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Abstract. It has long been known that, fundamentally different from a large body of rarefied gas, 

when a Knudsen gas is immersed in a thermal bath, it may never reach thermal equilibrium. The 

root cause is nonchaoticity: as the particle-particle collisions are sparse, the particle trajectories 

tend to be independent of each other. Usually, this counterintuitive phenomenon is studied through 

kinetic theory and is not considered a thermodynamic problem. In current research, we show that 

if incorporated in a compound setup, such an intrinsically nonequilibrium behavior has nontrivial 

consequences and cannot circumvent thermodynamics: cold-to-hot heat transfer may happen 

spontaneously, either continuously (with an energy barrier) or cyclically (with time-dependent 

entropy barriers). It allows for production of useful work by absorbing heat from a single thermal 

reservoir without any other effect. As the system obeys the first law of thermodynamics, it breaks 

the boundaries of the second law of thermodynamics.   

 

Keywords: Nonchaoticity; intrinsically nonequilibrium; the second law of thermodynamics; heat 

transfer; Knudsen gas 

 

 

1. Introduction 

 

An ideal gas (e.g., a classical rarefied gas) is referred to as a Knudsen gas when the mean 

free path of the gas particles (F) is larger than the characteristic size of the gas container (𝐷) [1], 

as depicted in Figure 1(a-c). When 𝐷 ≪ F, compared to the particle-wall collisions, the particle-

particle collisions are sparse, so that their effect is secondary. In the interior of the container, the 

particle trajectories tend to be nonchaotic [2]. As a result, the conventional thermodynamic 
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analysis methods, such as the Bhatnagar-Gross-Krook (BGK) model for the Boltzmann equation 

[3], may not be applicable. Usually, a Knudsen gas is studied through kinetic theory rather than 

statistical mechanics. It could have unique fluid dynamic properties (e.g., the Knudsen paradox 

[4]) and unusual thermal properties (e.g., the Knudsen effect [5]). In mesoscopic physics, similar 

nonequilibrium phenomena are also observed, e.g., the ballistic transport of charge carriers [6]. 

 

 
Figure 1. (a) A chaotic ideal gas (e.g., a large body of rarefied gas) immersed in a thermal bath. The 

container size (𝐷) is much larger than the mean free path of particle-particle collision (F). The container 

boundaries are thermal walls at a constant temperature 𝑇0. (b) A small volume of the ideal gas in panel (a) 

may be modeled by using periodic boundary condition. (c) A Knudsen gas immersed in a thermal bath. The 

container boundaries are thermal walls, fundamentally different from panel (b). As 𝐷 ≪ F, in the interior 

of the container, the particle trajectories tend to be independent of each other. Consequently, the system 

cannot relax to thermal equilibrium, i.e., 𝑇 < 𝑇0. (d) Boltzmann’s H-theorem is based on the hypothesis of 

molecular chaos, which requires extensive particle-particle collisions throughout the system. In a Knudsen 

gas, however, particle-particle collisions are sparse.  

 

People are well aware that when a Knudsen gas is immersed in a thermal bath, it may never 

reach thermodynamic equilibrium [7,8]. Compare Figure 1(c) to Figure 1(b). In Figure 1(b), the 

particle speed (𝑣) follows the Maxwell-Boltzmann distribution. In Figure 1(c), with a different 

boundary condition, the distribution of 𝑣 is non-Boltzmannian. At the steady state, the effective 

gas-phase kinetic temperature (𝑇 ∝ �̅� 𝑘B⁄ ) of a Knudsen gas can be significantly lower than the 

container-wall temperature (𝑇0) [9-11], where �̅� is the average particle kinetic energy, and 𝑘B is 

the Boltzmann constant. This is because, without extensive particle-particle collisions, the fast gas 

particles tend to rapidly move across the container and release heat to the container walls, while 

the slow gas particles tend to stay long in the interior. At any moment, compared to thermal 

equilibrium, it is more likely to find slow particles in the Knudsen gas and less likely to find fast 

particles.  

One perspective to understand the counterintuitive phenomenon of 𝑇 < 𝑇0 is to examine 

the extreme case wherein the container contains only one gas particle. Since it is impossible for 
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the particle to encounter another particle, the effective mean free path of particle-particle collision 

F → ∞. The mean free path of particle-wall collision may be assessed as w = 𝜋𝐷 4⁄  [12]. 

Because w ≪ F, the system behavior is dominated by the particle-wall collisions. When the 

container is immersed in a thermal bath, the probability density (𝜌L) of finding the particle at a 

speed 𝑣  is proportional to 𝑝w(𝑣) 𝑣⁄ , where 𝑝w(𝑣)  is the Maxwell-Boltzmann distribution of 

particle speed at the container boundaries (the thermal walls). In the ideal-case scenario, with the 

non-Boltzmann 𝜌L , 𝑇 = 𝑇0 2⁄  in a two-dimensional Knudsen gas and 𝑇 = 2𝑇0 3⁄  in a three-

dimensional Knudsen gas (see Section A1 in the Appendix for the detailed discussion).  

In the past, Knudsen gases were often investigated in simple setups, without external force 

fields (energy barriers) or time-dependent hurdles of particle-particle collisions (entropy barriers). 

Under this condition, the intrinsically nonequilibrium steady state (𝑇 < 𝑇0) was viewed as “trivial”, 

partly because 𝑇 can be theoretically calculated but cannot be directly measured. If a temperature 

sensor is used, the measurement result at the sensor-gas interface would be the container-wall 

temperature (𝑇0), compatible with the zeroth law of thermodynamics. In other words, a Knudsen 

gas does not behave as a heat sink in an otherwise uniform temperature field.  

However, recent research on spontaneously nonequilibrium dimension (SND) [13,14] 

raises a critical question: what if a Knudsen gas is combined with an energy barrier or a time-

dependent entropy barrier? The theoretical and numerical analyses in [13,15] demonstrated that, 

with locally nonchaotic energy barriers, there may be macroscopic non-thermodynamic systems 

having nontrivial energy properties (Figure 2). Useful work can be produced by absorbing heat 

from a single thermal reservoir without any other effect. The numerical and experimental study in 

[14] drew a similar conclusion for locally nonchaotic entropy barriers, as entropy can 

spontaneously decrease without any energetic penalty.  

The concern of the Knudsen gas is reinforced by the fact that Boltzmann’s H-theorem [3] 

is inapplicable if the hypothesis of molecular chaos is irrelevant. The H-theorem assumes that 

particle-particle collisions are extensive throughout the system. As depicted in Figure 1(d), before 

two particles randomly collide, their state is described by the two-body probability density (𝑓2̅); 

after the collision, 𝑓2̅ is replaced by 𝑓a̅𝑓b̅, where 𝑓a̅ and 𝑓b̅ are the one-body probability densities 

of the two particles, respectively. The information loss breaks time symmetry of the evolution of 

the probability of system state. Thus, although all the governing equations are time-reversible, 

entropy increase is irreversible. Yet, in a Knudsen gas, particle-particle collisions rarely happen. 
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Figure 2. Two macroscopic non-thermodynamics models [13,15]. They are based on locally nonchaotic 

SND, unrelated to Feynman’s ratchet or Maxwell’s demon. (a) In a uniform gravitational field (𝑔), a large 

number of elastic particles (not shown) randomly move on the upper shelf (the “plateau”) and the lower 

shelf (the “plain”) across the vertical step. The system is closed and immersed in a thermal reservoir. The 

plateau can be raised or lowered by the support force (𝐹G), and the plain (𝐴P) can be compressed or 

expanded by the in-plane pressure (𝑃in). The plateau height (𝑧0) is much less than the nominal particle 

mean free path (F). In the step, as the particle-particle collisions are sparse, the particles tend to ascend or 

descend individually. A remarkable consequence is that at the steady state, the plateau-to-plain ratio of 

particle number density (̅
G

) is inherently different from the Boltzmann factor (𝛿0). Because ̅
G

≠ 𝛿0, by 

alternately operating 𝑃in and 𝐹G in an isothermal cycle, useful work can be produced by absorbing heat 

from the environment with no other effect. (b) A variant system. One end of the plateau is connected to the 

plain through the low-height step (𝑧0 ≪ F), and the other end is connected through the wide ramp. The 

ramp width 𝐿G ≫ F. Across the chaotic ramp, the local ̅
G

→ 𝛿0; across the nonchaotic step, the local 

̅
G

≠ 𝛿0. Thus, at the steady state, a net particle flow is spontaneously generated, without an energetic 

penalty. Notice that to achieve a nontrivial nonequilibrium effect, the gravitational field must be sufficiently 

strong. If the particles are ambient air molecules, 𝑔 needs to be at the level of neutron stars.  

 

In Sections 2 and 3 below, case studies are performed on heat transfer in two Knudsen-gas 

models. In Section 2, a Knudsen gas is placed in gravity, similar to the locally nonchaotic energy 

barrier in [13]. In Section 3, by using switchable inner walls as time-dependent entropy barriers, a 

Knudsen-gas cell cluster is cyclically converted to a chaotic ideal gas. The numerical result of the 

second model is discussed in Section 4, and the first model is discussed in Section 5. Both models 

are compatible with the principle of maximum entropy, but break the boundaries of the second law 

of thermodynamics. Section 6 presents the considerations of experimental research.   

Hereafter, the term “nonequilibrium” (or “intrinsically nonequilibrium”) refers to a steady 

state that is spontaneously different from thermodynamic equilibrium; the system is closed and, 

unless otherwise specified (e.g., Section 2.2), immersed in a thermal bath. The out-of-equilibrium 

characteristics are rooted in the system’s innate property of nonchaoticity (i.e., the lack of 

extensive particle-particle collisions), rather than being caused by fluctuations or any external 

driving force. The study is in the framework of classical mechanics, and mainly numerical. The 

computer programs are available at [16].  
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2. The first model: a Knudsen gas in gravity 

 

In the past, people extensively studied heat transfer either in a nonchaotic medium without 

gravity [17-20] or in gravity for a chaotic medium [21-23]. For instance, when the system height 

(𝐷) is much larger than the particle mean free path (F), the planar Fourier flow associated with 

the chaotic particle movements agrees with the BGK model, and the average gas-phase 

temperature is equal to the average temperature of the environment. Loschmidt discussed the 

nonuniform temperature profile in a thin gas layer in gravity (𝑔) [24]: when the height increases 

by 𝑧0 (𝑧0 < F), the average particle kinetic energy decreases by 𝑚𝑔𝑧0, where 𝑚 is the particle 

mass. Loschmidt’s setup does not exchange heat with the environment; it is cooler at the top and 

hotter at the bottom, contrary to our analysis in Equations (1,2) and Figure 3 below.  

In this section, we investigate a model wherein not only the gas medium is nonchaotic 

(𝐷 ≪ F) but also the gravity effect is significant. The upper and lower boundaries are thermal 

walls. Such a setting is critically distinct from the conventional cases.  

 

2.1 Thermally nonequilibrium steady state in a thermal bath 

 

Figure 3(a) shows the Monte Carlo (MC) simulation of a two-dimensional (2D) gas, 

wherein a number of billiard-like particles randomly move in a uniform gravitational field (𝑔) in 

a vertical plane. The 2D gas particles are finite-sized hard disks. They can collide with each other 

but there is no long-range force among them. The algorithm of the computer program is introduced 

in Section A2 in the Appendix.  

The left and right borders (AA and BB) are open and use periodic boundary condition. 

The upper and lower borders (AB and AB) are thermal walls. Each thermal wall represents the 

effects of a large thermal reservoir. The top-wall temperature and the bottom-wall temperature are 

denoted by 𝑇t and 𝑇b, respectively. When a particle collides with a thermal wall, the reflected 

direction is random; the reflected particle speed is not correlated with the incident speed, but 

randomly follows the 2D Maxwell-Boltzmann distribution 𝑝(𝑣) = 𝛽𝑚𝑣𝑒−𝛽𝑚𝑣2 2⁄ , where 𝛽 =

1 (𝑘B𝑇b)⁄  at the bottom boundary and 𝛽 = 1 (𝑘B𝑇t)⁄  at the top boundary. Such a thermal-wall 

boundary condition is commonly used in the study of rarefied gases [1,2]. Different boundary 

conditions are examined in Figure 4 and Section 4.3 below, as well as in [13]. The cause of the 
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intrinsically nonequilibrium steady state is not any specific form of boundary condition, but rather 

the lack of extensive particle-particle collisions, i.e., nonchaoticity (also see Figure 5b,c).  

 

 
Figure 3 The energy-barrier model: (a) a 2D gas in a vertical plane in a uniform gravitational field (𝑔). 

When the effective plane height (𝑧0 = 𝐷 − 𝑑) is less than the nominal particle mean free path (F), the 

system is a Knudsen gas and cannot reach thermal equilibrium. (b) Typical steady-state distribution of the 

effective kinetic temperature (𝑇+) along height 𝑧, for the ascending particles. The bottom wall and the top 

wall are at the same temperature (𝑇b = 𝑇t = 1000). The dashed curve is calculated from Equation (2). In 

the chaotic case (𝑧0 F⁄ = 5), 𝑇+ is uniform along 𝑧, i.e., the system is in thermal equilibrium. In the 

nonchaotic case (𝑧0 F⁄ = 0.05), 𝑇+ is nonuniform along 𝑧, i.e., thermal equilibrium cannot be reached. (c) 

Typical steady-state distribution of the effective kinetic temperature of all the particles (𝑇). The trend of 

the 𝑇 − 𝑧 relationship is similar to that of 𝑇+. The error bars represent the 95%-confidence interval.   

 

 
Figure 4. Effects of the boundary condition on the effective gas-phase kinetic temperature (𝑇). (a) Both of 

the bottom and top boundaries are diffuse walls. The reflected particle direction is random; the reflected 

particle speed is equal to the incident speed. (b) The bottom boundary is a thermal wall (the same as in 

Figure 3); the top boundary is a diffuse wall (the same as in panel (a)). All the other settings and procedures 

are the same as in Figure 3. The error bars represent the 95%-confidence interval.   

 

The bottom-wall temperature (𝑇b) is set to be the same as 𝑇t. The gas phase can be viewed 

as being immersed in a thermal bath. The system is scalable; an example unit system is based on 

Å, fs, g/mol, and K. The particle diameter 𝑑 = 1, which may be used as the normalization factor 

of length. The particle mass 𝑚 = 1. The particle number 𝑁 = 500. The timestep is 0.01. In all the 

simulation cases, 𝑇t = 1000, and the total area of particle movement is 𝐴0 = 𝑤0𝑧0 = 39268.75, 

where 𝑧0 = 𝐷 − 𝑑 is the effective plane height, and 𝑤0 and 𝐷 are the width and the height of the 
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simulation box, respectively. The nominal particle mean free path is F = 𝐴0 (√8𝑁𝑑)⁄ ≈ 27.77. 

Initially, the particles are randomly distributed in the plane. Their speed follows the 2D Maxwell-

Boltzmann distribution at 𝑇b, and their direction is random. 

 

 

Figure 5. (a) The distribution of the particle flux (�̃�𝑖) along height 𝑧. The normalization factors (�̃�1) are 

56.10 and 103.73 for 𝑧0 F⁄ = 5 and 𝑧0 F⁄ = 0.05, respectively. (b) The reference simulation for “ghost” 

particles: the steady-state 𝑁𝑖  and (c) the steady-state 𝑇+  as functions of height 𝑧. The particle-particle 

collision is turned off. All the other parameters and procedures are the same as in Figure 3. The red and 

blue data points nearly overlap, indicating that particle-particle collision is the key factor. The error bars 

represent the 95%-confidence interval. 

 

In different simulation cases, 𝑧0  may be different, and 𝑔  is adjusted accordingly to 

maintain a constant Boltzmann factor at the top boundary 𝑒−𝛽𝑚𝑔𝑧0 = 0.607. When 𝑧0 ≫ F, the 

system represents a chaotic gas. When 𝑧0 ≪ F, the system is a Knudsen gas and, because the 

particle-particle collisions are rare, its performance is dominated by the particle-wall collisions at 

the upper and lower borders.  

After the settlement period (105 timesteps), we monitor the velocity of every particle for 

two cases: 𝑧0 F⁄ = 0.05 and 𝑧0 F⁄ = 5. Along the vertical direction (𝑧), the plane is virtually 

divided into a number of equal horizontal layers. Figure 3(b) shows typical steady-state profiles of 

the effective kinetic temperature of the ascending particles: 𝑇+ = �̅�𝑖
+ 𝑘B⁄ , where �̅�𝑖

+  is the 

average kinetic energy of the particles moving upward across the lower border of the 𝑖 -th 

horizontal layer (from bottom to top, 𝑖 = 1,2,3 …). If all the ascending and descending particles 

are considered, the overall effective temperature is given in Figure 3(c): 𝑇 = 𝐾𝑖 𝑘B⁄ , where �̅�𝑖 is 

the average kinetic energy of all the particles crossing the lower border of the 𝑖-th horizontal layer.  

Maxwell investigated the gravity effect on thermal equilibrium of a column of chaotic gas 

and concluded [25]: “…the temperature would be the same throughout (i.e., isothermal), or, in 

other words, gravity produces no effect in making the bottom of the column hotter or colder than 
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the top.” This phenomenon is visualized in Figure 3(b,c): when 𝑧0 F⁄ = 5, both 𝑇+ and 𝑇 tend to 

be homogeneous along 𝑧. It is consistent with Figure 5(a). The particle flux (�̃�𝑖) is defined as the 

number of the particles crossing the lower border of the 𝑖 -th horizontal layer in every 1000 

timesteps. If 𝑧0 F⁄ = 5, �̃�𝑖 fits well with the Boltzmann factor 𝛿0 = 𝑒−𝛽𝑚𝑔𝑧.  

When 𝑧0 F⁄ = 0.05 , remarkably, the steady-state distributions of 𝑇+  and 𝑇  in Figure 

3(b,c) are nonuniform, suggesting that without extensive particle-particle collisions, there is no 

mechanism to drive the system to reach thermal equilibrium. Correspondingly, the steady-state 

distribution of �̃�𝑖 is also non-Boltzmannian (Figure 5a). Because the horizontal-dimension particle 

kinetic energy has little contribution to the vertical particle movement, compared to the 

equilibrium case, fewer particles can overcome the gravitational energy barrier [13]. As a result, 

�̃�𝑖 is dominated by the 𝑧-component of particle velocity (𝑣z) and its distribution follows 𝛿1 =

∫ 𝑝z(𝑣z)d𝑣z
∞

√2𝑔𝑧
= 1 − erf(√𝛽𝑚𝑔𝑧)  [13], where 𝑝z(𝑣z) = √2𝛽𝑚 𝜋⁄ 𝑒−𝛽𝑚𝑣z

2 2⁄  is the one-

dimensional Maxwell-Boltzmann distribution of |𝑣z|.  

It is counterintuitive that 𝑇+ and 𝑇 increase with height 𝑧. On the one hand, the speed of 

every ascending or descending particle is lower at the top [24]. On the other hand, while the high-

energy particles may reach the top boundary, many more low-energy particles can only move 

around the bottom boundary, i.e., the probability density distribution of particle kinetic energy 

varies with 𝑧. The two effects cannot counterbalance each other to render 𝑇 or 𝑇+ independent of 

𝑧; otherwise, thermal equilibrium (i.e., the second law of thermodynamics) would be equivalent to 

single-particle kinetics (e.g., Newton’s second law), which contradicts the basic concept of 

thermodynamics such as the H-theorem. Overall, the height-dependent distribution of particle 

kinetic energy is more important, so that the average particle speed near the bottom is smaller than 

near the top. The average kinetic energy of the ascending particles can be calculated as  

�̅�+(𝑧) = �̅�y +
∫ (𝐾z−𝑚𝑔𝑧)𝑝s(𝐾z)d𝐾z

∞
𝑚𝑔𝑧

∫ 𝑝s(𝐾z)d𝐾z
∞

𝑚𝑔𝑧

                                            (1) 

where �̅�y = 𝑘B𝑇b 2⁄  is the average kinetic energy in the horizontal direction (𝑦), and 𝑝s(𝐾z) =

𝑒−𝛽𝐾z √𝜋𝐾z𝑘B𝑇b⁄  is the one-dimensional Maxwell-Boltzmann distribution of the 𝑧-dimension 

kinetic energy (𝐾z) at 𝑇b. Therefore, 

𝑇+(𝑧) ≜
�̅�+

𝑘B
= [

Γ(3 2⁄ , 𝛽𝑚𝑔𝑧)

Γ(1 2⁄ , 𝛽𝑚𝑔𝑧)
−

𝑚𝑔𝑧

𝑘B𝑇b
+

1

2
] 𝑇b                                     (2) 
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where Γ(𝑥1, 𝑥2) ≜ ∫ 𝑥1−1𝑒−∞

𝑥2
d indicates the upper incomplete gamma function. Equation (2) 

reflects the intrinsic property of the Maxwell-Boltzmann distribution function, 𝑝s(𝐾z).  

In Figure 3(c), the gradient of 𝑇 is approximately a half of that of 𝑇+ in Figure 3(b), which 

looks plausible, because 𝑇 accounts for the descending particles, while 𝑇+ does not. We tested 

different boundary conditions in Figure (4). As long as 𝑧0 F⁄ ≪ 1, the 𝑇 − 𝑧 gradient is always 

significant. Figure 5(b,c) shows the reference tests on “ghost” particles. When the particle-particle 

collision is turned off, with everything else remaining the same as in Figure 3, for both 𝑧0 F⁄ = 5 

and 𝑧0 F⁄ = 0.05, the steady-state distributions of �̃�𝑖 and 𝑇+ are nonequilibrium. It confirms that 

the dominant factor of the nonuniform 𝑇 is the lack of particle-particle collision.  

 

2.2 Spontaneous cold-to-hot heat transfer 

 

In Figure 6, 𝑇b is varied, with everything else being the same as in Figure 3(b,c) (𝑧0 F⁄ =

0.05 and 𝑇t = 1000). The ratio of 𝑇b 𝑇t ⁄  ranges from 0.6 to 1.0. At the steady state, the wall-to-

gas heat transfer rate is calculated as  = Σr(𝐾re − 𝐾in) ∆𝑡⁄ , where Σr indicates summation for all 

the particles reflected by the upper wall or the lower wall in every ∆𝑡 = 2 × 104 timesteps, and 

𝐾re  and 𝐾in  are the reflected particle kinetic energy and the incident particle kinetic energy, 

respectively. The reference heat transfer rate is 
0

= √2(𝑘B𝑇t)3 2⁄ (𝑧0√𝑚)⁄ . Figure 7 shows 

typical time profiles of  at the top and bottom boundaries.  

 

 
Figure 6. The steady-state wall-to-gas heat transfer rates () at the top and bottom boundaries, as functions 

of 𝑇b (𝑇t = 1000; 𝑧0 F⁄ = 0.05). The error bars indicate the 95%-confidence interval. When 𝑇b 𝑇t ⁄ = 0.9 

or 0.95, heat spontaneously transfers from the cold side (the bottom wall) to the hot side (the top wall) 

across the gas phase, without an energetic penalty. When 𝑇b 𝑇t ⁄ = 0.75,  ≈ 0; i.e., effectively, the gas 

phase is thermally insulating.  
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Figure 7. Typical time profiles of the wall-to-gas heat transfer rates at the top thermal wall (the red lines) 

and the bottom thermal wall (the blue lines): (a) 𝑇b = 600; (b) 𝑇b = 650; (c) 𝑇b = 750; (d) 𝑇b = 900; (e) 

𝑇b = 950; (f) 𝑇b = 1000. In all the simulation cases, 𝑇t = 1000 and 𝑧0 F⁄ = 0.05. In (d,e), heat transfers 

spontaneously from the cold side (the bottom wall) to the hot side (the top wall) across the gas phase. In 

(c), the heat flux is nearly zero. 

 

When 𝑇b 𝑇t⁄ = 1, the calculation reflects the nonequilibrium case in Figure 3(b,c). The 

heat influx at the top wall is dominated by 𝑇+. As 𝑇+ increases with 𝑧, the top wall absorbs heat 

from the incident particles. The “extra” thermal energy comes from the heat desorbed by the 

bottom wall. When 𝑇b 𝑇t⁄ = 0.9 or 𝑇b 𝑇t⁄ = 0.95, the positive 𝑇+ − 𝑧  gradient overcomes the 

negative 𝑇b − 𝑇t difference, causing a continuous heat transport from the cold side (the bottom 

wall at 𝑇b) to the hot side (the top wall at 𝑇t). When 𝑇b 𝑇t⁄ = 0.75, the effects of the 𝑇+ − 𝑧 

gradient and the 𝑇b − 𝑇t difference counterbalance each other. The overall heat flux is nearly zero 

and effectively, the gas phase is thermally insulating. Only when 𝑇b is significantly lower than 𝑇t 

(𝑇b 𝑇t⁄ < 0.75), can hot-to-cold heat transfer occur across the gas phase.  

 

3. The second model: a switchable Knudsen-gas cell cluster 

 

As discussed in the introductory section and detailed in Section A1 in the Appendix, at the 

steady state, the effective kinetic temperature of a Knudsen gas (𝑇) is significantly lower than the 

container-wall temperature (𝑇0), i.e., a Knudsen gas cannot relax to thermal equilibrium. Since 

𝑇 < 𝑇0, the internal energy of the Knudsen gas (𝑈) is smaller than its equilibrium counterpart (𝑈0). 
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Notice that thermodynamic equilibrium is an accessible state. If a Knudsen gas is initially at the 

“equilibrium” state (at 𝑇0), as it evolves to the nonequilibrium steady state (at 𝑇), in accordance 

with the first law of thermodynamics, the reduction in 𝑈 must be accompanied by heat desorption 

(𝑄). In this section, we perform a MC simulation to demonstrate such a process. In Section 4, we 

will show that the unusual thermal phenomenon is inconsistent with the second law of 

thermodynamics.  

 

 

Figure 8 The model of time-dependent entropy barriers: (a) the undivided setup (a 2D chaotic gas), and (b) 

the cellular setup (each cell is a Knudsen gas). Gravity is not considered. The outer and inner boundaries 

are thermal walls at a constant temperature (𝑇0). As the system shifts between the two configurations, the 
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internal energy (𝑈) changes, causing a significant heat flux through the walls. (c) A typical time profile of 

the internal energy (𝑈) in two cycles of cell-wall insertion and removal (𝑈0 = 0.029). For each cycle, the 

first dashed vertical line indicates cell-wall insertion, and the second dashed vertical line indicates cell-wall 

removal. (d) The accumulated heat desorption across all the walls (𝑄), reported for every 100 particle-wall 

collisions. It matches the trend of 𝑈 in panel (c).  

 

 
Figure 9 (a) The incident particle kinetic energy (𝐾in) at the container/cell walls, where 𝐾0 = 𝑘B𝑇0. Each 

data point represents a particle-wall collision. In the cellular setup, the particle-wall collisions happen more 

frequently than in the undivided setup. (b) The probability density distribution of 𝐾in. The inset shows a 

magnified view for the high-energy range. It can be seen that in the cellular setup, compared to the 

undivided setup, the probability density of the high-energy particle-wall collisions (𝐾in 𝐾0⁄ ≥ 2) is larger.  

 

Figure 8(a) depicts the simulation box of a 2D chaotic gas in a square container. Gravity is 

not considered. The unit system is the same as in Section 2. The container size (𝐿) is 200; the 

particle number (𝑁) is 500; the particle diameter (𝑑) is 2; the particle mass (𝑚) is 1; the timestep 

is 1. The mean free path of particle-particle collision is F = (𝐿 − 𝑑)2 (√8𝑁𝑑)⁄ ≈ 13.9, much 

less than 𝐿. The effective gas-phase kinetic temperature is defined as 𝑇 = �̅� 𝑘B⁄ . The boundaries 

are thermal walls at constant 𝑇0 = 100. When a particle collides with a wall, the reflected direction 

is random; the reflected particle speed is not correlated with the incident speed but instead 

randomly follows the 2D Maxwell-Boltzmann distribution of particle speed ( 𝑣 ), 𝑝w(𝑣) =

𝛽0𝑚𝑣𝑒−𝛽0𝑚𝑣2 2⁄ , where 𝛽0 = 1 (𝑘B𝑇0)⁄ . A variety of boundary conditions are tested in Section 
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4.3 below. The specific form of boundary condition does not affect whether the system can reach 

thermal equilibrium; the critical mechanism of 𝑇 < 𝑇0 is nonchaoticity (i.e., 𝐷 < F).  

After the settlement period (2 × 104 timesteps), at each timestep, internal energy (𝑈) is 

calculated as the total kinetic energy of all the particles, and heat desorption (𝑄) is calculated as 

the accumulated ∆𝐾 of all the particle-wall collisions, where ∆𝐾 = 𝐾in − 𝐾re. At the steady state, 

a set of divider walls are inserted, evenly separating the large container into 400 small cells (Figure 

8b). The cell size (𝐷 = 10) is less than F, so that each cell tends to be a Knudsen gas. The inner 

cell walls use the same boundary condition as the outer walls. The simulation of the particle 

movement continues. At the new steady state, the cell walls are removed, and the simulation keeps 

running. After the system returns to the initial steady state, a second cycle of cell-wall insertion 

and removal is operated.  

Figure 8(c) shows the typical running average of 𝑈 for every 1000 timesteps. When the 

system is changed from Figure 8(a) to Figure 8(b), the steady-state 𝑈 decreases by about 20%, 

compatible with the literature data [9,10]. The reduction in 𝑈 (∆𝑈) is significant but less than the 

ideal-case scenario of 𝑇 = 𝑇0 2⁄  (Section A1 in the Appendix), which should be attributed to the 

occasional particle-particle collisions and the finite size of the simulation box. Corresponding to 

∆𝑈, about 0.2𝑈0 heat is released from the gas phase into the thermal walls (Figure 8d). Figure 9 

shows the probability density distribution of the kinetic energy of incident particles (𝐾in). In the 

cellular setup, compared to the undivided setup, high-energy particle-wall collisions happen more 

frequently, which explains how, at the steady state, although 𝑇 < 𝑇0, the gas-wall heat exchange 

is balanced. After the inner walls are removed, the system is converted back to the undivided state 

and absorbs ~0.2𝑈0 heat from the environment. As the cell-wall operation is repeated, the heat 

desorption-absorption process continues cyclically.  

 

4. Discussion: time-dependent entropy barriers (the second model) 

 

4.1 Intrinsically nonequilibrium steady state 

 

Figure 8(a) represents an ideal gas. It is a typical thermodynamic system and all its 

behaviors, including the inner cell walls in Figure 8(b), should be consistent with thermodynamic 

analysis. The cell walls block the particle movement and influence the probability of particle-
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particle collisions, and may be viewed as a type of entropy barrier. They are unrelated to 

Feynman’s rachet [26] or Maxwell’s demon [27]. As discussed in [14], Feynman’s rachet is an 

equilibrium device, having no nonchaotic component; mere geometrical asymmetry does not offer 

any nonequilibrium mechanism. Maxwell’s demon is subject to the energetic penalty of 

information processing [28]. In Figure 8(a,b), on the contrary, the operation of the cell walls can 

be pre-programed, without any knowledge of the specific position or momentum of each individual 

particle. Moreover, the heat flux in Figure 8(d) does not involve any random fluctuations or 

irreversible processes, e.g., the nonequilibrium paths associated with the Jarzynski equality [29].  

In the cellular setup, heat desorption spontaneously occurs from the “cold” gas phase (𝑇 <

𝑇0) to the “hot” walls (at 𝑇0). No matter how to define temperature, the heat exchange can be 

substantial and drive a heat engine to produce useful work by absorbing thermal energy from the 

environment without any other effect, incompatible with the conventional heat-engine statement 

of the second law of thermodynamics.  

 

4.2 Basic principle of maximum entropy 

 

In this section, we show that the intrinsically nonequilibrium steady state, although 

counterintuitive, can be interpreted by the principle of maximum entropy [13,14]. It reassures us 

that the effective cold-to-hot heat transfer does not conflict with the fundamental logic: the most 

probable system state has the highest probability (measured by entropy).  

For Figure 8(a,b), consider a canonical ensemble. Entropy is defined as 

𝑆 = −𝑘B ∑ 
𝑘

ln 
𝑘𝑘                                                        (3) 

where 
𝑘
 is the probability of the 𝑘-th possible microstate. In Figure 8(a), the gas phase is chaotic 

and no detailed information is known about 
𝑘
, except for the following two constraints  

∑ 
𝑘𝑘 = 1                                                                (4) 

∑ 
𝑘

𝜖𝑘𝑘 = 𝑈                                                              (5) 

where 𝜖𝑘 is energy of the 𝑘-th possible microstate, and 𝑈 indicates the total particle kinetic energy 

at the steady state. Equations (3-5) define the Lagrangian [3] 

ℒc = −𝑘B ∑ 
𝑘

ln 
𝑘𝑘 + m(1 − ∑ 

𝑘𝑘 ) + 𝛽m(𝑈 − ∑ 
𝑘

𝜖𝑘𝑘 )                (6) 
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with m and 𝛽m being the Lagrange multipliers. The constrained maximation of entropy (𝑆) can 

be expressed as 

𝜕ℒc

𝜕𝑘

= 0                                                                  (7) 

The solution of Equation (7) is 
𝑘

= 𝑒−(𝑘B+m+𝛽m𝜖𝑘) 𝑘B⁄ . According to Equation (4), 
𝑘
 may be 

written as 


𝑘

=
1

𝑍e
𝑒−𝛽n𝜖𝑘                                                            (8) 

where 𝑍e = ∑ 𝑒−𝛽n𝜖𝑘
𝑘  is the partition function, and 𝛽n = 𝛽m 𝑘B⁄ . Substitution of Equations (4,5,8) 

into Equation (3) gives the maximum possible entropy that the system can ever reach, i.e., the 

global maximum in the phase space that corresponds to thermodynamic equilibrium, 

𝑆eq = 𝑘B ln 𝑍e + 𝑘B𝛽n𝑈                                                  (9) 

Since 
𝜕𝑆eq

𝜕𝑈
=

1

𝑇0
, 𝛽n = 𝛽0. Any other 

𝑘
 (e.g., Equation 13 below) would result in a smaller entropy 

than 𝑆eq, corresponding to a non-Boltzmann state.  

When the gas phase is formed by the Knudsen-gas cells (Figure 8b), the nonchaotic particle 

movements are less random than in the chaotic setup; that is, more information of 
𝑘
 is available. 

To derive analytical solutions, in this section, for the sake of simplicity, particle-particle collision 

is ignored. In the 𝑘-th possible microstate, for the 𝑗-th gas particle, denote its traveling distance 

and speed by 𝑘𝑗 and 𝑣𝑘𝑗, respectively; 𝑡𝑘𝑗 = 𝑘𝑗 𝑣𝑘𝑗⁄  is the time duration between the previous 

and the next particle-wall collisions. Similarly to the concept of 𝜌L ∝ 1 𝑣⁄  in the single-particle 

case in the introductory section, besides Equations (4) and (5), 
𝑘
 obeys additional rules: 

𝑘
∝ 𝑡𝑘𝑗 

(for all 𝑗 = 1,2, … 𝑁), which may be formulated as 


𝑘

= 
0

∏ 
𝑘𝑗

𝑡𝑘𝑗
𝑁
𝑗=1 = 𝐶𝑘𝑘                                                (10) 

where 
0
 is the normalization factor, 

𝑘𝑗
 is the coefficient of 𝑡𝑘𝑗 , 𝐶𝑘 = 

0
∏ 

𝑘𝑗
𝑁
𝑗=1 , and 𝑘 =

∏ 𝑡𝑘𝑗
𝑁
𝑗=1 . Equations (3-5) and (10) re-define the Lagrangian 

ℒn = ℒc + ∑ 𝑏𝑘(
𝑘

− 𝐶𝑘𝑘)𝑘                                                (11) 

where 𝑏𝑘 are the additional Lagrange multipliers. To maximize 𝑆, through  

𝜕ℒn

𝜕𝑘

= 0                                                                   (12) 

we have  


𝑘

= 𝜑m𝑒𝑘𝑒−𝛽n𝜖𝑘                                                          (13) 
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where 𝜑m is the normalization factor, and 
𝑘

=
𝑏𝑘

𝑘B
(1 −

𝜕𝐶𝑘

𝜕𝑘

𝑘). Comparison between Equations 

(13) and (10) suggests that 𝐶𝑘 ∝ 𝑒−𝛽n𝜖𝑘 and 𝑒𝑘 ∝ 𝑘. Consequently,  


𝑘

=
1

𝑍n
𝑘𝑒−𝛽n𝜖𝑘                                                          (14) 

where 𝑍n = ∑ (𝑘𝑒−𝛽n𝜖𝑘)𝑘 ∝ 1 − 𝑘B𝑘
𝑏𝑘⁄  is the generalized partition function. The form of 

𝑘
∝

𝑘𝑒−𝛽n𝜖𝑘 is in line with 
L

∝ 𝑝w 𝑣⁄ . As the reflected particle speed at the thermal walls follows 

the Maxwell-Boltzmann distribution at 𝑇0 , it is reasonable to set 𝛽n  equal to 𝛽0 . Based on 

Equations (14) and (5),  

𝑈 = −
𝜕 ln 𝑍n

𝜕𝛽n
                                                             (15) 

In Equation (14), at a given energy level 𝜖𝑘, 
𝑘
 is not constant but rather varies with 𝑘. It is non-

Boltzmannian and does not satisfy Boltzmann’s assumption of equal a priori equilibrium 

probabilities. 

On the one hand, as the derivation of Equation (14) is based on Equation (12), entropy is 

maximized. Combination of Equations (3), (14), and (15) gives the nonequilibrium entropy 

𝑆ne = 𝑘B ln 𝑍n + 𝑘B𝛽n𝑈 − 𝑘B�̅�𝑘                                         (16) 

where �̅�𝑘 = ∑ (
𝑘

∑ ln 𝑡𝑘𝑗
𝑁
𝑗=1 )𝑘 ; for indistinguishable particles, �̅�𝑘 = 𝑁 ∑ (

𝑘
ln 𝑡𝑘𝑗)𝑘  (for any 𝑗). 

On the other hand, the maximum possible entropy (i.e., the global maximum in the phase space) 

is associated with the equilibrium 
𝑘
 in Equation (8), not the nonequilibrium 

𝑘
 in Equation (14). 

Thus, 𝑆ne < 𝑆eq. The root cause of 𝑆ne < 𝑆eq is that, compared to Equation (9), Equation (16) 

involves more restrictions on the maximization of entropy (Equation 10), so that 𝑆ne is the local 

maximum in the subregion of Equation (10) in the phase space. 

To account for the intrinsically nonequilibrium steady state and also to remain consistent 

with the principle of maximum entropy, we may generalize the second law of thermodynamics as 

follows [14]: in an isolated system, the difference between entropy (𝑆) and the maximum possible 

steady-state entropy (𝑆Q) cannot increase, i.e.,  

𝑆 → 𝑆Q                                                               (17)  

For a chaotic system, 𝑆Q = 𝑆eq, so that 𝑆 → 𝑆Q is equivalent to the conventional statement of the 

second law of thermodynamics. For an intrinsically nonequilibrium system, 𝑆Q = 𝑆ne, which is 

less than 𝑆eq. If initially 𝑆 > 𝑆Q, without an external driving force, entropy could spontaneously 
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decrease. Equation (17) is the fundamental mechanism behind the non-thermodynamic thermal 

phenomena in Sections 2 and 3.  

It is worth noting that if the thermal bath is finite-sized, when the undivided setup (Figure 

8a) is shifted to the cellular setup (Figure 8b), the heat transfer from the gas phase to the thermal 

bath would cause the thermal-bath temperature (𝑇0) to rise, accompanied by an entropy increase 

(∆𝑆c). However, ∆𝑆c occurs after the triggering event of the nonequilibrium state (the cell-wall 

insertion). It does not affect the overall entropy variation between the two steady states. As long 

as thermal equilibrium cannot be reached (𝑇 ≠ 𝑇0), Figure 8(b) must have a smaller entropy than 

Figure 8(a), because of the higher degree of nonuniformity. Hence, as the system switches from 

the undivided setup to the cellular setup, the overall entropy decreases, without incurring an 

energetic penalty. Regardless of the characteristics of entropy, the heat flux (𝑄) can drive a heat 

engine to produce useful work in a cycle by absorbing heat from the thermal bath.  

 

4.3 The cell-wall boundary condition  

 

 The thermally nonequilibrium steady state ( 𝑇 < 𝑇0 ) does not rely on any specific 

characteristics of the boundary condition used in the computer simulation, particularly the 

probability density of the reflected particle speed at the container/cell walls (𝑝w). In a nonchaotic 

Knudsen-gas cell, as the particle-particle collisions are sparse, the effective gas-phase kinetic 

temperature (𝑇) tends to be proportional to ∫ (𝑚𝑣2 2⁄ )(𝑝w 𝑣⁄ )d𝑣
∞

0
. No matter what the specific 

function of 𝑝w(𝑣)  is, 𝑇  must be smaller than the cell-wall temperature 𝑇0 =

𝑘B
−1 ∫ (𝑚𝑣2 2⁄ )𝑝wd𝑣

∞

0
, because the factor of 1 𝑣⁄  in the integrand of 𝑇 gives more weight to the 

slower particles. The only function that can keep 𝑇 = 𝑇0 is 𝑝w(𝑣) = 0, which is trivial.  

In Section 3, 𝑝w(𝑣) is taken as the 2D Maxwell-Boltzmann distribution. In a numerical 

experiment, different forms of 𝑝w(𝑣) are tested. When a particle collides with a wall, the reflected 

direction is random, and the reflected particle speed (𝑣re) is determined through 𝑣re
2 = 𝛼in𝑣in

2 +

(1 − 𝛼in)𝑣rd
2 , where 𝑣in is the incident speed, 𝑣rd is a speed randomly generated from the 2D 

Maxwell-Boltzmann distribution at 𝑇0 , and 𝛼in  represents the “memory” of the particle-wall 

interaction. In different simulation cases, 𝛼in is varied from 0 to 1/2. When 𝛼in = 0, 𝑣re is reduced 

to the ideal thermal-wall condition in Section 3; when 𝛼in > 0, the degree of randomness of the 
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particle-wall collision is lower. The simulation results suggest that in the range of 𝛼in  under 

investigation, 𝛼in has no statistically significant influence on the steady state. It does affect the 

rate of convergence. With a larger 𝛼in, the system tends to take more time to reach the steady state, 

and vice versa.  

 In another numerical experiment on the cellular setup, 𝛼in is set to 1 (i.e., 𝑣re = 𝑣in). The 

reflected angle is either random (diffuse reflection) or equal to the angle of incidence (specular 

reflection). In both cases, the system is isolated, and the internal energy does not vary. The average 

kinetic energy of the incident particles at the walls is significantly higher than the average kinetic 

energy of all the particles in the gas phase.  

In yet another numerical experiment on the undivided setup, particle-particle collision is 

turned off. The particle-wall collision is not affected (𝛼in = 0). At the container walls, significant 

heat desorption is observed, similarly to the heat exchange at the cell walls in the cellular setup. It 

confirms that the lack of extensive particle-particle collisions is the key factor of the spontaneously 

nonequilibrium system behavior.  

 The thermal-wall boundary condition is compatible with the basic concept of path 

independence of thermodynamics. It represents the effects of a chaotic body (the thermal bath) and 

has no nonequilibrium mechanism, i.e., it cannot be responsible for the nonequilibrium phenomena. 

To further understand the ideal case of 𝛼in = 0, we may assume that the cell walls are equipped 

with a layer of perfect heat exchangers. During a particle-wall interaction event, the particle fully 

exchanges kinetic energy with the thermal bath through the heat exchangers, before it departs back 

into the gas phase.  

 

5. Discussion: nonchaotic energy barrier (the first model) 

 

5.1 Intrinsically nonequilibrium steady-state temperature distribution 

 

According to Figures 3 and 6, the nonchaotic system cannot reach thermal equilibrium. At 

the steady state, when 𝑇b = 𝑇t (i.e., the Knudsen gas is immersed in a thermal bath), not only is 

the temperature distribution nonuniform, but also the heat exchange at the upper and lower 

boundaries ( 𝑄 ) is significant. When 𝑇b 𝑇t⁄ = 0.75 , 𝑄 ≈ 0 , i.e., the gas phase is effectively 

thermally insulating, despite the large difference between 𝑇b  and 𝑇t . This phenomenon is 
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consistent with Equation (2) and Figure 3(b) that 𝑇b 𝑇+⁄  is close to 0.75 at the upper boundary 

(𝑧 = 𝑧0). When 0.75 < 𝑇b 𝑇t⁄ < 1, the cold-to-hot heat transfer is spontaneous, incompatible with 

the refrigeration statement of the second law of thermodynamics. Moreover, as depicted in Figure 

10, because the 𝑇 − 𝑧  gradient is dependent on the gravitational energy barrier (𝑚𝑔𝑧0 ), two 

different gases can form Maxwell’s double-column engine (Section A3 in the Appendix [30]), 

which continuously produces useful work by absorbing heat from the environment. It conflicts 

with the heat-engine statement of the second law of thermodynamics.  

 

 

Figure 10. The two-shelf model inspired by Maxwell’s double-column engine [30]. Two identical 

containers contain different ideal gases, in a uniform gravitational field (𝑔). The gas-particle masses in the 

two containers are 𝑚1 and 𝑚2, respectively (𝑚1 ≠ 𝑚2). Each container consists of an upper shelf and a 

lower shelf, with the height difference (𝑧0) much less than the nominal particle mean free path (F). The 

lower shelves of the two containers are in contact with the same thermal bath at 𝑇0. A thermoelectric device 

is sandwiched in between the two upper shelves. As the temperature field is nonuniform along the vertical 

direction, because 𝑚1 ≠ 𝑚2, the effective gas-phase temperatures at the two upper shelves are different. 

Thus, the thermoelectric device can continuously produce useful work by absorbing heat from the thermal 

bath without any other effect.  

 

There are a few points worth noting. First, in Figure 6, heat desorption of the gas particles 

at the upper boundary is balanced by heat absorption at the lower boundary, obeying the first law 

of thermodynamics. Secondly, the system does not consume energy from the gravitational field. 

At the steady state, on average, for every ascending particle, there is a descending particle; vice 

versa. Thirdly, Figure 3(a) is fundamentally different from Earth’s atmosphere. In [31], Maxwell 

stated: “In the case of the atmosphere, the effect of wind is to cause the temperature to vary as that 

of a mass of air would do if it were carried vertically upwards, expanding and cooling as it ascends.” 

Earth’s atmosphere is in contact with both the ground and outer space, leading to macroscopic air 

convection. As air rises, it undergoes adiabatic expansion and tends to be colder. On the contrary, 

in Figure 3(a), when 𝑇b = 𝑇t, the system is immersed in a thermal bath, and there is no planar 

Fourier flow. Moreover, without extensive particle-particle collisions, a volume increase would 
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not do work, like free expansion in vacuum. That is, a Knudsen gas has no mechanism to render 

the upper section cooler. In fact, in Figure 3(b,c), 𝑇+ and 𝑇 are higher at the top. 

 

5.2 Entropy associated with the intrinsically nonequilibrium steady state 

 

In Figure 3, for the 𝑘-th possible microstate, use 𝑣y𝑗, 𝑣z𝑗, and 𝑧𝑗 to denote the horizontal 

component of velocity, the vertical component of velocity, and the height of the 𝑗-th gas particle, 

respectively (𝑗 = 1,2 … 𝑁). The nonchaotic particle movement imposes additional constraints on 


𝑘

. Following the concept of Equation (14) and 𝜌L ∝ 𝑝w 𝑣⁄  (Section A1 in the Appendix), if 

particle-particle collision is ignored, 
𝑘
 may be written as 


𝑘

= 𝜑t𝑘̅𝑘                                                           (18) 

where 𝜑t , 𝑘 , and ̅𝑘  are defined for the 𝑘 -th possible microstate of the gas phase; 𝑘 =

∏ 𝑝b(𝑣𝑦𝑗)𝑝b(𝑣1𝑗)𝑡a𝑗
𝑁b
𝑗=1  represents the contribution of the particles reflected into the vertical 

plane from the bottom boundary; ̅𝑘 =  ∏ 𝑝t(𝑣𝑦𝑗)𝑝t(𝑣2𝑗)𝑡d𝑗
𝑁t
𝑗=1  represents the contribution of 

the particles from the top boundary; 𝑁t and 𝑁b are the numbers of the particles from the bottom 

boundary and the top boundary, respectively (𝑁t + 𝑁b = 𝑁); 𝜑t = 𝜑a𝜑𝑘; 𝜑𝑘 is the probability of 

𝑁t ; 𝜑a = 1 (∑ 𝜑𝑘𝑘̅𝑘𝑘 )⁄  is the normalization factor; 𝑝b  and 𝑝t  denote the one-dimensional 

Maxwell-Boltzmann distributions of speed at the bottom boundary (at 𝑇b) and the top boundary 

(at 𝑇t), respectively; 𝑣1𝑗  and 𝑣2𝑗  are respectively the initial 𝑣z𝑗  after the previous particle-wall 

collisions at the bottom boundary and the top boundary, determined through 𝑣1𝑗
2 = 𝑣𝑧𝑗

2 + 2𝑔𝑧𝑗 and 

𝑣2𝑗
2 = 𝑣z𝑗

2 − 2𝑔(𝑧0 − 𝑧𝑗); 𝑡a𝑗 and 𝑡d𝑗 denote the time durations between the previous and the next 

particle-wall collisions of the 𝑗-th particle. For the particles from the bottom boundary, if 𝑣1𝑗 <

√2𝑔𝑧0, 𝑡a𝑗 = 2𝑣1𝑗 𝑔⁄ ; if 𝑣1𝑗 ≥ √2𝑔𝑧0, 𝑡a𝑗  is determined through (𝑣1𝑗 − 𝑡a𝑗𝑔)2 = 𝑣1𝑗
2 − 2𝑔𝑧0. 

For the particles from the top boundary, 𝑡d𝑗 is determined through (𝑣2𝑗 + 𝑡d𝑗𝑔)2 = 𝑣2𝑗
2 + 2𝑔𝑧0.  

Based on Equation (3), Equation (18) gives the nonequilibrium entropy  

𝑆ne = −𝑘B ∑ [𝜑t𝑘̅𝑘 ln(𝜑t𝑘̅𝑘)]𝑘                                      (19) 

Similar to the discussion in Section 4.2, because of the nonchaoticity constraints on 
𝑘
 associated 

with 𝑡a𝑗 and 𝑡d𝑗, 𝑆ne is a local maximum in the phase space, less than its chaotic counterpart.  
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6. Considerations about experimental research 

 

 The non-thermodynamic phenomena in Sections 2 have never been reported for real-world 

systems, which should be attributed to the weak gravitational field near Earth (𝛽𝑚𝑔𝑧0 ≈ 10−12 

for ambient air molecules). It would be interesting to explore whether the concept can be nontrivial 

in a high-𝑔 environment (e.g., near a neutron star or a blackhole), at the astronomical scale, by 

using a powerful centrifuge (e.g., a heavy gas at a low temperature), or with a stronger 

thermodynamic force (e.g., the Coulomb force). Notice that if a conductive or semiconductive 

nanolayer is placed in an electric field, the screening effect must be taken into consideration, e.g., 

by keeping the characteristic size smaller than the Debye length or the spacing of the charge 

carriers. Cooper pairs could have unique properties, and their role in heat transfer is worth 

investigating. Other operation mechanisms [e.g., 13-15] and weakly/sparsely interacting particles 

are also important research topics. 

Section 3 circumvents the hurdle of the large energy barrier. However, the idealized 

process of cell-wall insertion and removal is difficult to achieve, because gas transport is 

influenced by surface adsorption [32]. This issue may be resolved by using two identical chambers. 

One set of divider walls are alternately inserted and removed between the two chambers. Thus, the 

adsorbed gas particles only have internal effects.  

Interestingly, in a study on nonwetting liquids in nanopores [33,34], there may have already 

been experimental evidence of the entropy-barrier effect. Because the nanopore walls are not 

wettable to the liquid, the surface adsorption problem is minimized. In [34] (see Figure 11a), 1 g 

hydrophobic nanoporous silica particles were immersed in 5 g aqueous solution of sodium chloride, 

sealed in a steel container with a thermal insulation layer. A pressure (𝑃) was applied on the liquid 

phase through the piston, so that the liquid was forced to fill the nanopores. Then, 𝑃 was gradually 

reduced, accompanied by liquid defiltration. The temperature of the bulk liquid phase was 

monitored by the embedded sensor. Thermodynamic analysis suggests that separation of a 

nonwetting liquid from a solid surface has a tendency to cause a temperature increase, rather than 

a temperature decrease. Yet, a large reduction in temperature (∆𝑇s ≈ −1.5 oC) was measured 

(Figure 11b). It corresponds to a loss of thermal energy 𝑈L ≈ 30 J, while the total work done by 

the piston (𝐸P) is only about 16 J. Even if 𝐸P could cause cooling and the efficiency were 100%, 

|∆𝑇s| should not exceed 0.7 oC. This phenomenon may be attributed to the “Knudsen gas like” 
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characteristics of the confined liquid. As the pore size is comparable with the mean free path of 

the liquid molecules, the effective kinetic temperature of the confined liquid is less than the 

nanopore-wall temperature. Thus, when the confined liquid moves out of the nanopores, the 

overall temperature becomes lower. Likewise, liquid infiltration resulted in a large temperature 

increase ∆𝑇s ≈ 2.1 oC [34]; the associated gain of thermal energy (𝑈A ≈ 44 J) was much greater 

than 𝐸P. The difference between 𝑈A and 𝑈L was close to 𝐸P, consistent with the fact that 𝐸P was 

mostly dissipated through hysteresis. Figure 11(c) illustrates a design of circular flow, wherein the 

steady-state liquid-solid interaction does not vary over time. The resistance to the movement of 

the nonwetting liquid may be low, thanks to the superfluidity effect in nanoenvironment [35-37].  

 

 

Figure 11. (a) The experimental setup in [33,34]. The temperature variation associated with liquid 

defiltration from the nanoporous silica particles is measured. (b) Typical testing data [34]: temperature 

considerably decreases when the nonwetting liquid defiltrates out of the nanoporous silica. (c) Schematic 

of a nanofluidic setup of continuous flow, based on the same concept as in panel (a). The system is closed 

and immersed in a thermal bath. The effective nanochannel size is smaller than or comparable with the 

mean free path of the fluid particles. As the fluid enters the nanochannels, it releases heat (𝑄) to the 

environment, because of the nonequilibrium effect. Likewise, when the fluid comes out of the nanochannels, 

it absorbs heat from the environment.  

 

To apply the concept of entropy barriers to the charge carriers in a mesoscopic physical 

system, “cell walls” may be formed by using adjustable potential wells, outer/inner boundaries, 

asymmetric scattering or reflection, etc. The configuration in Figure 11(c) can be tested by using 

conductive nanowires, nanostrips, nanotubes, and/or nanolayers. The particle-barrier interaction 

must involve heat exchange (e.g., the barrier should not behave as a specular wall). The upper limit 

of the power density could be more than 10 kW/cm3 (Section A4 in the Appendix). Multiple units 

may be connected in parallel or in tandem, to amplify the temperature difference and the heat flux. 

 

7. Concluding remarks 
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It has long been known that certain nonchaotic particle movements cannot be analyzed by 

thermodynamics; usually, their energy properties are considered “trivial.” In current research, we 

demonstrate that beyond the boundaries of Boltzmann’s H-theorem, there are nontrivial non-

thermodynamic systems with unusual heat transfer properties. One example is the Knudsen gas in 

gravity (Figure 3), and the other example is the switchable Knudsen-gas cell cluster (Figure 8). In 

both cases, with no other effect, heat can spontaneously transfer from the cold side to the hot side, 

allowing for production of useful work by absorbing heat from a single thermal reservoir. Such 

counterintuitive phenomena are incompatible with the conventional refrigeration statement and 

heat-engine statement of the second law of thermodynamics.  

A Knudsen gas is defined as a rarified gas with the particle mean free path larger than the 

characteristic size of the gas container. Without extensive particle-particle collisions, the particle 

trajectories tend to be independent of each other, and the system state is dominated by the particle-

boundary collisions. When a Knudsen gas is immersed in a thermal bath, it cannot relax to thermal 

equilibrium. In the first model of the Knudsen gas in gravity, the effective gas-phase kinetic 

temperature (𝑇) is spontaneously nonuniform along height. In the second model of the Knudsen-

gas cell cluster, 𝑇 remains significantly lower than the thermal-bath temperature. The intrinsically 

nonequilibrium steady states are not caused by fluctuations or any external driving force, but rather 

rooted in the innate property of nonchaoticity. As the hypothesis of molecular chaos is inapplicable, 

entropy is still maximized, but it reaches a local maximum in the phase space, smaller than the 

global maximum (the equilibrium entropy).   

In the future, the detailed transition mechanism between nonchaotic and chaotic behaviors 

needs to be further explored. Other interesting topics of study include the generalized rule of 

thermodynamic analysis, implications for quantum mechanical systems, experimental design and 

verification, to name a few.    
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Appendix 

 

A1. Knudsen gas: intrinsically nonequilibrium steady state  

 

The numerical simulations in Sections 2 and 3 take into account the particle-particle 

collisions. The particles collide with each other whenever they meet. However, in a Knudsen gas, 

compared to the particle-wall collisions, because the particle-particle collisions are sparse, their 

effect is secondary. In this section, for the sake of simplicity, to obtain analytical solutions, 

particle-particle collision is ignored.  

 

 
Figure 12. Three 2D Knudsen-gas models that exhibit thermally nonequilibrium steady states. (a) A 

Knudsen-gas cell, with the cell boundaries being made of thermal walls. The wall temperature is constant 

𝑇0; w indicates the average traveling distance between two consecutive particle-wall collisions. At the 

steady state, the effective gas-phase temperature 𝑇 = 𝑇0 2⁄ . (b) Comparison between 𝑝w(𝑣) and 
L

∝

𝑝w(𝑣) 𝑣⁄ , as functions of the particle speed (𝑣). The normalization factor (𝑝ref) is the peak value of 𝑝w, 

and �̅�ref = √2𝑘B𝑇0 𝑚⁄ . (c) A Knudsen-gas cell, with the boundaries being made of specular walls. At the 

steady state, 𝑇 = 2𝑇0 3⁄ . (d) A Knudsen-gas cell. The two cell borders normal to the x-axis are thermal 

walls; the borders normal to the y-axis are specular walls or use periodic boundary condition. At the steady 

state, 𝑣x → 0.  

 

Such a simplification may be realized in Figure 8(b): in the cellular setup, if the number of 

the cells is much larger than the total number of the particles, the system state would be dominated 

by the cells that contain only one particle each. The few crowded cells remain chaotic and do not 
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contribute to the heat exchange. The empty cells are also trivial. In a single-particle cell, it is 

impossible for the particle to encounter another particle, and the effective mean free path of 

particle-particle collision F → ∞. The mean free path of particle-wall collision is w = 𝜋𝐷 4⁄  

[12], with 𝐷 being the cell size. Hence, F ≫ w.  

 Figure 12(a) depicts a two-dimensional (2D) Knudsen-gas cell. The cell boundaries are 

thermal walls at a constant temperature (𝑇0). The reflected particle speed (𝑣) follows the 2D 

Maxwell-Boltzmann distribution function 𝑝w(𝑣) = 𝛽0𝑚𝑣𝑒−𝛽0𝑚𝑣2 2⁄ , where 𝛽0 = 1 (𝑘B𝑇0)⁄ . The 

reflected direction is random. Use 𝜌L(𝑣) to denote the probability density of finding a particle at 

a speed 𝑣. Without particle-particle collision, 𝜌L is proportional to the retention time w 𝑣⁄ , i.e., 

the average time duration between two consecutive particle-wall collisions. Therefore, 𝜌L(𝑣) ∝

𝑝w(𝑣) 𝑣⁄ , and its normalized form is 

𝜌L = √
2𝛽0𝑚

𝜋
𝑒−𝛽0𝑚𝑣2 2⁄                                                      (20) 

Figure 12(b) shows 𝜌L(𝑣) and 𝑝w(𝑣). The average particle speed of 𝜌L is lower than that of 𝑝w(𝑣), 

as it should be. Compared to the equilibrium state, it is more likely to find a slow particle in the 

cell, since the time interval between particle-wall collisions is inversely proportional to the particle 

speed (𝑣). No reasonable boundary condition can keep the system at thermal equilibrium, i.e., the 

time-average particle kinetic energy (�̅�) cannot be equal to 𝑘B𝑇0. The effective gas-phase kinetic 

temperature is 

𝑇 =
1

𝑘B
∫

𝑚𝑣2

2
𝜌Ld𝑣

∞

0
=

1

𝑘B
∫ [

𝑚𝑣2

2
(√

2𝛽0𝑚

𝜋
𝑒−𝛽0𝑚𝑣2 2⁄ )] d𝑣

∞

0
=

𝑇0

2
                  (21) 

In the numerical simulation in Section 3, 𝑇  is significantly less than 𝑇0 , but because of the 

occasional particle-particle collisions and the finite size of the simulation box, it is larger than the 

ideal-case scenario of 𝑇0 2⁄ .  

In comparison, in a chaotic gas (e.g., a large body of rarefied gas), due to the random 

particle-particle collisions, 𝜌L ∝ 𝑝w(𝑣) 𝑣⁄  is inapplicable. No particle can reach the boundary 

without interacting with other particles. In a short time period 𝑡n, the particle influx at the boundary 

(i.e., the number of particle-wall collisions per unit boundary length) can be calculated as �̅�n =


0

(�̅�x𝑡n) 2⁄ , where 
0
 is the particle number density, �̅�x is the average 𝑣x, and 𝑣x is the component 

of incident particle velocity normal to the boundary. The average kinetic energy of the incident 

particles is  
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�̅�in =
1

�̅�n
[�̅�n ∫

𝑚𝑣2

2
(𝛽T𝑚𝑣𝑒−𝛽T𝑚𝑣2 2⁄ )d𝑣

∞

0
] = 𝑘B𝑇                        (22) 

where 𝛽T = 1 (𝑘B𝑇)⁄ . Consequently, at the steady state, 𝑇0 = �̅�in 𝑘B⁄ = 𝑇 . That is, thermal 

equilibrium is reached.  

 Figure 12(c) shows a 2D Knudsen-gas cell formed by specular walls. The particle 

movements in the x- and y-axes are independent of each other. Consider an initial condition that 

𝑣 follows the Maxwell-Boltzmann distribution. The effective particle influx at the boundary is not 

�̅�n , but rather �̅�c = (1 2⁄ ) ∫ 
0

𝑣x𝑡n𝑝v(𝑣x)d𝑣x
∞

0
, where 𝑝v(𝑣x) = √2𝛽T𝑚 𝜋⁄ 𝑒−𝛽T𝑚𝑣x

2 2⁄  is the 

one-dimensional Maxwell-Boltzmann distribution function of |𝑣x|. At the cell wall, the average 

kinetic energy of the incident particles is 

�̅�in =
1

�̅�c
{

1

2
∫

𝑚𝑣x
2

2
[

0
𝑣x𝑡n𝑝v(𝑣x)]d𝑣x

∞

0
} + �̅�pr =

3

2
𝑘B𝑇                     (23) 

where �̅�pr = 𝑘B𝑇 2⁄  is the average particle kinetic energy in the dimension parallel to the 

boundary. Hence, at the steady state, 

𝑇 =
2

3

�̅�in

𝑘B
=

2

3
𝑇0                                                (24) 

which is not at thermal equilibrium (i.e., 𝑇 ≠ 𝑇0).    

 Figure 12(d) depicts another 2D model that cannot relax to thermal equilibrium. The two 

cell borders normal to the x-axis are thermal walls. The two borders normal to the y-axis either use 

periodic boundary condition or are specular walls. The particle movement in the y-direction does 

not affect 𝑣x. Under this condition, if particle-particle collision is ignored, the calculated steady-

state 𝑣x would be near-zero, because ∫ 𝑣x
−1𝑝vd𝑣x

∞

0
→ ∞. It may be understood as follows: in an 

ensemble of cells, the gas particles of the lowest 𝑣x tend to remain in the interior, while the high-

𝑣x particles randomly change their velocities upon colliding with the thermal walls. Eventually, 

every particle would have an arbitrarily small 𝑣x, since it takes a nearly infinitely long time for 

such a particle to travel across the cell to collide with a thermal wall again.  

It is worth noting that chaoticity may not explicitly affect the calculation of pressure. In a 

chaotic gas, at the container wall, the gas pressure can be obtained as 

�̅�wall =
1

𝑡n
∫ ∫ (2𝑚𝑣 cos ) ∙ �̅�n(𝛽T𝑚𝑣𝑒−𝛽T𝑚𝑣2 2⁄ )d𝜃

𝜋 2⁄

0
d𝑣

∞

0
= 

0
𝑘B𝑇               (25) 

with  being the incident angle. It is the ideal gas law, as expected. In the Knudsen-gas model in 

Figure 12(c), without particle-particle collision, the gas pressure is 
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𝑃wall =
1

𝑡n

1

2
∫ (2𝑚𝑣x)(

0
𝑣x𝑡n)𝑝vd𝑣x

∞

0
= 

0
𝑘B𝑇                            (26) 

which is also the ideal gas law. Compared to the chaotic gas, the difference in particle influx of 

the Knudsen gas is offset by the variation in effective temperature.  

 It is also worth noting that in a three-dimensional (3D) space, Figure 12(d) represents a 

setup with confinement in one dimension, e.g., a narrow gap between two large flat surfaces; 

Figure 12(a) represents a setup with confinement in two dimensions, e.g., a tube or a pore. If the 

setup is confined by thermal walls in all the three dimensions (e.g., a hollow cell), 𝑝w(𝑣) should 

be the 3D Maxwell-Boltzmann distribution function, and 𝜌L ∝ 𝑝w 𝑣⁄  can be normalized as 

𝜌L(𝑣) = 𝑚𝛽0𝑣𝑒−𝛽0𝑚𝑣2 2⁄ . The effective gas-phase kinetic temperature is  

𝑇 =
2

3𝑘B
∫

𝑚𝑣2

2
(𝑚𝛽0𝑣𝑒−𝛽0𝑚𝑣2 2⁄ )

∞

0
d𝑣 =

2

3
𝑇0                              (27) 

In fact, if Figures 12(a) and Figure 12(d) are considered as 3D cases, with the unconfined 

dimensions being taken into account, 𝑇 = 2𝑇0 3⁄  generally holds true. It is compatible with Figure 

12(c), in which the particle movements in different dimensions are uncorrelated.  

 

A2.  Algorithm of the computer programs 

 

The computer programs used in the current investigation are available at [16]. In the 2D 

system, the particles are billiard-like finite-sized hard disks. The particle-particle and particle-wall 

collisions happen in the middle of the timesteps. In each timestep, the program first computes the 

virtual position of every particle at the end of the timestep, as if collision could not happen. Then, 

collision is identified as the particle-particle or particle-wall overlapping. The exact collision 

location and time are calculated by tracing the particle trajectories, and the correct particle 

information is updated by solving Newton’s equations (conservation of energy and momentum). 

Finally, the next timestep begins. The time resolution is high, so that the expected value of the 

particle displacement in a timestep is less than 5% of the particle size. The probability of missing 

a collision is practically zero. 

 In Section 3, the cell-wall insertion or removal does not take time. During cell-wall 

insertion, if a particle overlaps with a cell wall, the particle would be moved away from the wall 

by one particle radius, with everything else being unchanged. If this operation conflicts with 

another particle, the simulation case would be abandoned.  
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A3. Maxwell’s double-column engine 

 

In [25], for the effect of gravity on thermal equilibrium, Maxwell pointed out: “…if the 

temperature of any substance, when in thermic equilibrium, is a function of the height, that of any 

other substance must be the same function of the height. For if not, let equal columns of the two 

substances be enclosed in cylinders impermeable to heat, and put in thermal communication at the 

bottom. If, when in thermal equilibrium, the tops of the two columns are at different temperatures, 

an engine might be worked by taking heat from the hotter and giving it up to the cooler, and the 

refuse heat would circulate round the system till it was all converted into mechanical energy, which 

is a contradiction to the second law of thermodynamics. The result as now given is, that 

temperature in gases, when in thermal equilibrium, is independent of height, and it follows from 

what has been said that temperature is independent of height in all other substances.”   

 

A4. Assessment of power density 

 

To make an approximate assessment, consider the conduction electrons in a metal as a 

Fermi gas. Their number density is on the scale of 1028 m-3 and the Fermi energy is on the scale of 

a few eV. As shown by Equation (27) in Section A1, 𝑇 → 2𝑇0 3⁄  in a three-dimensional Knudsen 

gas. If this ratio is also relevant to the charge carriers and an isothermal cycle similar to Figure 

8(a,b) could be designed, the energy density would be on the scale of 103 J/cm3. When the 

operation frequency is larger than 10 Hz, the upper limit of the power density may be more than 

10 kW/cm3.  
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