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Exercise Effects on Muscle Insulin Signaling and Action
Invited Review: Autocrine/paracrine IGF-I and skeletal
muscle adaptation

GREGORY R. ADAMS
Department of Physiology and Biophysics, University of California, Irvine, California 92697

Adams, Gregory R. Invited Review: Autocrine/paracrine IGF-I and
skeletal muscle adaptation. J Appl Physiol 93: 1159–1167, 2002;
10.1152/japplphysiol.01264.2001.—This brief review presents the basic
premises suggesting that insulin-like growth factor I (IGF-I), functioning
in an autocrine/paracrine mode, is an important mediator of skeletal
muscle adaptation. Key intracellular signaling mechanisms associated
with ligation of the primary IGF-I receptor are highlighted to illustrate
the mechanisms by which IGF-I may promote muscle hypertrophy. In
addition, a number of recent findings are presented that highlight the
potential for interactions between IGF-I-related signaling pathways and
intracellular signaling mechanisms activated by cytokines or hormonal
systems.

insulin-like growth factor I; hypertrophy; cytokine; calcium

INSULIN-LIKE GROWTH FACTOR I (IGF-I) is the primary
mediator of many of the responses regulated by growth
hormone in tissues throughout the body (15, 116). In
addition, it has long been recognized that IGF-I and
IGF-II are important for the pre- and postnatal devel-
opment of skeletal muscle (13, 38). In the specific
context of IGF-I as it relates to muscle, the objectives of
this review are twofold: 1) to briefly outline some of the
key factors that have led to the continued interest in
IGF-I as a potential mediator of loading-induced skel-
etal muscle adaptation and 2) to widen the discourse on
IGF-I via the inclusion of topics that appear to have
received less notice in the muscle-related IGF-I litera-
ture. The format will be that of a brief review and thus
will not be exhaustive in nature. For readers seeking
more depth, there are a number of excellent reviews
available in the literature (e.g., Ref. 96).

LOCAL CONTROL OF SKELETAL MUSCLE ADAPTATION

It has become increasingly clear that skeletal muscle
is constantly adapting to the functional demands im-
posed by the load-bearing activities of the individual.
In mammalian skeletal muscle, this adaptation pro-

cess can include changes in both the size and the
structural/functional properties of the myofibers. The
focus on IGF-I, as well as a number of other growth
factors, has been driven in part by the recognition that
activity-induced skeletal muscle adaptation is largely
mediated by intrinsic mechanisms. Interestingly, a
number of studies have demonstrated that adaptations
such as muscle hypertrophy can occur even when the
somatic milieu would be considered nonanabolic. For
example, in rats, the circulating hormone and growth
factor milieu can be drastically depressed via surgical
hypophysectomy (Hx), which prevents further somatic
growth. However, despite this depression of the so-
matic growth factor environment, the muscles of Hx
rats can respond to increased loading with substantial
compensatory hypertrophy (40). In this model, the cir-
culating and tissue levels of IGF-I are substantially
decreased in Hx rats, but the compensatory hypertro-
phy process includes a robust increase in the expres-
sion of IGF-I mRNA and peptide in the overloaded
muscles (2, 30).
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MUSCLE REGENERATION

To understand the importance of intrinsic regulation
via autocrine/paracrine signaling, it is instructive to
consider some cellular processes, such as myofiber re-
generation, which appear to be modulated by IGF-I. In
models of severe muscle injury, the death of myofibers
leaves behind the basal lamina and some satellite cells.
Satellite cells are small mononucleated skeletal muscle
stem cells1 located between the basal lamina of the
muscle and the sarcolemma of myofibers. As a result of
the injury to myofibers, these satellite cells are mobi-
lized to begin the regeneration process (26, 75, 77, 93).
The initial events after satellite cell activation have
been reported to be a proliferative response in which
some or all of the activated satellite cells undergo at
least one mitotic cycle (75, 83, 94). After this initial
phase, some of the activated cells and/or their progeny
are thought to differentiate into myoblast-like cells. In
regenerating muscle, these myoblasts can either fuse
with each other to form new myofibers or become
incorporated into damaged but surviving myofibers
(11, 57, 65, 77, 78). If the capacity of satellite cells to
proliferate is eliminated, for example via irradiation,
the regeneration process is inhibited (26, 42, 75). There
is evidence that locally produced, i.e., autocrine/para-
crine IGF-I, may be important in this regeneration
process. Jennische et al. demonstrated that increased
IGF-I immunoreactivity can be detected in the cyto-
plasm of myoblasts and myotubes (44) as well as in
satellite cells (45) during muscle regeneration. Fur-
thermore, the introduction of neutralizing antibodies,
which prevent either IGF-I or fibroblast growth factor
(FGF-2) activity, has been shown to reduce the number
and size of regenerating myofibers after muscle injury
with anti-IGF-I treatment demonstrating a higher po-
tency (53).

INTRACELLULAR IGF-I SIGNALING

With the muscle regeneration process in mind, an
examination of the known effects of IGF-I on skeletal
muscle cells provides insight into potential mecha-
nisms by which this growth factor may contribute to
muscle repair or adaptation. In studies involving both
established cell lines and primary satellite cell cul-
tures, ligation of the type 1 IGF-I receptor (IGFR1) has
been shown to initiate intracellular signaling cascades
involved in key mitogenic and myogenic responses (25,
38, 79). One pathway activated by IGF-I involves Ras-
Raf signaling to extracellular response kinases (ERKs),
which can activate a number of transcription factors as
well as other protein kinases. In muscle cell cultures,
this pathway has been shown to promote increased cell
proliferation (Fig. 1) (e.g., Ref. 25). A second pathway
involves phosphorylation of insulin receptor substrate
and leads to the activation of phosphatidylinositol 3-ki-
nase (PI3K) (Fig. 2). PI3K activation is central to a

number of important cellular processes, including pro-
tection from apoptosis, increased translation, and al-
teration in intracellular calcium. PI3K activation in-
creases the initiation of translation via alterations in
the phosphorylation state of eukaryotic initiation fac-
tor 4 binding protein and the p70 S6 kinase (Fig. 2).
The activation of p70 S6-kinase is of particular interest
in that it enhances the translation of mRNAs encoding
ribosomal proteins and elongation factors, integral
components of the protein synthesis machinery (106).
In addition to generalized anabolic effects, activation of
portions of the PI3K signaling cascade appear to be
particularly important for the differentiation of muscle
cell lines in culture (16, 17, 25, 52, 105, 107, 110).

It is important to note that the activities of the
pathways depicted in Figs. 1 and 2 are conditional, i.e.,
the outcomes are based on a complex set of interactions
yet to be comprehensively identified. For example,
there are reports that both ERK and PI3K activity act
in concert in some cell types (e.g., Refs. 62, 117) and
that both may be required for the differentiation of
myoblasts (89). In contrast, others have reported that
the activity of one pathway may actually inhibit the
other (80, 88, 117, 119). As an example of the condi-
tional nature of the effects of signaling through the
PI3K pathway, Chakravarthy et al. (19) recently re-

1There is evidence that multiple muscle stem cell populations may
be contributing to processes traditionally ascribed to satellite cells
(e.g., Refs. 26, 118).

Fig. 1. The Ras-ERK signaling cascade. A simplified diagram of one
intracellular signaling pathway associated with tyrosine kinase ac-
tivity of the type 1 insulin-like growth factor receptor (IGFR1). A
number of studies have linked this pathway with the control of
muscle cell proliferation in vitro. The phosphorylation targets of
ERKs include transcription factors and additional protein kinases.
ERK, extracellular signal-regulated kinase; MEK, mitogen-activated
protein kinase (MAPK)/ERK kinase; Raf, MAPK kinase kinase; Ras
protein, member of the Ras GTPase family; Shc, SH2-containing
collagen-related proteins (couples IGFR1 tyrosine kinase to Ras).
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ported that inhibition of PI3K signaling in satellite cell
cultures can prevent the completion of the cell cycle,
inducing arrest in the G1 phase. Under physiological
conditions, G1 arrest would be expected to lead to
either cell differentiation or apoptosis. The finding that
inhibition of this signaling pathway stimulates cell
cycle arrest would suggest that, under some conditions,
signaling through PI3K is important for the continua-
tion of cellular proliferation as opposed to the com-
monly ascribed differentiation response.

Interestingly, the processes of cellular proliferation
(i.e., mitotic activity) and differentiation (i.e., expres-
sion of muscle-specific proteins) are generally thought
to be mutually exclusive. In fact, in a number of cell
types, activation of one of the two primary signaling
pathways associated with ligation of growth factor
receptors (e.g., Fig. 1 vs. Fig. 2) will generally inacti-
vate portions of the other (80, 88). Among the well-
characterized growth factors, IGF-I is relatively
unique in that it has been reported to stimulate both
proliferation and differentiation2, depending on timing
and intracellular conditions (84, 108).

The intracellular signaling pathways that subserve
IGFR1 ligation also represent potential points for inter-
actions between IGF-I-induced responses and those ini-
tiated by other mediators. For example, there is evidence
that signaling via G-protein receptors may interact with
IGF-I receptor-related pathways modulating or even
blocking some responses (e.g., Refs. 48, 58). There is also

a growing body of data that suggests that there are
interactions between the calcineurin- and IGF-I-signal-
ing pathways in skeletal muscle (e.g., Refs. 29, 67). This
is of particular interest in that calcineurin-IGF-I interac-
tions would provide a another mechanism linking cellu-
lar calcium homeostasis to IGF-I signaling.

MUSCLE ADAPTATION TO INCREASED LOADING

There is evidence that the mitogenic and myogenic
effects of IGF-I that render it useful for muscle regen-
eration might also be important for the adaptation of
muscle to increased loading as well. A number of in
vivo activity models, such as increased loading, stretch,
and “eccentric contraction,” are known to result in
increased IGF-I and/or IGF-I mRNA expression in
muscle cells (2, 3, 9, 30, 46, 86, 92, 97, 114, 115).
Furthermore, experimental manipulations of muscle
IGF-I levels have been shown to induce muscle hyper-
trophy both in vitro and in vivo (4, 24, 109). For
example, overexpression (24) or direct infusion (4) of
IGF-I in muscle results in hypertrophy, whereas inhi-
bition of intracellular signaling components associated
with IGFR1 ligation can prevent this response (14).
Overexpression of IGF-I in muscle has also been shown
to prevent some of the age-related effects on skeletal
muscle, such as the decline in muscle mass (10, 68).
However, muscle IGF-I overexpression in a transgenic
model did not prevent atrophy due to acute muscle
unloading (27).

THE AUTOCRINE/PARACRINE IGF-I SYSTEM

One of the more interesting recent developments in
the IGF-I story has been the identification of a unique

2A number of growth factors, such as FGF-6 and hepatocyte
growth factor, are being actively investigated in this respect, but to
date the results have not proved conclusive in in vivo models.

Fig. 2. The IRS-PI3K signaling cascade. Signaling
through PI3K is central to a large number of processes
in mammalian cells. In this greatly simplified diagram,
one of the primary pathways leads to increased trans-
lation initiation and increased production of compo-
nents of the transnational system. Also shown is the
pathway for protection from apoptosis and that which
can mediate increased cytoplasmic calcium levels.
DAG-induced increases in PKC activity have the poten-
tial to feed back and prevent the phosphorylation of
IRS-1. For clarity, potential interactions between the
Ras/ERK pathway (Fig. 1) and calcineurin and G-pro-
tein receptor signaling have been omitted. Akt, protein
kinase B; BAD, proapoptotic regulator of programmed
cell death; Bcl2, regulator of programmed cell death,
promotes cell survival; DAG, diacylglycerol; 4E-BP1,
eukaryotic initiation factor 4 binding protein; eEF2,
eukaryotic elongation factor-2 (k � kinase); GSK3, gly-
cogen synthase kinase 3; IRS, insulin receptor sub-
strate; mTOR, mammalian target of rapamycin; PI3-
kinase (PI3K), phosphotidylinositol 3-kinase; PIP2,
phosphatidylinositol 3,4-bisphosphate; PIP3, phospha-
tidylinositol 3,4,5-trisphosphate; PDK1, PI3K-depen-
dent kinase; PKC, protein kinase C; S6K1, p70 S6
kinase.
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IGF-I isoform that is expressed in response to changes
in the loading state of skeletal muscles (115). This
isoform, mechanogrowth factor (MGF), has been shown
to be markedly upregulated in response to both stretch
and increased loading (61, 70). It appears that skeletal
muscles produce both a generalized tissue-type IGF-I
(1) and the loading-sensitive MGF isoform with differ-
ing time courses, suggesting distinct roles for these two
growth factor isoforms (70). Expression of both IGF-I
and MGF appears to be very sensitive to the loading
state of the muscle. For example, we recently found
that IGF-I and MGF mRNA increased significantly
within a few hours after a single bout of resistance-
type exercise in rat muscles (unpublished observa-
tions).

In addition to IGF-I itself, there is evidence that cells
in muscle produce other components of the IGF-I reg-
ulatory system (8, 12, 60). For example, Awede et al. (8)
reported that overloaded muscles in mice increased the
expression of IGF binding protein 4 (IGFBP4) mRNA,
whereas that of IGFBP5 was decreased. In contrast,
unloading of mouse muscle resulted in an increase in
IGFBP5 mRNA, whereas that of IGFBP4 was un-
changed (8). In general, IGFBP4 and IGFBP5 would be
expected to modulate the effects of IGF-I via regulation
of the free IGF-I concentration in muscle and possibly
via competition with IGF receptors for IGF-I (11).
These findings provide further support of the idea that
the autocrine/paracrine IGF-I system is active in skel-
etal muscle and sensitive to the loading state of the
muscle.

THE “MYOGENIC” COMPONENT OF MUSCLE
ADAPTATION

As with myofiber regeneration, a number of pro-
cesses that IGF-I is known to stimulate would also
promote skeletal muscle hypertrophy. The utility of the
insulin-like anabolic effects for promoting muscle hy-
pertrophy is obvious (71, 85). However, the importance
of IGF-I-induced actions on muscle satellite cells may
be less evident. In the case of the hypertrophy re-
sponse, there appears to be a “myogenic” component
wherein satellite cell-derived myoblasts are thought to
fuse with existing myofibers much as they would with
damaged but still viable myofibers after injury (22, 66,
87, 91, 98). The importance of this response stems from
the observations that mature mammalian skeletal
muscle fibers appear to maintain a relatively finite,
fiber type-specific relationship between the size of the
myofiber and the number of myonuclei present in a
given myofiber (5, 6, 23, 34, 43, 59, 63, 99, 102, 104).
However, mammalian myofibers become permanently
differentiated shortly after birth and cannot undergo
mitotic division or directly increase their myonuclear
number (i.e., myonuclear division) (22). The require-
ment for additional nuclei to support hypertrophy ap-
pears to be met via the proliferation, differentiation,
and finally the fusion of muscle satellite cells or their
progeny with the enlarging myofibers, providing the
new myonuclei needed to support the hypertrophy pro-
cess (5, 63, 72, 81, 82, 91) (Fig. 3). Among the well-
characterized growth factors, IGF-I is the only one that

Fig. 3. IGF-I and “myogenesis” during compensatory
hypertrophy. Increased loading leads to satellite cell
proliferation, differentiation, and fusion. IGF-I has
been shown to stimulate these myogeninc processes in
skeletal muscles. It is postulated that IGF-I, and/or the
loading-sensitive IGF-I isoform mechanogrowth factor
(MGF), is produced and released by myofibers in re-
sponse to increased loading or stretch. The increased
local concentration of IGF-I (MGF) would then stimu-
late the myogenic processes needed to drive the hyper-
trophy response.
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has been consistently reported to facilitate each of
these processes.

Interestingly, relatively acute overexpression of
IGF-I has been shown to increase the number of times
that satellite cells can replicate, possibly explaining
some of the palliative effects of this treatment on age-
related changes in skeletal muscle cited above (19–21).
However, chronic overexpression of IGF-I appears to
exhaust the replicative capacity of satellite cell in vivo
and thus does not prevent age-related declines in pro-
liferation (21).

IGF-I AND EXCITATION-CONTRACTION COUPLING

In addition to the anabolic and myogenic effects
attributed to IGF-I, this growth factor also appears to
have the ability to modulate components of the excita-
tion-contraction coupling mechanism in vivo. Skeletal
muscle dihydropyridine receptors (DHPR) are L-type
calcium channels that act as the voltage sensor in the
transverse tubular system. The primary function of
these L-type channels appears to be the detection of
depolarization and the direct activation of the calcium
release channels in the sarcoplasmic reticulum (49).
Unlike the cardiac version of DHPR, the inward cur-
rent carried by these channels in skeletal muscle does
not appear to be important in the acute regulation of
excitation contraction coupling (49). However, it is pos-
sible that the slow inward conductance of Ca2� may
have some function with regard to long-term intracel-
lular calcium signaling. In cell culture, IGF-I induces
an increase in DHPR that results in a significant in-
crease in charge movement (112). In vivo, overexpres-
sion of IGF-I in muscle results in a significant increase
in DHPR receptor concentration in both fast-twitch
and slow-twitch skeletal muscles (74). In addition,
IGF-I-induced increases in DHPR appear to ameliorate
age-related effects on contractile function in mice (73).
To date, the potential impacts of IGF-I on excitation-
contraction coupling have received relatively less at-
tention than the myogenic and anabolic aspects de-
tailed above.

IGF-I AND PROINFLAMMATORY CYTOKINES

There have been reports that prolonged and/or in-
tense exercise may result in significant increases in
circulating levels of proinflammatory cytokines such as
interleukin (IL)-6 and/or IL-1� (33, 64, 69, 100, 113).
Interestingly, there are reports that exercise can in-
crease proinflammatory cytokines and concurrently de-
press circulating IGF-I in children (35, 90). In general,
the cellular and molecular effects of exercise-induced
cytokine responses on the IGF-I system have not been
extensively evaluated in the context of exercise. How-
ever, it is known that in disease states such as sepsis
the elevated proinflammatory cytokine levels can ei-
ther directly or indirectly mediate catabolic effects on
skeletal muscle (36, 37, 39, 50, 51, 54, 55). In direct
relation to the IGF-I system, Fan et al. (36) found that
systemic injection of IL-1� or tumor necrosis factor-�
(TNF-�) resulted in a reduction in muscle IGF-I in rats.

In a similar finding, Lang et al. (50) reported that
systemic sepsis is associated with a decline in skeletal
muscle and plasma IGF-I. These authors found that
blocking the IL-1 receptor prevented the decline of
IGF-I in skeletal muscle and reduced the degree of
IGF-I decrease seen in the plasma. The IL-1 blockade
also prevented the 43% decrease in skeletal muscle
protein synthesis-induced by the septic state. Thus it
appears that the anti-anabolic and/or catabolic effects
of cytokines such as IL-1� may be mediated at least in
part via the IGF-I axis.

In addition to indirect effects such as a decrease in
circulating IGF-I, there is evidence that some cyto-
kines may interact with intracellular IGF-I receptor
signaling. One area of intersection involves intracellu-
lar signaling via the Janus-activated kinases (JAK)
and signal transducers and activators of transcription
(STAT), which participate in cytokine signaling (47).
Recent evidence suggests that the IGF-I receptor may
also activate JAK/STAT signaling (41, 56, 103, 120).
Among the targets for STATs are a family of suppres-
sors of cytokine signaling, which act as part of a neg-
ative feedback loop to the cytokine receptors. This
raises the possibility that elevated cytokine signaling
could also feedback to and possibly inhibit the IGF-I
receptor as well (31, 32, 103). This would provide an
indirect mechanism for the inhibition of IGF-I signal-
ing whereby increased proinflammatory cytokine lev-
els might stimulate the production of suppressors of
cytokine signaling, which would then feedback to both
the cytokine and IGF-I receptors. It is also possible
that proinflammatory cytokines modulate IGF-I less
directly via increasing circulating corticosteroid levels
(51). Both endogenous and exogenous glucocorticoids
are known to modulate both IGF-I abundance and
IGF-I effects in muscle (28, 36, 51, 95, 96).

In a seemingly paradoxical set of findings, it has
been shown that the proinflammatory cytokines IL-6
and TNF-� stimulate the proliferation of satellite cells
or myoblasts in vitro (7, 18, 101, 111). This suggests
that there may be a role for components of the inflam-
matory response in muscle adaptation (111). It is
tempting to speculate that a potential role of inflam-
matory responses in muscle adaptation may be a func-
tion of the degree of response and as such that this may
be one of the mechanisms that separates training from
overtraining (97).

SUMMARY

The continued interest in the role of IGF-I in skeletal
muscle adaptation is founded on the extensive body of
evidence indicating that 1) IGF-I is both anabolic and
mitogenic for skeletal muscle or muscle lineage cells, 2)
IGF-I operates in an autocrine/paracrine mode in skel-
etal muscle, and 3) muscle IGF-I and MGF production
are sensitive to increases in loading state. In addition
to the effects of IGF-I in promoting skeletal muscle
hypertrophy or regeneration, there are a number of
other systems that may impact or be impacted by IGF-I
signaling that should be considered by muscle re-
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searchers. Future challenges in this area include the
identification of the cellular level mechanisms that
transduce mechanical signals leading to changes in
IGF-I signaling and elucidation of the relationships
between the various intracellular signaling pathways
that allow IGF-I signaling to stimulate the competing
processes of cellular differentiation and cellular prolif-
eration.
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