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COULOMB EFFECTS IN RELATIVISTIC NUCLEAR COLLISIONS
M. Gyulassy and S. K. Kauffmann
Nuclear Science Division
Lawrence Berkeley Laboratory
University of California
Berkeley, CA 94720
Abstract:

We derive simple analytical formulas for Coulomb final state
interactions and apply them to the analysis of recent data on nuclear
collisions. The ﬁ$/ﬁ+ ratio, the ﬁ+ inclusive cross section, and the
n/p ratio are studied. A relativistic field theoretic model is used
to derive the formulas to first order in Zo. Then based on certain
well known non-perturbative results, we recast those formulas in an
approximate non-perturbative form to increase their domain of applica-
bility and remove unphysical singularities arising from perturbation
theory. The final formulas are covariant and take into account
multiple independently moving charged fragments of finite size and
finite thermal expansion velocities. Our studies demonstrate
analytically the complexity and importance of Coulomb distortions in

nuclear collisions.






I. Introduction

Recent data on nuclear collisions in the 1 GeV/nucleon range have
revealed unusual angular and momentum magnitude distributions of single
particle fragments such as wis p, n. While it is tempting to attribute
those unusual features to nuclear compression effects, it has become
increasingly clear that Coulomb final state interactions in nuclear
collisions are complex and have to be understood before any conclu-
sions on the role of nuclear compressions can be reached. In this
paper we derive simple analytical "pocket®” formulas to calculate
Coulomb distortions and apply them to the analysis of recent data.

The importance of Coulomb effects was first clearly demonstrated

by Benenson et aiel in measurements of the ﬁm/ﬁ+ ratio at ¢ b= 0.

la
They found a sharp peak in this ratio for pion velocities close to the
velocity of the incident projectile. By comparing the ﬁt Coulomb
wavefunctions in the field generated by the moving projectile frag-
ment, they were able to account qualitatively for that observation.
Further evidence for the importance of Coulomb effects was pointed out
by Bertschz in explaining the dependence of the W@lﬁ% ratio on the

incident bombarding energy.

A third striking effect of Coulomb final state interactions was
3

demonstrated by Libbrecht and Koonin.” They showed ihat in the
Coulomb field generated by two relatively moving charged fragments
(the projectile and target remnants), a Coulomb focusing effect could
arise toward 6 = 90° and finite p . With this focusing effect,

they were able to account for the broad peak observed in the ﬁ+ spectra

near 6c, = 90" and p ~m /2. The method used for that analysis was



the numerical solution of classical equations of motion in the time
dependent field of the moving fragments.

This paper aims at supplementing and extending these previous
works by deriving analytical formulas that clearly reveal the struc-
ture and form of Coulomb distortions in nuclear collisions. Our basic
approach is to use first order relativistic perturbation theory. With
this approach we readily obtain an expression for Coulomb distortions
for an arbitrary space-time dependent charge current. In particular,
effects due to finite nuclear sizes and expanding (time dependent)
fireballs are easily calculated, The formula naturally incorporates
multiple, independently moving charged fragments as well. Therefore,
the Coulomb effects from the combined fields of the projectile and
target remnants as well as the expanding fireball are taken into
account. To overcome some of the limitations of perturbation theory,
we proceed to recast our results in a non-perturbative (Gamow factor6)
form that becomes exact for a single static point charge. In this
way, quantum effects, that are in fact important only when finite size
effects become neg?igib?eg are well approximated in a non-perturbative
way. Also, the unphysical singularities of the perturbative results
are eliminated by this non-perturbative extension. N |

The subsequent sections are organized as follows: In Section II,
simple classical arguments are presented that reveal the qualitative

effect of Coulomb final state interactions. A dual aspect of the



Coulomb distortion is emphasized. First, there is a Coulomb impulse,
8p, which tends to enhance the positively charged fragments relative
to the neutrals. Second, there is a Coulomb phase space distortion,
D(k), which tends to suppress the positively charged fragments rela-
tive to the neutrals. The competing roles of these two effects is a
recurring theme throughout this paper. In Section III, we use the
results of an exactly soluble field theoretic mode?7 to calculate
relativistic and quantum effects to first order in Za. The non-
perturbative extension of those formulas is then motivated and carried
out. In Section IV, we apply our formulas to the analysis of the

1 4,5 8 in nuclear

a/w’ ratiot, the - spectra *”, and the n/p ratio
collisions. Finally, concluding remarks are presented in Section V.
(Note that we use h=c=1units and the {ab) = apb” = agb - ab

convention.)



IT. Classical Considerations

Classically, final state interactions lead simply to a change of
variables, EO(E)s from an initial momentum 50 to a final momentum k.
The form of 50(5) is obtained by integrating Newton's equations as in
Ref. (3). Once 55(5) is known, then the single particle inclusive cross
sections, o(k) = d35/dk3S for charged particles can be related to the

inclusive cross section, co(k) = dgce/dkgs for neutral particles

via this change of variables as

a(k) = o (k,(k)) (2.1)

There are clearly two distinct effects arising from final state
interactions in Eq. (2.1). First, there is a momentum shift of the

argument of % given by

6p(k) = k = kj(k) (2.2)

for + charged particles due to accelerations or decelerations in the

external Coulomb fields. Second, there is a change in the density of

states in momentum space expressed via the Jacobian, j33k0/33k18

This Jacobian will be referred to as the Coulomb phase space factor.
As an instructive example of Eq. {2.1), consider the Coulomb

distortion due to a positive static, spherically symmetric charge

distribution whose total charge is Z|e| and whose mean inverse radius,



(rml)ml9 is R. The resulting Coulomb potential at the origin has

the value |e|V(0) = Zo/R. For %|e| charged particles of mass m emitted

from the origin, energy conservation leads to

. 1/2
-2 2
ko) =k (1 F420) :
k| k), 2} 1/2
i §1 ik i (2.3)

where kc = (ZmZ@IR)]’/2

is the Coulomb barrier impulse. Below kc there
are no classically allowed states for + charged particles. For a Coulomb
free thermal distribution, co(k) mexp(—aKZIZmT)9 as in the fireball
mode199 and the Coulomb distorted cross sections for * charged

particles are therefore

i/2
*Za/RT = 2,2
() = ol /R (17 121)

Yg

=2

(k)

g
0

1 i(é%._ §%§> f s (2.4)

where we expanded ci(i) in the last line to first order in Za.

Equation (2.4) illustrates the competing roles of the momentum shift,
sp, which increases the cross section of protons relative to neutrons,
3 3
3 kola k

and the Coulomb phase space factor, , which reduces the proton

yield. For low momenta, k < /mT, in the fireball frame, the Coulomb

phase space distortion dominates,and the neutron to proton, n/p, ratio



and the « [« ratio are greater than unity. On the other hand, for
k > /mT, the Cquiamb impulse dominates,and n/p < 1 and w“/w+ <1,
This competing effect of the Coulomb impulse and Coulomb phase
space is a basic and general feature that we also find in the
relativistic quantum treatment of Section III,
If the charge density producing the Coulomb field is set in
uniform motion with velocity Yy relative to the fireball source,
then a simple Galilean transformation of Eq. (2.3) gives for # charged

particles

where 51 = My, and to lowest order in Za, the momentum shift is

given by

spll - ky) = (k- ky) — 0 (2.6)
k- k1" R

Furthermore, the Coulomb phase space distortion factor is then given by

i

2k




where to lowest order, the distortion factor is

Ol - k) = —Eo o Vesp(K) : (2.8)
-kl R T ek

Evaluating the charged particle cross sections via Eq. (2.1), the
w/a ratio for a given k in the fireball frame is then given to

first order in Zo by

'ﬁa(i) o kesp(k - }51) Dk - ko)
=1 - -8 -
276 50K = K) " |
=1 - R 5 = 5 . (2.9)
TR .

The n/p ratio is given by a similar expression., If the charge density

were at rest relative to the fireball, then k; = 0, and Eq. (2.9) is
equivalent to Eq. (2.4). However, if El £0 theh the w”/w+ ratio

peaks for pion momentum, k = 51, which corresponds to zero relative
velocity in the charge density frame. This feature is clearly seen in

the Benenson et al. data,1 On the other hand, for k »> kl’ D » 0,

and the impulse term, k.sp(k), dominates. In that case, Pl > 1 - 22a/RT,
as derived in another way by Berfsch,z While Eq. (2.9) exhibits the

main qualitative features of the w“/w+ data, important quantum

corrections arise for| k - 515 < 1/R. These corrections are

calculated in Section III.



There is another basic effect which may be derived from simple
classical considerations. Consider a charge density that arises from

a freely expanding thermal source:

o3t = x @vioelxg) Flyg) 620x - 2 v t)
= ,{déxo f(g@) gf(é - ggt) . (2.10)

Equation (2.10) describes a freely expanding gas of protons that at
t = 0 were distributed in space according to a freezout density99
p(x,t=0) = of(gg)s and a velocity distribution f(go) independent of
position. The remarkable feature seen in the second line of

Eg. (2.10) is that this expanding charge density is equivalent to an
ensemble of uniformly translating freezout densities: This simple
property allows us to calculate immediately the Coulomb impulse and

distortion to first order from Egs. (2.6) and (2.8) as

L
§Ef(ﬁ) = .[d3vof(¥0) sp(k - mgo) ~ K vwéwmgm§m~m . (2.11)
(k= + kT) R
and
3 Zom
80 (k) = d-v f(V ) 8D{k - mv ) A s (2912)
fie c[ 0 ‘<0 (N, ~0 (k2+ k?)R

For simplicity, we have assumed f(vo) = f({vel)gas for thermal protons,

and approximated the integrations by replacing |k - mvoi2 in the denomi-

nators by (|k - mzolz - kP kge The thermal average momentum is



2;@
T=
detected particle, T is the temperature of the proton gas, and mp is the

k f‘f(va)(mvg)2 = 3mT(m/mp)9 where m is the mass of the
proton mass.

It is clear from Egs. (2.11)and (2.12) that a finite expansion
rate reduces both the Coulomb impulse and distortion factor,
Physically, this follows from the fact that the time averaged electric
fields are smaller for an expanding charge source than a static one.

For a uniformly translating fireball, Egs. (2.11) and (2.12) must
be evaluated with the Galilean transformed k » k - Efg where Ef/m is the
cm velocity of the fireball,

Finally, for severé? independent fireball charge distributions
specified by charges Z_«i9 cm velocities 5i/m9 thermal expansion velocities
kT./m9 and freezout radii Rrig the charged particie cross sections are

i
given to first order by

olk ¥ 82()) D(K) , (2.13)

where we rewrote the first order result in the canonical form, Eq. (2.1).

For this multiple fireball case, the Coulomb impulse is given by

(k) = E(ﬁ R (2.14)

and the Coulomb phase space distortion factor is given by
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Z.am ‘
= i 1
i

(2.15)
K- ki) k ‘

It is important to note that Egs. (2.13)-(2.15) are strictly valid
only to lowest order in Za in the classical, nonmre1atiiistic Timit.
However, by rewriting them in the canonical form we gain an extra-
polation formula incorporating some higher order effects. In
practice, comparison of the results from the first and second line in
Eq. (2.13) provides a useful estimate of the magnitude of higher order
corrections O((Za)z) to the first order results. As we show in
Section 111, quantum corrections to Egs. (2.14) and (2.15) arise when
]§ - Eil < l/R_i for some source i, and relativistic corrections enter
for large relative momenta |k - 5?‘ > m. Nevertheless, Egs. (2.13)-
(2.15) reveal already the most important qualitative features of Coulomb

distortions in nuclear collisions.
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I1I. Relativistic Quantum Analysis
A. The Singié wi Inclusive
We calculate now Coulomb distortions within the following exactly

solvable field theoretic model of multi-pion production:

L) = (i, - eA,(x)) ¢ (x)]2 ~ m2o*(x)o(x)
+ J(x) oF(x) + I*(x)é(x) (3.1)

In Eq. (3.1), ¢(x) is the n field operator. The (c-number) source
current J(x) of the pions is taken as a given function of xu related
to the expectation value of the nuclear pseudoscalar current,
G (x) vgr w(x)). |
In addition, the (c-number) electromagnetic field Au(x) is generated

by a given nuclear charge current, Zle!ju(x)g via Maxwell's equations:

lela (a) = - ?—% i@ . (3.2)

Of course, the current also satisfies the continuity equation,
uo _
a” J (a) = 0.
This model, Eq. (3.1), was motivated and studied in detail in
Ref. (7) in connection with multipion inclusive cross sections for
nuclear collisions. For our purposes, we only quote the results for

the invariant single » 1inclusive cross section
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with w, = (k2 + m§)1/29 o is the total negative =

production cross section, and the production amplitude is
*
Jp(k) = jd4x I x) (3.4)

The incoming pion wavefunction in Eq. (3.4) satisfies

)2 -ty () =0, (3.5)

~

((13u - eAu

together with the boundary condition

e»ikx
o leg) = ) s A= (3.6)
Xo 2(2%)

In the absence of final state interactions, Au = 0, wk(x) = fk(x)
for all times, and JA(E) is proportional to the Fourier transform,
J(Eswk)s of J(xsxo)e In this case, the invariant = cross section

simply measures the modulus square of J(kgmk) as

G(E)SWTB"'“G I (3.7)

The = cross section is obtained via crossing (ku > »ky)e (For N = Z
systems J{k) = J(-k), and the wt cross sections are the same in the
absence of Coulomb effects.)

Equation (3.4) has the simple physical interpretation that the
amplitude, JA(g)s to observe a pion with momentum k at infinity in

the presence of a field Au(x) is equal to amplitude J(x) to create
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the pion at pcéition‘xu times the amplitude wz(x) for that pion
to be found with momentum k at time +e«, i

Equations (3.3)-(3.6) formally solve the problem of Coulomb
distortions. However, in practical cases, where Au(x) describes the

3 Eg. (3.5) can only

field due to many independently moving source,
be solved numerically. Since our aim here is to gain analytical
insight into the complex nature of Coulomb distortions, we turn to
perturbation theory.

Converting Egs. (3.5) and (3.6) into an integral equation, ¢:

is given to first order in Za by

brlx) = Fr(x) + ou () /42020, (3.8)

~ o

where
* 4 iky u
swi(x) = 2@ E}ﬁ y e kuA (y) Aﬁ(y - X)
'd4q P{g+k)x
= [—e a (g + k) 2ek A¥(-q) . (3.9)
(2w) " !
2

. -1 2 .
with b (q) = (9" - mo o+ ie).

To first order in Za, Eq. (3.4) becomes

k) = Okuy) * 83k,m )iy 22 (3.10)

with the change in the production amplitude given by
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4
sd(k) = j(; ‘;4 Ia* k) a(a+ k) 2ek AV(-q) . (3.11)

We now simplify Eq. (3.11) by noting that A¥(q) in Eq. (3.2) is
a sharply peaked function of qu centered at qu = 0, For a static charge
density, with a radius R, the current, ju(q)r? 5u5 2?,6(qo) pla),
restricts the domain of integration to momenta |q| < 1/R, Oﬁ the
other hand, J(g) is a slowly varying function on a larger momentum
scale, m for nuclear collisions.

So long as 1/R ««< m it will be useful to expand J(gq + k) in
Eq. (3.11) in a Taylor series about g = 0. Expanding to first order

in the gradient of J(k), we have then

- [ot) + g a5 - k)] =0, (3.12)

where sy* is given by Eq. (3.9). The first term incorporates the
change in the probability amplitude to find the pion at the creation
point Xu = 0. The second term incorporates the change in the
momentum density at Xu = 0 due to the Coulomb forces. This term
allows some of the off shell pions (ko # wk) produced by the

source J(Eﬁko) to materialize after absorbing the necessary four
momentum from the Coulomb field. In addition, it allows the pion at

the creation point X, = 0 to have some initial three momentum k = that
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is different from the finally observed one, k, in accord with our
classical intuition,

Inserting Eq. (3.12) into Eq. (3.10), we obtain from Eq. (3.3) the
charged pion inclusive cross section to first order in Ze and to first

order in the gradient of J(k) as

0 k) ~ 1 flag|? + 2Rea” (k)59 (k) }
T 2(em)’ |

oL F D] F 0, (1) = o4 k)

2

a

oc(k + 6p(k)){1 ¥ ao(k)} . (3.13)

where o (k,k°) = o“!J(ggko)lz/(Z(Zﬂ)B)@ For kO = W, = (% + u)/2,

0
co(g§wk) is identical to the neutral particle cross section in Eq. (3.7).
In the Tast line of Eq. (3.13) we have expressed o (k) in the canonical
form of Eq. (2.13) so as to make the physical interpretation of sp and

sD immediately clear.

From Egs. (3.12) and (3.13), the distortion factor is given by

sD(k) = 2 Re sw:(x = ()
165 Za R j d'q (k + )_’Tm“k“ju(-—q) (3.14)
= 7 Lo RE A g s o
(Z'ﬁ)4 m g+ e :

and the four momentum impulse is given by
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Ly K
)4 9,8 (k*+q) —5—o . (3.15)

g+ ie

sp,, (k) =

These are the relativistic quantum expressions to first order in Za,
which replace Eqs. (2.6) and (2.8) of the Section II. We turn next to
a detailed study of Eqs. (3.14) and (3.15).

B. Static Finite Size Effects

Consider a static charge density,

J (%t) =8 o(x) , (3.16)

Non-static effects are consideved in Section III-C. The distortion

factor, Eq. (3.14), can then be written as

w@):wm%@) , (3.17)

where B = k/mk is the speed of the particle, and the Coulomb form

factor is defined as

2|k o(-9)
%wg“eja ad 5
2kegq * q q- - ie
Re .3 2 o(-Jk|p)
= - dp = (3518)

- le p - 1le

with k = kl|k| and o(g) = fd3x exp(~ig-x)o(x). In the second line,
the change of variables p = g/|k| is performed so that the k » 0 limit

is easily evaluated., Noting that p(g = Q) = 1 by normalization, we

find



Flk) —= 1 , ' (3.19)

as verified by direct integration in spherical coordinates.

Comparing to the familiar Gamow factor?

6(n) = ylx = 0)|7 = 2t | (3.20)

where n = $Za/ﬁKs we see that in the limit k » Q the Coulomb phase
space factor, 1 ¥ sD(k), becomes identical to G(n) to first order in
Za independent of the form of p(x). Equation (3.20) is the penetra-
tion factor for a static point charge density. That the Coulomb
distortion factor for a finite size density reduces to the point
charge expression follows, of course, from the guantum property that a
particle with momentum k < 1/R cannot resolve the finite size, R, of a
system.

On the other hand, for k » 1/R, finite size effects do become
important, and F# 1. The asymptotic, k »> 1/R, form of ¥ can be
derived from Eq. (3.18) via the following expansion of the pion

propagator:

. 2
e -i(2k-g *+ q")7
[2k-q + q2 - is]“l = ij{ dt e e "
o]
© ~i2k- gt
~ifTare e 1 itr+o=d)) . (3.21)
¢}
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With Eq. (3.21), we evaluate Eq. (3.18) in the k » = Timit as

[AS]

~ 8] ~

"

ko0

el e “i2keqr
% (k) —> Re 2K j ar e f ddqe 7 {1- e AL (-g)
0

i

eo ¢ . T
8k Im jo dfé—Ao(i = k1) + 15 0(x = Ef)g

o0

z% f dt Tp(Xa!ZT) . (3.22)
0

where we changed variables w2t in the second Tine and |k|t in
the last line. Note that the iAé(kr) = iAo(gr)}e}/énZa term does not
contribute to the real part required in Eq. (3.18). Corrections to
Eq. (3.22) appear to order (kR)EBB

For large k, & thus measures the Tine integral of p(x) along a
straight Tine trajectory from x = 0 in the direction ge For a spher-
ically symmetric p(x), this Tine integral is, in fact, proportional to
the mean inverse radius, ( r“7> » Of the charge density. Thus, for a

spherically symmetric o(x) = o(|x]),

1

g S (3.23)

F(k) —
2

~

where R = (1/}§J)°1e Thus 6D = Zm/(akkR), which is precisely the
classical form, Eq. (2.8), with k/m replaced by the relativistic
velocity, k/wke

As an example of the full form of F(k), consider an exponential

~

charge distribution,
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plq) = /\4/(@2 + AZ)Z . (3.24)

In Eq. (3.24), A = 2/R in terms of the mean inverse radius R = <r“1)“19

The rms radius R = Y3 R for this distribution. With Eq. (3.24),

% (k) may be evaluated via contour integration techniques as

-11 1 kR
Fk) = A S S . (3.25)
W kKR« 1+ (kR)Z

Eq. (3.25) demonstrates explicitely that for k < 1/R, quantum effects
are important. Unlike the classical expression in Eq. (2.8) for ky = Qs
which diverges as K2 as k + 0, Eq. (3.17) diverges only as KLoof
course, this remaining divergence is related to the usé of first order
perturbation theory, as is seen by comparing Eq. (3.20) with-

1+ §0(k). This particular illness of perturbation'theory can be
compensated for by replacing 1 + D by G(#&D/x), which is correct to
first order in Za, but also has the pleasant property of being exact
for a point source. We will thus treat +8D/n as the effective n
parameter in the Gamow factor in Eq. (3.20). Since for k << 1/R the
exact distortion factor must redyce to G(n), and *6D/n — n in that
region, while for k > 1/R, &D << 1, replacing 1 + §D by G(*sD/x) is
very sensible and at the same time eliminates unphysical singularities

arising in perturbation theory. Therefore, we replace £q. (3.13) by
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oy (k) = o (k + sp(k)) G (g Ml} . (3.26)

T

Furthermore, we stress that the exact form of ?7&) is not
crucial. The only important properties of 5 are Egs. (3.19) and
(3.23). For most applications Eq. (3.25) will provide an adequate
interpolation formula between the low and high k regions,

As an aside, we note that for nonspherical charge densities,

Eq. (3.22) still holds. The peculiar angular dependence of the Hnea
integral is easily computed in the case of a uniform ellipsoid with

major (minor) axis radii RZ(R Then

L)

co N 3 RZ ’
4'“' j dT TQ(ET) =‘?“ 2 2 2 2 5 (3927)
0 stin B+ Ricos 8

where cos® = gaés The form factor F(k,o) for large k is thus (RL/RZ)Z
smaller for & = 90° than for 6 = 0°. In general, Coulomb distor-
tions are largest for g é1ong the Targest linear dimensions of

p(x) for a particle produced at x = Q.

Next we calculate the impulse, 6pv(k)5 for this static model.

Since Ju(59qo) =8 Zﬁa(qo) p(q), the energy impulse vanishes,

~

8p, = 0. However, the vector momentum impulse in direction p is

given by

S g = (3.28)
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For k » 0, it is convenient, as in Eg. (3.18), to change variables to

p = g/lk| and use p(g = 0) = 1 to obtain

o) — N S— (3.29)
nesplk) — Re j{d p .
k=0 = 2pk + pz - e pz - ie

By symmetry, only the component of 8p along g could survive. However,

even that cémpenent vanishes in the k » 0 limit:

2Zam o0
0 " b + 2}
ko) = —= [ opt - frog| §=5

=0 (3.30)

as verified by direct integration.
On the other hand, for k » », we proceed as in Egs. (3.21) and

(3.22) to obtain

. 3, . |
A-op(k) — Re [ a1 z-i% KL (210 ) wyh (-9 el
0 2w :

K— e

i

T

”wk[wgz (R -y ) lelA (x = 2k7)
0

i}

Bkj;d PeE(x = Re) (3.31)

where we again changed variables in the last line, and E = @gAc(i) is
the electric field for the static charge density along the straight-

line trajectory x = ETS Equation (3.31) is exactly what we would
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obtain classically for the momentum impulse in the high momentum 1imit
by integrating the relativistic Newton's equations.

A particularly important case of Eq. (3.31) is the component of sp
along k, i.e., i = k. For spherically symmetric densities this is
clearly the on?y’component sp. This impulse is given asymptotically

by

= Ay(x = 0)le]/8, (3.32)

Note that |e| AO(O) is simply the potential energy of the particle
at the point of creation, and we recover Eq. (2.6) for ky = 0 with
By replacing k/m.

As an example of the complete form of sp, consider again the
exponential distribution in Eq. (3.24). Evaluating Eq. (3.28) via

residues gives

kR

(k) = k Zo T (3.33)

where R = (l/*r*)"'1 is the mean inverse radius of the charge density.
Equation (3.33) satisfies, of course, the required asymptotic forms
Eg. (3.30) and (3.32). HNote that unlike in the classical limit,
Eq. (2.6), |sp| is bounded by |sp| < Zam_,for typical nuclear R,for
all k. This boundedness of 8p is due to quantum effects. As with

Eq. (3.25), Eq. (3.33) will be used from now on as a simple

interpolation formula between the k = 0 and « limits.
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C. Non-Static Effects
Having obtained expressions for sD(k) and spv(k) for static
charge densities, we turn now to study nonstatic effects.
For a charge density, p(x), moving uniformly with ve?ocity‘ggg the

four current is obtained via a Lorentz transformaticﬂsAuv(go)g as
§(x) = A& p(aTy) : (3.34)
u uo

Since &D(k) in Eg. (3.14) is a Loretz scalar and 5pv(k) in Eg. (3.15)
is a Lorentz vector, we could calculate the distortion factor and
vimpu?se for Eq. (3.34) using this Lorentz tranformation.

However, it is far simpler to recast the expressions obtained for
the static charge densities in manifestly covariant form. For this
purpose, it is convenient to define the four velocity up of the

charge density as

uu = AMQ(‘H’O) = (YOSYO‘Q’O) 9 (3‘335)
2,-1/2 '
where g = yﬂlc and T = (1- 50) . In the rest frame of the

charge density, uu = (1,0). To construct the covariant expression, we

need only note that if Y, = 0, then Wy = (ku), | k] = ((ku)2 - m2)1/2

and (0,k) = k - (ku)u. Then the covariant form of &D from Eq. (3.17) is

]

| 1/2
8D(k) = wla (ku) %(((ku)zeem?} > (3.36)

<(ku)2 - m2>1/2
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The covariant impulse from Eq. (3.33) is

ku)R
op (k) = Za(k - (ku) u ) ( s (3.37)
M M u 1 + <(ku)2 _ m2>R2
It is now straightforward to generalize Egs. (3.36) and (3.37) to
the case when ju(x) describes several independently moving charge
densities carrying fraction fi of the total charge Z, and with four

velocities, Uss and mean inverse radii, Ri@ In this case,

D(k) = 1Za T F. %?(kj ? (3.38)

L i

-~ and

,ZaZf - 71u1+< )2 R (3.39)

where the energy in rest frame of charge density i has been denoted by

w; = é<ui> R (3.40)

and the magnitude of the three momentum in frame i has been denoted by

i1

e}

k. = Qkui)z - mzi)llz : (3.41)
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Equations (3.38) through (3.41) describe Coulomb distortions generated
by an arbitrary number of independently moving static charge frag-
ments. For nuclear collisions, these charged fragments are the pro-
jectile and target fragments and the fireball. However, in addition
to their relative motion, each of these sources hasvscme internal
excitation energy that will lead them to expand or evaporate in time.
We must therefore also incorporate the non-static effect due to such
expansions.

For nuclear collisions, the expansion velocities in the fireball
rest frame are nonrelativistic (vT < 0.3c). Therefore, Eq. (2.10)
can be taken to describe the charge density in the fireball rest

frame. The fireball distortion factor can then be calculated as in

Eq. (2.12)

6D (k) = fd‘?’vo fly,) 6D(A"’1(y,ﬁ)k)

)
~ nla é%k—;i%(( ) , (3.42)
where we approximated the integral by evaluating 6D at a mean thermal
value of the relative energy and momentum. To determine the best
choice of‘(w;>T and (k')T9 note from Eq. (2.11) and (2.12) that thermal
avérag%ﬂg is important only for low relative momenta, k < kTg The
main effect of the thermal averaging is to reduce the magnitude of &D
for k » 0. We will therefore choose {(w, ) and.(k‘> such that the

k'T T
k » 0 1imit is correctly given by the approximate form in Eq. (3.42).
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If the velocities Yo are so low that the Lorentz boosted

relative momentum, <k‘>T , in Eq. (3.42) is small compared to 1/R as
lk| - 0, then ¥ = 1 and

flv. ) vl
60 (k) —» wzf@fa%g o ; , (3.43)
k0 0 T

where By = (1/s>”1 is the mean inverse thermal velocity. Comparing to

Eq. (3.42), we sece that we should chose <m;>T and (k')T such that <kf>T/

(w&>Ttm%BT as k=+0. The mean Lorentz boosted relative energy, <m§>T§
is of the form (yo(@k + §o°§)>T = Yro, in terms of the observed particle
energy, Note that we used(g ), = 0 for thermaivf(go) = f(-y,), and vy is
the mean Lorentz boost Y factor. The mean magnitude of the momentum
<k°>T is then approximately related to <mk>Tvva <k”> ((mk>2 -m )1/2
(Y 1)1/2m as k > 0. Therefore, if we chose v = (1-87) m1/2

then the approximate form in Eq. (3.42) reduces to the correct limit

as ;i] » 0. For a Boltzmann distribution of protons at a temperature T,

By = ((n’/Z)T/mp)]/2 and this prescription leads to
v = Ql = (/2) T/mp)“ll2 : (3.44)

The fireball distortion factor is thus

_ Y7(%) 22 2\ 1/2
6Dg(k) ~ " 172 3“((*1“% - m>
<% )2 - m >
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where in the last line we have expressed an in covariant form by
introducing the fireball center of mass four velocity U

Comparing eq. (3.45) to Fq. (3.36), we see that thermal averaging
can be simply approximated by replacing (ku) by YT(ku) where YT is given
by Fq. (3.44). Therefore, the Coulomb distortion and impulse for
several independently moving fireballs with temperatures Ti is given
by Egs. (3.38) and (3.39), where the relative energy and momentum in

the rest frame of fireball 1 are now given by

=3
i

i= YTi(kui) ) (3.46)

' (w“Q 172

2
i ;- (3.47)

Equations (3.38), (3.39), (3.46) and (3.47) specify the
ingredients necessary to calculate Coulomb distorted cross sections
for nuclear collisions via Eq. (3.26). In the next section we apply

these formulas to recent pion and nucleorn inclusive data.
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1v, Applications

A. Coulomb Distorted Fireball Model

As a working model for the charge, velocity, and temperature
distributions as well as the inclusive cross sections in nuclear
collisions, we will use the fireball mode?g9 For a given impact
parameter b, the number of participant NF(b) and spectator,
NP.(b) + NT.(b)snuc1eQﬂs are determined using straight line geometries.
The charge carried by the projectile and target fragments are then
(ZP/AP) NP.(b) and (ZT/AT) NT,(b)s where Zps Aps Zys Ay are
the initial projectile and target charge and nucleon numbers. The

charge on the fireball is given by

ZF(b) = . (Ap - Nps) * i (AT - N‘*ru) ° (491)

The fireball velocity and excitation energy per nucleon, E*(b), are
determined by energy-momentum conservationgg Cooling due to pion

production is taken into account via Kapusta's formu?ag

Te(b) = T [1 - exp(-2E%(b)/3T,)] (4.2)

with To ~ 100 MeV. The projectile and target fragments are given 8 MeV
of temperature unless otherwise specified, in accord with observa-

tions from projectile fragmentation studies. From energy-momentum
conservation, this small internal excitation energy requires that the
projectile fragment slows down by av *’(ST/ZMN) v, and the target
fragment speeds up by ~av, where T = 8 MeV and Vo is the projectile

velocity.
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The radii, Rig in Egs. (3.38, 3.39) are taken as the rms radii,

R. = 192N1/3

j P fm, corresponding to normal nuclear density. We deliber-

ately use the rms rather than the mean inverse radii because the
observed particle at the freezout time, t = 0, is most Tikely found at

a radius [x| = R. . rather than |x| = 0. Thus, the initial poten-

r
tial energy of the particle (seé Eq. (3.32)) is %Za/ersg which 1is
significantly smaller than the potential at the origin, Ze{l/r). We
also consider 20 percent variations of this rms radius to test for
sensitivity of results to initial conditions.

Finally, for the neutrals cross section in the fireball rest

frame, we take

oo (ksb) = wy expl-w, /T (b)] . (4.3)

with Wy = (kz + mz)lIZ, For impact parameter averaged cross

sections we approximate by calculating with b = b*, the most probable

impact parameter, which maximizes bZNF(b),
Note that in computing Coulomb effects via Eq. (3.26), we need in
principle to specify the off-shell form of ao(gogg) for ko 4 K2+ ng

This is because relativistic quantum effects in Eq. (3.37) can lead to

5PO ¢ 0. However, in the spirit of the fireball model, where all
particles are assumed to be on-shell, we will neglect any off-shell ko
dependence of 95° This is done by replacing ko by oy, in the

fireball frame,as in Eq. (4.3). Therefore, only the three momentum shift,

sp(k), calculated in the fireball frame,will be considered here.



30

B. « /v Ratio

The first application of our formulas will be to the Benenson et alsl
data on the ﬁm/ﬁ+ ratio for Olab = 0°. The main features we want to
explain are (1) the sharp peak near the projectile rapidity, Yps (2) the
asymmetry of the ratio for y < Yp and y » Yps and (3) the monotonic
decrease of ﬁm/ﬁ+ at large y > yp'as a function of decreasing
bombarding energy.

Figure T displays the data for Ne *+ NafF » ﬁi for (a) E = 383

Beam
and (b) 164 MeV/nucleon. The rapidity of the incident beam is indi-
cated by the symbol B. The solid curves are the results of the
Coulomb distorted fireball model. The symbol F locates the rapidity
of the fireball, P' locates the rapidity of the excited projectile
fragment, and T' locates the rapidity of the excited target fragment.

With Egs. (4.3) and (3.26), the ﬂm/ﬁ# ratio for a given pion

momentum k in the fireball frame is given by

Y = \—F e e s (4,4)

where o = ((k 7 op(k))? + mi)llz9 and the three momentum sp(k) and

sD(k) are calculated from Egs. (3.38), (3.39), (3546) and (3.47) using
the values of the four velocities uy and k in the fireball frame. In

Eq. (4.4) we have explicitly neglected possible off-shell effects through
5po(g) as discussed below Eq. (4.3). For k corresponding to the velo-
city of the projectile (in the fireball frame), the projectile fragment

contribution to &D(k) in Eq. (3.38) dominates, and sD(k) ~ “Zp“&/BTp°e
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However, the projectile form factor and the contribution of the fire-
ball and target remnant to 6D lead to 20 percent corrections to this
simple formula., Including all terms, we find that exp(26D) ~ 10 for

the 383 MeV/nucleon case. The average impact parameter we use is
*®

b = 3.42 fm such that Zp, = L= 6.4, ZF = 7.2, R, gRT‘ = 2.8 fm,

T p
2.9 fm. On the other hand, near the projectile rapidity, the impulse

it

R
is dominated by the target fragment and the fireball as seen from
Fg. (3.39). Therefore, &p %ﬁZT,@/RT + ZF@/RF ~ 7 MeV/c. The term in
the brackets in Eq. (4.3) supresses the ﬁm/ﬁ% ratfo due to this
momentum shift by a factor exp(-6 MeV/TF)B In the fireball model
TF = 26.8, 45.6 MeV for EBeam = 164, 383 MeV/nucleon respectively. Thus,
for 383 MeV/nucleon, ﬁm/ﬁ+(y = ypa) ~ 0.9 x 10 = 9 as seen in Fig. Ia.
Note that because Ne + NaF is a symmetric system, the ﬁwlﬁ% ratio is
symmetric about the fireball rapidity Y- Thus, our formulas also
predict a peak at y = Yy jdentical to the one at y = ypge On the
other hand, there is no peak at the fireball rapidity due to the high
radial expansion velocity of the fireball. This expansion limits the
fireball contribution to sD. Note also that the magnitude of
the asymmetry above and below ypg, due to the multiple charged frag-
ments, is correctly predicted in our model.
To test the sensitivity of the results to the in%tia] conditions,
the initial radii were reduced by 20 percent. The QOtted curve in
Fig. Ia indicates that the peak height was thereby increased by
~20 percent. We note that the peak height has a complicated
dependence on all the variables as seen via

(4“1;) ~ exp {ZsD(k*)_-Z (53}}-‘59%-‘&’1} 9 (4.5)
max

w . F
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where k* is the pion momentum in the fireball frame corresponding to
zero relative momentum in the projectile frame. Finally, the

asymptotic value of WE/W+ for y >> yp is given by

- ‘ I+, Lo Z o
2 (7T F f
% —n exp{_ ?r,_,.( R : + R + Rp' >\‘ R (496)
T y»yp! FAT F p

where we used o™ - w > 26p and 6D » 0 in this limit. This is

similar to the formula obtained by Ber“tsch2 except that we include

the momentum shift due to the projectile and target fragments as

well., While there is good quantitative agreement between the full
caicu?ation’and data at y ~ 1.4, this asymptotic form has not yet been
reached. Comparing Figs. I(a),(b), note a1sokthat the high y ratio is
decreasing at lower beam energies because TF is decreasing.

Finally, we show in Fig. II the angular dependence of the wm/n+
ratio for pion momentum Prab = 100 MeV/c, below the projectile velocity,
Piab = 1309 at the projectile velocity, and Prap = 160, above the
projectile veiocity for the 383 MeV/nucleon case. As seen from Fig. II,
the expected angular spread of the Coulomb effect is small, Ae?ab < 10°.
Thus the w“’/w+ peak is sharply peaked in the forward direction.

We emphasize that the good agreement of our calculations with the
data indicates that quantum effects are well described via the
generalized Gamow factor in Eq. (3.26). In the region of the peak,
perturbation theory cannot be used because sD > 1. Neither could a

classical caicu?ationB describe this long relative wavelength
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regime. The non-perturbative extension via Eq. (3.26) provides a
simple quantitative formula that is seen to describe this non-
perturbative quantum region well,

C. w+ Spectra and Coulomb Focusing

The second application of our formulas is to the ﬁ+ inclusive
data on Ne *+ NaF at 800 MeV/nuciecngq The w+ invariant cross

section is given fromEqs. (3.26) and (4.3) in the fireball frame by

with wZ being the shifted ﬁ+ energy as given below Eq. (4.4),
and ép(k) and §D(k) are determined as before. The normalization
constant ¢ is chosen by fitting the peak value of the - data4 at

ecm = 90 and p; = 60 MeV/c.

Figure IIIa shows the contour plot of the generalized Gamow
factor, the bracketed term in Eq. (4.7). The charge distribution of

the three charged fragments for this reaction is characterized by the

following parameters: Zp, = ZT' = 6.4, ZF = 7.2, Rp. = RT' = 2.8 fm,

R. = 2.9 fm, b*= 3.42 fm, Ne(b) = 14.3, T, = Ty, = 8 MeV, To = 67.4 MeV,

F p

Yor =Yg = ¥p - Y7o = 0.39. From Fig. IIla, this phase space factor

pb
is seen to reach a minimum at the rapidity of the projectile and
target fragment. That value is 0.28. At the fireball rapidity, the
- phase space suppression is 0.68. For larger p,, this factor

approaches unity.
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In Fig. IIIb, the «° invariant cross section, o_ s plotted in
units of barns/(sr°ﬁevz) in this fireball mode?é The o ° is
peaked at y = Yg = 0 and P = 0 and is isotropic in the fireball frame.
In Fig, Illc, cﬁ+(k) from Eq. (4.7) is shown in the same units. We
observe that as a result of the large phase space suppression for
p; < 30 MeV/c in Fig. Illa, the W+ spectra peaks broadly at finite
Py~ 60 MeV/c. Near the projectile and target rapidities there is a
substantial suppression of the w+ yield as compared to the =° yield in
accord with the results of section IV.B. Comparing to the data4 in
Fig. IV(a), we see that the magnitude and Tocation of the broad peak
is in good qualitative agreement with the observed spectra in the mid
rapidity region.

We have also varied the amount of charge in the three fragments by
chosing different impact parameters. For b = 6.4 fm,ip, = ZTg = 10,

. = 0, corresponding to perfect transparency, we find as in Fig. I

F
of Ref. 3 that this charge distribution only leads to a ridge at y = 0
peaked at p; = 0. For very central collisions or high opacity, we
studied b = 2.12 fm, for which Zp. = ZT. = 3,8 and ZF = 12.4. In that
case the phase space suppression at y = yp. = Yy Was 0.45, a substan-

tial change from 0.28 in Fig. IIla. However, the suppression at y = Yg

and p; = 0 was 0.64, a value very close to 0.68 in Fig. IIla. Thus, while

the projectile and target rapidity regions were strongly affected by
this variation in the charge density, the mid rapidity fireball region
was insensitive to this variation. This insensitivity of the mid

rapidity region to increasing the fireball charge is due largely to



35

the high expansion velocity of the fiwebai? that Timits the fireball
contribution to sD. The projectile and target rapidity regions are,
on the other hand, quite sensitive to charge variations because of the
much Tower excitation energies (T < 8 MeV).

From these studies it is clear that the high thermal expansion
velocity of the fireball must be incorporated in calculating
Coulomb effects. The greater sensitivity to the mid rapidity charge
distribution via the parameter o in Ref. 3 is due to the neglect of
this expansion rate. This point is mentioned but hot emphasized in
Ref, 3.

Next, we discuss the sensitivity of the ﬂ+ bump structure to the
production model, Eq. (4.3). In particular, consider the width of the
bump as a function of rapidity at p = 60 MeV/c as defined by the

= 1.4 contour line in Fig, IIIc. The total rapidity width of

9 4
t;is contogr is Ay ~ 0.6. Comparing with Fig. IIIb, it is clear that
this width is simply a reflection of the width of the thermal
distribution at P, = 60 MeV/c. Therefore, the precise form of the
bump depends the production model quite sensitively. To emphasize
this point more clearly consider the difference between the w+
spectra at 400 MeV/nucleon and 800 Mev/nucleon in fig. IV. While at

800 MeV/nucleon, Fig. IVa, there exists a bump strucfure9 no such bump

is observed at the lower energy. This is a key observatioﬂ of Ref. 4,
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If we apply the fireball model to the lower energy data, then the
predicted w+ spectra is found to have almost the same bump structure
as in Fig. IIlc. The only way we can account for the absence of the
bump at lower energies is that the clearly visable and non-isotropic
Agy Tesonance decay dominates the production dynamics. Therefore,
for a fixed P, = 75 MeV/c the cross section has a minimum at y = Yg
in éontrast to a maximum that is always found in an isotropic fireball
distribution. - The crucial point is that Coulomb distortions lead to a
bump at y = Vs pi £ 0 only if the undistorted «° cross section
has a maximum at y = yF: In the 400 MeV/nucleon data this condition
is clearly not satisfied. The only effect of Coulomb distortions in
this case is to suppress the Tow P < 30 MeV/c w+ yield. At
800 MeV/nucleon, the fireball contribution to the w+ yield can be
disentangled from the a contribution. Thus, the condition for the
creation of a bump is satisfied.

For the Ar + Ca system5 studied in Ref. (3), the fireball
contribution is also visable, and hence Coulomb distortions lead to a
bump at finite p, . Our calculations for this reaction are qualita-
tively similar to those of Ref. 3. However, the V structure of the
bump is not reproduced in the fireball model. We do find,though, very
Tittle sensitivity of the bump structure to variatioéﬁ in the charge
distribution, i.e., insensitivity to b*,which was also found in the
Ne + NaF case. Again this insensitivity is due to the high expansion
velocity of the fireball. For a quantitative explanation of the bump

structure a much better model for the production dynamics is required.
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We conclude by emphasizing that Coulomb distortions lead to a bump
structure under the condition that oﬂc(yspi) has a maximum at y = Yg
for fixed p, . Furthermore, the details of that structure are
determined mainly by the production dynamics and not Coulomb final
state interactions.

D. The n/p ratio

The calculation of the Coulomb effects on the n/p ratio for Net+U
is complicated by the following factors: 1) the initial n/p ratio in
the projectile and target differ greatly, (n/p)Ne = 1.0, (n/p)U = 1.6,
2) composite fragment production plays a major role in the reaction
with up to 2/3 of the protons with energy >20 MeV ending up in light

10,11 3) the neutrons and protons are measured in

composites,
separate experiments at different beam energies, 4) for nucleons with
lab energy <30 MeV, the target remnant evaporation products compete in
yield with the mid rapidity fireball products. A1l four of these
factors lead to a complex angular and energy dependence of the n/p
ratio even without Coulomb effects. It is clear that for a
quantitative comparison with data a rather sophisticated calculation
is necessary.

Since our purpose here is to gain insight into the qualitative
effects due to Coulomb final state interactions, we Q%?i continue to
study the naive fireball model. However, to include the qualitative
effect of composite formation on the n/p ratio, we follow the method

10

proposed by Stock: If N, Z are the total neutron and proton

numbers in the fireball and if Z8 is the total number protons bound
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in isospin I = O composites, then N - ZB and 7 - ZB are the final

number of free neutrons and protons. These free nucleons are then

[y

distributed in the fireball frame as

T

o 2
o (k) = 3(N-25) %3—/—2exp<j "z“af:“f) : (4.8)
] Gesk))’
0y(k) = 3(2-2) =gy 0 |- gyt 6(ED) (4.9)

N

where G(&D/w) is the generalized Gamow factor as in Eq. (4.7), and
ép and sD are computed as before. To take into account the differ-
ent beam energies for the neutrons and protons, the temperature in
Egs. (4.8) and (4.9) must differ. For NetUsn+tx at 337 MeV/nuc?eoﬂ,S
T = 37.8 MeV, while for Ne+Usp+x at 393 MeV/nuc'ieon11 T =42.2 MeV,
in our model. |

For the calculation of the Coulomb distortion we took b*= 6.2 fm,

Z = 195 ZT, = 805 ZP" = 35 RF = 4»29 RTI = 7@19 R = 2,2 ‘fm.

F - p'
The n/p ratio calculated this way is shown in Fig. V for the case
ZB = 0, i.e., no composites. The dashed-dot curve shows n/p in the
fireball model with Coulomb effects turned off. The energy dependence
arises solely from the different temperatures for the neutrons and
protons, and the magnitude is determined both by the N/Z = 1.36 ratio
in the fireball and the temperature difference. The dashed curve
shows the effect of the phase space distortions, &D £ O, for protons,

but with no momentum shift, ¢p = 0. As seen from Fig. V, there is
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an appreciable phase space distortion below 30 MeV in the lab. For
example, for £y = 20 MeV, & . = 30°, G(sD/n) = 0.67. Note that,
the phase space suppression of protons is nearly isotropic, as
G(sD/w) = 0.70 for 900 at that same energy. This near isotropy of
the Coulomb effects in the lab is due to the cold, high Z target
remnant and to the fact that the fireball contribution is reduced
due to the high expansion velocity.

The full curves show the n/p ratio with both D and sp
included. Comparing the dashed and solid curves, we see that the
Coulomb momentum shift reduces the n/p ratio at high energies where
the gradient of the cross section is the largest. Because the target
remnant has the greatest effect, it is the gradients in the lab frame
that matter the most. Thus the 90° yield, which falls off much more
rapidly than the 30° yield in the lab frame, has the largest reduc-
tion of the n/p ratio due to this momentum shift. Above 100 MeV, the
Coulomb distortions are dominated by &p and reduce n/p by a factor
~exp(«ZTa/RTT »ZFa/RFT) =~ 0.6,

While the data8

are also shown in Fig. V for comparison, we

cannot draw any conclusions at this stage about the apparent agreement
or disagreement between the solid curve and the data. We have not
adequately included into these calculations the many complex factors
mentioned before. For example, from Ref. (11) it is known that up to

2/3 of the protons with E]ab > 20 MeV are bound in light compo-

sites. Thus, ZBIZ ~ 2/3 in Egs. (4.8), (4.9). With such a large Z
10

89

the n/p ratio is enhanced” by a factor (N»ZB)/(ZuZ X Z/N = 1.5

B)
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relative to the case ZB = 0 plotted in Fig. V. Including this

effect would thus shift all calculated curves up uniformly by this

factor in Fig. V. Therefore, composite fragment production affects

the n/p ratio at least as much, if not more, than Coulomb distortions.
Our aim here was simply to calculate the magnitude of Coulomb

effects. We find that distortions of the n/p ratio for Ne + U due to

Coulomb final state interations alone are on the order of 50 percent,

and hence cannot be neglected in future calculations.
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VI. Concluding Remarks

With the formulas obtained in Section III, we have been able to
provide analytical insight into several peculiar features of current
data on nuclear collisions. The primary value of these formulas is in
obtaining a quick estimate of the effect of Coulomb final state
interactions for the complicated non-static charge currents arising in
nuclear collisions. In particu?ars‘the regions of momentum phase
space where Coulomb effects are important can be readily found. Our
formulas also provide a natural bridge between the relativistic.

1

quantum and classical domains. Thus, the wwiw+ data” at

, , + 4.5
y = ypas p; =0 and the % data

at y = ¥p» Py ~:mw/2
could be treated on the same footing.

One general conclusion is that the projectile and target
fragmentation regions are much more sensitive to the actual charge
distribution than is the mid-rapidity fireball region. We have shown
that this is due to the high thermal expansion velocities of the
participant (fireball) nucleons, as opposed to the much slower
expansion velocities of the spectator (projectile and target fragment)
nucleons. Thus, to use Coulomb effects to learn about the true charge
current in nuclear collisions, it is more profitable to study the
fragmentation regions. Furthermore, pions are a mucﬁﬁc?eaner probe of
the charge curreht than the protons. This is because composite

formation and target and projectile evaporation strongly affect the

proton spectra.
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Finally, we note that our formulas are easily generalized to treat
Coulomb distortions of light composite spectra. A fruitful extension
of our fireball calculations would be to incorporate the Coulomb phase
space factor, 6D, and the momentum shift, sp, into the generalized

firestreak mode?sg which includes composite formation.
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Figure Captions:

I.

1.

I,

IV,

The « /x  ratio at 91ab = 0° as a function of rapidity

Yyap = 12 ?nK1+vﬂ)/(1vaMs The reaction® is NetNaFsn  at

(a) 383 MeV/nucleon (square points) and (b) 164 MeV/nucleons
(solid dots). Solid curve shows Coulomb distorted fireball model
results, Eq. (4.4). Rapidities of the beam B, projectile frag-
ment P', fireball F, and target fragment T' are indicated.
Dotted segment in (a) shows sensitivity of results to 20 percent
reduction of initial radii.

The expected angular distribution of the w”/w+ ratio for

Ne + NaFaﬁ“/w+ at 383 MeV/nucleon for fixed pion Tab momenta
near the projectile rapidity region.

Contour plot as a function of (y,pL) of a) the generalized Gamow
factor in Eq. (4.7), b) the +° invariant cross section (barns/
sr, eev2)9 and c) the x invariant cross section, Eq. (4.7)

for Ne + NaFsx  at 800 MeV/nucleon.

Contour p?otQ.of measured invariant ﬁ+ cross section for

Ne + NaF at (a) 800 MeV/nucleon and (b) 400 MeV/nucleon. A
useful gauge of the uncertainties of these contour lines can be
obtained by comparing these plots to the published ones in

Ref. (4) using the same data base.

. The ratio of invariant neutron to proton cross section for

Ne+Usn+X at 337 MeV/nuc1eon8 and Ne+Usp+x at 393 MeV/
nuc1e0ﬂ511 The dashed-dot curve is the expected n/p ratio in

the fireball model without Coulomb effects. The dashed curve
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includes effects of the Coulomb phase space distortions G(&D/x)
in Eq. (4.9). The full curve includes also the Coulomb momentum
shift sép in Eq. (4.9). These curves are for the case ZB :'05
i.e., no composite production. In this model, Egs. (4.8, ées)S

compositeyp#oduction shifts all curves up by a constant factor.
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