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Summary

On the basis of two theorems pertaining to the asymptotic behavior
of certain Laplace transforms, the uniqueness of the displacement field in
a general linear viscoelastic body (i.e., one with time-variable properties)
throughout a time interval is demonstrated, provided the instantaneous
elasticity tensor (or, in the case of a generalized Kelvin-Voigt material,
the instantaneous viscosity tensor) is positive definite and a continuous
function of time, and provided the following information is specified: the
displacement field, to within a rigid-body motion, throughout the body and
at all times before the given interval,; the displacement and velocity fields
throughout the body at the beginning of the interval (initial conditions);
the body force throughout the body and throughout the interval; and, at each
point of the boundary, in each of three orthogonal directions, a component
of the traction or of the displacement throughout the time interval. If
inertia is neglected, the initial conditions may be dispensed with, but the

displacement field s unique only to within a rigid-body motion.



I. INTRODUCTION

A uniqueness theorem for the first boundary-value problem of the linear
theory of viscoelasticity was apparently first established by V. Voltera?[l],
and was based on his earlier work on integro-differential equations [2].

This theorem applies to anisotropic, inhomogeneous, time-variable viscoelastic
bodies with time-invariable instantaneous elastic response undergoing quasi-
static deformations, but may be extended to include time-variable instantaneous
elastic response.

Recently, Gurtin and Sternberg [3] called attention to Volterra's
"little-known" but "remarkably strong uniqueness theorem'. They slightly
extended the theorem to accommodate stress-strain relations in creep-integral
and differential-equation form, as well as in relaxation-integral form, re-
stricting attention to isotropic, non-aging viscoelastic bodies.

In a subsequent paper, Sternberg and Gurtin [4] utilized the method
developed by Volterra [1,2] to extend Volterra's uniqueness theorem to
thermo-rheologically simple, ablating viscoelastic solids undergoing quasi-
static deformations. For such solids, the effective viscoelastic properties
are time-variable due to the dependence of these properties on the presence
of a time-variable temperature field, but the instantaneous elastic response
is taken to be time-invariable.

Prior to the restatement of Volterra's theorem by Gurtin and Sternberg
[3], Breuer and Onat [5] established a uniqueness theorem for the mixed
boundary-value problem of linear viscoelasticity theory. That theorem deals

with isotropic, non-aging viscoelastic bodies undergoing quasi-static



deformations. It is less general than Volterra's theorem in still another
respect: it requires that the relaxation functions be of "positive definite"
type, whereas Volterra's theorem (interpreted for the isotropic case) requires
only that the (time-invariable) instantaneous moduli of elasticity be positive.

Later, Onat and Breuer [6] generalized their uniqueness theorem so that,
as in Volterra's theorem, positiveness of the instantaneous elastic shear
and bulk moduli was required, rather than ''positive definiteness' of the shear
and bulk relaxation functions. Their proof of this theorem utilizes the
theory of the Laplace transformation, which experience has shown to be a
useful and natural tool in the analysis of problems of non-aging (i.e.,
time-invariable) linear viscoelasticity theory. The theorem was established
for an isotropic, homogeneous, non-aging viscoelastic body undergoing
quasi-static deformation under "mixed" boundary conditions. Various extensions
to include inertia effects, anisotropy, and nonhomogeneity have been made
by Edelstein and Gurtin [9] and Odeh and Tadjbakhsh [10].

Here we are concerned with a uniqueness theorem for a general linear
viscoelastic body under '"mixed-mixed" boundary conditions. By a general
linear viscoelastic body we mean one which is anisotropic, nonhomogeneous
and time-variable with respect to both instantaneous response and memory.

Thus the theorem we establish is more general than the previously established
uniqueness theorems for non-ablating viscoelastic bodies.

In the construction of this theorem, we employ the Laplace transfor-
mation., Although the Laplace transformation is not as natural a tool of

analysis for the general linear viscoelastic body as it is for the non-aging



viscoelastic body, we find it useful in the development of the uniqueness
theorem. By means of this transformation, and asymptotic methods, we are
able to establish the positive-definiteness of a certain functional, from

which uniqueness then follows directly.

II. PRELIMINARY THEOREMS
For any vector W& with components Wj (i=1, ™) we define
the norm
n
“U&H': Z (U"A\ . (1.1)
FES
Similarly, for an N XY\ matrix fﬁ with elements Oié we define the norm
n n
Hﬁ\\ZE —Z— log;l. 1.2)
A= L Jr'l.
For two vectors w. , Y, Wwe define the inner product
n_
WX =, WL (1.3)
h=4

The following inequalities are easily proved, and will be used in subsequent

e +xll= sl «lx i, .0
TAwh= AN fwl, 0.5

-l e lwll xll. (1.6)



Another important inequality is

£ Y. (1.7)

This follows from the Cauchy-Schwartz inequality,

2
(&%) 2 (W) (v-yw), (1.8)
if we set v, = 59” U“L) A.=i-,"‘,n,
For a vector function \.fé.(%) of a real variable X , defined over aexeb ,

the following inequality holds:

b b
A
HJ wwodx || & S Il w ol dx . (1.9)
o a
We shall now consider the asymptotic behavior of vector functions of Xx as
X—>» oo | VWe write
Q) =@(y ) as X— o0 (1.10)

if there exists Xo and a positive constant A such that fl %" <A “){,”

for all X > )(o ; and

Rix)= o (y () asS X —» OO (1.11)
if for any € > O there exists an X, such that 1 %“ £ € “ Y n
for all X > X¢ . In (1.10) and (1.11) W& and Y, need not have the

same number of dimensions; in particular, one (or both) may be a scalar
. kx) : s
function, e.g., WA 0= O(.e .  Furthermore, equivalent definitions

apply to matrices.



The following little theorem will prove important later on:
If WO=0(Y0d) as x—»o0 , then (LX) y(X)= 0 (%) - Y.0O)

as X —= OO,

Proof: By (1.6), (1.7), and (1.11), 1w x| <l gl lyll<e \\)é\\zé ney-y
for any €& , for )<>Xé
We shall next state and prove a lemma and two theorems pertaining to

Laplace transforms of vector functions of 'l: defined over OL'l:(—w. For

any £ (,-l:) with components \C; U:) the Laplace transform is

Fo=R{f}

with components

® st
ie £ 3t (1.12)

Elo= L{td= | e nwa a.12)

o
defined over C <& S¢ o0 , ¢ being large enough to insure the convergence
of the integrals (1.12'). Throughout the subsequent work, S will be

treated as a real variable.

Lemma: If \,f\\l(:(:) is a vector function possessing a Laplace transform
h (.S) which converges absolutely for $§ sufficiently large, and there

exist values {:c and 'E1 , with Os -l:oé {'1 , such that
(a) hd=20 for t<t,

(b) \\’\,’\\J(’-t)l\ > ¢© and none of the lf\AL'l:) changes sign for 'l:oéf-‘-fi y



then

L} =lhol+ ole™H) as s

#
Proof: Define a vector function k} (‘{:) as follows:

b =&, £k,
=b£’£1-)7 'l:chl

*
The h'z C‘l:) do not change sign; hence

LW I = (W eoll.
Let
w () = \,Q*Ls) - LW,

Clearly [7, P-461J

- s'l:,>

WL (3) = o(e as S-» o0 ,

We now define a vector Lﬁ with components

ke = lim sgn W (9) g
S <» o0

then there exists an So such that, for S»%8, ,

¥ @l=lkdl + k- g

= \\.\E\V(Ql\ 4 o(e'st') As S —» oo0.

Similarly,

gt = L0} + ocesty

(1.13)

(1.14)

(1.15)



By combining (1.13), (1.14) and (1.15), we prove the Lemma.

On noting that, for any &  such that -l:oea.g-l;a_ ,

. sSa — . ea
e h Ol =

s\"_i‘ o0 I i shi: °o€ OQ’{“ k" “} ?
we can easily demonstrate the following

Corollary: If 'EOLO.& 'L‘i , then
. sa o
m e k@l = o
L -2
Theorem 1: If k)(:l;) satisfies the conditions of the Lemma, and

g (S){) is a matrix function tending to zero as S-» 00 uniformly in t g

then
* _st =
i e g(_sbt)k;(t‘)d{:s 1(.5)= o(b(s)) 0s S—> @
Proof: For any € >0 there exists an S, independent of 'l: , such that

Qs Bl <« €72 for 3>,

hence, for %>s_,

hgeoll ey & {1}

From the Lemma we have
LU =lhel + oe™  as s
By the Corollary to the Lemma, the last term can be made less than \\ BCQ“

for S sufficiently large; supposing S, to be large enough, we have

Nl c e Ul WI for 255, )

proving the theoren.



Theorem 2: If h(-’c) satisfies the conditions of the Lemma, and if

f&) =GB

where Gr(—{;) is a continuous matrix function, then, if -f(’a) exists,

fo=G (—ba)h(s)+—o(\n(.s)) as S-—» oo,

Proof : Since GG,—) is continuous, for any €20 there exists an Q,>‘t

such that
NGW) -G Gl « €74 for  toctea.

In particular, we may take Ot.é{:. . We now write
W= £ - G <+)\A (<)

= %*CS) + 0 CQ-SQD as S—» o0 (1.16)

where

o -st
Gy = § Tgw) - @ea] L e S de.

From the above definition,
et < ey Clonle st cem) L1
o

As in Theorem 1, we may show

X eall € €2) | Lol
for S sufficiently large. Furthermore, by the Corollary to the Lemma

we can find S sufficiently large so that the second term of (1.16) is

less than (é/z.)” b(,s)l\ . Consequently there exists an S _ such that

IGeall c e llholl  For  =>s

o

The theorem is thus proved.



III. THE UNIQUENESS PRINCIPLE

3.1 Description of a Viscoelastic Body

Consider a viscoelastic body occupying a closed region R in three-
dimensional space; the boundary of R is B. We are concerned with infinitesimal
deformations of the body, i.e., deformations so small that the body may be
regarded as occupying R throughout its history. If we use cartesian coordinates
X5 (L=1)7.’3) to denote a point X of K , and £ to denote time, then
the mechanical state of the body is specified by the displacement vector %,CX#Q
with components W; (x,t) , the strain tensor g,CX,i) with components
é':"j (_X)'l:) and the stress tensor ICX,'E) with components 0% (x)-l:) ; the

“3

indices i‘)é range over 1,2,3. The strain components are given by

6;\'5 = lp (u,;_)_é + u:bi) (3.1
where

C =8 ()

The stress tensor is symmetric and satisfies the equation of motion

) = g;(.x) W (3.2)
5 £' is the body force, and E is the density in the
rest state.

At a point X of B , if VA\’ denotes the outward unit normal

vector, then the traction vector t, is defined by

ti=m:0z; (3.3)
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To express the relation between stress and strain, it is convenient
to represent them as vectors in 6-space, with components Ga)éa Ca=lp-',Q) .

The constitutive equation of general linear viscoelasticity takes the form

-t ]
T ) =H ) € Gt + § GO0t € () de (3.4)
~ ~ et v 7
where L—lJ and % are matrices with elements H“F )Gu‘g (o(“%e i;-‘J (o)
ki represents initial Newtonian viscosity, and gé represents elasticity
and relaxation; Equation (3.4) represents, therefore, the behavior of a
generalized Kelvin-Voigt materisal. If H = gg then the constitutive

A

equation

t
g xt)= géx;ﬁ)g (%) - _( R ('x)+| t),é\, (x,7)dT (3.5)

—-od
where g()()'l:)= g:l" (x)fg 't) and g = ?‘E Q , may be obtained from (3.4)
by integration by parts. E represents instantaneous elasticity, and E
"memory" or "heredity'. Equation (3.5) corresponds essentially to Volterra's
"hereditary elasticity"”, except that Volterra assumed E independent of t
In the subsequent work we shall treat viscoelastic materials governed by

(3.5) though ultimately we shall direct attention to generalized Kelvin-

Voigt materials as well.

3.2 Histories

By a history 6%460 we shall mean a vector function 9§(X)19 defined
for all X in R and Te¢t , and the corresponding functions € and

given by (3.1) and (3.5). A vector function ijgz) is associated with the
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history, and related to it by (3.2). By a null history @’(.4:) we shall mean a
function i (X,T) such that § (and hence & ) vanishes for all X. in K
and Tt (i.e., a rigid-body motion). For two histories cHif:t) and
6‘#‘9_(_{:) we shall define their sum and difference %la. t) £ O‘Hz ) by the
vector functions Q,(xH* U, Lx)'(:) ; since the operations in (3.1) and
(3.5) are linear, we also have the corresponding functions £1 + ,éz and
ot + S‘,‘Z' . We shall call CH:L(;{:) and 6142 (:L) equivalent, and
write 0H1(.'t) ;%Q_H‘.) , if JHL(—'L') ‘aHQC":) = 9(-"5)

A non-null history GHUZ) will be considered admissible if the
function f.; satisfies the following two conditions:

(1) It is infinitesimal [8, p. 242];

(2) Any time interval may be divided into a finite number of

intervals in which none of the éo( changes sign (i.e., has both

positive and negative values).

Condition (2) excludes, for example, time functions of the type

S'In(}/t).Condition (1) requires L, to be a continuous function of X
No further continuity condition will be imposed a priori; it will be
assumed that any discontinuities will be such that the governing equations
can be satisfied in the distribution sense. Attention will be drawn to the
fact that the continuity requirements of Refs. 3 and 5 exclude shock waves.

3.3 Uniqueness

We shall now consider two admissible histories 6H1 (-'t) and 6242 C+) 5

with t>o , such that



for each K (k= '1-,7-:3)

q'H’_(.O) = NQ (o) ;

%1¢%,9 = 4,09 , Xx€R:

;éa. LX)O) == L:"oz LX)O) 7 XE€ R;

£1,2) = £, (G0 | xeR, OctTet

{u (x,T) =4, (XD o Uk (%,T) = Wak X,T)

O<Tet, 1f we define a history

W) = B, E) - H, &P

X‘;:%l'%?.? etc., then
N'(0) = &9 1

wix,0)= 9

‘{:L(x;c) =0 ov W'y (X,T) =0

12

(3

(3.

(3.

(3.

(3.

referred to a local orthogonal base at X 6 Xé& B,

(3.

(3.

(3.

(3.

.6)

7

8)

9)

10)

11)

12)

13)

14)
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for each Kk as before, x¢ B , octct

As a consequence of (3.11) we have

£
T'O=Ewe &) - S Rt )e'®de, (3.15)

with the dependence on X not explicitly indicated but to be understood

henceforth. We also have, by virtue of (3.9),

{ ee /

Gzé)j = G i (3.16)
. . i { ! !
We now introduce Laplace transforms of the functions w, € , T, ﬁl,

to be denoted by EE(S),etc. We form the surface integral

I- Li’cg- Z'd s,

which, by (3.14), must vanish for all s

(3.17)

By means of the divergence

theorem we obtain

I= L -n,Ao;a ) Wi'es) dg

[(Frf e uie] 34V

= L,+T,

where

—_ _
I= §z 013')-(5)&; (= a3V

o’

= S PST Lo - 1D V
R
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by (3.12), (3.13), and (3.16), and

/ —

I,- i"‘;.,- DT I av
= | T2 4V
2 a4
by (3.1) and the symmetry of

It is clear that Xa cannot be negative, and will vanish if and only

if Q.‘cs) vanishes everywhere in R . We now proceed to study IZ . We write

/ n "
L= -

where
\" |
T HY=E W)W,
and
t
Al \
o) = &og G, D) €' () de,
{
If cH L{) is not a null history, then there must be a subset Q of R
in which é' does not vanish identically for Octet . Furthermore, ‘H‘(:E)

is admissible; hence, for each point X of Q there exists an interval

4T "":1_ , with Oet, "!:1.‘.{: such that g‘(t) =0 for Tet,

while in '\l;o T é‘{:,_ , at least one of the €&, does not vanish (so
that |/|€1l>0 ) and none of them change sign. Since ,€V' is bounded ,
E’Cs) converges absolutely for <>0O [7, p.33]. Consequently gl
satisfies the condition of the Lemma of § 2. Then, by Theorem 2.

CUD=FEGWNE(S) + 0(EC®) as s-—» o0 (3.18)
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The Laplace transform of g is

N 0 ~-st t
== (e f R (+,7) &' (t)dtdt
o (o]
0 o0 )
= j@_—st[ ge—_gt!%(t*t‘) 1:) AT.’} f:(.'t) A'C) (3.19)
°

i

but the quantity in brackets is the Laplace transform with respect to <T

of B(_'C-rt')'c) and therefore vanishes as S o0 uniformly in T

[7,p..162]. Consequently, by Theorem 1,

TV = o (&' as S —» o0 (3.20)
and therefore
Fled= EGIE'® +0(8'¢e) as = (3.21)

Lastly, by (2.12)

TUNE' = T " EU) €W +6(E® ') as s w. (3.22)

If % (:{:o) is a positive definite matrix (i.e., has only positive real

eigenvalues), then

€' -El)E ) = E, E'()- £'c0, (3.23)
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where E, is the smallest eigenvalue of E;(fg. Hence the second term on the
right of (3.22) can be made numerically less than the first for § sufficiently
large. Therefore there exists an <, such that & '(s) ‘%'CSD must be positive

for sz2<, . Defining

xe @

We conclude that I

, must be positive for S$>»S, . Since, however, I,

cannot be negative, I cannot vanish for ©>%, . We have therefore
'
contradicted the assumption that GH G:) is not a null history.

'
1t “H (_1':) is a null history, then, I, vanishes, and I equals

Ii . I can therefore vanish if and only if Q'CS) vanishes everywhere
in R , and, consequently, if and only if l,é' O,(,'c) vanishes everywhere in
R , oectet

We have thus proved that for two admissible histories ﬂ41_69
and q42(i) related by (3.6) - (3.10), the displacement (and hence the
strain and stress) f;elds are equal in the time interval octet for a
viscoelastic body governed by (3.5) if E,(_xat) is a positive definite

matrix and a continuous function of T in Ok:tht

3.4 Extension to Generalized Kelvin-Voigt Material

There is no evidence that any real materials are of the generalized
Kelvin-Voigt type, i.e., behave instantaneously like Newtonian fluids; even
water possesses some instantaneous shear elasticityf Neveretheless, for
the sake of theoretical interest, we shall show how the uniqueness theorem

enunciated in the previous subsection may be extended to such materials.

*
See also Ref. 11, remark at the end of § 5.
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1f we form, instead of L , the integral

7= | Pw- T'e sS,
2
then, on noting the condition (3.7), we see immediately that T'=sT ; by an

;
analogous definition Ii =$11 and I,'_ZO for <S>0 . The corresponding
integral I?'_ has the integrand Q‘:"-ICS)- %(,s) , and this can, by complete
analogy with the procedure of 3.3,* be shown to be positive for large s

unless é_,l (and hence ;v’ ) vanishes, provided H() is continuous and
positive definite. This uniqueness criterion is much weaker than the one

enunciated for generalized Kelvin-Voigt materials by Gurtin and Sternberg,

(3, Theorem 8.2 (b)].

1v. ADDITIONAL REMARKS

4,1 Isotropic Materials

If a viscoelastic material governed by (3.5) is isotropic in regard

to instantaneous behavior, the E’ matrix has the form

G, + q/:SGI'?_ Gy~ 2/3&2 Gy~ 2/ Gy O o @)
Git+ Y36, G1=%G, O o) ®)
- = 61“' "V3GZ O o 0
~ 26Gy 0] o)
(syMMQ‘EW\c) ZCT?_ o)
; Haa
*Except that é must possess, for large S , an absolutely convergent

Laplace transform.
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where C}L is the (time-variable) instantaneous ''bulk modulus'' and (}2

is the "shear modulus”. The eigenvalues are 3G, and (repeated fivefold)

2.6[2 . Hence, the condition for positive-definiteness of E is Gr1>o,

&,>0

A similar result will apply to the generalized Kelvin-Voigt material.

4.2 Quasi-Static Uniqueness

We may neglect the inertia of the material by letting @ vanish;
then I-n. vanishes identically, and 1 vanishes if and only if Iz does,
i.e., if ?4'(&) is a null history. 1In a quasi-static treatment, therefore,
the displacement field is unique only to within a rigid-body motion (as in

Ref. [3]). Also, the initial conditions (3.7), (3.8) may be dispensed with.
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11.
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