterine
hemodynamics11,12 and others even reported a reduction
in UtBF during the follicular phase when serum estradiol
levels are high.13 Although the exact mechanisms regarding
how UtBF varies during the menstrual cycle require further
investigation, color Doppler ultrasound examination in
women has proposed a role of local factors of the dominant
follicle that reduce ovarian artery blood flow, indirectly
causing a decrease in UtBF in the follicular phase.12

In primates and humans, pregnancy-associated rises in
UtBF are associated with a dramatic up to a 1000-fold
increase in maternal plasma total estrogens, which are
predominantly produced by the placenta in the last two-
thirds of pregnancy.14 However, the predominant estro-
gens produced in pregnancy are relatively weak compared
with estradiol-17b (E2b) because estriol (E3) is the major
estrogens in pregnant women and estrone (E1) plus
sulfoconjugated estrogens are the major estrogens in ovine
pregnancy.15 The purpose for this enhanced estrogen
synthesis remains unclear; but it is believed to play a key
role in modulating maternal cardiovascular changes
adaptative to pregnancy, including a fall in systemic
vascular resistance, rise in cardiac output, development of
attenuated pressor responses, and the exponential rise in
UtBF in the last third of gestation.16

When administrated in intact or ovarietomized (OVX)
NP sheep, E2b can cause blood flow to rise in several
organs throughout the body with the greatest effects
occurring in reproductive tissues, especially the uterus.17

The selective uterine vasodilatory effect of estrogens is,
however with no doubt, of major physiological signifi-
cance during pregnancy-associated UA dilation because
circulating estrogens are significantly elevated in preg-
nancy.3,18 Plasma levels of total estrogens are ∼300 pM in
the secretory phase, rise to ∼1000 pM in the proliferative
phase, and aggressively increases with advancing gesta-
tion age and concentrations just before parturition can
reach as much as 1000 times greater to that of early
gestation.19 UtBF rises sharply with elevated endogenous
estrogens in the follicular phase and pregnancy,18

providing the evidence of a physiological role of
endogenous estrogens in uterine vasodilation. Further-
more, daily E2b (1 mg/kg body weight) treatment
increases baseline UtBF by 30%–45% for up to 10 days
in intact and OVX NP ewes20; acute E2b treatment
provokes rapid (20–30 minutes) and even more robust up
to 10-fold rise in UtBF within 90–120 minutes.21 Thus,
these physiological and pharmacological studies have
provided convincing evidence for the uterine potent
vasodilatory effects of estrogens.

http://www.maternal-fetalmedicine.org
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Estrogen receptors (ERs) and estrogen-induced UA
dilation

Blockade of estrogen actions using the ER antagonist ICI
182,780 inhibits exogenous estrogen-induced rise in UtBF
inOVX sheep by∼70%and endogenous estrogen-induced
UA dilation in the follicular phase and pregnant ewes by
35%–40%.3 These studies established a primary proximal
physiologic cause and effect relationship between endoge-
nous estrogen-mediated ER activation and estrogen-
induced UA dilation.
The biological functions of estrogens are known to be

elicited by signaling via multiple ERs including ERa and
ERb and G protein-coupled ER (GPR30/GPER).22 The
vascular effects of estrogens are mediated by both
“genomic” and “nongenomic” pathways, such as ERa,
ERb, and GPER, which are found in ECs and SMCs in
various vascular beds,23–25 including sheep UA.26,27 The
genomic pathway ismediated by ERa/ERb in the nucleus of
target cells, where the ligated receptors function as ligand-
activated transcription factors to regulate gene expression
via interactions with estrogen-responsive elements (EREs)
in the gene promoter26 or crosstalk between ligated ERs
with other ERE-interacting transcription factors. The
nongenomic estrogen signaling is mediated by plasma
membrane ERs (ERa, ERb, and GPER1).28,29 In the
“extranuclear” mode, estrogen signaling is initiated in
seconds to minutes via binding to membrane ER, activating
multiple protein kinases30,31 that activate downstream
proteins to elicit biological functions or nuclear transcrip-
tion factors to regulate latent gene expression.32Moreover,
estrogen signaling can be even more complicated by the
different and even opposite roles that ERa and ERb may
play in regulating cellular responses to estrogens, depending
on cell types and cellular microenvironment.33

GPER has been regarded as a specific membrane ER.34

Although GPER interacts with E2bwith estimated binding
affinities of 3–6 nM,35 this is much lower as compared
with its binding affinities for classical ERs that are in the
range of 0.1–1.0 nM.36 It also interacts with anti-estrogens
such as tamoxifen and the nonspecific ER antagonist ICI
182,780,35 as well as many other ER modulators,29 which
makes it difficult to elucidate the specific role of GPER in
target cells. Thus, the development of specific pharmaco-
logical tools, including highly selective GPER agonist G1
and antagonist G1537 has greatly facilitated the charac-
terization of GPER function. G1 binds GPER with high
affinity (Kd=10 nM) without binding to ERa/b at
concentrations as high as 10 mM, whereas G15, with a
similar structure as G1, but lacks the ethanone moiety that
forms hydrogen bonds involved in receptor activation,
displays a Kd>10 mM for binding ERa/b.38

Both ERa and ERb are expressed in ovine and human
UAs and their expression has been shown to be
differentially regulated in pregnancy.26,27,39 ERb is
preferentially upregulated in pregnant UA.33 Pregnancy
augmented UA ER expression may be due to elevated
endogenous estrogens because UA ER in OVX NP sheep
and rats can be stimulated by exogenous E2b in vivo and
by E2b treatment of UA rings from NP ewes in vitro.27,40.
In an ex vivo study using wire myography to examine the
specific roles of ERa and ERb in estrogen-induced
vasodilation in human UA and placental arteries, E2b
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treatment and activation of ERa by its specific agonist PPT
(1,3,5-tris (4-hydroxyphenyl)-4-propyl-1H-pyrazole) or
ERb by its specific agonist DPN (2,3-bis(4-hydroxy-
phenyl) propionitrile) provoke significant and similar
relaxation effects in myometrial arteries. In contrast, E2b
and DPN are less effective in relaxing placental arteries
than that in myometrial arteries; whilst PPT was
ineffective.39 The small arteries isolated from myometrial
biopsies used in the study do not answer a question
regarding the specific roles of ERa and ERb in the response
of the main UA to estrogens. However, these findings
demonstrate that ERa and ERb display vascular bed-
specific roles in mediating the acute vasodilatory responses
of estrogens in the human maternal-fetal interface
vasculatures.
GPER is also expressed in various arteries including

pregnant UA in rats.25 In humans, G1 relaxes human
internal mammary artery ex vivo,41 but is unable to relax
pressurized human myometrial and placental arteries ex
vivo in myography studies.39 However, activation of
GPER by E2b or G1 can result in a pregnancy-dependent
decrease in uterine vascular tone in uterine radial artery via
activating NO/cyclic guanosine monophosphate (cGMP)
pathway in rats.25 These studies suggest that GPER
displays vascular-bed and potentially species-dependent
vascular effects of estrogens in the uterine and systemic
vascular beds. Nonetheless, the specific roles of the
classical ERa and ERb and membrane GPER in estro-
gen-induced and pregnancy-associated uterine vasodila-
tion remain to be incompletely understood, although the
process has been shown to be clearly mediated by specific
ER-dependent mechanisms in sheep models in vivo.3

Estrogens and uterine vascular maladaptation to
preeclampsia

Preeclampsia is a human pregnancy disorder clinically
defined as new onset hypertension and proteinuria, and
often with edema after the 20th week of gestation.42

Approximately 10 million pregnant women develop
preeclampsia annually in the world,43 raising perinatal
mortality ∼5-fold, causing death of 45,000 babies in the
United States alone and killing approximately 76,000
pregnant womenworldwide.43,44 Preeclampsia predisposes
the mother and her child to a significantly higher risk in
metabolic diseases such as cardiovascular and diabetes later
in life, representing a major public health threat.
The pathogenesis of preeclampsia remains partially

understood but this is believed to be a two-stage disease
composed of: (1) perturbation in placentation in the first
trimester due to shallow trophoblast invasion and impaired
spiral artery (the distal branch of UA vascular tree)
remodeling and (2) constrained UtBF lead to placenta
ischemia/hypoxia that further stimulates placental produc-
tion of harmful factors, which in turn result in maternal
inflammationanduterine and systemicECdamage/vascular
dysfunction.45 Nonetheless, in patients with preeclampsia,
the UA flow velocity decreases by ∼26%,46 and uteropla-
cental perfusion is reduced by ∼50%,47 as a result of
increased vascular resistance compared with normal
pregnancy.48 This clearly suggests that maternal and fetal
well-being during pregnancy and after birth is largely
controlled at the level of UtBF, making studies of uterine
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hemodynamics to hold high promise to inform pathways
and targets for developing treatments for preeclampsia and
IUGR.
In primates and human pregnancy, estrogens are mainly

produced by the placenta to promote angiogenesis and
vasodilation, which are two key mechanisms to cause
UtBF to rise.14,16,49 Estrogen synthesis is greatly decreased
in pregnant women with preeclampsia.50 Estrogen
metabolism is also dysregulated in preeclamptic women.50

Mice lacking catechol-O-methyltransferase (the enzyme
that converts E2b to catechol-estrogens) develop pre-
eclampsia-like symptoms; supplementation of estrogens
can lessen the preeclampsia phenotype in pregnant
catechol-O-methyltransferase�/� mice.51 Thus, aberrant
production and metabolism of estrogens play a key role in
the pathogenesis of preeclampsia.
Current treatments for preeclampsia aim to normalize

blood pressure rather than targeting the placenta patholo-
gy, but none is satisfactory; hypertension is reduced
transiently, allowing Caesarean delivery to be set up.
Delivery before term remains the only current effective
treatment for severe preeclampsia, clearly testifying urgent
unmet medical needs for patients with preeclampsia. In
theory, it must be very difficult to develop therapeutics for
preeclampsia by targeting placenta defects since a fully
functional human placenta forms around week 15 in
gestation before clinical manifestations of preeclampsia
are diagnosed at the 20th week of gestation.52 Since
resistant myometrial UA (radial and arcuate arteries) plays
a key role in regulating maternal blood pressure during
pregnancy,53 improving UtBF provides the most attractive
target for managing clinical preeclampsia (ie, hyperten-
sion) so that gestation can be extended to avoid premature
delivery. Unfortunately, clinical trials targeting NO
signaling or other known pathways to improve UtBF
and uterine perfusion have hitherto achieved no or little
success in preeclampsia,54 urging more studies to identify
new pathways.
Estrogen-induced uterine vasodilation in
pregnancy by the NO pathway

Many investigators have attempted to address the
mechanisms underlying the vasodilatory effects of estro-
gens in the uterine vasculature since the 1970s. It was,
however, until the discovery of NO as the endothelium-
derived vasodilator in the 1980s that a major pathway was
identified for estrogen-induced uterine vasodilation.
Endogenous NO is synthesized from L-arginine by a
family of NO synthases (NOS), including endothelial NOS
(eNOS/NOS3), neuronal NOS (nNOS/NOS2), and induc-
ible NOS (iNOS). Endothelium-derived NO diffuses into
the surrounding SMC where it activates the soluble
guanylyl cyclase (sGC) to generate the second messenger
cGMP; increased cGMP further activates protein kinase G
(PKG) to relax blood vessels, thus resulting in vasodilation
and increasing blood flow.55 Van Buren et al.56 first
reported that when infused intraarterially into the UA, a
nonspecific NOS inhibitor NG-nitro-L-arginine-methyl
ester (L-NAME) dose-dependently decreases the maximum
E2b-induced increase in UtBF in sheep. Many follow-up
studies not only confirmed this major finding but also
reported that estrogen-induced rise in UtBF requires
55
increased production of cGMP.3,57 The role of the NO/
cGMP pathway in uterine vasodilation has promoted
significant interest in perinatal research, and numerous
studies have concluded that the NOS enzyme responsible
for pregnancy- and agonist (estrogens)-stimulated UA NO
production is primarily eNOS, which is exclusively
expressed in the EC in all species studied, including
sheep,31,57 mice,58 rats,59 nonhuman primates,60 and
women.61 UA endothelial eNOS expression is upregulated
by exogenous estrogens in OVX animals receiving
estrogen replacement therapy and elevated endogenous
estrogens during pregnancy, which is mediated by genomic
estrogen signaling to upregulate eNOS transcription via
nuclear ERa interactions with the EREs in eNOS
promoter.62 In addition, ERa is present on the plasma
membrane caveola of UA ECs,26,31,63 mediating estrogen-
stimulated rapid (within minutes) NO production via
eNOS phosphorylation via extracellular signal-activated
kinases ½31 and possibly protein kinase B (PKB/Akt).30

Numerous studies have also demonstrated that the eNOS-
derived NO is a focal mediator of uterine vasodilation since
NO acts downstream of numerous UA dilators including
estrogens, vascular endothelial growth factor, and angio-
tensin II (reviewed by Bai et al.62). The role of UA
endothelium eNOS-derived NO in estrogen-induced and
pregnancy-dependent rise in uterine vasodilation leads to
increased cGMP production which in turn results in
activation of various potassium channels such as ATP-
dependent (KATP), voltage-dependent (Kv), and large
conductance calcium-activated and voltage dependent
(BKCa) potassium channels.62 However, infusion of BKCa
blockers, but not other K+ channel blockers, intra-
arterially in UA significantly blocks estrogen-induced and
baseline pregnancy-associated rises in UtBF in sheep,64

suggesting a primary role of SMC BKCa downstream of
eNOS-NO/cGMP in regulating uterine hemodynamics.
BKCa channels are tetramers of the a subunit (BKa),

which can be complemented with the regulatory subunits,
including the b (1–4) and g (1–4) isoforms.65 BKb1
subunit is essential for increasing voltage sensitivity when
intracellular free Ca2+ is beyond 1 mM.66 The g1–g4 are
auxiliary subunits that greatly modify channel activity in
mammalian cells.67 The expression and their physiological
and pathological functions of SMC BKCa channels have
been well-studied in other tissues in mammalians,68 but
their distribution and function remain to be explored
in UA SMC. Previous studies have shown UA SMC
expression of a and b169 and g170 of BKCa. BKa is
constitutively expressed, whereas pregnancy and estrogen
significantly upregulate BKb1 expression in UA.71 BKg1 is
upregulated 7-fold in mouse UA in pregnancy and female
mice lacking BKg1 gene is with blunted UA dilation and
develops preeclampsia-like conditions during pregnan-
cy.70 Other BK subunits, including b3, b4, and g2–3
mRNAs are also detected in pregnant human UA and
cultured primary human UA SMC.72 However, the role of
these subunits in UA SMC BKCa activation pertaining to
estrogen-induced UA dilation in pregnancy is unknown.
UtBF is reduced and placental vascularization is deranged

in eNOS-deficient mice in association with impaired spiral
artery remodeling and IUGR.58,73 Animals treated with
L-NAME to inhibit endogenous NO production
develop preeclampsia-like symptoms.74 These studies show

http://www.maternal-fetalmedicine.org
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a causal role of dysregulated NO signaling in uterine and
placental hemodynamics, forming the foundational knowl-
edge base that has provoked many clinical trials to explore
the NO pathway as a potential therapy for preeclampsia;
andmany preclinical and clinical trials have been performed
through increasing endogenous NO production via
L-arginine supplementation or decreasing NO metabolism
by suppressing cyclic nucleotide phosphodiesterases that
breaks down cGMP.75 A beneficial effect of L-arginine
was confirmed in seven controlled randomized trials in
which L-arginine supplementation significantly reduces the
risk of pregnant women with established or suspected
preeclampsia.76 Bolstering endogenous NO signaling using
a phosphodiesterase 5 inhibitor Sildenafil (Viagra) and its
derivatives have been extensively studied for treating
preeclampsia. Sildenafil promotes a significant increase in
UtBF in rats77 and has shown promising results in many
preclinical studies in animal models of preeclampsia. In
human studies, gestation is extended for 4 days in severe
preeclamptic patients.78 However, a most recent clinical
trial shows beneficial effects of sildenafil in treating
pregnant women with a high risk of IUGR, but
unfortunately, the trial has been halted because infants
born fromwomen receiving the drug died frompulmonary
hypertension.79
Hydrogen sulfide (H2S) and estrogen-induced and
pregnancy-associated uterine vasodilation

As mentioned above, numerous clinical trials targeting all
known pathways controlling uterine vasodilation have
hitherto only achieved no to little success in preeclampsia
and IUGR, urging more studies to search for new
pathways underlying uterine hemodynamic regulation.
Of note is that the dominating NO/cGMP pathway only
partially accounts for estrogen-induced and pregnancy-
associated uterine vasodilation since L-NAME inhibits at
most ∼70% estrogen-induced rise in UtBF3,56,57 and
∼25% baseline pregnancy-associated rise in UtBF80 in
sheep in vivo. These studies clearly suggest that mecha-
nisms in addition to NO are involved in mediating
estrogen-induced uterine vasodilation in pregnancy. To
this end, our recent studies have shown that enhanced H2S
serves as a novel UA dilator that may be accountable for
the mechanisms behind NO to comprehend uterine
hemodynamic regulation.
Endogenous H2S is synthesized from L-cysteine by two

pyridoxal-50-phosphate-dependent enzyme cystathionine
b-synthase (CBS) and cystathionine g-lyase (CSE) of the
trans-sulfuration pathway. H2S is now accepted as the
third “gasotransmitter” after NO and carbon monoxide.
Both enzymes are expressed in the human body but with
highly tissue/cell-specific expression patterns and in some
tissues one enzyme is sufficient for H2S biosynthesis but in
others, both are needed.81 CSE knock-out mice develop
pronounced hypertension with reduced serum H2S levels
and blunted vasodilation,82 showing H2S as a physiolog-
ical relaxant. Endogenous H2S is also a potent proangio-
genic factor.83 Enhanced H2S production by trophoblast
and endometrial stroma is a paracrine factor that
regulates placental and endometrial angiogenesis.84,85

Trophoblast-derived H2S also maintains early pregnancy
by regulating maternal-fetal interface immune hemostasis
56
thus protecting the semi-allograft placenta and fetus from
rejection in pregnancy.86

The CBS/CSE-H2S system has been recently identified to
be present in the UA in ewes87 and women.88 Systemic
vasculature produces H2S mainly via upregulating endothe-
lial CSE expression or activity, which is a potent physiologi-
cal vasorelaxant82 and proangiogenic factor.83 However, in
OVX NP sheep, estrogen replacement therapy stimulates
UA H2S production in association with SMC and EC CBS
upregulation without altering CSE expression in vivo.89

Moreover, UA H2S production is significantly augmented
in association with elevated endogenous estrogens in the
follicular/proliferative phase and pregnancy in ewes87 and
women,88 with EC/SMC CBS upregulation without
altering CSE87,88 and other H2S synthesizing enzymes,
that is, 3-mercaptopyruvate sulfurtransferase and cysteine
aminotransferase.88 A slow-releasingH2S donor GYY4237
dose-dependently relaxes phenylephrine-preconstricted UA
rings from both pregnant andNP rats, but with significantly
greater potency in the pregnant state.88 Moreover, the
vasodilatory effect of H2S in pregnancy is potentially
vascular bed-specific because GYY4237 does not dilate
mesentery artery in pregnant rats.88 The H2S donor also
dose-dependently dilates pregnant UA in women ex vivo.88

Thus, these findings show that exogenousH2S can stimulate
pregnancy-dependent UA vasodilation, directly supporting
H2S as the new UA vasodilator.
The stimulatory effects of estrogens on UA EC and SMC

CBS expression have been confirmed in cultured ovine UA
EC and SMC cells.90,91 Unlike in vivo studies, E2b also
stimulates CSE expression ovine UA EC and SMC in
vitro,90,91 showing that in vitro cell models cannot always
be used to completely mirror in vivo conditions although
these ovine cell models have been widely accepted for
mechanistic studies of UA vascular adaptations to normal
pregnancy. Nonetheless, these studies demonstrate that
CBS is the key enzyme responsible for augmented UA H2S
production in response to exogenous and endogenous
estrogens. In addition, augmented UA EC and SMC CBS
mRNA and protein expression in NP OVX sheep by
estrogen replacement therapy89 and during pregnancy87,88

suggests that activation of genomic estrogen signaling to
upregulate CBS transcription is involved. Indeed, this
notion is supported by the fact that E2b stimulates CBS
mRNA and protein expression in UA EC and SMC in vitro
by upregulating CBS transcription via mechanisms
involving both ERa and ERb.90,91

Interestingly, E2b can stimulate rapid (within minutes)
H2S production in cultured human umbilical cord EC,
which is achieved by ERa interactions with Gai-2/3 on the
plasma membrane, resulting in activation of GC/cGMP
which in turn can phosphorylate CSE to increase H2S
production. Importantly, blocking the pathway can blunt
estrogen-induced aorta vasodilation in mice, suggesting
that activation of plasma membrane ERa-mediated non-
genomic activation of endothelial CSE/H2S production
plays a role in estrogen-induced systemic vasodilation.92 In
addition, CBS phosphorylation on serine227 by PKG also
results in enzyme activation and increased H2S produc-
tion. Whether GPER or ERb also play a role in the
nongenomic activation of CSE/CBS remains to be
explored. Although it is not reported whether estrogen
stimulates rapid H2S biosynthesis in UA EC and SMC, it is
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warranted to determine if nongenomic estrogen signaling
leading to CBS and/or CSE phosphorylation and activa-
tion thereby increasing H2S production is a mechanism to
contribute to the initiation of estrogen-induced rise in UtBF
within 15–30 minutes in animal models.21,93,94

Activation of SMC KATP channels was the first
mechanism reported to mediate the vasodilatory effect
of H2S in systemic arteries.95 However, we have recently
reported that H2S stimulates relaxation of human UA and
rat vas deferens via activating SMCBKCa channels without
activation of KATP channels,72,96,97 although how H2S
activates BKCa channels needs to be determined.
Human IUGR is associated with reduced uterine spiral

artery CSE expression,98 suggesting that H2S signaling
is impaired in pregnancy complications associated with
reduced UtBF. Pregnancy also upregulates placental
trophoblast H2S production, which is a placental vasodila-
tor98 and angiogenesis promoter84 and maintains early
pregnancy via regulating maternal-fetal interface immune
hemostasis.86 It is also well-documented that pregnancy-
upregulated placental CBS/CSE-H2S signaling is reduced
in preeclampsia.99 Importantly, in animal models of
preeclampsia induced by overexpression of soluble vascular
endothelial growth factor (VEGF) receptor 1 (soluble
fms-like tyrosine kinase-1, sFlt1) to disrupt vascular
endothelial growth factor signaling, H2S donors can rescue
Figure 1. NO and H2S mediated mechanisms modulating uterine vasodilati
dramatically increased production of endogenous estrogens that raise U
endothelium (EC) expression of eNOS to produce NO that has been recogniz
pregnancy. Most recent emerging evidence also shows that estrogens stimu
H2S. In addition, by binding with plasma membrane ER including caveolar
possibly H2S by activating eNOS and CBS via posttranslational mechanisms s
signal-activated kinases (ERK½), and PKG. Enhanced NO and H2S collective
potassium (BKCa) channels to hyperpolarize SM resulting in UA relaxation. In
impaired to further result in the deactivation of NO- and H2S-mediated me
manifestations of preeclampsia. Words in bright color indicate stimulation
b-synthase; cGMP: Cyclic guanosine monophosphate; EC: Endothelial cells;
eNOS: Endothelial NOS; GPER: G protein-coupled ER; H2S: Hydrogen sulfi
Protein kinase G; SM: Smooth muscle; UA: Uterine artery; UtBF: Uterine blo
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the animals from developing new onset hypertension and
proteinuria and partially restored IUGR.100 These promis-
ing findings show a great potential of targeting H2S
signaling to treat preeclampsia.However, research inH2S in
uterine hemodynamics is still in its very early stage. More
investigations are needed to determine a definite physiolog-
ical role of enhanced H2S signaling in uterine vascular
adaptation in normal pregnancy and a pathophysiological
role of dysregulated H2S signaling in preeclampsia and
other pregnancy complications.
Summary

Estrogen-induced uterine vasodilation in pregnancy is
mediated by ER-dependent augmentation of local UA
production of orchestrated vasodilators, among which
NO has been in general considered to play a leading role.
More recently, evidence has emerged to show that
enhanced local UA H2S production is a novel UA dilator
for mediating estrogen-induced uterine vasodilation in
pregnancy and preeclampsia (Fig. 1). It is possible that H2S
may play an even more important role than NO in
mediating estrogen-induced uterine vasodilation because
NO is produced by eNOS that is mainly expressed in EC
while H2S is produced by CBS that is upregulated by both
EC and SMC. H2S production is thus expected to be with a
on in pregnancy and preeclampsia. Normal pregnancy is associated with
tBF. Estrogens increase specific receptor (ERa and ERb)-dependent
ed as a leading player to mediate estrogen-induced uterine vasodilation in
late ERa and ERb dependent EC and SM expression of CBS to produce
ERa and the GPER, estrogen can stimulate rapid production of NO and
uch as phosphorylation by protein kinases including PKB (Akt), extracellular
ly open the large conductance calcium-activated and voltage-dependent
preeclampsia, estrogen production decreases and its metabolism is also
chanisms modulating uterine vasodilation that contributes to the clinical
and words in dimmed color indicate deactivation. CBS: Cystathionine
ER: Estrogen receptor; ERK1/2: Extracellular signal-activated kinases 1/2;
de; NO: Nitric oxide; NOS: NO synthases; PKB: Protein kinase B; PKG:
od flow.
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much great quantity than NO production in UA upon
estrogen stimulation in pregnancy, considering that the
tube-shaped main UA is composed of a single layer of EC
and multi-layer of SMCs. Clinical trials targeting the best-
studied NO pathway have been essentially failed in
treating preeclampsia, urging more studies necessitated to
explore the therapeutic potential of H2S in preeclampsia.
Nonetheless, research on H2S maternal physiology and
placental biology is in its very early stage. Although a few
studies have shown a beneficial effect of H2S in animal
models of preeclampsia,100 a clinical trial of H2S in
preeclampsia with IUGR will mostly become a reality
when a physiological and pathophysiological role of H2S
can be established in future studies to provide a thorough
understanding of the biosynthesis, metabolism, and mecha-
nisms of action of H2S during uterine and possibly systemic
vascular adaptations to pregnancy and preeclampsia.
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