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Abstract 
 

Idealized Objects and Material Diagrams 
 

By 
 

Kenton de Kirby 
 

Doctor of Philosophy in Education 
 

University of California, Berkeley 
 

Geoffrey B. Saxe, chair 
 
 

This dissertation targets young students’ developing knowledge relevant to a fundamental 
practice in academic mathematics: the use of diagrams to represent idealized mathematical 
objects whose properties are established by definition (as in the use of drawn dots to represent 
zero-dimensional points and drawn lines to represent one-dimensional lines with infinite extent). 
Initiation into this ‘definitional practice’ is critical to students' mathematical development. 
However, the practice is understudied in educational research. It also presents a significant 
source of confusion for students. Instead of using definitions, students may rely on the 
appearances of the diagrams and their knowledge of the physical world—an ‘empirical’ rather 
than definitional approach. 

I have designed three studies to investigate students’ developing understanding of the 
definitional practice, using points and lines in Euclidean geometry as a potentially fruitful 
mathematical context. Adopting a design research approach that draws on Vygotsky’s method of 
double stimulation, these studies employ a pedagogical strategy that is rarely observed in 
mathematics classrooms: providing definitions and making explicit the distinction between 
drawn diagrams and the idealized objects they symbolize, pointing out that the defining features 
of points and lines are not perfectly embodied in their conventional representations. These 
studies investigate students’ uptake of this support and capture students’ developing 
understanding of the definitional practice. 

The first study uses an experimental design to determine whether there are age/grade-
related changes in students’ uptake of the intervention. Participants include students from a San 
Francisco Bay Area charter school in fourth grade (n=46), sixth grade (n=53), and eighth grade 
(n=43). Students are assigned to one of two treatment conditions whose purpose was to 
manipulate exposure to the definitions of points and lines. In the experimental treatment, 
students are presented with a sheet that contained mathematical definitions of points and lines, 
which are unavailable to students in the control condition. Students are then administered a 
paper-and-pencil assessment consisting of eight multiple choice items, some of which included 
diagrams of points and lines. Analyses suggest that with age, children shift towards relying on 
definitions rather than the appearances of the diagrams and knowledge about material objects. 
 The second study addresses unanswered questions about the general learning trend 
identified by the first study. Specifically, it uses structured one-on-one interviews to determine 
whether (a) students are indeed drawing on provided definitions when selecting idealized (rather 
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than empirical) answers, and (b) whether students are constructing a conceptual differentiation 
between material diagram and idealized object. Participants include fourth (n=40) and sixth 
(n=37) grade students.  

The third study explores how students make sense of the definitions of points and lines 
presented in Study 1 and 2. In particular, this study considers how students may be constructing 
analogies that draw on ideas related to the material world. Results demonstrate that students’ 
materially-based analogies incorporate other ideas typically learned in school to make sense of 
the definitions of points and lines. For example, students frequently refer to scientific ideas 
related to the microscopic world of atoms and molecules to explain the zero-dimensionality of a 
mathematical point. Participants were identical to those of the second study. 

The insights generated by these three studies contribute to our understanding of 
sociocultural processes in cognitive development as well as to mathematics education research. 
This dissertation also has practical implications for mathematics instruction, suggesting 
potentially promising pedagogical possibilities for giving students a better ‘feel for the game’—
an understanding of what academic mathematics is all about. 
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INTRODUCTION 
 

I call a sign which stands for something merely because it resembles it, an icon. Icons are 
so completely substituted for their objects as hardly to be distinguished from them. Such 
are the diagrams of geometry…[I]n the middle part of our reasonings we forget that 
abstractness in great measure, and the diagram is for us the very thing. So in contemplating 
a painting, there is a moment when we lose the consciousness that it is not the thing, the 
distinction of the real and the copy disappears, and it is for the moment a pure dream…. 
 Peirce, 1885 (pg. 181) 

 
 

Because of the difficulty of identifying objects which are neither discernible to the sense 
nor psychological, visible objects have been substituted for them. But this is to forget that 
these symbols are not what we want to study.”  
 Frege, 1970 ( pg.482)  

 
 

There is arguably a two-sidedness to academic mathematics. Comprising one side 
is a family of semiotic practices united by an empirical orientation. Examples of such 
practices include quantification, measurement, and modeling—practices that are 
organized by and in direct reference to objects in the material world, which includes the 
physicality of constructed mathematical representations. In its second side, academic 
mathematics is conducted as an axiomatic science, encompassing such practices as 
stipulation, deduction, and definitional reasoning—practices organized around logical 
consistency, rules of inference, and adherence to normative definitions. In the context of 
such practices, mathematical diagrams are taken to be representations of idealized 
objects, rather than the target of observation or measurement. Consequently, children’s 
development as doers of mathematics is likewise two-sided, as they learn to participate in 
both kinds of practices, and to switch fluidly back and forth between them, often using 
them together in the context of the same representation or problem (Laborde, 2005; 
Schoenfeld, 1983; 1986).   

The studies reported here target young students’ developing understanding of a 
core axiomatic practice in academic mathematics—the use of diagrams to represent 
idealized mathematical objects whose properties are stipulated by definition. In Euclidean 
geometry, good examples of the practice include using a dot to stand for a zero-
dimensional object (“point”), and using a drawn line tipped with arrows to depict a one-
dimensional object with infinite extent (“line”).1 Mathematical diagrams are employed in 
this practice to signify idealized entities—that is, entities that constitute forms of 
“imagined perfection” (G. Lakoff, personal communication, February 11, 2015) and are 
therefore non-perceptible (Font & Contreras, 2008). This disciplinary practice constitutes 
a kind of "language game" (Wittgenstein, 1953) involving the coordinated use of two 
forms of semiotic tools—diagrams and definitions. The ‘rules of the game’ dictate that 1) 
diagrams are to be treated as representations of idealized, not material objects, and 2) 
stipulated definitions ultimately determine the features of mathematical objects, not the 
appearances of their diagrammatic representations. As I will discuss, this practice is vital 
to young students’ mathematical development, and yet is significantly understudied in 
                                                
1	Euclid, the founder of modern geometry, defined a line as "breathless length," and a point as "that which 
has no part" (Lakoff & Núñez, 2000).	
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educational research. Moreover, the tension between the inevitably imperfect material 
diagrams and the idealized objects they represent presents an inherent likelihood of 
confusion and miscommunication between teachers and students (Laborde, 2005; Font, 
Godino, Planas, & Acevedo, 2010; Mesquita, 1998), as I will discuss in detail below. 

Students’ initiation into the practice of using diagrams to represent stipulated 
mathematical objects is critical to their development as doers of academic mathematics. 
(Hereafter, I will refer to it as the ‘definitional’ practice given the prescribed primacy of 
definitions over the appearances of diagrams.) Reasoning from definitions has been 
shown to present difficulties for even advanced students of mathematics (Edwards & 
Ward, 2004; Harel, 1999; Moore, 1994; Tall, 2008; Tall & Vinner, 1981) and has been 
privileged in ongoing shifts in mathematics education (National Governors Association 
Center for Best Practices & Council of Chief State School Officers, 2010). More 
generally, because this practice in some sense epitomizes the axiomatic facet of academic 
mathematics, becoming a participant in the practice offers an invaluable "feel for the 
game" (Bourdieu, 1990)—that is, an orienting and generative understanding of what 
doing mathematics is all about: the study of idealized entities.  

The definitional practice is significantly understudied in educational research. For 
the most part, researchers have focused on knowledge related to empirical practices, not 
definitional practices. Well-studied empirical practices include of activities like counting 
(e.g., Fuson, 1988; Gelman & Gallistel, 1979; Saxe, Guberman, & Gearhart, 1987; 
Sarnecka, 2013) and measurement (e.g., Carpenter & Lewis, 1976; Hiebert, 1981; Lehrer, 
2003; Miller, 1984; Piaget & Inhelder, 1956; Stephan et al, 2003).  

Educational researchers have indeed discussed the distinction between 
representation and mathematical object, and its importance for children’s grasp of the 
discipline, as well as the difficulties this distinction is likely to present for students and 
teachers (Dörfler, 2000; Duval, 1999; 2006; Font & Contreras, 2008; Lakoff & Núñez, 
2000; Mesquita, 1998; Radford, 2002; Sfard, 2000). However, there has been hardly any 
direct, systematic empirical investigation of students’ developing knowledge of and/or 
engagement with definitional practices (exceptions include Fischbein, 1993). For 
example, little is known about students’ developing understanding that, as depictions of 
stipulated objects with idealized properties, diagrams are inevitably imperfect but their 
“imagined perfection” can nonetheless be useful in supporting thinking and 
communication about mathematical ideas.  

The importance and inherent challenges of the definitional practice for young 
students make its development well worth systematic investigation. The studies reported 
here use points and lines in Euclidean geometry as a potentially fruitful mathematical 
context for studying students’ developing understanding of the practice, and how specific 
instructional interventions can support this development.  

 
Theoretical Framework: A cultural practice approach to understanding 

idealized objects and material diagrams  
 

The notion of a cultural practice—a recurrent activity organized in relation to 
community norms, values, and conventions—frames the way I conceptualize individuals’ 
use of diagrams to represent idealized objects. The construct of a cultural practice derives 
from the large body of scholarship on the sociocultural nature of cognitive development 
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(Cole 1996; Lucariello, 1995; Rogoff, 2003; Wertsch, 1991; Saxe & de Kirby, 2014). Via 
their participation in cultural practices, individuals perform cognitive work through 
generating goals, and solving problems (Saxe, 1994; 1999), and in this process, 
individuals develop novel practice-linked knowledge (Saxe, 2012; Saxe & de Kirby, 
2014). Scribner and Cole (1981) offer a more elaborated definition and example of the 
construct of cultural practice, one that has some resonance with the definitional practice 
that is of relevance to this inquiry: 

 
By a practice we mean a recurrent, goal-directed sequence of activities using a particular technology 
and particular systems of knowledge. …. We can apply this concept to spheres of activity that are 
predominantly conceptual (for example, the practice of law) as well as to those that are predominantly 
sensory-motor (for example, the practice of weaving). All practices involve interrelated tasks that share 
common tools, knowledge base, and skills.  But we may construe them more or less broadly to refer to 
entire domains of activity around a common object (for example, law) or to more specific endeavors 
within such domains (cross-examination or legal research). Whether defined in broad or narrow terms, 
practice always refers to socially developed and patterned ways of using technology and knowledge to 
accomplish tasks. Conversely, tasks that individuals engage in constitute a social practice when they 
are directed to socially recognized goals and make use of a shared technology and knowledge system. 

Scribner & Cole, 1981 (pg. 236)  
 
 The construct of practice has become increasingly influential in mathematics 
education, leading to a reconceptualization of what should be a principal goal of 
mathematics instruction. Educators have argued that mathematics education should 
involve more than acquiring knowledge of particular procedures or concepts. Rather, it 
should entail learning to participate in forms of activity constitutive of the discipline. For 
example, Ball and Bass (2003) have argued for the importance of making explicit to 
students the nature of valued mathematical practices, which are often left implicit, such 
as the axiomatic practices of proof and definitional reasoning. Further, the Common Core 
State Standards for Mathematics, an influential policy document adopted by many states 
in the United States, has elevated the notion of discipline specific practices as being a 
core target of teaching (Core-State-Standards-Initiative, 2010). The Standards identify 
several valued mathematical practices, including practices related to mathematical 
modeling and argumentation.  
 A practice-based conceptualization of mathematics learning serves to clarify 
sources of confusion related to the definitional practice that may emerge in classroom 
instruction. To illustrate, I identify three potential sources of confusions that challenge 
students’ developing understanding that geometric diagrams are representations of 
idealized objects.  

First, the definitional practice contrasts with empirically-oriented mathematical 
practices rooted in daily life and are explicit targets of instruction. These materially-
oriented practices include activities such as fair sharing, counting, and measurement. I 
show subsequently how not clearly distinguishing the definitional practice from empirical 
practices may lead to confusion for students. 

Second, the potential for students to conflate drawings with the idealized objects 
is particularly acute in the domain of geometry, because geometric diagrams ‘resemble’ 
the mathematical objects they represent (exemplifying Peirce’s notion of an “icon” 
(1885)). For this reason, the very properties that make diagrams so useful in thinking and 
communicating about idealized objects contribute to the likelihood that students may 
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interpret the diagrams as the mathematical objects themselves (Laborde, 2005; Mesquita, 
1998) . On this issue, Dorfler (2000) has pointed to the “two-sidedness” of geometry. On 
the one hand, students engage in activities involving the construction, measurement, and 
taxonomic identification of drawings—activities that are chiefly organized by the 
empirical properties of the material diagrams (i.e., material practices). On the other hand, 
of course, students also learn to think with formal definitions that include properties that 
cannot be embodied in drawn diagrams, but which the diagrams symbolize. 

Third, a final source of confusion is the fact that formal mathematics instruction 
often does not make explicit to students the ‘rules of the game’—the fact that diagrams 
are representations, and that the relevant definition is ultimately more important than 
what the diagram looks like (Laborde, 2005). This echoes the more general observations 
made by other mathematics education researchers concerning valued mathematical 
practices (Ball and Bass, 2003)—that core components are often left implicit. Font, 
Godino, Planas, & Acevedo (2010) provide an excellent summation of this source of 
confusion regarding the definitional practice: 

 
Mathematical discourse moves flexibly between representations and the mathematical objects they 
represent. In mathematical practice it is not always considered necessary to distinguish explicitly 
representation from the object represented, as this distinction is taken for granted. However, at times it 
is worth making a clear distinction between the two of them… A basic aim of mathematics education 
is that students learn to move flexibly between representations and the mathematical objects they 
represent. This is not easy for students to learn, and it also poses a challenge for teachers because they 
are not always aware of the complexity….   

Godino, Planas, & Acevedo, 2010 (pg. 15)  
 

For the reasons discussed above, it is likely that students will not differentiate2 
diagrams from the idealized objects they symbolize. Below, I provide two brief 
illustrations from mathematics education. Each demonstrates the utility of a practice-
based conceptualization for clarifying potential sources of confusion for children as they 
begin to learn about and engage with the definitional practice.  
 
Illustration A: Classroom Observation 
 Consider the following brief classroom observation noted by Saxe (2004), which 
illustrates how the rules of the game may be left implicit in mathematics instruction. In an 
upper elementary school classroom, a lesson on fractions is underway. The teacher 
quickly draws two “cookies” on the board (Figure 1), inadvertently drawing one cookie 
larger than the other. She asks, if the cookies were split among four people, what fraction 
of a cookie would each person receive? One student answers "two fourths" and explains 
that, since the cookie on the right is bigger, each person should get a fourth from each 
cookie (not a half of any one). Although the student’s response is mathematically equal to 
the intended answer of "one half," the logic underlying the answer reflects an orientation 
to the diagram that the teacher did not intend.  
 

                                                
2 My use of the term “differentiation” throughout this dissertation draws on Werner and Kaplan’s (1963) 
orthogenetic principle of development, including the development of symbol use.  
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Figure 1. Two “cookies” to be split among four people. 
 
 A practice-based conceptualization provides a useful lens with which to capture 
what is occurring in the classroom observation. In a nutshell, teacher and student are 
engaging in fundamentally different practices involving the same diagram. For the 
teacher, the problem was to divide two circles stipulated to be congruent—the 
definitional practice of using inevitably imperfect diagrams to represent and reason about 
idealized objects. For the student, the problem was to equally share two cookies whose 
manifestly unequal size is depicted by diagrams. Conceptualized in terms of this 
empirical practice, whether it involves diagrams or real cookies, the problem’s initial 
state and solution is open to empirical verification, rather than established by fiat. 

Likewise, a practice-based conceptualization supports the insight that the ‘rules of 
the game’ can remain implicit in classrooms, as in the one described here. Rarely does a 
teacher make explicit the distinction between a diagram and what it represents, or discuss 
the importance of the stipulated definition relative to what the diagram looks like 
(nothing like this ensued in the episode above). As a result, such miscommunications 
may very well go unnoticed and unaddressed.  
 
Illustration B: Fischbein’s study of the definitional practice 
 Fischbein (1993) produced one of the few empirical studies with young students 
targeting the tension between representational appearances and the definitions of 
geometric objects.3 His study, and its limitations, points to the potential utility of a 
practice-based approach.  

Fischbein presented elementary students (grades 2-6) with the task shown in 
Figure 2, asking if one of two points (Point 1 or Point 2) is bigger or heavier than the 
other, or if both of the points are the same. Fischbein’s results showed an age-based 
developmental progression in students’ responses. Young students’ answers were often 
consistent with the appearances of the representation (e.g., Point 1 is bigger or heavier 
than Point 2), while older students frequently answered that the two points were the same, 
consistent with a conception of points as ideal objects that, by definition, always have no 
size. Students in the middle of the age range often answered in inconsistent or 
contradictory ways. For Fischbein, this finding captures the progressive development of a 
“figural concept,” wherein the spatial/perceptual (i.e., “figural”) dimension is 
increasingly subordinated to the definitional (i.e., “conceptual”) dimension. The task 
Fischbein used is innovative—the appearances of the diagram and the behavior of 
                                                
3	Fischbein and Nachlieli (1998) have also conducted an empirical study of developmental differences in 
the relationship between definitions and the appearances of geometric representations in students’ thinking. 
However, this study targets polygon classification and does not explicitly address the kinds of idealized 
properties that are of interest here (e.g. missing dimensions and infinite extent). 
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physical objects suggest a response that conflicts with what is entailed by the definition 
of a mathematical point. This feature supports Fischbein’s inferences about the shifting 
role of mathematical definitions in students’ problem solving.  
 

 
Figure 2. Task used by Fischbein (1993). 
 

However, a practice-based conceptualization provides a useful lens through which 
to formulate and address important questions that are not posed or remain unanswered in 
Fischbein’s study. Because students’ definitional knowledge is not assessed in 
Fischbein’s study, and because Fischbein did not use an experimental manipulation in 
which some participants had access to definitions and others did not, any inference about 
developmental differences in the way students use definitional reasoning about 
mathematical objects is problematic. Thus, the central developmental process in students’ 
engagement with the definitional practice is obscured. 

 
Methodological Approach—The Method of Double Stimulation 

 
To investigate the definitional practice in a way that addresses what I regard as 

weaknesses in Fischbein’s study, I employ a methodological approach that draws on 
Vygotsky’s seminal treatment of the mediated properties of higher psychological 
functions (Vygotsky, 1978; 1986) (see also Cole, 1996; Saxe, 2012; Wertsch, 1991). 
Vygotsky argued that humans’ characteristic forms of cognitive activity share a common 
element: they arise from humans’ ability to reorganize their own response to the 
environment through the use of material and semiotic resources. In particular, I make use 
of Vygotsky’s experimental “method of double stimulation.” Vygotsky referred to it as 
the method of “double stimulation” because it incorporated two stimuli: a problem-
solving task and some form of auxiliary material provided to participants. The method 
was designed to reveal developmental differences in participants’ use of the auxiliary 
materials to support their solutions to challenging problems (Vygotsky, 1978, 1986) (see 
also Cole, 1996; Saxe, 2012; Wertsch, 1991). This contrasts with the dominant approach 
in psychological research that simply reveals differences in how individuals solve focal 
problems, with no concern for how individuals transform the task through the use of 
available resources, thereby regulating their own behavior. In Vygotsky and Luria’s own 
words:  

 
We do not limit ourselves to the usual method of offering the subject simple stimuli ... to which we can 
expect a direct response; we simultaneously offer a second series of stimuli which must play a 
functionally special role, serving as a means by which the subject can organize his own behavior. In 
this way, we study the process of accomplishing a task by the aid of certain auxiliary means, and ... this 
way of bringing auxiliary means of behavior to the surface permits the tracing of the entire genesis of 
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the most complex forms of higher psychological processes.  
Vygotsky & Luria, 1994 (pg. 159) 
 
A famous example of the method of double stimulation is the color chip 

experiment. Vygotsky presented participants with a memory task involving color names, 
along with physical color chips that could be used as memory aids. Vygotsky found that 
older individuals appeared to consciously draw upon the auxiliary stimuli (the color 
chips) to overcome challenges in problem solving, whereas younger children were 
sometimes confused by the auxiliary stimuli and typically did not make productive use of 
them. These results frame what is for Vygotsky a central developmental process: drawing 
upon available resources to, in effect, transform the problem being solved and to generate 
a solution.  

The method of double stimulation has remained significantly underutilized in 
research on learning and development. While researchers adopting a sociocultural 
approach to the study of human activity have taken up the method, they have done so 
largely as a conceptual tool—rather than an empirical technique—in order to investigate 
and theorize about high level constructs such as agency (e.g., van Oers, 2015; Barma, 
Lacasse, & Massé-Morneau, 2015; Haapasaari & Kerosuo, 2015; Engeström, Kajamaa, 
& Nummijoki, 2015). By contrast, there has been little research using the method of 
double stimulation that—like Vygotsky’s own principal work—is both 
experimental/interventional in design and that focuses on learning and development. 

I developed three studies whose design resonates with Vygotsky’s method of 
double stimulation—studies whose purpose is to investigate the development of the 
definitional practice.4 In these studies, I present students with definitions of points and 
lines alongside a set of designed problems that (like Fischbein’s) feature potentially 
misleading diagrams, which may cue students to conceptualize the diagrams in terms of 
empirical practices and thus to rely on the appearances of the diagrams and their 
knowledge of the material world rather than the definitions. Reflecting Vygotsky’s 
conceptualization, I regard the provided definitions as a class of ‘semiotic artifacts,’ a 
form of auxiliary stimuli that students might draw upon in problem solving. The design 
of the problems and definitions will be coordinated in the studies, such that the 
definitions are logically and linguistically consistent with certain answers and therefore 
can be useful in problem solving.  

Following both Vygotsky’s and Fischbein’s findings, I would expect that younger 
students with access to definitions would not make use of the definitions as frequently as 
their older counterparts. As I discussed, however, I would regard this shift as indicating 
increasing understanding of the practice, rather than simply overall cognitive 
development or the development of specific mathematical concepts.  

 The first study uses experimental methods to ask whether there are grade-related 
changes in the students’ definition use to reason about idealized objects (prior to formal 
instruction in geometry)—specifically, whether access to stipulated definitions might 

                                                
4Contemporary research methods that most closely resemble Vygotsky’s are those that engage the 
neuropsychological construct of executive functioning (Case, 1992; Chan, Shum, Toulopoulou, & Chen, 
2008; Zelazo, & Müller, 2002), typically theorized in purely cognitivist terms. Ironically, the construct was 
pioneered by Alexander Luria (1973), a student of Vygotsky and a proponent of sociocultural approaches 
to understanding higher cognitive functions. 
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influence students’ idealization of diagrams as representations of zero-dimensional points 
and one-dimensional lines. Students are assigned to one of two treatment conditions 
whose purpose was to manipulate exposure to the definitions of points and lines. In the 
experimental treatment, students are presented with a sheet that contained mathematical 
definitions of points and lines, which are unavailable to students in the control condition. 
Students are then administered a paper-and-pencil assessment consisting of eight multiple 
choice items, some of which include diagrams of points and lines.  

The second study uses structured one-on-one interviews in order to directly 
observe students’ definition use. The interviews begin with students solving problems 
(similar to those used in the first study) without access to definitions and sharing their 
thinking. Then, students are asked how they think a mathematician would answer these 
same questions, and they are given an opportunity to select different answers if they 
choose. Additional items probe students’ construction of a conceptual differentiation 
between idealized object and material diagram—a central understanding in the 
definitional practice.  

The final study investigates students’ sense-making of the definitions. It asks 
students how they would explain the definitions to another student. Specifically, this 
study seeks to identify the conceptual resources students draw on to make sense of a 
point with zero-dimensions and a line with infinite extent—two challenging and foreign 
ideas. 
 In providing students with definitions of points and lines, these studies 
incorporate a pedagogical element and therefore constitute a form of design based 
research. At the core of design based research is the intention of supporting a 
developmental process in order to study it—a developmental process that is generally not 
available for study (Cobb et al, 2003; Collins et al, 2009). As mentioned earlier, explicit 
discussions of the definitional practice appear to be rare in classrooms. It is not often 
made explicit to students that drawings of points and lines are not themselves the 
idealized objects to which they refer. It is precisely this pedagogical approach that is 
deployed in these studies. Investigating how students take up efforts to make explicit the 
unspoken ‘rules of the game’ may have useful implications for pedagogy, in addition to 
shedding light on the development of an important but understudied practice in academic 
mathematics—one that speaks to the complex epistemology and ontology of 
mathematical objects. 
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STUDY 1—A LEARNING TREND IN STUDENTS’ DEVELOPING 
UNDERSTANDING OF THE DEFINITIONAL PRACTICE  

 
Study 1 is an experimental/interventional study whose purpose is to investigate 

possible developmental shifts in students’ developing understanding of the definitional 
practice. In particular, the study considers whether students draw on definitions of points 
and lines in challenging problem-solving contexts that feature misleading diagrams.  
 

Overview of Study and Research Questions 
 

The purpose of this experimental study is to explore developmental differences in 
elementary and middle school students’ initial engagement in the definitional practice. 
This study addresses the limitation of Fischbein’s study by employing an experimental 
design that manipulates students’ exposure to definitions, inspired by Vygotsky’s method 
of double stimulation. Recall that Fischbein’s study did not manipulate students’ 
exposure to definitions, so no direct inferences can be drawn about the role of definitional 
knowledge in students’ problem-solving on the intersecting lines task. Manipulating 
students’ exposure to definitions, in conjunction with problems that sometimes feature 
misleading representations (as with Fischbein’s task), allows me to draw inferences about 
students’ use of the definitions and the effect of the diagrams on their problem solving. In 
other words, this design enables me to infer whether students adopt either empirical or 
definitional approaches, based on the presence of diagrams in the problems and the 
availability of definitions. Further, I include two types of problems, those featuring 
potentially misleading diagrams and those without diagrams.  

The central expectation is that, with age, there would be an increasing effect of 
the availability of definitions in students’ problem solving, consistent with an increasing 
understanding of the definitional practice. This expectation is supported by both 
Vygotsky’s treatment of development and Fischbein’s findings. Through his “method of 
double stimulation,” Vygotsky found that individuals’ propensity to draw on potentially 
useful auxiliary stimuli (in this case, mathematical definitions) is a core developmental 
trajectory. In the realm of mathematics—geometry in particular—Fischbein found that 
older students more frequently provided answers that were consistent with mathematical 
definitions. Further, it is also expected that younger students would be more influenced 
by the appearances of the diagrams, resulting in a greater difference in performance for 
the two types of problems. This expectation is also reflected in Fischbein’s finding that 
younger students’ tended to answer in ways that were consistent with the appearances of 
the diagrams, as well as general findings in development of psychology that younger 
children tend to rely on surface features of problems (Langer & Strauss, 1972; Piaget, 
1948; 1952).  
   

Participants 
 
 The participants in the study included students from a San Francisco Bay Area 
charter school in fourth grade (n=46; F=25, M=21), sixth grade (n=53; F=27, M=26), and 
eighth grade (n=43; F=16, M=27). Participants had not yet had the standard year-long 
course in formal geometry. At each grade level, all students in each of two classrooms 
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participated. The ethnic composition of the classrooms varied, although most students 
were Hispanic (see Table 1: Ethnic background of participants by grade level), and 80% 
of the student body as a whole was classified as English language learners (English 
Learners (EL) or Reclassified Fluent English Proficient (R-FEP)). A large percentage of 
the students were from low income families, with 86% eligible for free and reduced 
priced lunches. 
 
Table 1: Ethnic background of participants by grade level 

Grade Level Hispanic African 
American 

Caucasian Asian  Other 

8th (n=43) 91% 7% 0% 0% 2% 

6th (n=53) 79% 11% 4% 4% 2% 

4th (n=46) 67% 25% 2% 4% 2% 
 

Piloting and the Refinement of Geometrical Definitions and Problems 
 
 In order to develop age-appropriate definitions to use in the study, I conducted 
pilot interviews with students in fourth, sixth, seventh, and eighth grade. Based on these 
interviews, early drafts of definitions were refined and elaborated so they would be 
comprehensible and most likely to support students in drawing on them in problem 
solving. In the end, fourth-graders, the youngest age group that participated in the study, 
could successfully paraphrase the final form of the definitions. 
 The pilot study also supported the refinement of two classes of multiple choice 
items that I included in the study. The first class did not include diagrams. Their purpose 
was to assess whether participants had at least a rudimentary level of “processing” or 
attention to the definitions (as measured by successful performance on items). The 
second class, as noted earlier, were intended to confront students with a tension between 
appearances of diagrams (of points and lines) and relevant definitions in problem solving. 
For both item types, pilot interviews not only supported development and refinement of 
multiple choice problem items, but also alternative answer choices that students would 
find compelling. (See Appendix A for details concerning pilot interviews and the 
refinement of study materials). 

 
Treatment Conditions 

 
Students were assigned to one of two treatment conditions whose purpose was to 

manipulate exposure to the definitions of points and lines. (1) In the experimental 
treatment, students were presented with a sheet that contained mathematical definitions of 
points and lines. (2) In the control condition, students were presented with a sheet that 
contained narrative text about the history geometry that was of similar length and reading 
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difficulty to the experimental sheet; this sheet did not contain any mathematical 
definitions.  

The sheets were matched for word count and reading level using the Flesch-
Kincaid diagnostic program. Each sheet was written such that it was rated at the fifth-
grade level. A fifth-grade reading level was selected to make it maximally accessible to 
fourth-graders and because a large percentage of the students at each grade were 
classified as English language learners. A lower reading level was found to be impractical 
in conveying the necessary ideas.  
 
Experimental treatment 
  

Figure 3 contains the one-page informational sheet used in the experimental 
treatment condition. To support students’ developing understanding of the definitional 
practice, the sheet contained a ‘mini-lesson’ on geometric points and lines that included 
mathematical definitions. The potentially useful information contained on the 
experimental treatment was designed to serve three purposes.  

 
a. Definitions provided. The sheet presented definitions of points and lines. A 

point was defined as follows: “In mathematics, a point is a precise location. It is so small 
that it has no size at all, and it takes up no space.” A line was defined as follows: “In 
mathematics, a line is straight, infinitely long and is so thin that it has no width at all.” 
 

b. Representations and Mathematical Objects Distinguished and Compared. 
The sheet made an explicit distinction between the mathematical objects and the way 
they are conventionally represented. The sheet pointed out that the defining properties of 
points and lines are not perfectly embodied in the geometric representations: “You might 
notice that the drawing of a point is pretty small, but it is still big enough to have some 
size. You can see it, can't you? But remember that a true MATHEMATICAL point is so 
small that it doesn't have any size at all!”  
 

c. Possibility of Useful Information Reinforced. The sheet underlined the fact 
that this information might be useful in solving the set of problems that students would be 
given shortly, and that they could come back to the sheet at any point and as many times 
as they wished during the assessment. 
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Figure 3. Information sheet (with definitions) used in the experimental condition. 

Control treatment 
  

Figure 4 contains the information sheet used in the control condition. As noted, 
the sheet was matched to the one used in the experimental condition in both word count 
and reading level. This sheet provided conventional diagrams of points and lines but 
contained no definitions. Rather, it included information about the disciplinary scope and 
history of geometry, information that was unlikely to help students solve the problems. 
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Figure 4. Information sheet (without definitions) used in the control condition. 

Outcome measure 
 

The outcome measure consisted of eight multiple-choice questions. In keeping 
with the language used in the experimental prompt, the problems consistently referred to 
points and lines as “mathematical points” and “mathematical lines.” Each of the eight 
questions included between three to five answer choices. These answer choices permitted 
an analysis of students’ responsiveness to the definitions in problem solving. Only one of 
the choices provided was clearly consistent with the definition of the mathematical object 
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and an idealized interpretation of its representation. The other choices, by contrast, were 
inconsistent in various ways with the ideal properties of points and lines; in general, the 
alternative answers attributed materiality to points and lines and reflected a reliance on 
the appearances of the diagrams or students’ knowledge of material objects. As 
mentioned, these alternative answer choices were developed and refined through a small 
number of informal pilot interviews with students in 4th, 6th, 7th, and 8th grades with 
students at the same school. (These students did not participate in the experimental 
study.) 

The eight problems were of two types. The first three problems contained no 
geometric representations (“no diagrams” problems) and the last five problems did 
include geometric representations (“diagrams” problems). I planned to compare students’ 
performance on these two types of items. I considered counterbalancing the order of the 
two item types to rule out order effects. However, I decided against counterbalancing 
because I believed the no diagrams problems (those without potentially misleading 
representations) would offer a less demanding entry into the assessment.   
 
No Diagram items 
 

The first three problems were designed to assess the degree to which students 
minimally processed the definitions presented on the experimental information sheet.  
 

Problem 1: How big is a point? The question asked, “How big is a mathematical 
point?” Three answer choices were provided: (a) It is pretty small, the size of a small dot; 
(b) It has no size at all; (c) It depends on how big you draw it. 
 

Problem 2: How long is a line? The question asked, “How long is a 
mathematical line?” Three answer choices were provided: (a) It depends on how long you 
draw it; (b) It is usually about as long as a finger; (c) It is infinitely long. 
 

Problem 3: How thick is a line? The question asked, “How thick is a 
mathematical line?” Again, three answer choices were provided: (a) It has no thickness at 
all; (b) It is pretty thin, a little bit thicker than a hair, but not as thick as a pencil;( c) It 
depends on how thick you draw it. 
  
Diagram items  
 

The remaining five problems incorporated geometric representations of points and 
lines. These problems were designed to provoke a conflict between the appearances of 
the physical representations and the defining features of the mathematical objects—that 
the ideal properties of mathematical points and lines are not perfectly embodied in their 
representations. Selecting the idealized multiple-choice response would indicate whether 
students drew on the relevant mathematical definition to mediate their problem solving. 
The five Diagram problems—problem numbers four through eight—were as follows: 
 

Problem 4: What is the dimensionality of points that converge on the same 
spot? The problem asked students to consider the geometrical representation presented in 
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Figure 5. The diagram and accompanying text presented points in motion that converge 
on the same spot as well as the accompanying question, “What would happen to these 
two points?” The student is presented with four answer choices: (a) The two points would 
turn into one bigger point; (b) The two points would turn into one point, which would 
still have no size at all; (c) The two points would turn into one point, which would still be 
the size of a small dot; (d) Even though it might look like there is one point, there would 
still be two points. One point would be stacked on top of the other. 
 

 
Figure 5. Geometrical representation used for Problem 4: What is the dimensionality of 
points that converge on the same spot? 
 
 Problem 5: What is the dimensionality of lines that converge on the same 
spot? This problem asked students to consider the problem presented in Figure 6. The 
diagram and accompanying text presented lines in motion that converge on the same spot 
as well as the accompanying question, “what would happen to the two lines?” The 
student was presented with four answer choices: (a) There would be two lines of the same 
thickness, one on top of the other; (b) There would be one line instead of two, but it 
would be thicker than the original lines; (c) There would be one line instead of two, and it 
still would have no thickness at all; (d) There would be one line instead of two, and it 
would still be a little bit thicker than a hair. 
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Figure 6. Geometrical representation used for Problem 5: What is the dimensionality of 
lines that converge on the same spot? 
  

Problem 6: How many points on a line segment? The problem asked students 
to consider the problem shown in Figure 7. The diagram and accompanying text 
presented a line segment, a line segment with a point represented, and the accompanying 
question, “How many more mathematical points would fit on this length?” The student is 
presented with five answer choices: (a) Between 5 and 20 points; (b) Between 20 and 100 
points; (c) Between 100 and 10,000 points; (d) an infinite number of points; (e) It 
depends on how big you draw the other points. 
 

 
Figure 7. Geometrical representation used for Problem 6: How many points on a line 
segment? 
 

Problem 7: Relative number of points that can fit on two represented line 
segments of different lengths? This problem asked students to consider the problem 
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presented in Figure 8. The diagram and accompanying text presented two line segments, 
one shorter than the other, and asked which of the following three statements is true: (a) 
More points can fit on the one on the bottom; (b) An infinite number of points can fit on 
both lengths; (c) It depends on how big you draw the points – that will tell you how many 
points can fit on each length. 
 

 
Figure 8. Geometrical representation used for Problem 7: Relative number of points that 
can fit on two represented line segments of different lengths? 
 
 Problem 8: Properties of two points, one constructed by 2 intersecting lines, 
the other by 6?5 This problem asked students to consider the problem presented in 
Figure 9. The diagram and accompanying text presented two images, one of two crossing 
lines and one of six crossing lines, asking students to consider the two points generated 
by the intersections (Point 1 and Point 2) and then to indicate which of the following 
statements are true: (a) Point 1 and 2 are the same because they both have no size; (b) 
Point 2 is bigger than Point 1 because more lines are crossing; (c) Point 1 is just one 
point, but Point 2 is actually several points stacked on top of each other. 
 

                                                
5	Problem 8 is adapted from the item used by Fischbein (1993). See Figure	1.	
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Figure 9. Geometrical representation used for Problem 8: Properties of two points, one 
constructed by 2 intersecting lines, the other by 6? 
 

Procedures for administering treatment conditions and outcome measure 
  

The intervention and multiple-choice assessment were administered in three 
phases—1) sample problem, 2) treatment administration, and 3) outcome measure—
which are described below. 
 
Phase 1: Sample problem  
 

In all classrooms, the administration procedure began with the presentation of a 
sample problem (see Figure 10) displayed on a large poster. This problem was designed 
to be unproblematic even for fourth-graders. The presentation drew students’ attention to 
the multiple-choice format of each problem. 
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Figure 10. Sample problem displayed on a poster. 
 
Phase 2: Treatment administration  
 

Two different procedures were used to assign participants to treatment conditions, 
one for sixth and eighth graders, and another for fourth-graders. The purpose of the 
different procedures was to address the potential confound between reading ability and 
definition use for the younger participants. Recall that both information sheets were rated 
at a 5th grade reading level, presumably above the average reading level of the 4th grade 
participants.  
  

Sixth and eighth grade students: Random assignment of students to 
treatment conditions within classrooms at each grade level. Recall that two 
classrooms participated in the study at each grade level. Within each of the two sixth and 
two eighth grade classrooms, students were randomly assigned to either the control or 
treatment conditions Random assignment allowed for a true experiment at sixth and 
eighth grade, with assignment to treatment condition not confounded with classroom. 
Treatment group assignments were also made such that both groups had an equal 
proportion of girls and boys, in order to eliminate the potential confound of gender (based 
on possible gender differences in mathematics proficiency or other relevant variables). 

During the study, the information was distributed to students and they were 
instructed to read the information sheet carefully, as it might help them solve the 
problems that they would be presented. Students were also reminded that they could 
reread the information sheet at any point in solving the problems. Students were also 
informed that their neighbors may get a different sheet, and that this was intentional. 
Students were asked not to peek at other students' paper, as the goal of the activity was to 
find out which sheet of paper was more helpful to students. The teacher and two 
researchers monitored students' activity during the time provided to read the prompt to 
help ensure that students were reading their prompt and only their prompt. 
 

Fourth grade students: Classroom assignments to treatment conditions. To 
address the potential confound between reading level and definition use, I administered 
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the treatment to fourth-graders using a different procedure, one that provided additional 
support for decoding the sheet. To wit, the information sheet was read aloud to the entire 
class as students followed along with their individual copies of the sheet. This required 
that all students in one fourth grade classroom were assigned to the experimental 
condition, and all students in the other fourth grade classroom were assigned to the 
control condition. The pairing of classroom to treatment condition was random. 

While this procedure addressed the potential confound between reading level and 
definition use, it created another threat to validity: lack of random assignment and the 
resulting confound of classroom. While there is no way to rule this out because there 
were only two fourth grade classrooms, the 4th grade teachers were both of the opinion 
that neither class was noticeably higher performing than the other.  
 
Phase 3: Outcome measure 
 

Students in each participating classroom were presented with the printed 
assessment materials on points and lines and instructed to provide answers to the 
problems. The teacher and two researchers roamed the room monitoring students’ activity 
and attention. The assessments were collected after all students had finished. 

 
Results  

 
To examine whether the treatment had a differential influence on the extent of 

students’ idealized responses across grades for the two problem types, I generated two 
scores. One score was for no diagram problems and the other was for diagram problems. 
I computed these scores by assigning students 1 point if they chose the idealized 
response, and a 0 if they chose an answer that reflected a reliance on the appearance of 
diagrams. I then summed the points for the no diagram and diagram problems separately 
and determined the proportion of idealized responses for each problem type, no diagram 
(three problems) and diagram (five problems).  

Figure 11 shows the proportion of idealized responses for each problem type as a 
function of grade level and treatment group. The figure reveals that students’ choices of 
idealized answers varied as a function of whether diagrams were present, their grade 
levels, and whether they participated in the control (no definitions) or experimental 
(definitions) groups. At Grade 4, in the control group, few students chose idealized 
answers, regardless of whether diagrams were present or absent in problems; in contrast 
in the experimental group, many more students selected idealized answers, but 
predominantly in the absence of diagrams. Like their fourth-grade counterparts, 6th grade 
students in the control group also selected few idealized answers, and those in the 
experimental group chose many more idealized answers in the absence of definitions. 
However, a striking difference between the two grades is that 6th grade students in the 
experimental group also selected idealized answers when diagrams were present (though 
not as often as when diagrams were absent). Finally, at 8th grade, students in the 
experimental group once again selected more idealized responses that those in the control 
group. Yet, among students in the experimental group, there appears to be less of a 
difference between the two problem types—diagram versus no diagram.  
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Figure 11. Proportion of idealized answer choices for students in control and 
experimental groups. 
 

The results of a 3 (GRADE) x 2 (TREATMENT) x 2 (PROBLEM TYPE, 
repeated measure) MANOVA confirm a three-way interaction (F=7.991, df=136, p<.01).  
To determine the source of the three-way interaction, I conducted three 2 (PROBLEM) x 
2 (TREATMENT) ANOVAs, one at each of the three grade levels.  
The central expectation for these analyses was a pronounced interaction effect. This 
expectation reflects my hypothesis, consistent with Fischbein’s findings, that the presence 
of misleading diagrams would lead younger students to conceptualize problems in terms 
of empirical practices—that is, to select answers based on appearances of diagrams or the 
behavior of material objects. As mentioned above, I expected the interaction effect to be 
less pronounced or absent among older students (6th and 8th graders), indicating that 
definitions were increasingly used by the older children to solve all problems, including 
those featuring potentially misleading diagrams (in accordance with the definitional 
practice). These findings would indicate that with age students have a greater propensity 
to deliberately draw upon available definitions.  

Results were consistent with expectations. The two-way ANOVA at fourth grade 
revealed a strong PROBLEM TYPE x TREATMENT interaction effect (F=63.831, 
df=44, p<.01, with a moderate effect size—partial Eta Squared=.592). On the no diagram 
problems, fourth-graders showed selected fewer idealized responses performance when 
they did not have access to definitions (the control group), and much better performance 
on these problems when they did have access to definitions (the experimental group). 
This indicates that fourth-graders did draw on definitions for the no diagram problems. 
On the diagram problems, in contrast, fourth-graders showed were less likely to choose 
idealized answers regardless of treatment condition, confirming my hypothesis that they 
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would select answers that are consistent with the appearances of diagrams or the behavior 
of physical objects whether or not they had access to definitions. At sixth and eighth 
grade, I found as expected a diminishing interaction between problem type and treatment. 
At sixth grade, the interaction effect persisted (F=23.420, df=1, p<.01) but the effect size 
was reduced compared with fourth-graders (partial Eta Squared=.315 as contrasted with 
.592). At eighth grade, my analyses revealed no interaction—the presence of definitions 
shifted participants’ solutions to both problem types.6  

Overall, the results point to a grade-based shift from an empirical to definitional 
approach, reflecting an increasing understanding of the definitional practice. However, 
due to the experimental design of this study, students’ use of definitions can only be 
inferred. I discuss this limitation further below. 
 

Summary 
 
This study investigated young students’ developing understanding of an important 

but challenging practice in academic mathematics—the use of geometric diagrams to 
represent idealized mathematical objects whose properties are stipulated by their 
definitions, rather than deriving from the appearances of diagrams or the behavior of 
material objects. Students in fourth (n=46), sixth (n=53), and eighth (n=43) grade were 
randomly assigned to an experimental or a control group. Students in the experimental 
group were provided with definitions of Euclidean points and lines, not available to 
students in the control group. All students were administered assessment items about 
their understanding of ideal properties of points and lines (e.g. infinite length, zero-
dimensionality). Some of the items contained no geometric diagrams (no diagram items). 
Other items incorporated diagrams (diagram items) and were constructed to cue a 
reliance on the appearances of the diagrams and students’ knowledge of the physical 
world, rather than the definitions.  

Consistent with expectations, findings indicate that younger students are more 
likely to rely on the appearances of the representations or knowledge of the physical 
world, rather than the available definitions. Indeed, fourth-graders, whether in the 
experimental or the control groups, frequently selected answers on the diagram problems 
that are consistent with figural properties of the representations or the behavior of 
material objects. Older students, by contrast, are more likely to select definition-
consistent answers and are less swayed by the potentially misleading diagrams. With 
increasing grade, I found that students in the experimental group were more likely to 
select answers that were consistent with the definitions on the diagram problems, 
compared to students without access to definitions. In summary, Study 1 generates 
suggestive evidence that younger students are more likely to adopt empirical approaches, 
and older students more likely to employ idealized approaches, and this difference is 
most pronounced when problems include diagrams.  

A number of questions arise in relation to Study 1’s results that are important for 
understanding the development of the definitional practice. First, is it indeed the case that 

                                                
6	I also found evidence that eighth grade students had more prior knowledge of the definitions of points and 
lines. Specifically, I found that among students in the control group (those who did not have access to 
definitions), eighth grade students outperformed six graders and fourth-graders on the no diagrams 
problems, which simply target students’ knowledge of the idealized properties of points and lines.	
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students’—in the absence of available definitions—draw on their knowledge of the 
physical world and the appearances of the diagrams to reason about points and lines? The 
design of Study 1 allows me to infer that students are drawing on these conceptual 
resources when definitions are not available; students overwhelmingly select answers that 
are consistent with ‘empirical’ interpretations. However, the experimental design 
precludes more direct evidence of empirical interpretations, since students cannot be 
queried about their rationale for selecting empirical answer choices.  

Second, are students’ indeed drawing on the definitions in their problem solving? 
Study 1’s use of control and experimental conditions allowed me to infer that availability 
of definitions influenced students’ selection of answers, but—once again—it could not 
provide direct evidence that students were drawing on the definitions when selecting 
idealized answers. 

Third, to what degree are students constructing a conceptual differentiation 
between material diagram and idealized object? Students may be selecting responses that 
are consistent with the definition without fully appreciating the distinction between 
diagrams and the ideas they symbolize. For example, one student who generally selects 
idealized answers may do so “because the definition says…” while another may also 
make explicit the understanding that the diagrams in the problems are only 
representations of points and lines. This question is important because a conceptual 
differentiation between idealized object and material diagram is central to the definitional 
practice.  

Finally, what specifically accounts for the impact of the experimental condition—
is it primarily the provided definitions, or also the additional discussion of the ‘rules’ of 
the definitional practice? In other words, what part of the experimental treatment is 
providing the most support? This question has important implications for pedagogy. It 
will help determine the possible benefit of an instructional approach that goes beyond 
simply providing the definitions—an approach that also engages students in explicit 
discussion of the ‘rules of the game,’ which distinguishes idealized object from material 
diagram. 

These unanswered questions raised by the results of Study 1 are taken up in the 
interview/interventional study reported in the following chapter.  

 
  



24 
 

 

STUDY 2—FOLLOW UP INTERVIEW/INTERVENTION STUDY OF THE 
DEFINITIONAL PRACTICE 

 
Study 1 revealed a developmental trajectory in students’ use of definitions in 

geometric problem-solving, suggesting a growing understanding of the definitional 
practice. With age and grade, providing students with the definitions increased the 
likelihood that they would select answers that were consistent with the definitions, rather 
than the appearances of the diagrams or the behavior of physical objects. Indirectly, this 
suggests that students are reasoning from the definitions, and subordinating the 
materiality of the drawn diagrams—which is central to the definitional practice. As 
discussed above, this finding raises a number of additional questions about students’ 
understanding of the definitional practice and the challenges that the practice presents to 
students. Using interview and design research methods, Study 2 investigates these 
unanswered questions, detailed below, and attempts to generate more direct evidence of 
students’ uptake of the definitions. 

Study 2 is organized in four phases, each of which addresses a distinct research 
question. (See Table 2 below for a summary of phases and research questions.) The first 
phase—Students’ Intuitions—investigates students’ intuitions about problems involving 
points and lines when they do not have access to definitions. Recall that the design of 
Study 1 precluded direct evidence that students were drawing on their knowledge of the 
physical world and the appearances of the diagrams. By asking students to justify their 
answer selections, Study 2 will address this question.   

The second phase includes a brief intervention, with two conditions to which 
students will be randomly assigned. One includes the definitions only, and the other 
includes both definitions and a discussion that distinguishes idealized object from 
material diagram. This addresses another important question raised by Study 1: what 
specifically accounts for the impact of the experimental condition—is it primarily the 
provided definitions, or also the additional discussion of the ‘rules’ of the definitional 
practice? The two treatment groups offer a means of assessing the possible utility of an 
instructional approach that incorporates an explicit discussion of the practice (rather than 
simply providing the relevant definitions), an approach rarely implemented in 
classrooms. 

The third phase—Drawing on Definitions—considers how students are drawing 
on the definitions (and the additional support for understanding the practice) to mediate 
their problem-solving. Recall that Study 1 could not provide direct evidence that students 
were drawing on the definitions. By querying students on the rationale for their answer 
choices, this phase addresses whether students are indeed drawing on the definitions in 
selecting idealized answers. 

The fourth phase—Differentiation—investigates how students may be 
constructing a conceptual differentiation between material diagrams of points and lines 
and the idealized objects to which the diagrams refer, whose properties are stipulated by 
the definitions. The additional items in this phase were designed to directly engage the 
idea that the definitions of mathematical points and lines cannot be perfectly embodied in 
a drawn diagram. This question was likewise raised by Study 1, which provided only 
suggestive evidence that students were making such a differentiation when provided with 
the definitions.  
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Table 2: Study 2 Phases and Research Questions 
Phase Research Question Addressed 

 
Phase 1: Students’ Intuitions  What are students' intuitions about problems 

involving points and lines, in the absence of 
definitions? How do students draw on the 
appearances of the diagrams and their knowledge 
of the physical world as problem solving 
resources? 

Phase 2: Treatment What is most helpful for students: providing the 
definitions, or the addition of an explicit 
distinction between idealized object and material 
diagram? 

Phase 3: Drawing on Definitions  Do students indeed draw on the definitions, when 
selecting idealized answers? 

Phase 4: Differentiation How to students draw on definitions and other 
supports to construct a conceptual differentiation 
between the material diagrams of points and lines 
and the idealized objects to which the definitions 
refer? 

 
Participants 

 
 The selection of participants was motivated by the findings of Study 1. Recall that 
Study 1 showed a marked difference between fourth and sixth-graders when they 
participated in a condition in which mathematical definitions were made available to 
them: Sixth-graders were more likely to choose idealized responses regarding points and 
lines. Study 2 therefore included fourth (n=40) and sixth (n=37) graders to investigate 
this learning process. Participants came from a San Francisco Bay Area elementary and 
middle school. Pilot interviews confirmed that students in fourth grade were suitable for 
the study because they could make sense of the problems and readily select and provide 
justifications for answer choices. 
 
Table 3: Number of participants in each treatment group and in each grade 

Treatment Group Grade 4 Grade 6 
Definitions Only 19 16 
Practice Initiation 17 18 

*Number of participants does not include students with missing data  
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Interview Procedure 
 

As described briefly above, the interview procedure was organized in four 
principal phases. Below, I further describe each phase, focusing on the research question 
that the phase addressed. Pilot Interviews with students of various grades were used to 
develop the procedures and materials, and to select participants of suitable grade levels.  
 
Phase 1: Students' Intuitions  
 

The purpose of this phase was to investigate students’ intuitions regarding points 
and lines. This was made possible by the fact that students did not yet have access to 
definitions during this phase of the interview. These problems were designed to reveal 
how students may be drawing on the appearances of the diagrams and their knowledge of 
the physical world as problem solving resources. 

I began by presenting participants with eight multiple-choice problems and 
probing them on their thinking. (e.g., "Why does this answer make the most sense to 
you?"). As in Study 1, the problems were of two types: those without diagrams (no 
diagram items) and those including diagrams (diagram items). With minor variations, all 
of the problems—with the exception of Problem 7, overlapping lines—were the same as 
those used in Study 1 (see below for the items themselves).  
 

Okay, let’s look at the first question. [Interviewer reads first problem and answer choices. For each 
problem, after the student has selected an answer, the interviewer asks:] Why does that answer make 
the most sense to you? [If the student’s answer is at all unclear, interviewer follows up with:] That’s 
interesting—can you tell me more about that to make sure I understand your thinking?  

 
This procedure was designed to support an analysis of grade-related differences in 

students’ propensity to conceptualize diagrams in terms of empirical practices. Students 
were given an opportunity to generate and justify solutions to the problems, when they do 
not yet have access to definitions. An analysis of participants’ answer choices may 
provide an opportunity to replicate Study 1’s results from students in the control group, 
who also did not have access to definitions. Participants’ justifications or their answer 
selections has the potential to significantly enrich these findings. 
 The eight multiple-choice problems included in the Intuitions phase are provided 
below. Two forms were used to control for order effects. Form A included the no 
diagram problems first (Problem 1-3) followed by the diagram problems (Problems 4-8); 
Form B reversed this order. Students were randomly assigned to the two order conditions. 
 

No Diagram items. Three No Diagram problems were included, which queried 
students about the size and dimensionality of points and lines. 

 
Problem 1: How big is a mathematical point? The question asked, “How big is a 

mathematical point?” Three answer choices were provided: (a) It is pretty small, the size 
of a small dot; (b) It has no size at all; (c) It depends on how big you draw it. 
 

Problem 2: How long is a mathematical line? The question asked, “How long is 
a mathematical line?” Three answer choices were provided: (a) It depends on how long 
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you draw it; (b) It is usually about as long as a finger; (c) It is infinitely long, which 
means it goes on forever. 
 

Problem 3: How thick is a mathematical line? The question asked, “How thick is 
a mathematical line?” Again, three answer choices were provided: (a) It has no thickness 
at all; (b) It is pretty thin, a little bit thicker than a hair; (c) It depends on how thick you 
draw it. 
 

Diagram items. Five Diagram problems were included. These problems featured 
potentially misleading diagrams that were meant to cue a reliance on the appearances of 
the diagrams or knowledge of material objects. 

 
Problem 4: Converging Points? The problem asked students to consider the 

geometrical representation presented in Figure 12. The diagram and accompanying text 
presents points in motion that converge on the same spot as well as the accompanying 
question, “What would happen to these two points?” The student was presented with four 
answer choices, with some of the text in bold to help the student distinguish them7: (a) 
There would only be one point, but it would be bigger; (b) There would only be one 
point, I would still have no size at all; (c) There would only be one point, but it would be 
darker; (d) There would be two points that are still the size of the small dot, but one point 
would be in front of the other point.  

 
Figure 12. Geometrical representations used for Problem 4: What is the dimensionality of 
points that converge on the same spot? 
 

Problem 5: Converging Lines? This problem asked students to consider the 
problem presented in Figure 13. The diagram and accompanying text presented lines in 
motion that converge on the same spot as well as the accompanying question, “what 

                                                
7 This is also done for Problem 2 and 5. 
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would happen to the two lines?” The student was presented with four answer choices: (a) 
There would be two lines that are still a little thicker than a hair, but one line would be in 
front of the other line; (b) There would be only one line, but it would be thicker;(c) There 
would be only one line, but it would be darker; (d) There would be only one line, and it 
would still have no thickness at all. 

 
Figure 13. Geometrical representation used for Problem 5: What is the dimensionality of 
lines that converge on the same spot? 
 

Problem 6: How many points on a line segment? The problem asked students to 
consider the problem presented in Figure 14. The diagram and accompanying text 
presented a line segment said to be 3 cm long, and the same line segment with a point 
represented. The accompanying question was “How many mathematical points would fit 
on this length?” The problem supplied five answer choices: (a) More than 5 points, but 
fewer than 30 points; (b) More than 30 points, but fewer than 1,000 points; (d) An infinite 
number of points; (e) It depends on how big you draw the other points. 
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Figure 14. Geometrical representation used for Problem 6: How many points can fit on a 
line segment? 
 

Problem 7: Properties of two points, one constructed by 2 intersecting lines, the 
other by 6? This problem asked students to consider the problem presented in Figure 15. 
The diagram and accompanying text presented two images, one of two crossing lines and 
one of six crossing lines, asking students to consider the two points generated by the 
intersections (Point 1 and Point 2) and then to indicate which of the following statements 
are true: (a) Point 1 and 2 are the same because they both have no size at all; (b) Point 2 
is bigger than Point 1; (c) Point 1 is just one point, but Point 2 is actually several points 
stacked on top of each other, and all of them are the size of a small dot; (d) Point 2 is 
darker than Point 1. 

 
Figure 15. Geometrical representation used for Problem 7: Properties of two points, one 
constructed by 2 intersecting lines, the other by 6? 
  

Problem 8: Placing points on a line segment over and over? This problem asked 
students to consider the problem shown in Figure 16. The diagram and accompanying 
text presents a series of line segments with successive points placed on them and asked, 
“If you kept doing this, over and over, would you ever run out of room?” The following 
answer choices were given: (a) Yes, you would eventually run out of room, and you 
couldn’t put any more points on the line; (b) No, you would never run out of room. You 
could keep putting more points halfway between the last point and the end of the length, 
and you could keep doing this forever.   
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Figure 16. Geometrical representation used for Problem 8: Placing points on a line 
segment over and over? 
 
Phase 2: Treatment—Definitions Only and Practice Initiation Groups 
 

In the second phase of the interview, students participated in one of two 
conditions to which students were randomly assigned. In the Practice Initiation 
condition, students received an information sheet that contained core definitions of points 
and lines that included statements of their idealized properties (e.g. “Mathematicians 
define a point as being so small that they have no size at all.”). In addition, this sheet 
included information about the definitional practice—drawing students’ attention to the 
fact that that conventional diagrams of points and lines are inevitably imperfect in 
relation to the definitions, but nonetheless useful so long as the definitions are kept in 
mind. (See Figure 17.) 

The Practice Initiation treatment represents a refined version of the text used in 
Study 1. It has been refined in order to better frame the discussion in terms of the practice 
of mathematicians (e.g., “Mathematicians use definitions to…”), and in order to 
incorporate the notion that points and lines are forms of ‘imagined perfection’—
imaginary ideas that are too perfect to be shown exactly with drawings. The Practice 
Initiation treatment also makes more general statements about the definitional practice, 
beyond geometry or points and lines (e.g., “Drawings still help mathematicians think 
about the ideas. But mathematicians always remember that what the definition says is 
more important than what the drawings look like.”).  

Imagine a length 10cm long, like this picture shows.

10 cm

Now imagine you put a point exactly in the middle of the length, like this.

And now imagine you put another point halfway between the first point and 
the end of the length. 

Imagine again that you put a third point halfway between the last point and 
the end of the length.

The question is, if you kept doing this, over and over, would you ever run out of room?
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 In the Definitions Only condition, students also received an information sheet that 
contained core definitions of points and lines—the same definitions that appeared on the 
Practice Initiation sheet. The remainder of the text, however, covered the history and 
scope of geometry—information unlikely to be useful in solving the points and lines 
problems. (See Figure 18.)  

Both treatment texts were rated at a fifth-grade reading level and were of 
comparable length. Because the treatment texts were read aloud to all students, including 
fourth-graders, this helps mitigate threat to validity due to requirement of 5th grade 
reading level for 4th grade participants  

 
 

 
Figure 17. Practice Initiation treatment. 
 

Point

This drawing makes sense because a dot is small. But did you notice that a dot 
doesn’t show the definition perfectly? 

Drawing a point perfectly is impossible! We can only imagine a perfect point, we 
can’t draw one. Because the definition says a point has no size at all. And a 
drawing would always have some size, right?

Mathematicians define a LINE as being so long that it goes on forever. And so 
thin that it has no thickness at all. 

To show a line, mathematicians use a drawing like this.

Mathematical Points and Lines

Points and lines are ideas. Mathematicians use definitions to say exactly what 
these ideas are. And they use drawings to show these ideas with a picture. 

Mathematicians define a POINT as being so small that it has no size at all.  
And so small that it takes up no space.

To show a point, mathematicians use a drawing like this.

Line

This drawing makes sense. But did you notice that this isn't a perfect drawing of 
a mathematical line? 

Drawing a line perfectly is impossible! We can only imagine a perfect line, we 
can’t draw one. A drawing could never go on forever, right? Also, it would 
always have to have some thickness. 

So, now you know that drawings can’t show the definitions of points and lines 
perfectly. The ideas of points and lines are too perfect. And that’s okay! 
Drawings still help mathematicians think about the ideas. But mathematicians 
always remember that what the definition says is more important that 
what the drawings look like.  
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Figure 18. Definitions Only treatment. 

 
Giving students in both the Practice Initiation and Definitions Only group access 

to the definitions supports an analysis of the effect of what distinguishes the two 
interventions: in the Practice Initiation group, participants have access to a discussion of 
the definitional practice as it relates to points and lines, not merely the definitions 
themselves. As discussed above, the two treatment groups offer a means of assessing the 
possible utility of an instructional approach that incorporates an explicit discussion of the 
practice (rather than simply providing the relevant definitions), an approach rarely 
implemented in classrooms. It may be that students at one grade derive the most benefit 
from the Practice Initiation treatment, indicating at what grade the instructional approach 
is most appropriate and effective.  

 

Geometry is a very old part of mathematics. It was invented by several 
different cultures long ago. Geometry is about things like shapes, sizes 
and space. 

When today's mathematicians think of geometry, they usually think of 
a man named Euclid. He was a famous Greek mathematician. He 
lived more than two thousand years ago. 

Euclid did not invent geometry. But he is famous for his work. Euclid took 
many different ideas in geometry and created a system. In Euclid’s system, 
all the ideas fit together. He also found out that some ideas seem simple, 
but they are actually hard to define. 

Euclid's work is so famous that most of the geometry you learn in 
school is based on his ideas. Two of these ideas are points and lines. 
Euclid thought that points and lines were the most important ideas in 
geometry. He thought that nothing in geometry would make sense 
without them!

Let’s look at the definitions of points and lines that mathematicians use today. 

Mathematicians define a POINT as being so small that it has no size at all.  
And so small that it takes up no space.

Here is how mathematicians draw a point. 

Mathematical Points and Lines

Point

Line

Mathematicians define a LINE as being so long that it goes on forever. And so 
thin that it has no thickness at all. 

Here is how mathematicians draw a line. 
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 Treatment Administration Procedure. In both treatment groups, the one-page 
information sheet was read aloud by the interviewer. The sheet was introduced as 
follows: 
 

Okay, now that we are done with the questions, I’d like to tell you a little bit about how 
mathematicians think about points and lines. I’ll read it aloud, but it’s important that you follow along, 
okay? [Interviewer reads the text of the treatment group assigned to student.]  

 
Regardless of treatment group, after reading the treatment text aloud, students 

were asked to repeat verbatim the core definition of points and lines (“Mathematicians 
define a point as being…”) before moving on, to ensure that students have minimally 
attended to and processed the definitions. The core definitions are glued to squares of 
cardboard and propped up and placed next to the students. Students are emphatically told 
that they can look at the definitions whenever they wish during the rest of the interview. 
 

I’m going to give you the definitions of points and lines that mathematicians use. I’ll put them right 
here [interviewer places core definitions next to student]. You can look at them and read them 
whenever you want, okay? Before we start, can you read these definitions out loud? Great!”  

 
At the end of this phase, students are provided with the core definitions printed on 

a note card and propped up to make them clearly visible (See Figure 19). Students are 
told that they can look at these definitions whenever they want in future problem-solving, 
if they think it would help them. To ensure all participants are minimally attentive to the 
definitions, the interviewer asked the student to read the definitions allowed for 
proceeding with the next phase. 
 

 
Figure 19. Definitions made available to participants during Phase 3. 
 
Phase 3: Drawing on Definitions Phase 
 

The purpose of the Drawing on Definitions phase was to investigate students’ 
ability to switch from an empirical to definitional orientation, in different grades and 
treatment conditions/interventions. This phase queried participants about whether they 
would revise their answers to the eight problems from Phase 1, after having been exposed 
to the treatment. Specifically, students were asked how a mathematician who used these 
definitions of points and lines would answer the questions. This phase allowed for a 
comparison of the frequency with which fourth and sixth-grade students draw on the 

Mathematical Points and Lines

Mathematicians define a point as being so small that it has no size at all.  
And so small that it takes up no space.

Mathematicians define a mathematical line as being so long that it goes on 
forever. And so thin that it has no thickness at all. 
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definitions, as well as the impact of the different treatment conditions, as described 
above.  

Here, the interviewer began by repeating the procedure in the Intuitions phase, but 
without asking students to explain their answer choices. Participants are specifically 
asked how a mathematician using the definitions of point and lines would answer the 
problems, and this prompt is printed on the items themselves (see below). In most cases, 
students received abbreviated statements of the problems rather than full re-readings of 
the problems in their entirety. Again, two different forms were used to control for and 
investigate order effects of the two problem types—each student receives the same 
problem ordering they received in Pretest (Form A or Form B). However, note that 
students selected answers on a second copy of the problems, which included the 
additional prompt (“How would a mathematician answer this question?). Participants did 
not have access to their solutions from the Intuitions phase, which ensures equal stimuli 
during the Drawing on Definitions Phase.   
 

Now we’ll look at the questions again, and I’d like to know how you think a mathematician using these 
definitions would answer the questions. Sometimes you might pick a different answer than before, and 
other times you might pick the same answer.  

 
After students have selected answers to all the problems, they are then asked to 

explain their answer choices about only those problems in which they shifted from a 
definitions-inconsistent to a definitions-consistent answer. This elicits self-reports 
concerning whether and how the information sheet led to their shifts in thinking. The 
purpose for probing students’ thinking after they have solved all the problems—instead 
of probing after each problem—was to ensure that the probing and ensuing conversation 
does not influence their answers to subsequent problems 
 

There are a few of your answers that I’d like to ask you about. [Interviewer identifies problems in 
which students shifted from an empirical to idealized answer. For each problem, interviewer asks:] 
You said that a mathematician would pick this answer. Can you tell me why a mathematician would 
pick this answer?  

 
As mentioned, the problems used during Phase 3 were identical to those used 

during Phase 1. The only difference is that above each problem, the question appears: 
“How would a mathematician answer this question?” (See Figure 20 for an example.)  
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Figure 20. Example of a problem used during Phase 3, all of which includes the prompt, 
“How would a mathematician answer this question?” 
 
Phase 4: Differentiation Phase 
 

The purpose of this phase was to investigate how students may be drawing on the 
definitions to construct a conceptual differentiation between material diagram and 
idealized object. This phase consisted of five multiple-choice questions [yes/no]. For 
each question, students were asked to explain their thinking. 
 

Okay, I’d like us to do just a few more questions. I’d like to know how you think mathematician would 
answer these questions, and I’d love to hear your thinking. [Participants are asked to solve the 
problems and to explain their thinking after each problem:] Why would a mathematician pick that 
answer? 

 
These questions directly addressed the idea that conventional diagrams of points 

and lines are imperfect representations of the imaginary ideas described by the 
definitions, that producing a perfect representation is impossible, and that—for 
mathematicians—what matters most is what is stipulated by the definition rather than the 
appearance of the diagram. Designed for this purpose, these items differed from those in 
Phase 3; rather than providing students with a problem involving a particular 
configuration of or scenario involving points and lines (e.g. How many points would 
fit…?), they ask explicitly and generally about the adequacy of diagrams in depicting the 
idealized objects, and if it is ever possible to perfectly embody the definitions in drawn 

Eventually, the two points get so close that they end up in exactly the same spot.

Now imagine that they move towards each other like this picture below shows. 

There would be only one point, but it would be bigger. 

There would be two points that are still the size of a small dot, but one point 
would be in front of the other point.

As they move, they get closer and closer together, like this. 

The question is, what would happen to these two points?

?

What would happen to these mathematical points?

Here are two mathematical points, one on the left and one on the right. 

There would be only one point, and it would still have no size at all.

There would be only one point, but it would be darker.

How would a mathematician answer this question? 
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diagrams. As such, these items allow for an analysis of students’ understanding of the 
relationship between material diagram and idealized object (not simply participants’ use 
of definitions on challenging problems), which may vary by grade and treatment group.  
The problems are presented below.  
 

Problem 1: Is this a perfect drawing of a mathematical point? The problem 
asked, “Is this a perfect drawing of a mathematical point?” A diagram of a mathematical 
point is provided. Two answer choices were provided: 1) yes and 2) no. (See Figure 21.) 
 

 
Figure 21. Problem 1: Is this a perfect drawing of a mathematical point? 
 

Problem 2: Is this a perfect drawing of a mathematical lines? The problem 
asked, “Is this a perfect drawing of a mathematical line?” A diagram of a mathematical 
line is provided. Two answer choices were provided: 1) yes and 2) no. (See Figure 22.)  
 

 
Figure 22. Problem 2: Is this a perfect drawing of a mathematical line? 
 

Problem 3: Is it possible to draw a perfect mathematical point? The problem 
asked, “Is it possible to draw perfect mathematical point?” Two answer choices were 
provided: 1) yes and 2) no. (See Figure 23.)  

Is this a perfect drawing of a mathematical point?

Yes

No

How would a mathematician answer this question? 

Is this a perfect drawing of a mathematical line?

Yes

No

How would a mathematician answer this question? 
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Figure 23. Problem 3: Is it possible to draw a perfect mathematical point? 

 
Problem 4: Is it possible to draw a perfect mathematical lines? The problem 

asked, “Is it possible to draw perfect mathematical lines?” Two answer choices were 
provided: 1) yes and 2) no. (See Figure 24.)  
 

 
Figure 24. Problem 4: Is it possible to draw a perfect mathematical lines? 

 
Problem 5: which is more important? The problem asked, “Which is more 

important?” Two answer choices were provided: 1) “What a drawing of a point or line 
looks like,” and 2) “What the definition of a point or line says.” (See Figure 25.) 
 

 
Figure 25. Problem 5: Which is more important? 
 

Is it possible to draw a perfect mathematical point?

Yes

No

How would a mathematician answer this question? 

Is it possible to draw a perfect mathematical line?

Yes

No

How would a mathematician answer this question? 

Which is more important?

What a drawing of a point or line looks like

What the definition of a point or line says

How would a mathematician answer this question? 
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Results 

 
This section examines how students’ answer selections and explanations address 

the core research questions motivating this study concerning students’ developing 
understanding of the definitional practice. As a summary, Table 4 below provides an 
overview of the phases, procedures, and associated research questions in Study 2.  

This section begins with an analysis of the results from Phase 1 (Students’ 
Intuitions), considering how—in the absence of definitions—students may be drawing on 
the appearances of the diagrams and their knowledge of the physical world. Recall that 
the purpose of this phase is to generate direct evidence that students are indeed drawing 
on these conceptual resources when selecting empirical answer choices—evidence that 
was not available from Study 1.  

 Results are then analyzed from Phase 3 (Drawing on Definitions), which 
considers how the treatments were taken up by students in a second opportunity to solve 
the problems from Phase 1. An important purpose of this phase is to generate direct 
evidence of whether students are indeed drawing on the definitions when selecting 
idealized answers—evidence that, again, was precluded by the design of Study 1.  

A second purpose of Phase 3 was to identify possible differences in students’ 
uptake of the 2 interventions. Recall that, while both treatments included definitions of 
points and lines, the Practice Initiation treatment also included text intended to support 
the understanding that diagrams are inevitably imperfect representations of points and 
lines, which are mathematical ideas—forms of ‘imagined perfection.’ The analysis also 
considers possible differences based on students’ grade level, whether the treatments 
were taken up in different ways by students of different grade levels.  

Next, results are presented from Phase 4 (Differentiation), examining how 
students may be drawing on the provided definitions to construct a conceptual 
differentiation between material diagrams and stipulated objects—a central understanding 
in the definitional practice. This analysis considers how this developmental trajectory 
may differ by treatment group and grade level.  

In addressing the questions motivating Study 2, I consider both the answers that 
students select, as well as the explanations that they provide for their answer choices. By 
investigating aspects of students’ thinking that are not evident from their answer 
selections alone, these analyses generate more direct evidence of students’ developing 
understanding of the definitional practice. 
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Table 4: Overview of Study 2 Design 
Phase Procedure Research question 
Phase 1:  
Students’ Intuitions  

Students solve eight multiple-choice questions, 3 without geometric 
diagrams and 5 with diagrams. Students explain their thinking. 
 

In the absence of definitions, how do students of 
different grades draw on the appearances of the 
diagrams and their knowledge of the physical world as 
problem solving resources? 

Phase 2: 
Treatment 

Students are presented with a page of text. For students in the Definitions 
Only group, the text includes core definitions of points and lines, as well as 
additional text that is irrelevant to the problems. In the Practice Initiation 
group, the text includes core definitions, as well as an additional discussion 
of the definitional practice (e.g. drawings are imperfect). 
 

What is most helpful for students: providing the 
definitions, or the addition of an explicit distinction 
between idealized object and material diagram? 

Phase 3: 
Drawing on 
Definitions  

Students solve the same 8 multiple-choice questions again, and are asked 
what answers a mathematician using the definitions would select. All 
students are given access to core definitions, which are written on a piece of 
cardboard that is propped up in clear view. After selecting answers to all the 
problems, students are asked to share their thinking about only those 
problems in which they shifted from a definitions-inconsistent (i.e., 
empirical) answer in the Intuitions Phase to a definitions-consistent (i.e., 
idealized) answer.  
 

Do students indeed draw on the definitions in selecting 
idealized answers? 

Phase 4: 
Differentiation 

Students solve an additional 5 multiple-choice [yes/no] problems, which are 
designed to reveal how students may be constructing a conceptual 
differentiation between diagram and idealized object. Specifically, these 
items engage students’ appreciation that the diagrams of points and lines are 
inevitably imperfect and that what matters most is the definitions. Students 
are asked to share their thinking. 
 

Are there grade-related differences in participants’ 
construction of a conceptual differentiation between 
material diagram and idealized objects—the 
appreciation that drawings of points and lines are 
inevitably imperfect and subordinate to the definitions, 
according to the definitional practice? 
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Phase 1 Results: Students’ Intuitions  
 
 Results from the Intuitions Phase indicate that students of both grades 
overwhelmingly favor "empirical" answer choices, which are consistent with the 
appearances of the diagrams or the behavior of physical objects. Across both grades, for 
each problem the answer selected the least frequently was the idealized answer. The 
mean proportion of idealized responses was .13 for the problems with three answer 
choices, .08 for problems with four answer choices, and .37 for the problem with two 
answer choices—which is notably less than the percentage that would be obtained by 
random guessing (i.e., .33, .25, and .5 respectively). Indeed, Chi-squared analyses of each 
of the eight pretest items indicate that it is unlikely that students are selecting answers at 
random (p<.05 for all problems).8 This finding corroborates the results of Study 1, which 
showed that students in the control condition—who did not have access to definitions of 
points and lines—overwhelmingly selected empirical answer choices. Recall, however, 
that Study 1 could only generate indirect evidence that students were drawing on their 
knowledge of the physical world and the appearances of the diagrams as problem-solving 
resources. To address this, Study 2 uses interview techniques, querying students on the 
rationale for their answer selections. 

Students’ verbal explanations for their answer choices provide direct evidence 
that students—in the absence of definitions—draw on the appearances of the diagrams 
and knowledge of the physical world as problem solving resources. Most often students 
explicitly referenced the appearances of the diagrams in justifying their answer selection. 
Other times, students offered analogies that reference the behavior of physical objects. 
Consider an example in which a fourth-grader was solving the Converging Points 
question (Figure 12). He justified his empirical answer of There would be only one point, 
but it would be bigger, by saying “Because I’m thinking about the points like, I don’t 
know, blobs with jelly or something. They move together and then, squish, there is one 
blob of jelly, except it’s bigger because the 2 small ones went in there.” The student is 
drawing on his knowledge of pliable physical material like jelly, dough, or clay to reason 
about mathematical points—when two masses combine, the result is a larger mass. Table 
5 below provides an illustrative sample of student explanations in which they referenced 
specific physical objects and their behavior. 

 
 

                                                
8 Chi-squared statistics are as follows: Problem 1=53.711; Problem 2=19.132; Problem 3=18.658; Problem 
4=42.632; Problem 5=20.316; Problem 6=52.605; Problem 7=18.600; Problem 8=4.813). 
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Table 5: Appeals to the behavior of physical objects to justify empirical answer selection on problems with diagrams 

Grade Student Explanation 
4 Because I’m thinking about the points like, I don’t know, blobs with jelly or something. They move together and then, squish, there is one blob of jelly, 

except it’s bigger because two small ones went in there.  
 

4 If like two pieces of paper move toward each other, then one’s going to end up on top of the other. Then one’s going to slide right under the other one.  
 

4 Because if you keep pushing something together, it’s like these pens. [Picks up two pens and holds them in the air, and moves them towards each other]. 
If you are pushing them together, one would eventually be on top of the other. 
 

4 Well, what are the mathematical points are made of because if it was paint then it would combine, but if it was like two basketballs or something then 
one will go in front of the other.  
 

6 Kind of what I imagine is, because I got to school in a car, is two cars driving down the road towards each other and then they get in the middle of the 
street in the same spot, but one is behind the other one. 
 

6 Yes. I feel…one would be in front of the other…because if they are objects, it would be hard to merge together…they couldn’t go in the exact same 
spot. 
 

6  I'm imagining, do you know those little magnetic balls that you can make into structures and things? If there's only two balls, and you try pushing them 
together, the one goes in front of the other. That might be because it's magnetic but also if there're two boulders…if they were in a tight situation, if 
they didn't have to be completely crushed together, if they're just coming together, one would probably force its way above the other one so that they 
could both be in the same line. 
 

6 Since you're adding matter to more matter it just makes…if it's matter then it just makes sense that it would be more, that it would get bigger.  
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Phase 2 Results: Treatment 
 
 The intervention phase proceeded without issue. The students overwhelmingly 
followed the direction to read along silently while the interviewer read the information 
sheet. They appeared attentive and engaged. Following the presentation of the 
information sheet, recall that students were asked to read the definitions aloud, which 
they did without any apparent struggle. Differences in how students drew on the two 
interventions (Definitions Only and Practice Initiation) in their problem solving are taken 
up in the sections below. 
 
Phase 3 Results: Drawing on Definitions  
 

Recall that Study 1 could generate only indirect evidence that students were 
drawing on the definitions. The results from the Drawing on Definitions phase offer an 
assessment of how students made use of the provided definitions of points and lines in 
problems that often feature deliberately misleading diagrams. These problems were 
designed to cue a reliance on the appearances of the diagrams and students' knowledge of 
the physical world, which conflicts with the provided definitions of points and lines.  
 Figure 26 below provides the mean proportion of idealized responses for fourth 
and sixth-graders in the two treatment groups, and for the two problem types. Note that in 
the charts, the Practice Initiation treatment is abbreviated as “Def. Plus” (as in 
“Definitions Plus Practice Initiation”). The results shown in Figure 26 indicate, as 
predicted, that students in both fourth and sixth grade selected idealized answers more 
frequently after they were provided the definitions. The data also show that students in 
both fourth and sixth grade selected idealized answers more frequently on problems 
without misleading diagrams. (Results for individual problems are provided by charts in 
Appendix C.)  
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Figure 26. Results for comparing the Intuitions Phase (“Pre” in legend) and Drawing on Definitions Phase (“Post” in legend) in both 
treatment groups. 
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The results of a 2 (Treatment) X 2 (Grade) X 2 (Problem Type) X (Pre/Post) 

ANOVA show a main effect for both Pre/Post (F=243.655, df=1, p<.001, partial eta 
squared=.787) and Problem Type (F=58.616, df=1, p<.001, partial eta squared=.470), 
both with large effect sizes. These findings confirm two things. First, the Pre/Post effect 
confirms that students in both treatment groups—Definitions Only and Practice 
Initiation—were far more likely to select idealized responses after being exposed to the 
definitions of points and lines. In other words, students in both treatment groups 
demonstrated responsiveness to the definitions, regardless of grade. Second, the Problem 
Type effect confirms that students choose idealized responses far less frequently when 
the problem includes diagrams. This corroborates the general results of Study 1, 
indicating that both fourth and sixth-graders are frequently swayed by the misleading 
appearances of diagrams.  

To confirm that students are indeed drawing on the definitions when selecting 
idealized answers, I now consider students’ verbal justifications for their answer 
selections—specifically, how frequently students make explicit reference to the 
definitions of points and lines. Recall that during the Drawing on Definitions Phase, 
students were asked to explain their thinking for each problem in which they initially 
selected an empirical answer in the Intuitions Phase but shifted to an idealized answer. To 
analyze students’ verbal justifications, I used the video analysis program Studiocode. See 
Figure 27 below for a screen shot of a coded interview. In the figure, the rows correspond 
to individual problems, and the coded segments locate the stretch of video in which 
students justified their answers. 

 

 
Figure 27. Screen shot of a coded interview using Studiocode. 
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I developed a code to capture whether students were making explicit reference to 

definitions in their explanations for their idealized answers—a code called “Explicit 
Definition Reference.” In order to code the data, I first parsed the video into segments 
corresponding to the various phases of the interview, including individual problems and 
students’ explanations for particular answer selections (see Figure 27). For the Drawing 
on Definitions problems, I then applied a “Explicit Definition Reference” code to each 
answer choice that the student justified by making explicit reference to the provided 
definitions of points and lines, either by A) quoting one of the definitions, in whole or in 
part, B) paraphrasing one of the definitions in the students’ own words, or C) by 
gesturally pointing to the piece of cardboard on which the definitions were written. As a 
preliminary to coding, I established high interrater reliability with a second coder 
(Cohen’s Kappa=0.84), based on a 10 percent random sample of the data, stratified by 
grade. 

The frequency of the Explicit Definition Reference code was determined for each 
item in the Drawing on Definitions Phase, for treatment group and in each grade. Figure 
28 below shows the mean proportion of problems in which students made explicit 
reference to definitions, broken down by treatment group. The chart shows that, at both 
grades and in both treatment groups, students frequently referenced the definitions when 
justifying their idealized answer choices.  
 

 
Figure 28. Proportion of items in which students made explicit reference to Definitions 
during Drawing on Definitions Phase. 
 

To determine if there were grade-based and treatment-based differences in 
definition reference, median tests of the Explicit Definition Reference code were 
performed. These tests showed an effect for Grade (p=005), indicating that 6th grade 
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students made explicit reference to the definitions more frequently than 4th graders, but 
that treatment had no effect. This is consistent with the analysis of students’ answer 
selections, which showed that merely providing fourth-graders and sixth-graders with 
definitions significantly impacts their selection of idealized answers. There was also no 
effect for problem type; on problems in which students selected idealized answers, they 
referenced the definitions with equal frequency on both diagram and no diagram 
problems.   
 
Phase 4 Results: Differentiation  
 

A central understanding in the definitional practice is the idea that diagrams are 
not themselves the idealized objects which they (imperfectly) represent—an 
understanding I refer to as a conceptual differentiation between idealized object and 
material diagram. The multiple-choice items in Phase 4 offer an assessment of this 
understanding. Recall that Study 1 provided suggestive evidence that, when provided 
with definitions, some students may construct a conceptual differentiation, and that they 
draw on this differentiation when selecting idealized answers. The purpose of Phase 4 is 
to investigate more directly the possibility of such a differentiation. On these items, the 
“idealized” answer is logically consistent with the idea that diagrams are not 
mathematical points and lines, and that definitions of mathematical points and lines could 
never be drawn perfectly. For example, in the question “Is it possible to draw a perfect 
mathematical point?” The idealized response is “no.”  

These items also provide an additional measure of how students take up the 
different treatments. The purpose of the Practice Initiation treatment was precisely to 
support a conceptual differentiation between mathematical object and material diagram. 
It is therefore reasonable to hypothesize that there may be a difference between students’ 
responses in the two treatment groups, only one of which received text that was intended 
to make explicit the distinction between diagram and idealized object. It may also be that 
students of different grade levels differed in the understandings that they drew from the 
Practice Initiation treatment.  

Students were given a score of “1” if they selected the idealized answer, and a 
score of “0” if they selected the empirical answer. Figure 29 below shows mean 
proportions of idealized responses for fourth- and sixth-graders, separated by treatment 
groups. Results do indeed suggest that, at both grades, students who received the 
additional support of the Practice Initiation treatment selected idealized responses on 
these items more frequently.  
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Figure 29. Proportion of items in which students selected idealized responses on 
Differentiation items. 

 
To identify differences based on grade and treatment group, a 2 (Treatment) X 2 

(Grade) ANOVA was performed. Results showed a main effect for Treatment (F=40.827, 
df=1, p<.01, with a moderate effect size—partial Eta Squared=.372), but no effect for 
Grade. This confirms that students in both grades who received the Practice Initiation 
treatment more frequently selected idealized responses on these items, responses which 
are consistent with the understanding that material diagrams are inevitably imperfect 
representations of the ideas of points and lines.  

To obtain more direct evidence of students’ construction of a conceptual 
differentiation, and how this may differ based on grade and treatment group, I now 
consider the kinds of justifications students provided for their answer selections during 
the Differentiation Phase. Because these items have only two choices (yes/no), it may be 
that students are selecting "idealized" answer choices for reasons that do not reflect a rich 
conceptual differentiation between symbol and referent in the context of geometric points 
and lines. With only two choices provided, it is possible—even likely—that students may 
select the idealized answer for a variety of reasons, only some of which are consistent 
with an understanding of the definitional practice. This indeed turned out to be the case, 
as I discuss below.  
 I found that students frequently provided a predominantly ‘empirical’ justification 
for their idealized answer choices during this phase. In other words, with some frequency, 
students justified their selection of the idealized answer in ways that did not clearly 
reflect the understanding that diagrams of points and lines are inevitably imperfect 
representations of idealized objects. In these justifications, students say that points and 
lines cannot be drawn perfectly, but for reasons that are not clearly connected to the 
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definitions. Rather, they reference properties of the conventional diagrams (like the 
roundness of points) that are irrelevant to the definitions, or they made sweeping 
statements about the impossibility of doing anything perfectly. For example, one 
common empirically-based justification for idealized responses was the idea that, because 
points and lines can be drawn in any number of ways (e.g., big/small, long/short), there is 
no single perfect way to draw them—hence, they cannot be drawn perfectly. This 
contrasts with an understanding rooted in the definition of a mathematical line—the idea 
that no drawing can perfectly embody the features of infinite length and one 
dimensionality. Consider an example in which a fourth grade student was responding to 
the question Is it possible to draw a perfect mathematical line?; she responded, “No, 
because you can draw any kind of line. It can be a squiggly line or a straight line or a line 
with dots on it.” The student is apparently expressing the understanding that it is 
impossible to draw a mathematical line perfectly because lines can be drawn in any way a 
person wants, and therefore there is no single perfect drawing of a line.  

To determine whether empirical justifications were more common at 4th grade or 
at 6th grade, I generated a code called “Empirical Justification,” which I applied each time 
a student provided a predominately empirical justification for their answer selection. 
Examples of this code from students in the Practice Initiation group are provided in Table 
6 below. Using ten percent of the data, stratified by grade, two coders obtained high inter-
rater reliability for this code (Cohen’s Kappa=0.78). To analyze the results, I generated a 
composite score: each student received a score of 0 or 1 depending on whether or not he 
or she provided at least one empirical justification for an idealized answer choice during 
the Differentiation Phase. A Chi-squared test revealed that fourth-graders provided more 
empirical justifications than sixth-graders (χ2 (1)=4.15, p<.05). To determine the 
robustness of this finding, another variable was created with a higher threshold—a score 
of 1 required at least three materially-based justifications. A chi-squared test once again 
showed that fourth-graders provided more empirical justifications (χ2 (1)=5.00, p<.05). In 
other words, there is a significant difference between the frequency with which fourth 
and sixth-graders appeared to construct the intended understanding of the Practice 
Initiation treatment. 
  More often than their counterparts in sixth grade, fourth-graders in the Practice 
Initiation group did not seem to coordinate the definitions of points and lines with the 
idea that points and lines can never be drawn perfectly. That is, although fourth-graders 
frequently repeated a core idea in the Practice Initiation treatment—that it is impossible 
to draw points and lines perfectly—the reasons they provided for this impossibility often 
lacked a clear connection to the stipulated properties of points and lines. Often, fourth-
graders seemed to assimilate the statement that it is impossible to draw points and lines 
perfectly to the idea that there is no one correct way to draw it. To summarize, the 
Practice Initiation treatment offered more support to sixth-graders in constructing a 
conceptual differentiation between material diagram and idealized object.   

This finding—that fourth-graders did not derive the intended understanding from 
the Practice Initiation treatment as their sixth-grade counterparts—is also corroborated by 
a trend in the results from the Drawing on Definitions Phase. While no statistically 
significant interaction between Grade and Treatment was found, a trend approaching 
statistical significance was observed. According to this trend, fourth-graders who 
received the Practice Initiation treatment did not select as many idealized responses as 
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their counterparts in the Definitions Only group, suggesting that the intended support of 
the Practice Initiation treatment was to some degree counterproductive. In contrast, this 
trend showed that sixth-graders who received the Practice Initiation treatment more 
frequently selected idealized responses, consistent with the results of Study 1. Again, this 
trend did not reach the level of statistical significance. Nonetheless, it resonates with the 
finding that students in fourth grade did not appear to fully understand the Practice 
Initiation treatment as often as 6th graders—specifically, they struggled with the reason 
why it was said that points and lines cannot be drawn perfectly.  
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Table 6: Examples of Empirical justifications for The Differentiation Phase Items 

Grade Student’s explanation 
 
4 

 
Interviewer: Is it possible to draw a perfect mathematical line?   
 
Student: Maybe no, because if you draw a perfect mathematical line, it has to be exactly straight. Humans don’t have that perfection.  
 
 

4 Interviewer: What would a mathematician say to this? Is this a perfect drawing of a mathematical line?  
 
Student: No, because you can draw any kind of line. It can be a squiggly line or a straight line or a line with dots on it.  
 
Interviewer: Is it possible to draw a perfect mathematical point?  
 
Student: No. You can draw a star as a point. You can do a face as a point.  
  
 

4 Interviewer: Is this a perfect drawing of a mathematical line? What do you think a mathematician would say? 
 
Student: No…because it would not always be straight. It could be not the thickness that you want.  
 
 

4 Interviewer: Is this a perfect drawing of a mathematical line?  
 
Student: No, it’s not. But it’s – you can see and it looks pretty much perfect…but it’s not. Because from this part it could still be a little bit off, 
because nothing’s like, humans can’t draw anything perfect. Like, if you make – like, if you have a machine that makes bottle caps, and if you have 
two bottle caps, they are not going to be the exact same kind, because they are two, they are not going to be the exact same size. They might look 
the same, but they are not exactly the same.  
 
 

4 Interviewer: How would a mathematician answer this question? Is it possible to draw a perfect mathematical point?  
 
Student: Nope. Because nothing’s perfect in this world.  
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4 Interviewer: How would a mathematician answer this question? Is this a perfect drawing of a mathematical point, yes or no?  
 
Student: No, because some people could make the points bigger or smaller, so none of them are perfect.  
 
Interviewer: How would a mathematician answer this question? Is it possible to draw a perfect mathematical line?  
 
Student: No, because some lines are longer than others and some people would make them thicker and thinner, so all of them are right, but none of 
them are like perfect.  
 
Interviewer: Okay.  
 
 

6 Interviewer: Is it possible to draw a perfect mathematical point?  
 
Student: No because it’s impossible to draw one, because it won’t have a perfect size cause’ mathematical points don’t have a perfect size and it 
wouldn’t have the perfect thickness. It would be too thick or not thick enough maybe. And…the size wouldn’t be correct.  
 
 

6 Interviewer: Is that a perfect drawing of a mathematical point? 
 
Student: Because you can only imagine what perfect would be like. But everybody might have a different opinion of what perfect would really be. 
Really, there’s no such thing as a perfect dot because nobody really has the same idea about it. 
 
 

6 Interviewer: Is it possible to draw a perfect mathematical point? 
 
Student: No, it’s not possible because… I mean no, it wouldn’t look exactly like the one that the machine did. Because if you try to draw it by 
hand… 
 
Interviewer: Got it. Okay. It’s impossible to draw perfectly by hand. But if the question was like it’s just hypothetically a person need to ask, the 
question is like, can a computer draw perfect mathematical point? Would the answer be yes? 
 
Student: Mm-hmm. 
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Summary 
 

Recall that Study 1 revealed an apparent learning trend, in which older students 
and those with access to definitions were more likely to select answers consistent with the 
idealized properties of points and lines, even when problems included misleading 
diagrams. However, the design of Study 1 precluded direct evidence of students’ uptake 
of the definitions. The purpose of Study 2 was to address a number of important 
unanswered questions about this learning trend, in order to generate more direct evidence 
of the role of the definitions in students’ thinking. This study once again sampled 
students from multiple grade levels in service of a developmental analysis.  

Using structured interview methods, Study 2 employed a four-phase design to 
address the research questions raised by Study 1. The first phase—Students’ Intuitions—
investigate students’ intuitions about problems involving points and lines when they do 
not have access to definitions. Two different treatments were then used to determine what 
provided students with the most support: the definitions themselves, or additional 
discussion about the definitional practice that distinguishes idealized object from 
(inevitably imperfect) material diagram. The third phase—Drawing on Definitions—
considers how students drew on the definitions and additional support to reorganize their 
problem-solving. The final phase—Differentiation—investigates how students may be 
drawing on the definitions and additional support to construct a conceptual differentiation 
between material diagrams of points and lines and the idealized objects.  

Results from the Intuitions Phase show that students of both grades 
overwhelmingly favor "empirical" answer choices, which are consistent with the 
appearances of the diagrams or the behavior of physical objects. This finding 
corroborates the results from Study 1. There verbal justifications confirm that students 
are indeed drawing on the resources of diagrammatic appearances and everyday 
knowledge of the material world. 

In the Drawing on Definitions phase, students in both treatment groups—
Definitions Only and Practice Initiation—were far more likely to select idealized 
responses after being exposed to the definitions of points and lines. In other words, 
students in both treatment groups demonstrated responsiveness to the definitions, 
regardless of grade. However, students choose idealized responses far less frequently 
when the problem includes diagrams. This finding ocean corroborates results from Study 
1. Students’ verbal justifications included frequent references to the definitions, 
confirming that they are indeed drawing on the definitions in selecting idealized answers. 

During the Differentiation phase, students in both grades who received the 
Practice Initiation treatment more frequently selected idealized responses than did 
students who only received the definitions. Recall that on these items, idealized responses 
are consistent with the understanding that material diagrams are inevitably imperfect 
representations of the ideas of points and lines. More often than their counterparts in six 
grade, fourth-graders in the Practice Initiation group did not seem to coordinate the 
definitions of points and lines with the idea that points and lines can never be drawn 
perfectly. That is, although fourth-graders frequently expressed the general understanding 
that it is impossible to draw points and lines perfectly, the reasons they provided for this 
impossibility often lacked a clear connection to the stipulated properties of points and 
lines. In summary, findings from the Differentiation phase indicate that the Practice 
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Initiation treatment had the intended effect—that is, supporting a conceptual 
differentiation between diagram and idealized object—but it only did so consistently 
among sixth grade students. 

A central concern of Study 1 and 2 is definition use—how students are drawing 
on the available definitions to solve the problems and reason about points and lines. 
Neither study investigates how students are making sense of these definitions. Full 
participation in the definitional practice requires a rich conceptualization of the relevant 
mathematical objects, a conceptualization that is consistent with the idealized properties 
stipulated by the definitions. 
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STUDY 3: HOW STUDENTS MAKE SENSE OF THE DEFINITIONS OF 
POINTS AND LINES 

 
 Authentic participation in the definitional practice requires that participants have a 
rich understanding of the definitions that stipulate the idealized objects. This brief 
exploratory study engages this dimension of participation in the definitional practice. The 
design of this study asks students how they would explain the definitions to another 
imagined student, in order to reveal the conceptual resources they draw on to support 
their sense making of these ideas. Put another way, this study considers the sense making 
processes through which students conceptualize points and lines as forms of “imagined 
perfection” (G. Lakoff, personal communication, February 11, 2015). 
 Geometric points and lines are prototypical examples of Vygotsky’s notion of 
“scientific concepts” (Vygotsky, 1986)—they belong to a specialized, highly-structured 
discourse that is fairly removed from daily life outside of formal schooling. Vygotsky’s 
treatment of scientific concepts engages what is therefore a fundamental conundrum for 
students—how to draw on available conceptual resources to ground their understanding 
of such foreign ideas. He argued that students typically draw on “spontaneous 
concepts”—concepts that develop in the course of daily life that are rooted in particular 
experiences, rather than explicit definitions that link them with other concepts. For 
instance, a child’s concept of “brother” may be chiefly tied to experiences with the 
child’s own brother, rather than a conceptual map of familial relations in which “brother” 
is uniquely defined as a male child that shares one’s parents. Vygotsky theorizes that the 
developmental dynamics between spontaneous and scientific concepts are bidirectional. 
Students draw on familiar concepts to make sense of the novel ones they learn in school, 
and the explicitness and systematicity of concepts learned in school also shape the further 
development of familiar concepts. It should be noted that Vygotsky’s framework for 
conceptual development is not intended to establish two mutually exclusive classes of 
concepts; rather, the intention is to highlight the peculiar nature of conceptual learning in 
formal schooling, and to illuminate interrelated developmental processes that this 
learning occasions.  

 As mentioned, mathematical points and lines are prototypical exemplars of 
Vygotsky’s “scientific concepts.” For one, points and lines have explicit definitions and 
are situated within a broader framework of geometric objects (polygons, angles, etc.). 
Additionally, idealized objects like points and lines lack a straightforward material 
existence, and the divergence between students’ everyday experience of the material 
world and the stipulated properties of idealized objects is especially stark when those 
objects involve properties like zero dimensionality, one dimensionality, or infinite length. 
After all, no one has ever directly encountered material objects with such properties. So, 
what kinds of conceptual resources might students be drawing on to make sense of the 
definitions? What familiar ideas might they appropriate or extend to make sense of zero 
dimensionality, one dimensionality, and infinite length?  
 In my analysis, I seek to identify how students draw on a particular category of 
conceptual resource: ideas related to material objects. This study examines how students 
construct material analogies—analogies that reference material concepts, whether these 
concepts belong to the very small (atoms, molecules, etc.), the very large (planets, stars, 
etc.), or anywhere in between (balls, sticks, etc.). This interest in materially-based 
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analogies is motivated by several factors. First, there is good reason to expect that 
students would draw on ideas related to material objects as sense making resources. This 
expectation is supported by foundational research in developmental psychology on the 
importance of sensorimotor experience in cognitive development (Piaget, 1952; Piaget & 
Inhelder, 1948), as well as cognitive science treatments of mathematics cognition (Lakoff 
and Núñez, 20009). It is also supported by the empirical findings of this dissertation, 
which shows that students do indeed have a persistent tendency to draw on knowledge of 
the material world as problem solving resources.  
 Capturing students’ materially-based analogies exposes the conundrum that 
students face in making sense of mathematical definitions of idealized objects, like those 
of points and lines. On the one hand, the conceptual resources that students have 
available to them are invariably rooted in materiality. On the other hand, the 
mathematical definitions stipulate idealized objects, possessing what might be considered 
non-material properties like no size and infinite length. Students’ materially-based 
analogies can therefore provide a window into how students address this conundrum, and 
if they also appreciate the limitations of these analogies in explaining idealized objects. 
 

Methods 
 

Following the procedures of Study 2, I asked students two open-ended questions 
that probe their understanding of the definitions of points and lines.  

 
Before we stop, I’d like to ask you about the idea of a point and a line. Let’s say I were a student in 
your class, and I said I didn’t really understand the idea of a point. What does it mean that a point is so 
small that is has no size at all and takes up no place? Can you say that in different words so maybe I’ll 
be able to imagine that better? What about the idea of a line? Let’s say I were a student in your class, 
and I said I didn’t really understand the idea of a line. What does it mean that a line is so long it goes 
on forever? Can you say that in different words so maybe I’ll be able to imagine that better? 

 
 I elected to use this procedure—asking students how they would explain the ideas 
to another student—because pilot interviews indicated that this prompt generated more 
talk than simply asking students’ what the definitions mean. I also found that this prompt 
generated more analogies involving material objects.  
 
Participants 
 
 The participants of Study 3 were identical to those of Study 2. They included 
fourth (n=36) and sixth (n=34) grade students. The data for Study 3 was collected at the 
conclusion of each interview during Study 2.  
 

                                                
9 Lakoff and Núñez (2000) have provided an influential treatment of how humans are capable of 
conceiving of idealized mathematical objects with properties like infinite length and less than three 
dimensions. Their account rests on cognitive processes such as conceptual metaphor, which provides an 
explanation for how sensorimotor experience can serve as the conceptual bedroom for advanced 
mathematics. My study, by exploring the specific conceptual resources students draw on in their 
conceptualization of points and lines, compliments—and potentially corroborates—this important work. 
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Results 
 
 I used an inductive analytic approach to identify material analogies that students 
referenced to explain the definitions of points and lines. After transcribing all students’ 
explanations, I examined the transcripts and coded every material analogy by looking for 
references to specific material objects. I found that all of these material analogies 
involved references to objects that fell into two easily identifiable categories. As I discuss 
in detail below, students referenced small bits of matter (atom, molecule, etc.) when 
explaining the zero-dimensionality of a point, and ideas related to outer space (planets, 
asteroids, etc.) when explaining the infinite length of a line. Notably, both categories 
encompass concepts from academic science, ideas students most likely learned in 
school—a finding I will discuss further. 
 However, I found that majority of students did not make material analogies, and 
that sixth-graders did so far more frequently than fourth-graders; only 5% of fourth-
graders and 18% of sixth graders produced material analogies. The majority of students 
in both grades adopted the strategy of explaining the definitions by putting them in their 
own words, saying—for example—that “a line never ends, it just keeps going and going 
and going.”10 This is unsurprising, as students were not prompted to make analogies 
involving material objects. Indeed, given the procedure, one might be surprised that so 
many students did spontaneously reference specific material objects, since they were not 
prompted to do so. Interestingly, a student who referenced a specific concept to explain 
one definition was likely to do so when explaining the other definition. Of those students 
who made a material analogy to explain one definition, roughly half did so when 
explaining the second definition. 

Below I describe the categories of material analogies that students made to 
explain the definitions of points and lines. 
 
Material analogies for making sense of a mathematical point. Recall that the conceptual 
resources students often drew on to explain the definitions of points and lines were 
material ideas they most likely encountered in school—in particular, ideas from science. 
For the definition of a mathematical point, students referenced small units of matter—like 
atoms and molecules—that cannot be seen with the naked eye.  

For instance, one sixth grader said that a point was small like an atom, and when 
asked which is smaller, the student responded that a point is smaller, “because an atom is 
really small, but on a point takes up no size and no space.” By comparing a point to an 
atom, the student is communicating the understanding that a point is very small, but the 
student is also aware that a point is smaller than even an atom, because even something 

                                                
10 While this student is not referencing a specific concept, her response reflects what cognitive linguistics 
refers to as the cognitive process of fictive motion, wherein a static object is understood as a dynamic 
process of travel between its endpoints (Talmy 1996). For example, consider the sentence, “The fence runs 
along the side of the house.” Regardless of whether a specific conceptual resource was evident, students’ 
explanations of a mathematical line frequently suggested a conceptualization rooted in fictive motion. This 
is unsurprising given that the provided definition features fictive motion as well: “A line is so long that it 
goes on forever.”   
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as small as an atom takes up space. This nicely exemplifies the production of the material 
analogy by a student who also appreciates the necessary limitations of this—or any—
material analogy.  

Table 7 below provides a few additional illustrative examples of student talk, in 
which the units of matter they referenced appear in bold. (See Appendix D for a complete 
list of relevant data extracts.) 
 
Table 7. Material analogies for explaining the definition of a point 

Grade Explanation 
 
4 

 

Well, you could say that a line or a dot is like nothing. You could say that it’s nothing. You 
can’t really see, it’s like you can’t see germs but it’s there…It’s like that small. It’s the 
tiniest thing. Like you can barely see it, it’s like a germ on your hand.  
 
 

6 Student: No size, I think an atom or something.  

Interviewer:  So, which is bigger? A mathematical point or an atom?  

Student: An atom is way bigger.  

 

6 Interviewer:  So, earlier you talked about an atom. I was curious about that. So, an 
atom is pretty small, right? And it sounds like a point is pretty small too. 
Which one of those is smaller? 

Student: A point. Because an atom is really small, but a point takes up no size 
and no space.  

 
Material analogies for making sense of a mathematical line. Again, students' science 
learning was the most common apparent source of conceptual resources that students 
appeared to draw on to make sense of a line. In particular, many students reference ideas 
related to outer space: planets, galaxies, the universe, etc.  

For instance, one fourth grader said “It goes on forever so that means it'll go past 
Mars, it'll go past the asteroid belt, it'll go on forever.” The student is referencing two 
familiar, progressively distant celestial bodies to communicate the idea that a line 
continues infinitely, mapping an imagined path from the earth to progressively further 
locations in outer space—a path that never ends. One can plausibly argue that the student 
is aware of the limitations of the analogy, since he makes explicit that the distances to 
even Mars and the asteroid belt are insufficient to capture the length of a mathematical 
line; a mathematical line would continue past these objects.  

Table 8 below provides some additional illustrative examples of student talk. (See 
Appendix D for a complete list of relevant data extracts.) 
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Table 8: Material analogies for explaining the definition of a line 

Grade Explanation 
 
4 

 
It goes on forever so that means it'll go past Mars, it'll go past the asteroid belt, it'll go on 
forever. 
 

6 It'll go on forever. And it'll go on after we all grow old and the Sun runs out of… and it 
explodes and the Earth explodes and it'll keep on going forever.  
 

6 Like it goes on throughout the cosmos, just goes on until there's no end. I still think about 
that every day. It's mind boggling.  
 

6 Student: You can only do an infinite line, only if you're in space because the universe is 
infinite so there you go.  
 
Interviewer: For someone like me who doesn't understand it, you might tell me to imagine 
outer space? 
 
Student: Yes. 

 
 
Confusion or disagreement with definitions. Another notable finding is that a number of 
students gave voice to either a struggle to understand the definitions, or a disagreement 
with the definitions. For example, these students asserted that it did not make sense that 
anything could go on forever or have no size at all. There may have been more students 
who experienced this confusion—even disagreement—with the definitions, but did not 
share it aloud.  

Consider the following instance of student talk; the student said that a line could 
“never go on forever because one can never go on forever because… you can’t draw 
something forever.” Table 9 below provides additional examples. Such examples of 
confusion or disagreement with a definition serves to highlight the fact that points and 
lines are non-intuitive ideas that originate in a particular, specialized academic discourse 
and diverge from students’ everyday embodied experience. They also highlight the 
persistent tendency among young students to identify points and lines with their material 
representations, since they cite the impossibility of drawing an infinite line and a zero-
dimensional point as a source of confusion or ground for rejecting the definitions. 
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Table 9: Confusion or disagreement with definitions 

Grade Explanation 
 
4 

 
Well, it can never go on forever because one can never go on forever because… you can’t 
draw something forever.  
 
 

4 Interviewer: What does that mean—so small that it has no size at all? 
 
Student: I didn’t get that either. So, it’s kind of like I said…everything takes up space, if it 
has like a—if it has, a solid form. 
 
Interviewer: And what about a mathematical line, which is so long that it goes on forever? 
 
Student: I’m pretty sure that it ends because technically, the drawing, it ends.  
 
 

6 Student: I don't think [a line] could go on forever. It could go on like universe but I'm 
not so good at that, the whole universe and space thing, but I think from what I 
understand that the universe is always expanding…but if [a line] is going on forever it 
also will hit the edge maybe and then keep expanding, but I think that this doesn't 
really count as going on forever because it's still sort of passes stuff…I don't think it's 
going on forever. 

 
 

Summary 
 
 This study provides a window into how students make sense of the definitions of 
points and lines; specifically, it considers students’ production of analogies rooted in 
materiality, and how these analogies serve as resources for sense making.  
 Students were asked how they would explain the definitions of points and lines to 
another student in their class. In general, students appear to find this a challenging task, 
and a number voiced confusion or disagreement with the definitions. This puts into relief 
the fact that mathematical points and lines are non-intuitive ideas from a specialized 
academic discourse—prototypical examples of Vygotsky's "scientific concepts"—which 
include challenging ideas like zero-dimensionality and infinite length.  

The majority of students did not produce material analogies, and those that did 
were more often in sixth grade. Rather, they employed the strategy of paraphrasing key 
ideas from the definitions in their own words. An analysis of the material analogies 
students did produce uncovered a clear pattern: analogies drew on concepts from 
academic science, which students likely learned in school. Scientific ideas dealing with 
the very small, such as molecules and atoms, were frequently referenced to communicate 
the idea that a point is so small that it has no size at all. To explain the infinite length of a 
line, students often referred to scientific ideas dealing with the very large, involving outer 
space and celestial bodies. Interestingly, some students demonstrated an understanding 
that their analogies were necessarily imperfect—that, for example, a point is smaller than 
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even an atom, and that a line is longer than even the distance from Earth to the asteroid 
belt.  

The fact that students’ materially-based analogies draw on concepts from 
academic science is a theoretically significant result. It is not well captured by 
Vygotsky’s simple framework for understanding the interplay between spontaneous and 
scientific concepts, in which spontaneous concepts provide an experiential grounding for 
scientific concepts. This study points to the need to understand developmental dynamics 
between scientific concepts. Results signal the possibility for unfamiliar scientific 
concepts (in this case, mathematical points and lines) to enter into trajectories of 
conceptual development involving somewhat more familiar scientific concepts (in this 
case, atoms, asteroids, etc.). Whatever resources students are drawing on to make sense 
of ideas related to outer space and small units of matter, for example, thereby become 
relevant in their efforts to make sense of mathematical points and lines. Such complex 
processes linking separate trajectories of conceptual development are little understood 
and deserving of further study. 
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CONCLUSION: CONTRIBUTIONS TO SOCIOCOLUTRAL TREATMENTS OF 
COGNITIVE DEVELOPMENT AND TO MATHEMATICS EDUCATION 

RESEARCH AND PRACTICE 
 
 This dissertation makes theoretical and empirical contributions to our 
understanding of sociocultural processes in cognitive development. It also contributes to 
mathematics education research and offers important implications for pedagogy and 
educational practice. In this chapter, I outline these contributions, and I point to possible 
directions for future research.  
  

Contributions to Sociocultural Treatments of Learning and Development 
 
 At the heart of this dissertation is the construct of a practice—a recognizable, 
valued form of activity within a cultural community in which individuals draw on 
artifacts, tools, routines, and semiotic resources to solve problems. Defined in this way, 
the construct brings into view within a single analytic lens both cognition and cultural-
situated activity (such as participation in the discourse of academic mathematics). In 
adopting this construct, this dissertation contributes to the large body of research on the 
sociocultural nature of learning and development. It advances this line of research by 
studying the utility of a practice-based conceptualization for understanding an important 
but under-researched aspect of mathematics learning. 
 This work represents a novel extension of Vygotsky’s method of double 
stimulation. Recall that, for Vygotsky, the method of double stimulation was in service of 
the more fundamental aim of understanding mediation in higher cognitive activity. The 
notion of mediation points to the insight that humans do not respond automatically to 
environmental stimuli—rather, they exercise agency in drawing on available resources to 
reorganize the situation and direct their own action towards a desired end. Despite its 
elegance and usefulness in capturing the mediated properties of cognitive activity, the 
method of double stimulation has been underutilized. As mentioned, the few researchers 
who reference the method in describing their research adopt it largely as a conceptual 
tool; they do not use it as a structure for study design, nor do they often use it with the 
purpose of studying development processes in mediational activity. 
 My use of the method—incorporating an experimental approach that includes 
potentially useful auxiliary stimuli, with the purpose of capturing a developmental 
process—shares strong similarities with Vygotsky’s reported examples of the method of 
double stimulation. However, there are notable differences. One of Vygotsky’s well 
known examples involved a simple memory task, with color chips serving as the 
auxiliary stimuli. One could argue that Vygotsky’s example does not capture well the 
predicament students face in school. Color chips are a far cry from mathematical 
definitions of a zero-dimensional point and a one-dimensional line with infinite length, 
for example. Mathematical definitions are verbal, intended to describe idealized entities 
that diverge from the three-dimensional material objects we encounter in our everyday 
experience. Participants’ uptake of the definitions cannot be ultimately separated from the 
sense that they make of the definitions’ meaning. Indeed, this motivated me to study the 
auxiliary means (i.e., conceptual resources) that individuals drew on to make sense of the 
definitions that they had available to them in the other studies. Put another way, in my 
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use of the method of double stimulation, both the problems and the ‘auxiliary stimuli’ 
required their own cognitive structuration, and the two needed to be bootstrapped in 
relation to each other. 
 My study of students’ sense-making of the definitions also has theoretical 
implications that engage Vygotsky’s seminal treatment of conceptual development, as 
discussed earlier. Among Vygotsky’s core insights is that school exposes students to 
concepts that differ significantly from those they learn in their everyday lives. Academic 
concepts have explicit definitions and belong to structured discourses in which individual 
concepts are embedded in a structured network of others concepts. Vygotsky argued that 
this transforms the process of conceptual development, creating top-down and bottom-up 
dynamics in which scientific concepts shape the development of spontaneous concepts 
and vice versa. My work suggests that scientific concepts cross-pollinate in potentially 
fruitful ways—that students draw on other concepts learned in school to make sense of 
new ones, sometimes across disciplinary boundaries (as, for example, when students 
drew on ideas like atoms and molecules to make sense of the infinitesimal size of a 
mathematical point). In this way, unfamiliar scientific concepts enter into trajectories of 
conceptual development involving other scientific concepts, with their own histories in 
students’ sense making efforts.  
 

Contributions to Mathematics Education Research and Pedagogy 
 
 This dissertation also makes important contributions to mathematics education 
research. As mentioned, it points to a need to better understand a crucial but under-
researched aspect of students’ development as doers of mathematics. As other researchers 
have argued, students cannot not fully understand the discourse of mathematics unless 
they appreciate what the discourse is about: idealized, imagined objects with specific 
definitions. 
 My work engages research on definition use in students’ mathematics learning. 
These studies provide additional evidence that reasoning from definitions can be 
challenging for young students. This challenge was shown to be most notable in the 
presence of diagrams, which are likely to cue a reliance on the inevitably inaccurate 
appearances of the diagrams, or on students’ knowledge about the behavior of physical 
objects. 

This dissertation has several implications for the practice of mathematics 
education. First, these studies suggest interesting possibilities for instructional approaches 
to supporting the definitional practice. Specifically, they raise the possibility of making 
the distinction between representation and mathematical object a direct target of 
instruction and an explicit topic of discussion in elementary and middle school 
classrooms. This could be done in a way that reflects the general approach taken in the 
Experimental (Study 1) and Practice Initiation (Study 2) treatments: exposing students to 
the idea of a breakdown between the defining features of the mathematical object and the 
manifest properties of the physical representation. Done well, such interventions could 
help offer more students an invaluable and potentially satisfying ‘feel for the game’ of 
academic mathematics. 

Second, these studies offer some preliminary indication of at what grade it would 
be appropriate to implement the general kind of pedagogical approach modeled in these 
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studies—making explicit the ‘rules’ of the definitional practice. The effectiveness of this 
general instructional approach depends on the extent to which it supports students in 1) 
drawing on definitions, 2) conceptually differentiating material diagram from idealized 
object, and 3) making rich sense of the definitions. I consider each below in light of the 
results of these studies. 

Results indicate that students as young as fourth grade can draw on definitions in 
challenging geometrical problems, provided sufficient scaffolding. Study 1 provided little 
scaffolding, consisting of a paper and pencil assessment administered simultaneously to 
large groups of students. Results showed that fourth-graders struggled to draw on 
definitions when problems featured diagrams, which cue a reliance on their appearances 
and students’ knowledge of the physical world. The design of Study 2, by contrast, 
provided more scaffolding—a one-on-one interview study that offered more interactional 
support for the importance and use of definitions. This study showed that fourth-graders 
can indeed draw upon definitions in such challenging problem-solving contexts. Given 
the sufficient contextual support, therefore, instruction that makes explicit the rules of the 
definitional practice may be appropriate for students as young as fourth grade.  

However, results also indicate that attempts to make explicit the ‘rules’ of the 
definitional practice may not be effective in supporting young students to construct a 
clear conceptual differentiation between material diagram and idealized object. Study 2 
showed that only sixth-graders consistently gave voice to the understanding that diagrams 
representing points and lines are not themselves mathematical points and lines. An 
explicit discussion of the definitional practice may therefore be more confusing than 
clarifying for many elementary students. That said, it may be that some form of an 
explicit discussion of the definitional practice could be effective for young students, 
provided it included more scaffolding than was available in either Study 1 or Study 2.  

Finally, results from Study 3 suggest that the definitions of points and lines are 
indeed challenging ideas for younger students. While there is no clear evidence that 
fourth-graders were consistently unable to make meaningful sense of the definitions of 
points and lines, the strongest evidence of rich sense making came from students who 
made materially-based analogies to explain the zero-dimensionality of points and the 
infinite length of lines. Recall that these analogies built upon ideas from academic 
science, such as atoms and outer space—ideas that sixth-graders naturally have had more 
exposure to. This finding points of the importance of considering available conceptual 
resources when discussing challenging mathematical definitions like those of points and 
lines.  
 

Direction for Future Research 
 

This dissertation suggests potentially fruitful directions for future research. Again, 
these directions advance both research that is specific to mathematics education as well 
as research on the sociocultural nature of cognitive development. 

 Within mathematics education, one direction targets the definitional practice 
specifically. These studies suggest future design-based research related to supporting the 
definitional practice. The intervention used in these studies was minimal—a one-page 
information sheet—and students had limited opportunity to engage with it. For instance, 
students were not given an opportunity to ask clarifying questions. Future design research 
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might develop and test more robust interventions, such as classroom lessons, related to 
the definitional practice. Such research is needed before making any substantial claims 
about which students would most benefit from explicit discussion of and engagement 
with the definitional practice. 

Relatedly, future classroom research should study the learning occasioned by 
instructional approaches developed to support the definitional practice. The studies 
described here used experimental and interview techniques; as such, they did not 
investigate the definitional practice “in the wild”—in the context of classroom teaching 
and learning. Future longitudinal classroom studies may explore teaching-learning 
dynamics in students’ developing participation in the definitional practice over time. 
Such studies would permit an analysis of classroom discourse—including student-teacher 
and student-student communication—as a site for students to gain access to (or be 
excluded from) the definitional practice.  

Future research on the definitional practice should also target other idealized 
mathematical objects. My work adopted points and lines in Euclidean geometry as a 
potentially fruitful mathematical context for studying the development of the definitional 
practice. Points and lines are interesting mathematical objects from this standpoint, 
because they incorporate idealized properties that differ so markedly from the objects that 
students encounter in daily life, properties that no drawn diagram could possess. Future 
research on the definitional practice might study other such objects, whether within or 
outside of geometry. For instance, the Cartesian plane is an excellent candidate. Fluency 
with the Cartesian plane is critical for success in more advanced mathematics, and—
coincidentally—is a complex assemblage of mathematical points and lines.  

Another broad direction for future research looks beyond mathematics education. 
This dissertation targets an important academic practice in which key aspects are 
typically left implicit, and it explores the possible affordances and limitations of making 
these aspects an overt target of instruction and topic of discussion. Undoubtedly, there are 
academic practices in other disciplines, such as science and literacy, in which core 
aspects are often left implicit. Future studies could adopt the general approach taken here 
and explore exciting but largely unrealized pedagogical possibilities—with the aim of 
giving students a richer, more satisfying ‘feel for the game.’ 

This dissertation also points to directions for future research on cognitive 
development. Future research should explore the untapped potential of the method of 
double stimulation in order to enrich our understanding of meditational processes in 
cognitive activities and their development. This work may explore situations in which the 
‘auxiliary stimulus’ requires its own sense making and cognitive structuration, as is the 
case—for example—with mathematical definitions. This use of the method of double 
stimulation has the potential illuminate the role of complex cognitive coordinations 
between individuals’ construction of problem-solving goals and their construction of 
mediational means for solving these problems. Insights resulting from this work may 
shed further light on characteristic features of human cognition.    
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Appendix A: Study 1—Pilot Interviews 
 
 Using various iterations of the interview procedure elucidated above, I conducted 
audio-taped pilot interviews with students in fourth (n=11), fifth (n=3) and sixth (n=3) 
grade. Pilot interviews were of great help in developing and refining the interview 
structure, problems, and definitions. Pilot interviews also confirmed the appropriateness 
of fourth-grade students for the study: 

• Fourth-grade students were readily able to select answer choice and, which—
during Phase 1—almost always involved appeals to the appearances of the 
diagrams or knowledge of the physical world.  

• Using an early iteration of the interview structure, fourth-graders often did not 
select idealized answers after discussing the definitions. This finding prompted 
several changes. First, I decided to place the definitions face up and, for each 
problem, explicitly ask whether the definitions made students want to change their 
answers. Second, this finding motivated me to rewrite the elaborated definitions 
for the Practice Initiation to more explicitly draw the students’ attention to the 
differences between what the diagrams look like and what we have agreed 
mathematical points and lines are like. Lastly, this finding led me to bold 
important text in the different answer choices to help students appreciate the 
differences between them.  

• Oftentimes, I asked fourth-graders at the end of the interview if they could 
remember the definitions. Because many did not, I decided that the interview 
protocol should require students to repeat or rephrase the definitions before 
moving on to the problems. 
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Appendix B: Study 1—Most Frequent Answer Choices, Without Definition Access 
 
 The following two tables provide, for students in the control group, the most 
frequently selected answer choice type for each problem within each grade. Since 
students in the control group did not receive the informational sheet with the defining 
properties of points and lines, these students’ answer choices reflect answers 
uninfluenced by the definitional intervention. Among students in the control group, I 
determined the most frequently selected answer choice and I calculated the percentage of 
students that selected this answer choice by grade level.  
 To summarize the results, across all problem types—whether no diagram or 
diagram—and all grade levels, the most popular response types were consistent with 
empirical interpretations of points and lines. Indeed, idealized interpretations were the 
most popular only at eighth grade and for only two of the eight problems, Problem 2 
(50%) and Problem 8 (40%).  Further, I found considerable commonality for most 
popular empirical interpretations across grade levels for all problems. For the no diagram 
problems (Problem 1-3), the most common answer type was “it depends on how you 
draw the points/lines.” For the diagram problems (Problem 4-8), the variation in quality 
of problems and menu of choices led to different choices across problems but 
considerable uniformity within problems.
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Table: Most frequent answer choices by grade for no diagram problems among students in the control group (Problem 1-3)  
 

 No Diagram Problems 

Grade Level P1: How big is a point? P2: How long is a line? P3: How thick is a line? 

Fourth (iii) 63% (iii) 52% (iii) 40% 

Sixth (iii) 56% (iii) 56% (iii) 48% 

Eighth (iii) 50% (i) 50% (iii) 40% 

Answer 
choices 
(abbreviated 
and re-
ordered) 

(i) No size at all.*  
(ii) Small, the size of a dot.  
(iii) It depends on how big 
you draw it. 

(i) It is infinitely long.* 
(ii) About as long as a finger.  
(iii) It depends on how long 
you draw it.  

(i) No thickness at all.* 
(ii) Thin - a little bit thicker than a 
hair, but not as thick as a pencil.  
(iii) It depends on how thick you 
draw it. 

 

Note. Percentages indicate the proportion of control students who selected the indicated answer choice for each problem at 
each grade level. 
* Indicates the answer that is consistent with the definition
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Table: Most frequent answer choices by grade for diagram problems among students in the control group (Problem 4-8) 
 

 Diagram Problems 

Grade Level P4: What is the 
dimensionality of 
points that converge on 
the same spot? 

P5: What is the 
dimensionality of 
lines that converge 
on the same spot? 

P6: How many 
points on a line 
segment? 

P7: Relative number 
of points that can fit 
on two represented 
line segments of 
different lengths? 

P8: Properties of two 
points, one 
constructed by 2 
intersecting lines, the 
other by 5?  

Fourth (iv) 44% (ii) 36% (ii) 72% (ii) 52% (ii) 52% 

Sixth (iv) 44% (iv) 44% (ii) 50% (iii) 48% (ii) 44% 

Eighth (iv) 68% (iv) 70% (ii) 42% (iii) 40% (i) 40% 

Answer 
choices 
(abbreviated 
and re-
ordered) 

(i) Turn into one point 
- no size at all*  
(ii) Turn into one 
bigger point 
(iii) One point - still 
the size of a small dot  
(iv) Two points, but 
stacked 

(i) One line, no 
thickness at all*  
(ii) One line, but 
thicker  
(iii) One line, still 
thicker than a hair  
(iv) Two lines, but 
stacked  

(i) Infinite number*  
(ii) 5 to 20  
(iii) 20 to 100  
(iv) 100 to 10,000  
(v) It depends on 
how big you draw 
the points 

(i) Infinite number 
can fit on both*  
(ii) More points can 
fit on the longer 
segment  
(iii) It depends on 
how big you draw 
the points  

(i) Points are the 
same – neither has 
size*  
(ii) More lines 
crossing makes 
bigger point  
(iii) Two lines makes 
one point, five lines 
makes several points 

* Indicates the answer that is consistent with the definition 
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Appendix C: Study 2—Phase 3 Results, Problem by Problem  
 
 The following charts show the problem-by-problem results for Phase 3 (following the 
treatment) based on grade and treatment group. These charts provide the proportion of students 
in each group who selected the idealized response for each item. On the following page, the first 
row of charts correspond to the No Diagram items, and the remaining charts to the Diagram 
items.  
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Appendix D: Study 3—Student Sense-making Extracts  
 

The following tables provide student explanations during Study 3 that included 
material analogies. The Student ID’s are structured as follows: GRADE(4 or 
6)_STUDENT NUMBER_PROBLEM ORDER(A or B)/TREATMENT GROUP(E or 
C)_GENDER(M or F). For treatment group, E refers to Practice Initiation and C refers to 
definition only.  
 

Mathematical Point: Material Analogies Involving Small Bits of Matter 
 
4_4_AC_F:    Well, you could say that a line or a dot is like nothing. You could say that 

it’s nothing. You can’t really see, it’s like you can’t see germs but it’s 
there…It’s like that small. It’s the tiniest thing. Like you can barely see 
it, it’s like a germ on your hand.  

 
6_10_BC_F:   I was thinking that in atoms and molecules, like everywhere on Earth, 

and they’re in space I think. There’s no atoms, right? And so if it’s on 
Earth they can be talking about something without it being there.  

Interviewer:  Mm-hm.  

6_10_BC_F: But it’s still there, but in space because it could be something really 
small, but there’s still stuff all around us. I think, and then but in space 
there’s nothing so that wouldn’t really make sense there, but here it 
would because things are everywhere. I think that would – I think that 
would make sense. 

 
6_23_AC_F No size, I think an atom or something.  

Interviewer:  Uh-huh, okay.  

6_23_AC_F: An atom probably.  

Interviewer:  So, which is bigger? A mathematical point or an atom?  

6_23_AC_F: An atom is way bigger.  

Interviewer:  It’s way bigger? 

6_23_AC_F: It’s way bigger.  

Interviewer:  It’s way bigger, okay.  

 
6_25_AC_F     Like a microscopic tiny, tiny, tiny point that you can’t see, and that – I 

guess it could be in your head because you have to draw something. 

6_26_BE_F: It is there, but it’s not physical. It’s just like air.  
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Interviewer:  Mm.  

6_26_BE_F: Like just like the atmosphere’s boundary.  

Interviewer:  So small it has no size? Had could something be so small?  

6_26_BE_F: Like an atom or –  

Interviewer:  Oh okay.  

6_26_BE_F: It can only [inaudible 00:13:42] something.  

Interviewer:  Well, which is small. A mathematical point or an atom? 

6_26_BE_F: Probably an atom.  

 
6_38_BE_M: Well, how can a point take up no space, and no size when it’s a point? 

The only thing that can’t take up the space, or size, is air.  

Interviewer:  Uh-huh.  

6_38_BE_M: Carbon.  

Interviewer:  Uh-huh.  

6_38_BE_M: And more air.  

 
Interviewer:  So, earlier you talked about an atom. I was curious about that. So, an 

atom is pretty small, right?  

6_40_BC_M: Mm-hm.  

Interviewer:  And it sounds like a point is pretty small too. Which one of those is 
smaller? 

6_40_BC_M: A point.  

Interviewer:  Why is a point smaller? 

6_40_BC_M: Because an atom is really small, but on a point it takes no size and no 
space unless you’re really [inaudible 00:18:03] little skittle won’t take up 
any space in your house unless you’re seeing it sarcastically [inaudible 
00:18:13] 
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Mathematical Line: Material Analogies Involving Outer Space 
 
4_15_AE_M: Like there could be a line on the ground that goes on for a really, really 

long time, we could say it goes on forever because it could be super long. 
But eventually it would have to end so it can't just go on infinitely unless it 
could be in space and then that's infinite. I don't really know [inaudible 
00:00:37.28] space. It is a space as people [inaudible 00:00:43.07] gases, 
planets and stuff. 

Interviewer: So you would say that if a line, you think this definition is, someone said 
that a line is so long that it goes on forever. I was like, I don't really get 
that. What would you say to try and help me understand this mathematical 
definition?  

4_15_AE_M: I feel like if you draw a line, this end till there, from one end of this wall to 
the other end of over there [inaudible 00:01:18.16] If you have a string and 
you tie it to a light pole on Earth and you fly all the way out to the 
[inaudible 00:01:35.02] outer space and you tie either like you stick 
something in the ground [inaudible 00:01:40.14] tie back, you can then 
say it goes on forever because it goes so far out, straight way to go. 

 

4_32_AE_F: It goes on forever so that means it'll go past Mars, it'll go past [inaudible 
00:02:13.07] it would go past- 

Interviewer: How far would it go past there? 

4_32_AE_F: It would go until, it'll go forever, it will just keep on going, keep on going, 
keep on going, never stop.  

 

6_01_AE_F: It won't stop here or here at all. I don't know, it goes to outer space and 
farther. 

 

6_06_BE_F: It's like a circle. A circle goes on forever. It's never ending. And then it's a 
line, it's just a straight circle. If you un-round the circle, and you kept all of 
its traits except the fact that it was round, this would be the circle and it 
would just go on forever. But it's like if you have a pole in the ground, it 
just goes up and up and it just keeps going up until it hits the Sun and its 
spots.  

 

6_09_BC_F: It'll go on forever forever. And it'll go on after the [inaudible 00:06:21.25] 
and the room and the Sun. And it explodes and the Earth explodes and it'll 
keep on going forever.  
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6_13_AE_M: Just imagine something that never stops expanding like universe or 
something. It doesn't stop expanding, it'll go on forever. That's the same 
with a mathematical line but one goes on in each way forever. It never 
stops going.  

 

6_26_BE_F: Like it goes on [inaudible 00:12:26.26] the cosmos, just goes on until 
there's no end. I still think about that every day. It's mind boggling.  

 

6_30_BC_F: Imagine trying to draw [inaudible 00:10:20.15] and never trying to go on 
forever. Eventually you can [inaudible 00:13:13.13] but eventually you 
just, if you were drawing forever, and you try to draw around the world, 
that wouldn't be forever because it would eventually end back here.  

Interviewer: At the same spot. And that would not be long enough.  

6_30_BC_F: And if you kept drawing into space, I think space goes on forever or 
something but you'd never get to it.  

 

6_38_BE_M: You can only do an infinite line, only if you're in space because the 
universe is infinite so there you go.  

Interviewer: For someone like me who doesn't understand it, you might tell me to 
imagine space? 

6_38_BE_M: Yes. 

 




