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ABSTRACT 
In many structural applications the use of composite 

material systems in both retrofit and new design modes has 
expanded greatly. The performance benefits from composites 
such as weight reduction with increased strength, corrosion 
resistance, and improved thermal and acoustic properties, are 
balanced by a host of failure modes whose genesis and 
progression are not yet well understood. As such, structural 
health monitoring (SHM) plays a key role for in-situ 
assessment for the purposes of performance/operations 
optimization, maintenance planning, and overall life cycle cost 
reduction. In this work, arrays of fiber Bragg grating optical 
strain sensors are attached to glass-epoxy solid laminate 
composite specimens that were subsequently subjected to 
specific levels of fully reversed cyclic loading.   The fatigue 
loading was designed to impose strain levels in the panel that 
would induce damage to the laminate at varying numbers of 
cycles.  The objectives of this test series were to assess the 
ability of the fiber Bragg grating sensors to detect fatigue 
damage (using previously developed SHM algorithms) and to 
establish a dataset for the development of a prognostic model to 
be applied to a random magnitude of fully reversed strain 
loading. The prognostic approach is rooted in the Failure 
Forecast Method, whereby the periodic feature rate-of-change 
was regressed against time to arrive at a failure estimate. An 
uncertainty model for the predictor was built so that a 
probability density function could be computed around the 
time-of-failure estimate, from which mean, median, and mode 
predictors were compared for robustness. 

 

INTRODUCTION 
Glass reinforced plastic (GRP) composite material 

systems are becoming increasingly desirable for high-
performance marine structures, for both backfit and new 
design, because of their attractive strength/stiffness properties 
and corrosion resistance, among other properties. One of the 
disadvantages offsetting these performance benefits is the 
existence of failure modes (e.g., delamination, disbonding, fiber 
breakage, matrix cracking, and bearing damage in connections) 
which do not always have correlated visual damage indicators 
and do not have well-established failure genesis or historical 
data records. Methods of damage assessment like ultrasonic 
testing (UT) are costly and require that the structure be 
removed from service; in addition, these methods do not 
provide insight into the real-time onset and progression of the 
damage during operations.  As such, structural health 
monitoring (SHM) systems offer the opportunity to play a key 
role for in-situ assessment for the purposes of 
performance/operations optimization, maintenance planning, 
and overall life cycle cost reduction. 

 
This work employs a network of surface mounted fiber 

Bragg gratings (FBG) in a passive sensing approach to detect 
vibration-based fatigue damage onset and progression. 
Thorough reviews of vibration-based SHM have been 
performed by other researchers over many years. Passive 
sensing systems rely on ambient excitation of the structure and, 
therefore, generally assume that the input is unknown or 
otherwise immeasurable. The technical literature presents 
several successful implementations of passive damage 
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detection systems using a variety of sensing modalities and 
damage sensitive features[1-3]. Fiber Bragg gratings, in 
particular, are an attractive sensing choice because of several 
advantages over traditional strain sensors including; light 
weight, corrosion resistance, impermeability to liquid 
absorption, immunity to electromagnetic interference, and the 
ability to be multiplexed on a single fiber[4-7]. Although 
several studies have been performed regarding the use of 
optical sensors in the health monitoring of composites [7-9], 
larger-scale dense deployments are quite rare in the literature. 
This work attempts to bridge this gap by discussing data 
acquisition, feature extraction, and decision making within a 
simulated damage detection scenario using FBGs to measure 
the strain response in a composite panel subjected to fatigue 
induced damage. Thus, the full “data-to-decision” 
implementation of SHM is presented. 

NOMENCLATURE 
FBG – Fiber Bragg Grating 
FE – Finite Element 
GRP – Glass Reinforced Plastic 
SHM – Structural Health Monitoring 
 
UT – Ultrasonic Testing 

 

APPROACH 
A testing program was designed and executed to 

demonstrate the ability of a structural health monitoring (SHM) 
system utilizing fiber Bragg grating (FBG) sensors to detect 
damage in a glass-reinforced plastic (GRP) laminate due to 
fatigue loading in a composite structure.  Two key questions 
were examined: 

 
• Would the FBG sensors survive the fatigue environment 

under fully reversed loading and maintain functionality 
during the testing?  

• Would the SHM algorithm developed and presented in [10] 
during impact loading be transportable to detect damage in 
a fatigue loading environment? 
 
Assuming a positive answer to the above questions, the 

tests were executed to collect the sensor response data 
necessary to build and validate a damage prognostics algorithm 
for GRP laminates under fully reversed loading. 

 

TEST DESIGN AND PROCEDURE 
Test Approach 

To collect the necessary FBG sensor response, a fatigue 
test approach was developed to obtain the response at strain 
levels that would represent elastic/no damage and damage 
response.  In designing the test series, finite element (FE) 
analyses were conducted to establish strain levels for each 
specimen.  The test approach was to load multiple specimens, 
each at specific strain targets.  One specimen was designed to 

remain undamaged over the entire fatigue cycle range.  A 
second specimen was designed to exhibit minimal damage, and 
a third was designed to exhibit fatigue damage.  The definition 
of damage was based on an observable change in the specimen 
response as quantified by the accelerometers mounted on each 
specimen.  An undamaged specimen would exhibit no change 
in the specimen response, as indicated by the accelerometer 
data; a damaged specimen would experience a change in 
properties (due to matrix level damage) and exhibit a change in 
the response as indicated by the accelerometer data. 

 
A target of 1,000,000 cycles (maximum) for the testing 

duration was set in order to establish strain levels.   ASTM level 
component test results of the glass-epoxy prepreg material were 
used to define target strain levels that would result in fatigue 
damage in the range of 750,000 to 1,000,000 cycles.   The test 
data indicated that fully reversed strain levels of approximately 
4800 µe would exhibit failure at 100,000 cycles and strain 
levels of approximately 3700 µe would exhibit failure at 
1,000,000 cycles. 
 

To obtain the response, a 4-point bend GRP specimen was 
loaded in a fully reversed bending manner by driving the 
specimen on a vibration table at a targeted vibratory frequency 
to obtain the strain response levels.  Finite element analysis was 
conducted to size the test article, design the test fixture and set 
the testing parameters to obtain the targeted strain levels. 

 
Finite Element Analysis 

A finite element (FE) model of the test specimen geometry 
was developed and subjected to a forced vibration response 
study to determine the appropriate combination of load 
frequency and dummy mass to achieve the targeted strain 
levels.   Figure 1 shows an example of the strain contour plot of 
one of the specimens resulting from the FE analysis.  As shown, 
the e11 strain (along the length of the specimen) at the mid-
span is approximately 2900 µe with peak strains near the 
clamping fixture on the order of 4600 µe. 

 
 

 
Figure 1.  FE Strain Plot - Example 

 
Various combinations of dummy mass and panel support 

length were modeled and analyzed to find the appropriate 
combination to reach the target strain levels for elastic/no 
damage and damage response.  Figure 2 shows the frequencies 

Max Strain: 
4579 µe 

Mid-span Strain: 
2851 µe
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associated with each of the tested specimens versus the testing 
frequency.  The approach taken to obtain the desired strain 
levels was to determine an appropriate dummy mass to drive 
each specimen “close” to resonance based on each panel’s 
fundamental frequency.  For example, Panel3C was determined 
to have a frequency of approximately 17.4, while being driven 
at 15.75 Hz, resulting in the desired strain level in the panel. 

 
 

 
Figure 2.  4-Pt Bend Panel Frequencies 

 
 
 
Test Specimen 

A solid laminate, uniform thickness panel was designed 
and fabricated for the test series.  The panel specimens were 
fabricated by United Technologies Aerospace Systems (UTAS) 
in Jacksonville, Fl. using glass-epoxy prepreg.   The specimens 
were each 10” wide by 32” long with a target thickness of 
0.6875” (to represent a full thickness part that may be 
employed in an application). 

 
Post fabrication, twelve (12) FBG sensors from Alxenses 

were installed on the surface of the panel..  Design 
requirements for the sensor arrays included specifying the 
wavelength for each FBG sensor as well as the distance 
between sensors to mitigate possible fiber crimping issues with 
the layout.   The locations of the sensors were defined using the 
FE strain contour plots, such that all sensors were positioned to 
collect unique strain data and levels during the test.  All of the 
sensors were oriented in the longitudinal direction (long 
direction) of the specimen.  The final locations of all 12 sensors 
are identified in Figure 3 (circled in RED).   

 
Prior testing under this program [10] has shown that 

embedding the FBG sensors is achievable and in the actual 
application, will be necessary; however, for this test series, the 
sensors were surface mounted to facilitate data collection. 

 
 

 
Figure 3.  FBG Array Layout 

 
Test set-up 

As noted above, the test specimen were subjected to a 
constant fully reversed loading via a vibration table.  Figure 4 
shows the test set-up, where three specimen were 
simultaneously tested to specific strain levels.  The figure 
shows the specimens mounted to the fixture prior to the 
installation of the dummy mass.  Dummy mass was bolted to 
the specimens to simulate a 4-pt bending response, as dictated 
by the finite element (FE) analysis.  Figure 5 shows the 
specimens mounted to the test fixture with dummy masses 
installed.  The specimens included the following dummy mass 
configurations: 

 
• Panel1 – 300 lbs.  Matrix Damage expected; up to 

1,000,000  (strains up to 4000 microstrain) 
• Panel2 – 250 lbs.  No Damage up to 1,000,000 cycles 

(strains in the 2000 – 2500 microstrain range) 
• Panel3C – 325 lbs.  Low Cycle Damage expected prior to  

200,000 cycles (strains up to 5000 microstrain) 
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Figure 4.  Test Specimens Bolted onto Test Fixture 

 

 
 

Figure 5. Test Specimens with Dummy Mass 
 

Accelerometers were mounted on each of the dummy 
masses along with accelerometers on the base on the test 
fixture.  Figure 6 shows an accelerometer mounted to Panel1 
dummy mass.  This instrumentation was used to monitor the 
change in the panel response during the testing.  Comparing the 
dummy mass accelerometer data vs. the fixture provided a 
mechanism to observe the relative motion between the two 
locations; change in the relative motion was an indicator used 
to determine if the specimen had experienced damage.  

 

 
Figure 6. Accelerometers Mounted onto the Dummy Mass 

 
 
 

Test Procedure 
At the beginning of the test series, each panel was visually 

inspected and subjected to a shaker test.  An electromechanical 
shaker, suspended from above the panel, was used to establish a 
baseline response for the FBG sensors, see Figure 7.  The 
shaker was powered with an MB Dynamics power amplifier 
and provided a simulated pseudorandom excitation.   

 
The fatigue testing was stopped and the dummy masses 

removed at discrete intervals to perform a visual inspection and 
also to conduct interim shaker excitations to characterize each 
of the panel specimens during the fatigue process.  The shaker 
was attached to the panel and actuated for 2 minutes with band-
limited white noise (BLWN). The excitation signal ranged from 
10 Hz to 2500 Hz. The upper bound was governed by the 
Nyquist sampling limitations of the optical interrogation 
hardware and the lower bound was selected to exclude very low 
frequency components near the oscillation frequency of the 
suspended shaker. Each 120-second time history was windowed 
and segmented into 2-second tests for a total of 58 individual 
tests at each of the 12 discrete damage levels. 
  

 
Figure 7.  Electromagnetic Shaker Set-up 

 

RESULTS 
 

In all SHM implementations, cleansed data must be mined for 
damage sensitive features. The ideal feature is a quantity that 
changes as damage is introduced into the structure but is 
minimally affected by changes to the operational environment. 
For this exercise, the cross-power spectral density (CPSD) 
estimate was used as the foundational space for feature mining. 
The CPSD is defined as 

 
,              (1) 

 
where the  operator signifies an ensemble average of the 

Fourier transforms  and . From this definition, it 

is evident that the quantity will be maximally correlated at 
global structural resonant maxima. The prominent peaks are 
selected from the CPSD and their shifts were tracked as a 
multivariate feature set i.e., 
 

Specimens Shown 
Without Dummy Mass

Mechanical 
ShakerMechanical 

Shaker Hung 
From Crane 

Hook

		
Ŝij =

2
N
E Xi

* ω( )X j ω( )⎡⎣ ⎤⎦

	
E ⎡⎣ ⎤⎦

	
Xi ω( ) 	

X j ω( )
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 ,  (2) 

 
where  and  represent the CPSDs for the ith and jth 

sensor for the baseline and unknown structural states 
respectively. The frequency values  and  are the 

arguments that maximize  and  respectively. Finally, 

this multivariate feature set was reduced to a scalar distance 
metric, the Mahalanobis distance, by 

 
                          (3) 

 
where  is a feature vector for an unknown structural state, 

is the mean of feature vectors from the baseline training set, 
and  is the covariance matrix of the baseline training set. 
 

Recall that there are 58 individual 2-second tests across the 
12 sensors. Because sensor pairs were used to generate the 
damage sensitive features, we have 66 unique sensor pairings. 
The plot shown in Figure 8 presents the Mahalanobis distances 
for representative sensor pairs at the discrete damage levels as a 
function of test number. 

 
 

 
Figure 8.    Mahalanobis Distances for Representative Sensor 

Pair 

In this plot, the data points to the left of the solid black line 
are the baseline (undamaged) distances and the data between 
the dashed lines are the distances collected at different damage 
accumulation levels. It is clear that as fatigue is accumulated in 
the structure, the feature responds in a correlative manner.  

 
The aforementioned plot does not, however, introduce any 

notion of time. So if these Mahalanobis distributions are plotted 
along with cycle count, we can see the feature change as a 
function of time. This idea of “feature rate” is ultimately the 

basis for the prognostics model.  Figure 9 shows a plot of 
Mahalanobis distance vs. cycle count for Pane3C.  Around the 
100,000 cycle count, noticeable matrix damage was observed 
on Panel3C; at that test stop, minor change in the metric was 
observed.  Between 100,000 and 125,000, the plot of the 
Mahalanobis distance indicates a change in the response, which 
continues to increase up to the 137,000 cycle count test 
stoppage.  The change in the metric from 137,000 to 152,000 
indicates continued damage to the specimen. 

 
To accompany that plot, a plot of the two accelerometers 

on the dummy masses are shown in Figure 10.  In addition to 
the specimen accelerometer data, the table accelerometer data is 
provided.  It should be noted that the table provides a constant 
accelerometer reading throughout the test while the specimen 
accelerometer shows changes as damage initiates and 
progresses.   At approximately 100,000 cycles, the 
accelerometer plot shows a change occurring in the panel 
response, as noted by the change in slope of the plot (i.e., 
accelerometer readings are increasing with cycle count).  The 
specimen response continues to change, leading to a dramatic 
change in response near 140,000 with test completion at 
152,000.  It is noted that the test was stopped prior to complete 
catastrophic failure of the specimen. 

 
 
 

 
Figure 9.    Mahalanobis Distances for Representative Sensor 

Pair vs. Cycle Count – Panel3C 
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Figure 10.    Accelerometer Data - Panel3C 

 
For comparison to the plots for Panel3C, a plot of the 

Mahalanobis distance for Panel1 is shown in Figure 11.  As 
shown in this figure, up to approximately 250,000 cycle there 
were no changes observed in the tracked metric.  At 
approximately 350,000, there were visual indications of matrix 
damage, which continued to increase in intensity until the end 
of the test.  At that same cycle count, the Mahalanobis distance 
began to show subtle changes which accompanied the visual 
determination of matrix damage. 
 
 

 
 
Figure 11.    Mahalanobis Distance vs. Cycling (0 to 1,500,000  

Cycles)  – Panel1 

 

 

PROGNOSTICS 
Predictive modeling generally takes two broad forms: 

physical model-based or data model-based. For complex failure 
scenarios in complex structural geometries such as the present 
case of composite material systems fatigue, physical models are 
difficult to build due to the vast uncertainties in the (large 
number of) model parameters. Conversely, it has been observed 
empirically that a wide variety of failure mechanisms (ranging 
from earthquakes, volcanic eruptions, creep, fatigue, etc.) have 
a “self-accelerating” property; that is, the rate of change in 
some observed feature (anything from a raw measurement, such 
as strain, to something derived from the raw measurement) is 
strictly positive-valued with a positive derivative. This 
observation was generalized and formulated into a more 
comprehensive empirical model by Voight [11], known as the 
Failure Forecast Method, which has been applied to and 
adapted for a large number of geophysical and material-level 
failure mechanisms [12-16]; the universal feature of the 
approach is that the time of “failure” is self-defined by a 
positive feedback mechanism leading to (mathematically) an 
infinite value in the rate-of-change of the observed feature [17]. 
Of course, in any such empirical model, there are uncertainties 
associated with (at minimum) the observed data/features, 
rendering such a prediction stochastic. It is this approach that 
the current work will follow. 

 
The failure forecast method empirical model proposes that 

the time rate-of-change R in some feature W, e.g., , 
obeys an equation of the form 

 
 ,   (1) 

 
where  and  are empirical constants. The solution 
to Eq. (1), assuming that the rate R at the time of failure tf  is Rf, 
is given by 

 
                                              

.  (2) 

 
The most common implementation considers the inverse of 

the rate R, since this facilitates easier definition of the failure 
criterion, i.e., the inverse rate tends to zero as the rate itself 
becomes infinite at the time of failure. Defining the inverse 
rate, , the solution Eq. (2) has the same exact form with 

, from which the time of failure may be obtained 
as 

.   (3) 

 

  R = !Ω

  !R = kRα

  k > 0  α > 1

  
R(t) = R

f

1−α + k α −1( ) t
f
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1
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Thus, the time of failure is predicted to be the current time 
plus the proportional difference between the  power 

of the current observed inverse rate data, , and the same 
power of the target inverse failure criterion. The approach is 
then to perform a regression on Eq. (3), which can be 
rearranged to give 

 

.    (4) 

 
If a is known or assumed, regression coefficients obtained from 
a time/data linear regression (over some given window of time) 
are given by  (intercept) and  (slope) such that 

the regression-estimated time to failure is , or the 
negative of the ratio of the estimates of the intercept to the 
slope. If a is not known, a maximum likelihood estimation 
technique could be used. This works exploits that, based on 
historical observations in many of the cited studies above, 
regardless of the physical process, , so that Eq. (4) is a 
simple linear regression. The “idealized” target failure criterion 
is that , corresponding to ; by setting it to any 
(positive) non-zero amount, a degree of conservatism is 
introduced into the approach.  Of course, in most practical 
applications, “failure” occurs at a point prior to an infinite data 
rate-of-change observation, but to be consistent with general 
implementation in the literature and for the purposes of 
parametric studies in this paper, we will employ  as the 
failure criterion, which won’t change the basic nature of this 
study. 

 
Any given regression on a data set represents a “single 

block” observation over some time interval, which is presumed 
representative of an ensemble population of regressions over 
the same time frame under inevitable noise and uncertainty. 

Thus, the regression coefficient estimates  are 
estimates from populations of regression coefficients. For a 
given linear regression model , where P is the data, 
T is the design matrix, and e is the regression error, it is 
assumed that the regression process yields errors that are 
unbiased, uncorrelated normal  under typical 

central limit theorem assumptions (regardless of the distribution 
in the regressed data, P). Thus, it is known that the regression 
coefficients themselves have jointly normal distributions 

, j=0,1. An unbiased estimate of the 

population error variance is , where n 
is the number of data points used in the regression design, 

reduced by two since two regression coefficients were 
estimated in the process. 

 
Given the uncertainty models in the regression coefficients, 

the time-of-failure is given by , the ratio of our 
two normally-distributed regression coefficients. The 
distribution of the ratio of correlated normal variables may be 
computed as  

 

,   (5) 

 
where  is the bivariate normal distribution function. 
Eq. (5) is readily computed and has an analytical answer, but it 
is too cumbersome to write here. Because the exact population 

 and  are not known a priori and must be estimated from 
the data as presented above, a sampling distribution for the ratio 
mean and standard deviation should be derived, but in the 
present paper, the population ratio distribution, Eq. (5), will be 
used. It should be noted that this probability density function 
has no analytically-calculable order statistics, since the tails are 
too “fat” [18]. However, histograms of time-of-failure data may 
be compared to Eq. (5) to verify that the distribution of the data 
is appropriately modeled such that estimating order statistics 
from the data itself is reasonable. 

CONCLUSIONS 
Key objectives of this effort were to prove the viability of using 
FBG sensors in a fatigue loading environment and to assess the 
ability of the FBG sensors to support SHM system detection of 
damage and prognostics of structural life.  An initial conclusion 
of the testing was that the FBG sensor arrays survived the 
fatigue environment and were still functional after undergoing 
1.5M cycles on Panel1.  The FBG sensor array was connected 
throughout the test on each of the specimens, with no indication 
of fatigue damage or wear-out of the sensor array or 
connections. 

 
In addition, the previously developed SHM algorithm was 

successfully able to discern matrix damage to the laminate as 
well as the progression of the matrix damage in reducing the 
structural integrity.  Figure 9 provided an example of the 
Mahalanobis distance metric demonstrating the ability of the 
SHM algorithm to discern damage to the panel and to indicate 
progression of the damage to the panel.   Other pairs of sensors 
indicated similar behavior. 

 
The success of the key objectives allowed for the 

population of a pool of data to be used for the development of a 
prognostics tool in predicting the life of a GRP part subjected to 
fully reversed cyclic fatigue loading.  Once developed, the tool 
will be applied to a blind test specimen, with the data assessed 
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in real time to provide predictions of remaining life of the 
specimen under the prescribed loading. 
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