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ABSTRACT
We have established precise planet radii, semi-major axes, incident stellar fluxes, and stellar masses
for 909 planets in 355 multi-planet systems discovered by Kepler. In this sample, we find that planets
within a single multi-planet system have correlated sizes: each planet is more likely to be the size of its
neighbor than a size drawn at random from the distribution of observed planet sizes. In systems with
three or more planets, the planets tend to have a regular spacing: the orbital period ratios of adjacent
pairs of planets are correlated. Furthermore, the orbital period ratios are smaller in systems with
smaller planets, suggesting that the patterns in planet sizes and spacing are linked through formation
and/or subsequent orbital dynamics. Yet, we find that essentially no planets have orbital period ratios
smaller than 1.2, regardless of planet size. Using empirical mass-radius relationships, we estimate the
mutual Hill separations of planet pairs. We find that 93% of the planet pairs are at least 10 mutual
Hill radii apart, and that a spacing of ∼ 20 mutual Hill radii is most common. We also find that when
comparing planet sizes, the outer planet is larger in 65±0.4% of cases, and the typical ratio of the
outer to inner planet size is positively correlated with the temperature difference between the planets.
This could be the result of photo-evaporation.
Keywords: catalogs, surveys, planetary systems, stars

1. INTRODUCTION

Multi-planet systems provide a fossil record of the
physics that drive planet formation. The Kepler Mis-
sion (Borucki et al. 2010) has enabled detailed statistics
of hundreds of coplanar multi-planet systems (Latham
et al. 2011; Lissauer et al. 2011; Lissauer et al. 2012;
Fabrycky et al. 2014; Lissauer et al. 2014; Rowe et al.
2014). In the Kepler multi-planet systems, multiple

planets transit the star, resulting in measured orbital
periods and planet-to-star radius ratios for each transit-
ing planet. The observed and statistically inferred or-
bital properties in multi-planet systems have been used
to deduce possible planet formation histories (Fang &
Margot 2012; Hansen & Murray 2013; Steffen & Hwang
2015; Malhotra 2015; Pu & Wu 2015; Ballard & Johnson
2016; Xie et al. 2016).
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Until recently, the stellar properties in the population
of Kepler multi-planet systems were poorly understood.
The majority of these stars had only photometric char-
acterization via the Kepler Input Catalog (KIC, Brown
et al. 2011). The uncertainties inherent in broad pass-
band stellar characterization resulted in uncertainties of
16% in the stellar masses and 42% in the stellar radii,
on average (Mullally et al. 2015; Johnson et al. 2017).
With the goal of clarifying the stellar and planetary

properties of Kepler ’s multi-planet systems, the Cali-
fornia Kepler Survey (CKS) determined precise stellar
and planetary properties for 355 Kepler multi-planet
systems containing 909 transiting planets. Petigura
et al. (2017, CKS I) presented the host star spectra
and their observational properties effective temperature
(Teff), surface gravity (log g), metallicity ([Fe/H]), and
projected stellar rotation velocity (v sin i). These ob-
served quantities were converted to physical stellar pa-
rameters stellar mass (M?), stellar radius (R?), and age
using stellar evolutionary models (Johnson et al. 2017,
CKS II). The improved stellar characterization results
in a median uncertainty of 5% in the stellar mass and
10% in the stellar radius.
With improved stellar parameters, it is possible to im-

prove the characterization of planets as well. In CKS II,
the updated stellar parameters were used to compute
planetary radii (Rp), semi-major axes (a), and equilib-
rium temperatures (Teq) for the planets orbiting these
stars. The improved stellar and planetary parameters
enable a more accurate and precise characterization of
the multi-planet systems than was previously available.
In this paper, we examine several properties of Ke-

pler’s multi-planet systems that are clarified by the im-
proved stellar parameters. In section 2 we describe how
the multi-planet systems analyzed herein were selected.
In section 3 we show that the planetary sizes are related
within multi-planet systems. In section 4 we show that
the period ratios between adjacent planets are related
within multi-planet systems. In section 5, we explore
the relation between these patterns and search for un-
derlying physics. In particular, we show that planet size
and planet spacing are correlated. Using the updated
planet radii and semi-major axes, we employ empirical
mass-radius relationships to compute the pairwise mu-
tual Hill separations for the multis. We also explore a
correlation between the ratio of planet sizes and their
equlibirium temperatures. We conclude in section 6.

2. THE SAMPLE

The initial set of CKS systems with multiple transit-
ing planet candidates consists of 469 stars with at least
two transit-like signals, and a total of 1215 transit-like
signals that were at one time flagged as Kepler Objects
of Interest (KOIs). From these, we discarded the known

false positives, removing 59 non-planetary signals as de-
termined in CKS I. We then discarded stars that were
diluted by at least 5% by a second star in the Kepler
aperture (as determined in the stellar companion cat-
alog of Furlan et al. 2017), removing 30 stars hosting
69 planet candidates. We discarded planets for which
Mullally et al. (2015) measured b > 0.9, for which the
high impact parameters adversely affected our ability
to determine accurate planet radii, removing 75 planet
candidates. We removed planets for which the mea-
sured signal-to-noise ratio (SNR) was less than 10 since
these planets have poorly determined radii and impact
parameters, removing 48 planet candidates1. Finally,
we discarded systems that have been reduced to one
valid planet candidate (55 systems). After these cuts,
our sample of “CKS multis” contained 909 high-purity
planet candidates, which we henceforth call planets, in
355 multi-planet systems.
Figure 1 shows the architectures of CKS systems with

at least 4 transiting planets. Each row corresponds to
one planetary system. The systems are ordered by stel-
lar mass, which is listed to the right of each system.
We identify several architectural features by eye, which
merit further investigation: (1) the size of one planet in
a system is a good predictor of the sizes of other planets
in the same system, (2) the spacing between a pair of
planets in a system is a good predictor of the spacing of
additional planets in that same system, (3) the smallest
planets have the closest spacings, (4) when planets are
not the same sizes, the outer planets are usually larger.
Below, we quantitatively investigate these observations.

3. PLANETS IN THE SAME SYSTEM HAVE
SIMILAR SIZES

Is the size one planet in a given system a good pre-
dictor of the size of the next planet? To test this, we
measured the correlation between the size of a planet,
Rj , and the size of the next planet in the system, Rj+1,
in order of increasing orbital period. To avoid detection-
based asymmetries in the distribution, we only included
pairs that were detectable with signal-to-noise ratio
(SNR) >10 when their orbital positions were swapped.
The expected SNR of a planet with size Rp and orbital
period P orbiting a star with bulk density ρ?, radius
R?, and 6-hour Combined Differential Photometric Pre-
cision (CDPP6h, a measure of the stellar photometric
noise over 6 hours, Christiansen et al. 2012) is:

SNR =
(Rp/R?)2

√
3.5yr/P

CDPP6h

√
6hr/T

(1)

1 We also tried a more conservative cutoff of SNR > 20, which
did not change the results.
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Figure 1. Architectures of CKS multis with at least 4 tran-
siting planets. Each row corresponds to one planetary system
(name on y-axis) and shows the planet semi-major axes (x-
axis; note the log scale). The point sizes correspond to the
planet radii, and the point colors correspond to the equilib-
rium temperatures (see key to the right). The systems are
ordered by stellar mass, which is listed to the right of each
system. The inner solar system is included for comparison.

T = 13hr (P/1yr)1/3(ρ?/ρ�)−1/3 (2)

If the smaller planet, when placed at the larger orbital
period, produced SNR > 10, the planets were included
in our sample of adjacent pairs. Of the 554 original pairs
of planets, 504 passed the swapping criterion. We then
tested whether a correlation was present in these pairs
of planets.
Using the Pearson-R correlation test, we find that

there is a large (r = 0.65) and significant (p < 10−5)
correlation between the sizes of adjacent planets (Fig-
ure 2). A planet in a multi-planet system is likely to be
the size of its neighbor.

0.25 0.50 1.00 2.00 4.00 8.00 16.0

Rj [Earth]

0.25

0.50

1.00

2.00

4.00

8.00

16.0

R
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1
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a
rt
h
]

Pearson R=0.65
p < 0.00001

y = x

CKS Err.

Observed

Figure 2. The radius of a planet, Rj , vs. the radius of the
next planet out, Rj+1, in the CKS multi-planet systems.
There is a large and significant correlation (Pearson-R=0.62,
p < 10−5) between the size of a planet and its neighbor. Al-
though the outer planet radius is correlated with the inner
planet radius, 65.4±0.4% of the points sit above the y = x
line. Uncertainties in the stellar radii lead to an 11% un-
certainty in the position of each point along the y = x axis;
uncertainties in transit depths lead to a

√
2×4% uncertainty

in the position of each point along the y = −x axis (see or-
ange cross).

A correlation in adjacent planet sizes can arise from
either astrophysics or from detection biases. One might
imagine that the correlation is driven by the tail end
of small planets (Rp < 1 R⊕). Planets of this size are
only detectable around ∼ 10% of the stars in our sam-
ple (∼ 30 stars), and the smaller planets are even less
detectable. If we restrict our sample to planets with
Rp > 1 R⊕, the Pearson-R correlation has r = 0.53 and
p < 10−5, meaning that the correlation between the sizes
of adjacent planets larger than 1.0 R⊕ is still strong and
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significant. Furthermore, although planets smaller than
1.0 R⊕ would be hard to detect around other stars, it
would be easy to detect larger transiting planets in the
same systems, if they existed.
To further examine the role of detection biases in shap-

ing the observed correlation, we conducted a series of
bootstrap tests. The null hypothesis underlying our
bootstrap tests is that drawing each planet radius at
random, with no regard for which star the planet orig-
inally orbited or which other planets were orbiting the
star, and then subjecting this sample to the detection
biases of Kepler, can produce a correlation between Rj

and Rj+1. The procedure was as follows:

1. Construct a bootstrap trial by drawing planet radii
at random, with replacement, from the distribution
of observed planet radii2 around all the CKS mul-
tis (see Figure 3). Note that this procedure has no
regard for which star the planet originally orbited.
Note also that this procedure does not assume any
relation between Rj and Rj+1.

2. For each real CKS multiplanet host star, draw the
number of planet radii equal to the number of tran-
siting planets detected around that star, and place
the planets at the observed orbital periods for that
star.

3. Check that for each pair of planets, the smaller
planet is detectable (SNR > 10) when placed
at the longer orbital period. Discard any unde-
tectable pairs.

4. Compute the Pearson-R correlation between the
detectable pairs of Rj and Rj+1. An example
bootstrap result is shown in Figure 4.

5. Repeat 1000 times for each star, recording the
Pearson-R value and p-value of each trial (Figure
5).

Figure 4 shows one example of a bootstrap trial and
the resulting correlation. The low Pearson-R value and
near-unity p-value demonstrate a lack of correlation be-
tween adjacent planet sizes in this trial. These values
are typical of our 1000 trials, which are summarized in
Figure 5. Our bootstrap tests were unable to reproduce
the correlation between Rj and Rj+1 pairs observed in
real multi-planet systems.
For example, the upper right corner of Figures 2 and

4—pairs of large planets, which are readily detectable—
differ. In the observed distribution, there are many

2 We also tried drawing radii from a lognormal distribution,
with no appreciable difference in the results.

0.5 1.0 2.0 4.0 8.0 16.0

Rp [Earth] in CKS Multis

0

20

40

60

N

Figure 3. The radius distribution of the 909 planets in the
CKS multis. The Fulton Gap at 2 R⊕ is visible (Fulton
et al. 2017). Note that planets larger than 4 R⊕ constitute
only 7.8% of the distribution, and planets larger than 8 R⊕
account for just 2.4% of the distribution. The majority of
the patterns presented herein are driven by the sub-Neptune
sized planets, not giant planets. Planets were drawn at ran-
dom, with replacement, from this distribution to construct
bootstrap trials investigating planet radii like the one shown
in Figure 4.
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Figure 4. The radius of a planet, Rj , vs. the radius of
the next planet out, Rj+1, in one of one hundred bootstrap
trials of the CKS multis (see text). The bootstrap-generated
distributions do not resemble the correlation between the
sizes of adjacent planets in the CKS multis in Figure 2.

pairs of large planets near (8, 8). However, the boot-
strap rarely realizes such pairs. This is because only
7.8% of the planets have Rp > 4 R⊕, and so drawing
two such planets from the distribution in a row is un-
likely (0.0782 = 0.006). In the hypothesis underlying
the bootstrap trials (each planet does not know about
its neighbor), it is much more likely to draw a pair of
planets with sizes of (2,8) or (8,2), since planets of 2 R⊕
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Figure 5. Left: The Pearson-R correlation between Rj and
Rj+1 in the observed distribution of CKS multis (orange
line), as compared to the 1000 bootstrap trials drawn from
the entire sample of 909 planets in the CKS multis (blue
histogram). Right: The p-value of the Pearson-R correla-
tion between Rj and Rj+1 in the observed distribution of
CKS multis (orange dotted line, upper limit), as compared
to the 1000 bootstrap trials (blue histogram). The bootstrap
trials do not exhibit the correlation between the inner and
outer radii, demonstrating that the correlation is likely due
to astrophysics, not detection biases.
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Figure 6. The ratios of planet sizes for adjacent pairs within
the same system (black line) compared to a control sam-
ple of detection-limited bootstrap tirals (blue line). In both
the observed and the bootstrap distributions, pairs are only
counted if the smaller planet in the pair is detectable at
the longer orbital period. The p-value of an Anderson-
Darling test comparing the observed vs. bootstrap distri-
butions of planet radius ratios is < 10−5; with a confidence
of > 99.9999%, we can rule out the hypothesis that these
two populations come from the same underlying distribution.
The distribution of observed planet radius ratios is signifi-
cantly more peaked at 1.0 than the bootstrap distribution,
indicating that planets in the same system are preferentially
the same sizes.

are very common.
The discrepancy between the observed and bootstrap-

generated planet pairs indicates that a null hypothesis
influenced by detection biases cannot generate the ob-
served correlation. Therefore, the correlation between
the sizes of adjacent planets is likely driven by astro-
physics.
To quantitatively compare the real and bootstrap dis-

tributions, we collapsed the 2D distributions into one di-
mension by computing Rj+1/Rj for each pair. Figure 6
compares the observed and bootstrap-constructed distri-
butions for the pairs of planet radii. Using an Anderson-
Darling test, we find a p-value of < 10−5, allowing us to
conclude with > 99.9999% confidence that the observed
pairs of planet radii are not drawn from the same distri-
bution as the bootstrap-generated pairs of planet radii.
The observed distribution has a much sharper peak at a
planet size ratio of 1.0 than the bootstrap distribution,
meaning that planets in multi-planet systems are more
likely to be similarly sized to each other than what we
would expect drawing their sizes at random. In the ob-
served CKS multis, the distribution of Rj+1/Rj has a
mean value of 1.29, a median of 1.14, and a standard
deviation of 0.63.
The work presented here builds on previous studies

of Kepler multi-planet systems. Lissauer et al. (2011)
also found that planets in multi-planet systems tend
to be the same size, but with a much smaller sample
of planets in multi-planet systems, resulting in only 71
independent, detectability-corrected ratios. Our work
repeats their experiment but with 504 independent,
detectability-corrected ratios.

4. PLANETS IN THE SAME SYSTEM HAVE
SIMILAR SPACINGS

In Figure 1, the planets appear evenly spaced in log
semi-major axis. Since log(A) - log(B) = log(A/B), con-
stant differential log-spacing corresponds to a constant
spacing ratio.
Within each observed system of three or more plan-

ets, we tested whether the orbital period ratio of adja-
cent planets, Pj+1/Pj , was correlated with the orbital
period ratio of the next pair of planets out, Pj+2/Pj+1.
Since Kepler observed for a finite amount of time, find-
ing planets out to about 1000 days at most, our sensitiv-
ity to large ratios of orbital periods is incomplete. If we
find an example of Pj+1/Pj = 10, it is extremely unlikely
that we would also be able to detect Pj+2/Pj+1 = 10 in
the same system, although a third planet might be de-
tectable at Pj+2/Pj+1 = 2. Therefore, we limited our
study to planet pairs with period ratios smaller than 4
(i.e. somewhat compact planetary systems; this number
is justified in Section 5.1). These selection criteria re-
sulted in 373 planets (165 pairs) around 104 stars. The
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resulting orbital period ratios are shown in Figure 7.
In each group of three planets in a row, there is an

apparent correlation between the orbital period ratio of
the inner and outer pairs of planets. We computed a
Pearson-R correlation of 0.46, with a significance of p <
10−5, which indicates that there is a strong, significant
correlation between the orbital period ratios of planets
in the same system.

1.00 1.19 1.41 1.68 2.00 2.38 2.83 3.36 4.00

Pj+1/Pj

1.00

1.19

1.41

1.68

2.00

2.38

2.83

3.36

4.00

P
j+

2
/P

j+
1

Pearson R=0.46
p < 0.00001

y = x

Observed

Figure 7. In systems with three or more planets, the orbital
period ratio of the outer periods vs. the orbital period ratio
of the inner planets. There is a large and statistically signif-
icant correlation (Pearson-R=0.46, p < 10−5) between the
orbital period ratios of the inner and outer planets.

As above, we used a bootstrap analysis to test whether
the observed correlation in adjacent orbital periods
could arise from detection biases. The null hypothesis
we formulated was that the orbital period ratio between
one pair of planets was not, a priori, related to the or-
bital period ratio of the next pair of planets in the same
system. Our procedure for constructing the bootstrap
trials was as follows:

1. Construct a bootstrap trial by drawing each or-
bital period ratio at random, with replacement,
from the distribution of observed orbital period
ratios smaller than 4 (Figure 8). Note that this
procedure has no regard, a priori, for which star
the planet pair originally orbited, or what the or-
bital period ratios among other planets in the sys-
tem might be.

2. For each real CKS multiplanet host star, draw
the number of orbital period ratios equal to the
number of transiting planets observed around that

star, minus one.

3. To map the orbital period ratios to orbital peri-
ods, draw an orbital period P1 at random, with
replacement, from the observed distribution of or-
bital periods of the innermost transiting planet in
each system.

4. Multiply the orbital period P1 by the first drawn
orbital period ratio to get the second orbital pe-
riod, P2. Repeat (replacing P1 with P2, etc.) until
each planet has been assigned an orbital period.

5. Remove any planets with orbital periods greater
than 1071 days (the maximum observed orbital
period of a planet in the CKS multis).

6. Remove any planets that are not detectable (i.e.,
SNR ≤ 10) at their randomly assigned orbital pe-
riods.

7. Among the remaining (detectable) planets in the
bootstrap trial, compute the orbital period ratios
for each adjacent pair of planets.

8. Compute the Pearson-R correlation between each
inner (Pj+1/Pj) and outer (Pj+2/Pj+1) orbital pe-
riod ratio, in systems that retain three or more
detectable planets. Figure 9 shows one example.

9. Repeat 1000 times, recording the Pearson-R and
p-value of each bootstrap trial (Figure 10).

1.0 2.0 4.0 8.0 16.0 32.0

Pj+1/Pj in CKS Multis with 3 or more planets

0

10

20

30

N

Figure 8. The distribution of the orbital period ratios of
adjacent planets in the CKS multis. Since Kepler observed
for a finite amount of time, we are more sensitive to patterns
in which the orbital period ratios of the planets are small.
(A large orbital period ratio necessitates at least one long
orbital period.) Therefore, we limited our study to orbital
period ratios smaller than 4 (dotted vertical line).

Figure 9 shows one example of a bootstrap trial and
the resulting correlation. The low Pearson-R value and
near-unity p-value demonstrate a lack of correlation be-
tween the orbital period ratios of adjacent pairs of plan-
ets in this trial. These values are typical of our 1000
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Figure 9. The orbital period ratio of adjacent planets vs. the
orbital period ratio of the next pair of adjacent planets in one
of 1000 bootstrap trials of the CKS multis with 3 or more
transiting planets (see text). The lack of correlation between
the spacings of adjacent planet pairs in the bootstrap trial
is different from the strong correlation in the distribution of
observed orbital period ratios (Figure 7).

trials, which are summarized in Figure 10. Our boot-
strap tests were unable to reproduce the distribution of
Pj+1/Pj and Pj+2/Pj+1 pairs observed in real multi-
planet systems, indicating that detection biases alone
cannot generate the observed correlation. Therefore,
the correlation between the spacings of adjacent pairs of
planets is likely driven by astrophysics.
To quantitatively compare the real and bootstrap dis-

tributions, we collapsed the 2D distributions into one
dimension by computing P = (Pj+2/Pj+1)/(Pj+1/Pj)

for each pair. Figure 11 compares the observed and
bootstrap-constructed distributions for the pairs of
planet radii. Using an Anderson-Darling test, we find
a p-value of 0.0012, allowing us to conclude with 99.9%

confidence that the observed pairs of planet radii are
not drawn from the same distribution as the bootstrap-
generated pairs of planet radii. The observed distribu-
tion has a sharper peak at a ratio of ratios of orbital peri-
ods of 1.0 than the bootstrap distribution, meaning that
planets in multiplanet systems are more likely to have
correlated spacings than what we would expect drawing
their orbital period ratios at random. The lower signifi-
cance of this correlation than for the correlation between
adjacent planet sizes likely stems from the smaller num-
ber of pairs (165) than were available for the study of
adjacent planet radii (504), since comparing orbital pe-
riod ratios requires at least three planets in a system.
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Figure 10. Left: The Pearson-R correlation between the in-
ner (Pj+1/Pj) and outer (Pj+2/Pj+1) period ratios in the
observed distribution of CKS multis with 3 or more planets
(orange line), as compared to the 1000 bootstrap trials (blue
histogram). Right: The p-value of the Pearson-R correla-
tion between the period ratios in the observed distribution
of CKS multis (orange dotted line, upper limit), as compared
to the 1000 bootstrap trials (blue histogram). The bootstrap
trials do not reproduce the significance of the observed cor-
relation, demonstrating that the correlation is likely due to
astrophysics, not detection biases.

In the observed CKS systems of 3 or more planets, the
distribution of P has a mean value of 1.03, a median of
1.00, and a standard deviation of 0.27.
Malhotra (2015) and Steffen & Hwang (2015) have

also characterized the period ratio distributions of the
Kepler multis. Malhotra (2015) noted that the distribu-
tion of planet spacings, D = 2a2−a1

a1+a2
, is approximately

log-normal. Our result differs from theirs in that we ex-
plored how the orbital spacing between one pair of plan-
ets and the next pair in the same system are correlated.
Steffen & Hwang (2015) also examined the relationships
between the period ratios of adjacent pairs of planets,
but only for those in which one pair (or the product of
the pairs) was near 2.2.

5. PHYSICAL UNDERPINNINGS

How do planets know to be the same size? How do
they know how far apart to form? Below, we explore
the relationship between planet size and spacing and
estimate the planet spacings in terms of mutual Hill
radii. We also examine how stellar incident flux relates
to planet size ratios.

5.1. The Relation between Planet Size and Spacing
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Figure 11. The ratio of orbital period ratios for each ad-
jacent triple of planets within the same multi-planet sys-
tem (black line) compared to a control sample of detection-
limited bootstrap trials (blue line). In both the observed
and the bootstrap distributions, pairs are only counted if the
smaller planet in the pair is detectable at the longer orbital
period. The p-value of an Anderson-Darling test comparing
the observed vs. bootstrap distributions of planet radius ra-
tios is 0.0013; with a confidence of > 99%, we can rule out
the hypothesis that these two populations come from the
same underlying distribution. The distribution of observed
ratios of orbital period ratios is significantly more peaked at
1.0 than the bootstrap distribution, indicating that planets
in the same system have a preferred spacing.

In Figure 1, the systems with the smallest planets ap-
pear to have the closest spacings, and the systems with
larger planets appear to have larger spacings. Extend-
ing this observation to the full sample of CKS multis, we
find a correlation between the sizes of planets and their
orbital period ratios (Figure 12). There is a statistically
significant positive correlation (r = 0.26, p < 10−5) be-
tween the orbital period ratio and average planet size
in a pair. The correlation is particularly visible for
Pj+1/Pj < 4, over which range the planet size increases
with increasing orbital period ratio.
Two features in Figure 12 draw the eye. There is a

striking wall at Pj+1/Pj = 1.2: essentially no planets
are closer together than this. The wall spans an order
of magnitude in planet size, extending from the smallest
planets (Rp ≈ 0.5 R⊕) to Neptune-sized planets. Also,
there is an absence of small planets at large orbital pe-
riod ratios.
We investigated whether some artifact of the Kepler

pipeline for multi-planet systems could produce the wall
at Pj+1/Pj = 1.2. According to Tenenbaum et al.
(2013), the procedure for investigating a light curve in
which one transiting planet candidate has already been
found is as follows: “The transit signatures from the fit-
ted planet model are removed from the flux time series;
and the residual flux time series is then searched for ad-
ditional TCEs.” There is no mention of any period filter-
ing that would exclude planets that are closer together
than a period ratio of 1.2. Furthermore, planets that
have a period ratio of 1.2 (or even 1.1) but are initially
overlapping in transits quickly become out of phase, and
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Figure 12. The average planet size in an adjacent pair (RP

avg) vs. the orbital period ratio of the pair, for the CKS
multis. There is a slight positive correlation (Pearson-R =
0.26, p-value< 10−5) between the average planet size and the
orbital period ratio. The relationship is strongest at small
period ratios.

so after a few orbits the transits occur in different places
in the light curve. Hence, we do not identify any aspect
of the Kepler pipeline that would produce the wall at a
period ratio of 1.2.
The period ratio boundary at 1.2 was predicted by

Deck et al. (2013), who used numerical integrations and
analytical calculations to demonstrate that when plan-
ets get closer together than a2−a1

a1 < 1.46(µ1 + µ2)2/7

(where µ is the planet-to-star mass ratio), they are very
likely to stumble into a resonance overlap of two or
more first-order mean motion resonances, leading to dy-
namical chaos and eventual Lagrange instability. Even
though low-mass planets might be Hill stable in these
configurations, their entanglement in resonance overlap
is fatal for stability. For planets of Mp/M? ≈ 10−5,
i.e., roughly 3 M⊕, with low eccentricities (e < 0.04),
the typical minimum Lagrange-stable separation corre-
sponds to a period ratio of about 1.2 (Deck et al. 2013,
Figure 12). Although some planets can survive closer
than this separation if they fall in an island of stabil-
ity3, there are very few planets for which this appears
to be relevant4.
We investigated the absence of small planets at large

orbital period ratios. The smallest planets (Rp< 1 R⊕)
are the closest to each other, with typical orbital pe-

3 based on serendipitous initial relative mean anomalies
4 Kepler-36 is one such exception and was scrutinized in Deck

et al. (2013)



9

riod ratios from 1.2 to 2.0. These sub-Earths orbit 22
stars, and so the clustering of all these planets at small
orbital period ratios is not a coincidence derived from
a small number of systems with compact architectures.
Among the sub-Earths alone (45 pairs), the Pearson-R
coefficient is 0.44, with p = 0.002.
Is the correlation between orbital period ratio and

planet size astrophysical? We used the bootstrap
method of Section 4 to test how moving the small plan-
ets to a variety of orbital separations would affect their
detectability. Although planets smaller than 1 R⊕ are
detectable around their parent stars at Pj+1/Pj ∼ 4

(Figure 13), no such planets have been found. None of
1000 bootstrap trials generated a correlation with larger
Pearson-R or smaller p-value than the observed distribu-
tion. Thus, the lack of small planets at orbital period ra-
tios of ∼ 4 in our sample is probably not solely based on
detection bias, since we could have found such planets.
Therefore, the clustering of small planets at very close
orbital period ratios in Figure 12 is very likely sculpted
by astrophysics.
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Figure 13. The average planet size in an adjacent pair (RP

avg) vs. the orbital period ratio of the pair in one boot-
strap realization. There is no correlation between the aver-
age planet size and the orbital period ratio. The smallest
planets (Rp < 1 R⊕) are detected at orbital period ratios of
4, in this example, demonstrating that the structure in the
lower left of Figure 12 is not sculpted by detection biases.

5.2. Planets are 20 Mutual Hill Radii Apart

One astrophysical interpretation that links planet
sizes and spacing is the idea that planets communicate
with their neighbors through gravitational interactions.
We therefore considered the separation between a pair
of planets in terms of their gravitational influence, of

which the mutual Hill radius is the natural unit. The
mutual Hill radius of two planets of massesmj andmj+1

orbiting a star of mass M? at semi-major axes aj and
aj+1 is

RH =
(mj +mj+1

3M?

)1/3 (aj + aj+1)

2
(3)

and the separation between two planets, in units of mu-
tual Hill radii, is

∆ = (aj+1 − aj)/RH (4)

(Gladman 1993).
It is useful to note that ∆ is related to but not directly

proportional to the orbital period ratio, P ≡ Pj+1/Pj .
Using Kepler’s third law to rewrite equations 3 and 4 in
terms of orbital periods, we have

∆ = 2
(mj +mj+1

3M?

)−1/3(P2/3 − 1

P2/3 + 1

)
(5)

Since the period ratios we are considering tend to
be small (∼ 1 to 4), subtracting one in the numera-
tor and adding one in the denominator significantly al-
ters the fraction, making ∆ distinct from the period ra-
tio, especially for the smallest planets, which all have
Pj+1/Pj < 2.
To compute planet separations in mutual Hill radii,

it is necessary to adopt planet masses. We converted
our precise planet radii to estimates of planet masses
(Mp) and densities (ρp) via the empirical mass-radius
relationships of Weiss & Marcy (2014) and Weiss et al.
(2013):

Rp/R⊕ < 1.5 :

ρp = 2.43 + 3.39(Rp/R⊕)g cm−3

Mp = (ρp/5.51g cm−3)(Rp/R⊕)3 M⊕ (6)

1.5 ≤ Rp/R⊕ ≤ 4.0 :

Mp = 2.69(Rp/R⊕)0.93 M⊕ (7)

4.0 < Rp/R⊕ < 9.0 :

Mp = 0.86(Rp/R⊕)1.89 M⊕
v (8)

9.0 ≤ Rp/R⊕ :

Mp = 100 M⊕; i.e., MJ
vi (9)

i The original formulation of this relation includes a very weak
dependence on the incident stellar flux ((F/F⊕)0.057). Since this
weak dependence might not be valid, we apply F = 100 F⊕ as a
substitute.

ii The masses of Jupiter-sized planets vary widely. Because only
2% of the planets are in this size range, the results are insensitive
to the masses we assume for these planets.
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The calculated mutual Hill radii, along with other use-
ful system properties, are available in Table 6.4. Al-
though there is large scatter in the planet masses with
respect to these mean empirical relations (Marcy et al.
2014; Weiss & Marcy 2014; Rogers 2015; Wolfgang &
Lopez 2015; Chen & Kipping 2017), we have no reliable
basis for deciding which planet masses should be higher
or lower than the mean, and so we adopt a simple one-to-
one mapping of radius to mass. Furthermore, since the
Hill radius scales as m1/3, uncertainties in the mass of
order a few do not seriously affect the estimated mutual
Hill radius.
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Figure 14. Top: Separation in mutual Hill radii between
adjacent pairs of transiting planets, assuming the empirical
mass-radius relations from Weiss & Marcy (2014) and Weiss
et al. (2013). The CKS multis are shown (black line), as are
the sub-samples with two (green), three (cyan), or at least
four (purple) transiting planets. Planet pairs in the solar
system are shown as dotted lines, with the planet names at
the top of the plot. Bottom: same as top, but showing the
cumulative distribution function.

The orbital separations in mutual Hill radii are shown
in Figure 14. The top panel is a histogram of the CKS
multis, including sub-samples of the CKS multis with
two, three, or at least four transiting planets, and anno-
tations corresponding to the mutual Hill radii of solar
system planets. The bottom panel is the cumulative
distribution function. The majority of Kepler planets
(93%) are at least 10 mutual Hill radii apart, and the
distribution of mutual Hill radii peaks at around 20.
Fang & Margot (2012), Pu & Wu (2015), and Dawson
et al. (2016) have also estimated that the Kepler planets
have a typical spacing of about 20 mutual Hill radii, but

our updated planet radii and stellar masses allow more
precise empirical estimates.
Systems with high multiplicity of transiting planets

(4+) tend to have the smallest Hill separations, shown
in purple. For example, the Kepler-11 planets have
∆ < 10. However, the masses of these planets are
known: the Kepler-11 planets all have systematically
low densities, making their masses smaller than what
we predicted from a simple mass-radius relationship.
Because many compact systems with TTVs have sys-
tematically low densities (Weiss & Marcy 2014), a more
sophisticated mass-radius relation is necessary to quan-
titatively link the compactness of a system, the planet
radii, and the planet masses.
For systems that have larger Hill separations, it is pos-

sible that the eccentricities and/or mutual inclinations
of the planets are larger, requiring larger separations be-
tween the planets for stability. For systems with pairs of
planets more than about 20 mutual Hill radii apart, it is
also possible that another planet resides between them,
but either does not transit or has not been detected. It
also possible that systems with large dynamical separa-
tions are not maximally packed.
If the mutual Hill radius, rather than the orbital pe-

riod ratio, is the fundamental unit underlying planet
spacing, we should expect no correlation between sepa-
ration in mutual Hill radii and planet size. The mutual
Hill radius incorporates the mass of the planet, and so
ideally, the computation of mutual Hill radius separation
should remove the contribution of planet size. Figure 15
shows the separation in mutual Hill radii vs. the average
planet size. A Pearson-R test finds a significant nega-
tive correlation between planet size and separation in
mutual Hill radii (r = −0.2, p < 10−5). This correla-
tion is driven by an absence of points in the lower left
corner of the plot. Planets smaller than 1 R⊕ are all
farther apart than 16 mutual Hill radii. It would have
been easier to detect these planets if they were closer
together (i.e., if they had shorter orbital periods), and
so the absence of very small planets at close dynamical
spacings is not due to detection bias.
The colors in Figure 15 indicate the orbital period

ratio of each pair. The closest pairs, with Pj+1/Pj ≈ 1.2,
are red. The colors run parallel to the lower left edge,
suggesting that the absence of points in the lower left
corner is related to the absence of any planets closer
together than an orbital period ratio of 1.2 (Figure 12).

5.3. Temperature difference correlates with planet size
ratios

In 65.4± 0.4% of planet pairs in the CKS multis, the
outer planet is larger than the inner planet. We in-
vestigate whether incident stellar flux is correlated with
the asymmetry of planet sizes. For each adjacent pair
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Figure 15. The average planet radius in an adjacent pair,
RP avg., vs. the estimated spacing in mutual Hill radii
between those planets, ∆RH. The colors correspond to the
orbital period ratio, Pj+1/Pj . The negative correlation be-
tween planet size and mutual Hill radius (r = 0.26, p < 10−5)
appears to arise from an absence of points in the lower left
corner of the plot. Specifically, planets smaller than 1 R⊕
are at least 16 mutual Hill radii apart. The absence in the
lower left corner is related to the absence of planets closer
together than a period ratio of 1.2.

of planets, we consider the difference in their estimated
equilibrium temperatures based on the incident stellar
flux at each planetvii: ∆Teq = Tinner − Touter.
In Figure 16, we investigate whether the difference

in equilibrium temperature is correlated with the size
ratio of the outer to inner planet. (The size ratio is sim-
ply y/x from Figure 2.) We find a slight correlation:
the greater the temperature difference between the in-
ner and outer planet, the larger the ratio of their sizes.
In particular, there is an absence of planet pairs with a
larger inner planet when the temperature difference is
large. Photo-evaporation (e.g., Lopez et al. 2012; Owen
& Wu 2013; Zahnle & Catling 2017) could produce such
an effect, since the expectation from photo-evaporation
is that inner planets should be smaller than outer plan-
ets (assuming identical core masses), and that this effect
should be more pronounced when the temperature dif-
ference is larger.
Is the correlation between the planet size ratio and

temperature difference due to astrophysical processes
such as photo-evaporation, or a detection bias? Re-
peating the bootstrap procedure of Section 3, we find

vii assuming a bond albedo of 0.3, as in CKS II

that bootstrap trials do not reproduce the observed dis-
tribution (Figure 17 shows one example). Rather, the
bootstrap trials generate detectable planet pairs that
populate the lower right corner of the plot (pairs in
which the inner planet is larger, even when the tem-
perature difference is large), demonstrating that such
planets would have been detectable. Thus, the size
ratio vs. temperature difference trend is likely due
to astrophysics, although the significance is marginal.
Determining whether photo-evaporation or some other
physics is underlying the correlation will require further
investigation and is beyond the scope of this paper.

32.0 64.0 128. 256. 512. 1024 2048

ΔTeq [K]

0.25

0.35

0.50

0.71

1.00

1.41

2.00

2.83

4.00

R
j+

1
/R

j

Pearson R=0.23
p < 0.00001

Observed

Figure 16. The ratio of adjacent planet sizes vs. their differ-
ence in expected equilibrium temperatures. There is a slight
positive correlation (Pearson-R = 0.23, p-value < 10−5) be-
tween the temperature difference and the planet size ra-
tio. To guide the eye, averages in bins of log(dT ) are
shown as red squares. This correlation is consistent with
photo-evaporation, which should result in inner planets be-
ing smaller than outer planets.

Ciardi et al. (2013) also found that, after correcting
for detectability, the outer planet is larger than the inner
planet in 68% of pairs, but this was only true for planets
larger than 3 R⊕. Restricting their sample to planets
smaller than 3 R⊕, they found no preference for smaller
inner planets, whereas we do (67% of outer planets are
larger in pairs where both planets are smaller than 3 R⊕;
see Figure 2). The difference in their analysis and ours
likely results from our larger sample.

6. SUMMARY AND DISCUSSION

In this paper, we have found the following observa-
tional results among the Kepler systems with multiple
transiting planets:

1. In a given multiplanet system, each planet’s size
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Figure 17. The ratio of adjacent planet sizes vs. the differ-
ence in their equilibrium temperatures in one of 1000 boot-
strap trials. The lack of correlation in the bootstrap trial
is different from the modest correlation between equilibrium
temperature different and planet size ratio (Figure 16).

is strongly correlated with the size of its neighbor.

2. In a given system with three or more transiting
planets, the ratio of orbital periods between two
adjacent planets is correlated with the orbital pe-
riod ratios of other adjacent planets in that sys-
tem.

3. There is a correlation between planet size and
planet spacing: smaller planets tend to have
smaller orbital period ratios.

4. Converting planet radii to estimated masses, we
find that planets tend to be about 20 mutual Hill
radii apart. Planets are rarely closer together than
10 mutual Hill radii. Higher multiplicity systems
are more packed than lower multiplicity systems.

5. Planets spanning 0.5 to 4 R⊕ have orbital period
ratios as small as 1.2, but not smaller. This cor-
responds to a mutual Hill radius of > 16 for the
smallest planets (Rp < 1 R⊕).

6. In 65% of planet pairs, the outer planet is larger
than the inner planet. The ratio of the outer
planet to inner planet size is correlated with
the temperature difference between the inner and
outer planet.

How do the observed patterns in the CKS multis relate
to theories of planet formation? The correlation between
planet size and planet spacing—at least for the close
planetary pairs—suggests that dynamics play a key role

in the final planet sizes and/or the final planet spacings.
In particular, how do the patterns in the CKS multis
relate to theories of in situ formation vs. disk migration?

6.1. In situ formation

Lissauer & Stewart (1993) noted, “The self-limiting
nature of runaway growth strongly implies that mas-
sive protoplanets form at regular intervals in semimajor
axis.” In short, this is because protoplanets grow until
they have accumulated all of the available material in
their feeding zoneviii. Likewise, Kokubo & Ida (1998)
noted, “Protoplanets with the same order masses...[are]
the inevitable outcome of planetary accretion.” If oli-
garchs that formed via runaway growth remained undis-
turbed since their formation, they should still be at reg-
ular intervals today, and should still have similar masses.
That the CKS multis are similarly sized planets at regu-
lar intervals might indicate that they are aged oligarchs
that suffered relatively few mass-doubling giant impacts,
compared to the solar system terrestrial planets. For
comparison, the standard deviation of Rj+1/Rj among
the CKS multis is 0.63, whereas among the solar system
terrestrial planets it is 1.01. Future work that repro-
duces the typical intra-system variance in planet size
and spacing via a detailed dynamical model might be
revealing about the prevalence of giant impacts in the
CKS multis.
Protoplanetary formation theory does not generally

include the acquisition of gas, which is an important
factor in the final planet size, since just a few percent
hydrogen by mass can double a planet’s radius. If the
protoplanets of similar masses are forming at the same
time, as long as the gas fraction does not vary by many
orders of magnitude between the innermost and outer-
most planet, it is plausible that the planets acquire sim-
ilar amounts of gas, which would explain why they grow
to be the same size. Millholland et al. (2017) find that
planets in the same system tend to have similar masses,
strengthening the evidence that similarly sized planets
are remnants of planet formation.

6.2. Disk Migration

On the other hand, perhaps the CKS multis experi-
enced Type I disk migration that brought them to their
present locations. One criterion for this formation mech-
anism is that the majority of the planets are not caught
in mean motion resonances (Fabrycky et al. 2014). To
escape resonant capture, the planets would need low

viii an annulus centered on the star in which the velocity differ-
ence between the protoplanet and a swarm of planetesimals is suf-
ficiently small that the gravitational force of the protoplanet wins
over competing forces on the planetesimals (Lissauer & Stewart
1993; Goldreich et al. 2004)
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masses (compared to their stars) and sufficiently high
eccentricities (Pan & Schlichting 2017). However, be-
cause the Type I migration rate scales with planet mass,
the planet masses might need to be finely tuned to re-
produce the observed correlated spacing of planets, or
would need to escape from resonance after migrating in
a locked configuration. Furthermore, for many of the
Kepler systems, the tight spacing (∆ < 20) requires
low eccentricities for dynamical stability (Fang & Mar-
got 2012; Pu & Wu 2015; Petrovich 2015; Dawson et al.
2016), which places an upper bound on plausible eccen-
tricities achieved during migration.
One particularly intriguing population for disentan-

gling the histories of in situ formation vs. disk mi-
gration is the very small planets (Rp < 1 R⊕), which
have orbital period ratios of 1.2, but wide separations
(& 20) in terms of mutual Hill radii. That the planets
are not closer together than a period ratio of 1.2, even
though Hill stability allows it, is probably evidence that
chaos and eventual Lagrange instability dominates at
Pj+1/Pj < 1.2. Although these planets could, in theory,
have orbital period ratios larger than 1.2, all of the pairs
detected so far have orbital period ratios clustered near
the wall at 1.2. What can the absence of sub-Earths at
larger orbital period separations (and larger mutual Hill
radii) tell us about formation theory? Either (1) sub-
Earths form near the stability limit, or (2) migration
tends to bring sub-Earth sized planets to the stability
limit and park them at that limit.

6.3. Kepler and the Solar System

In the bottom panel of Figure 14, the cumulative
distribution function for the solar system (dotted line)
traces the distribution for the CKS multis. It is difficult
to calculate the significance of the similarity because the
solar system has only 9 planets (including Pluto). The
similarity in the mutual Hill radii between the CKS mul-
tis and the solar system is striking because the Kepler
planetary systems are often distinguished from the solar
system with the phrase “dynamically packed.” However,
Figure 14 underscores that in a dynamical sense, their
orbital separations are very similar. The orbital sepa-
rations of the Kepler planets in units of a.u. are small
compared to the solar system, but this is not so in units
of mutual Hill radii.ix

Nonetheless, the inner solar system (our terrestrial
planets) are quite far apart in mutual Hill radii, unlike
the Kepler systems. The top panel of Figure 14 shows
that Venus and Earth, Earth and Mars, and Mars and
Mercury are all > 20 mutuall Hill radii apart (Mercury
and Venus are more than 60 mutual HIll radii apart).

ix Malhotra (2015) and others have also made this point.

Also, the orbital period ratios between all these planet
pairs are larger than 1.2. Although our solar system has
an overall resemblance, in terms of dynamical packing,
to the CKS multis, the amount of space between the
terrestrial planets is rare among the Kepler planets.
Perhaps the wide spacing of planets in our inner so-

lar system is due to the influence of Jupiter (Chambers
2001; Levison & Agnor 2003; Gomes et al. 2005). A
more rigorous search for giant companions to the Kepler
multi-planet systems is necessary to better contextualize
our solar system among other multi-planet systems.

6.4. The future

Measurements of the masses and eccentricities in sys-
tems of regularly spaced planets, especially in systems
where photo-evaporation has played at most a minor
role, will test the predictions of in situ formation mod-
els and Type I migration models. Obtaining accurate
planet multiplicity, planet masses, and planet orbital dy-
namics in such systems might elucidate how the majority
of the Kepler sub-Neptune sized planets formed.
Since the TESS primary mission is expected to obtain

at most a year of continuous photometry (in the con-
tinuous viewing zones Ricker et al. 2015), it will not be
as sensitive to long-period planets in multi-planet sys-
tems as Kepler was. Additional planet searches using
radial velocity data, transit follow-up, astrometry from
Gaia, and direct imaging with a small inner working an-
gle (such as from WFIRST with a starshade) will help
extend our sensitivity to as many planets as possible in
multi-planet systems. Such observations are necessary
to further test the predictions of planet formation theo-
ries and to understand if our solar system is common or
rare.

Facilities: Keck:I (HIRES), Kepler
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Table 1. CKS Multis Properties

Star KOI Kepler Name M? R? CDPP6hr b Period Rp σRp Teq Rp avg. Pj+1/Pj ∆RH

(M�) (R�) (days) (R⊕) (R⊕) (K) (R⊕)

K00041 K00041.02 Kepler-100 b 1.107 1.55 23.33 0.51 6.88 1.35 0.23 1186 0.0 0.0 0.0
K00041 K00041.03 Kepler-100 d 1.107 1.55 23.33 0.59 35.33 1.54 0.31 687 1.95 2.75 31.23
K00041 K00041.01 Kepler-100 c 1.107 1.55 23.33 0.58 12.81 2.37 0.34 965 1.86 1.86 20.15
K00046 K00046.01 Kepler-101 b 1.156 1.58 54.61 0.03 3.48 5.69 0.73 1443 0.0 0.0 0.0
K00046 K00046.02 Kepler-101 c 1.156 1.58 54.61 0.41 6.02 1.18 0.16 1203 3.43 1.72 12.91

Note—Rp avg., Pj+1/Pj , and ∆RH are parameters that relate a pair of adjacent planets. In this table, each value is listed with the
outer planet of the pair.
Table 6.4 is available in its entirety in machine-readable format. A portion is shown here for guidance regarding its form and content.




