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Abstract

Respiratory viral infections are considered a major public health threat, and breath metabolomics 

can provide new ways to detect and understand how specific viruses affect the human pulmonary 

system. In this pilot study, we characterized the metabolic composition of human breath for 

an early diagnosis and differentiation of influenza viral infection, as well as other types of 

upper respiratory viral infections. We first studied the non-specific effects of planned seasonal 

influenza vaccines on breath metabolites in healthy subjects after receiving the immunization. 

We then investigated changes in breath content from hospitalized patients with flu-like symptoms 

and confirmed upper respiratory viral infection. The exhaled breath was sampled using a custom-

made breath condenser, and exhaled breath condensate (EBC) samples were analysed using 

liquid chromatography coupled to quadruplole-time-of-flight mass spectrometer (LC-qTOF). 

All metabolomic data was analysed using both targeted and untargeted approaches to detect 

specific known biomarkers from inflammatory and oxidative stress biomarkers, as well as new 

molecules associated with specific infections. We were able to find clear differences between 

breath samples collected before and after flu vaccine administration, together with potential 

biomarkers that are related to inflammatory processes and oxidative stress. Moreover, we were 

also able to discriminate samples from patients with flu-related symptoms that were diagnosed 

with confirmatory respiratory viral panels (RVPs). RVP positive and negative differences were 

identified, as well as differences between specific viruses defined. These results provide very 

promising information for the further study of the effect of influenza A and other viruses in human 

systems by using a simple and non-invasive specimen like breath.
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1. Introduction

Research on breath metabolomics is receiving increasing interest due to the recent 

COVID-19 pandemic [1]. Now more than ever, viruses can be considered a major societal-

level threat, and current virology testing has become an important topic for researchers 

around the world. Understanding different testing approaches, virus transmission and host 

response to infection are crucial, as well as global immunization effects [2]. Numerous 

viruses can infect the human airway and cause common mild respiratory symptoms from 

the upper respiratory tract like fever, fatigue, sore throat, or runny nose. Sometimes 

symptoms are more severe, such as pneumonia or secondary bacterial infection of the lower 

respiratory tract. Common examples of these viruses are seasonal influenza (flu), human 

metapneumovirus (HMPV), rhinovirus (HRV) and enterovirus (ENT).

Influenza is caused by an RNA virus from the Orthomyxoviridae family and can be 

differentiated into three types: A, B, and C. Influenza A virus has numerous subtypes and 

a broad host range, being of particular concern as this virus has historically caused several 

pandemics [3, 4]. It is responsible for many hundreds of thousands of deaths every year, 

causing between 20 000 and 60 000 deaths in the US alone [4]. Flu virus is a highly 

contagious pathogen that causes respiratory infections requiring hospitalization, which 

can lead to life-threatening complications, deteriorated health status and frailty, especially 

for elderly people and immunocompromised patients [5]. Annual influenza outbreaks are 

mainly caused by subtypes of Flu A (H1N1 and H3N2) and influenza B virus, and the 

lack of pre-existing immunity in humans is often associated with the severity of the 

infection and increased mortality [6]. Annual immunization with trivalent or quadrivalent 

inactivated, recombinant, or live attenuated vaccines is the standard protection against 

influenza infection. These vaccines are minimally invasive and an inexpensive protective 

measure that creates antibodies, providing a protection against disease for approximately 

40%–60% of vaccinated people [5, 7, 8]. The variable efficacy of the seasonal influenza 

vaccine is linked to several factors, such as antigenic changes over time (strain specific 

match is required each year), relatively slow manufacturing, short protection time, strain 

egg-adapted changes, and low immunogenicity in certain populations [9, 10].

An early and accurate diagnosis of influenza infection, ideally prior to the onset of 

symptomatic disease, could result in improved medical care by decreasing the inappropriate 

use of antibiotics and encouraging specific antiviral therapy when appropriate [11]. Since 

many viruses can cause respiratory tract infection, it is important to develop easy and 

reliable diagnostic platforms to detect specific viruses. The gold standard laboratory tests 

are viral culture, serologies, and reverse transcription polymerase chain reaction (RT-PCR) 

[12]. RT-PCR is highly sensitive, quick, and easily to incorporate into multiplex assays for 

several viruses. Serology tests are easier to perform but may be limited by the fact that 

blood antibodies appear later during the disease course. Additionally, point-of-care (POC) 
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diagnosis are commonly required for a rapid evaluation. These are rapid antigen tests that 

can be run in a physician’s office, with lower costs, but also low and variable sensitivity, 

although improved POC digital immunoassays have shown improved sensitivity in detecting 

influenza A and B virus infections [13]. In any case, reliable results depend on the quality of 

the specimen.

Viruses rely on the host metabolic processes to propagate, which is different than bacteria 

that have their own metabolism pathways. Thus, detecting viral infections often requires 

direct evidence of the virus in a bodily fluid sample [2]. Virus infected specimens from the 

respiratory tract can be sampled in several ways. Oropharyngeal and nasopharyngeal swabs 

or washings/aspirates are preferable for upper respiratory infection, whereas expectorated 

sputum and bronchoalveolar lavage (BAL) are used to get lower respiratory tract samples. 

Some of these sampling techniques may be uncomfortable (e.g. nasopharyngeal swabs 

often provoke sneezing or coughing) and can be somewhat invasive (e.g. blood or BAL) 

[14]. The use of alternative collection techniques and specimens is of great interest. 

Influenza is primarily transmitted via exhaled breath aerosols and droplets, and exhaled 

breath condensate (EBC) is a promising candidate for a safe and efficient diagnosis of a 

disease. Breath is sampled from the end tidal volume deep in the lungs, potentially including 

metabolites representing both upper and lower tract viral infection information [12, 14–

16]. Various breath sampling devices have been used to collect biomarker compounds that 

represent the host response to infection—and not the virus itself. Instruments are specific 

to either the gas phase volatile organic compound (VOC) breath samplers (e.g. Tedlar 

bags, bottles and Tenax cartridges) or to EBC condensers (e.g. RTube, TurboDECCS, and 

EcoScreen) [17].

Human exhaled breath basically consists of VOCs, non-volatiles, and aerosols. Some of 

those compounds can only be detected when produced by the infected host cells or as a 

result of immunologic defense mechanisms [3]. In recent years, numerous studies have used 

exhaled breath to detect different pathological condition showing changes in the volatile 

fraction. For example, infected cells with influenza and other viruses showed changes in 

the VOC profiles that were emitted by subjects [18] and in vitro [2, 19–23], or VOCs 

related to oxidative stress were evidence of early diagnosis of viral infections from subjects 

before-and-after receiving live attenuated influenza vaccine [11, 24]. However, VOCs are not 

the only breath fraction to play an important role in the diagnosis of viral infections. Both 

EBC and breath aerosols contain semi- and non-volatile metabolites that can be exploited 

for non-invasive diagnostics, such as a wide range of larger molecules, proteins, metabolites, 

smaller polar compounds, cellular fractions, fatty acids, cytokines, bacteria, and viruses that 

cannot be detected on the gas-phase breath [25, 26].

EBC allows the detection of the above biomarkers that originate from both the lower airways 

due to surfactant disruption and the upper airways by turbulence [26]. These metabolites 

represent a wide spectrum of larger biomolecules, and subsets of the biomarkers have 

correlated with various chronic airway diseases, such as cystic fibrosis, asthma and chronic 

obstructive pulmonary disease (COPD) [27]. It is possible that these potential prognostic 

biomarkers can play a role in a differential diagnosis that could be key to predict disease 

outcome. Also, under-standing the breath metabolomic profile could detect changes that 
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distinguish specific infections in the respiratory tract, like the one caused by influenza virus 

[28, 29]. These microbiome alterations are likely to cause metabolite changes that could 

be detectable in EBC, either caused by the same pathogens during infection, presumably 

through host immune responses [12, 30]. For instance, some studies have showed the release 

of pro-inflammatory cytokines [31] or elevated levels in oxidative stress biomarkers [24] 

from patients post-infection by influenza. Other metabolomic studies have showed that many 

viruses like influenza A require fatty acid synthesis for replication or the production of 

infectious virus particles [32, 33]. However, little information is available on the response of 

these breath biomarkers to influenza vaccination [8], and influenza immunization can induce 

some degree of systemic inflammation as part of the immune response, showing influenza-

like symptoms that develop early and resolve quickly [31, 34]. Moreover, the overlapping 

symptoms and heterogeneity of influenza-like viral infections require new methods for 

discovery and validation of novel microbial metabolites that are generated during airway 

microbiota shifts [35].

In this pilot study, we characterize this metabolic composition from human EBC for an early 

diagnosis and differentiation of an influenza viral infection. For that, we first studied the 

effects of planned seasonal influenza vaccines on EBC from healthy subjects after receiving 

the immunization. Then, we investigated changes in breath content from hospitalized 

patients with flu-like symptoms and confirmed upper respiratory viral infection. In both 

studies, breath samples were collected using a custom-made breath condenser [17], and EBC 

samples were analysed using liquid chromatography coupled to quadruplole-time-of-flight 

mass spectrometer (LC-qTOF). Metabolomic information was collected and treated using 

simultaneous targeted and untargeted strategies to cover specific known inflammatory and 

oxidative stress biomarkers, as well as a large number of unknown metabolites.

2. Material and methods

2.1. Clinical study

This research followed clinical practices and protocols approved by the University of 

California, Davis Institutional Review Board (IRB Protocol #637013–15). For this, informed 

consent was signed by all the participants in the study.

2.1.1. Effects from the influenza vaccine—Each subject was defined as his/her own 

control to minimize confounding biologic variables. Breath metabolites were measured and 

compared just before and after the vaccination: on day 0 prior to the flushot, and then on 

the days 1, 2 and 3 after the immunization. EBC samples were collected during two flu 

seasons from a total of 12 healthy human subjects (five subjects in 2018, seven subjects 

in 2019). Subjects were adults (over 18 years old), non-smokers with no recent history of 

viral infection or lung disease. The mean age from all subjects was 34 years (SD = 7.8) 

with an even number of male/females (6/6). All subjects were treated with a single dose 

of a quadrivalent inactivated flu liquid vaccine injected intramuscularly. No adverse effects 

were reported by any of the subjects, either of influenza vaccination or the breath collection 

procedure.
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2.1.2. Patients with respiratory infection—The patients included as eligible in this 

study were adults that were admitted into the hospital after physician’s determination of 

upper respiratory infection symptoms. Information about race, ethnicity, tobacco and food/

beverage consumption, asthma diagnosis and any medication consumed was collected. 

Patients had to avoid eating, drinking and smoking at least 1 h before the sample 

collection. In some of the cases, a preliminary POC flu test was previously used for 

a rapid evaluation of the patient. But, according to hospital policies, a nasopharyngeal 

swab was used after all the patient’s admission to perform a respiratory viral panel 

(RVP; GenMarkDx®). RVP consisted of a PCR-analysis of nasal swab (BD Universal 

Viral Transport, Beckton, Dickinson and Co, Sparks, MD or Miraclean Technology Co, 

Ltd, Shenzhen, China) samples collected and transported by Universal Transport Media 

(BD Universal Transport Medium, Beckton, Dickinson and Co, Sparks, MD, or remel 

MicroTest™ M4RT® Transport, ThermoFisher Scientific Inc.) for specific viruses including 

influenza A, HMPV, and HRV/ENT. HRV/ENT were not distinguishable by the used RVP. 

All patients were asked to participate in the study and responded to a short questionnaire 

regarding asthma pre-diagnosis, other diseases, or medications, as well as recent food/drink 

consumptions.

A total of 15 subjects (4 males and 11 females) with respiratory infection symptoms 

admitted to the hospital and one control sample (female with no symptoms) were included in 

the study. The subjects’ average age was 41 years old (SD = 19). Information is summarized 

in table 1.

From the 15 admitted subjects, only five were tested with POC flu test, resulting in four 

positives. All patients went through RVP and only seven were positive, being two of them 

characterized by Influenza A virus, two with HMPV and three HRV/ENT. Two of the 

patients with confirmed POC flu positive resulted negative in virus infection for RVP tests 

(more accurate). Nine of the subjects had diagnosed asthma and were nonsmokers, except 

for two patients.

2.2. Infection virus analysis—RVP

POC consisted of a test utilizing a nasal swab (BD Universal Viral Transport, Beckton, 

Dickinson and Co, Sparks, MD or Miraclean Technology Co, Ltd, Shenzhen, China) placed 

in a transport solution (BD Universal Transport Medium, Beckton, Dickinson and Co, 

Sparks, MD, or remel MicroTest™ M4RT® Transport, ThermoFisher Scientific Inc.) and 

analyzed on a Cobas® Liat® (Roche Diagnostics) or GenMark Dx® (GenMark Dx®) 

molecular analyzers.

Samples were defined by RVP results. RVP consisted of a panel of analysis where 

the potential viral infection was tested by taking a deep nasopharyngeal swab applying 

and performing PCR-tests specific for Influenza-A, HMPV, and HRV/ENT. The negative 

predictive value of these tests is reported to be between 96.1% and 99.8% depending on 

virus prevalence in the community [36].
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2.3. Breath sampling

In both studies, breath collection was achieved by using a custom EBC sampler previously 

used and described in several studies [17, 37, 38]. In summary, subjects breathed tidally for 

15–20 min through a disposable valved mouthpiece (no nose clip) connected to a trap that 

separates saliva and larger contaminants. The trap is attached to a glass tube surrounded by 

dry ice at −80 °C, achieving temperatures that condensate the exhaled breath in the tube. 

When the collection is done, the EBC is retrieved from the tube and stored in a 10 ml vial at 

−80 °C until analysis.

In the study with respiratory infection subjects, an additional sample was collected once the 

EBC was removed from the device (ethanol rinse sample). The glass tube was rinsed with 

2–3 ml of organic solvent (ethanol) and mixed during 1 min, providing two fractions (EBC 

and ethanol rinse) for each subject. EBC complementary information can be achieved with 

this fraction by cleaning the device obtaining sample richer on compounds with low polarity 

that stick to the glass sampling surface.

2.4. Sample preparation

EBC samples were thawed and 1 ml (or the maximum amount available, if less than 1 ml) 

was aliquoted in 2 ml glass amber vial. Same amount was used for the ethanol rinse fraction. 

Antioxidant solution and a mixture of internal standards (IS) were added to both solutions, 

EBC and ethanol rinse. Antioxidant solution consisted of butylated hydroxytoluene (BHT) 

and EDTA at 0.2 mg ml−1 each in a solution of methanol:water (1:1), and IS contained a 

mixture of deuterated oxylipins. Spiked EBC samples were mixed and frozen for 30–60 min 

at −80 °C. Frozen EBC samples were lyophilized and ethanol rinse samples were dried with 

nitrogen, both, until completely dry. Dried extracts were reconstituted with 60 μl of mobile 

phase (95% water in acetonitrile), vortexed, sonicated for 10 min at 4 °C and centrifuged at 

13 000 rpm for 10 min at 4 °C. Supernatant was stored at −80 °C until LC-MS analysis.

Pooled quality controls (QCs) were also prepared with each batch of samples by mixing 

healthy matrices and spiking it with known concentrations of oxylipins standard mix 

(targeted compounds). QCs, and non-spiked samples (QC blank) were prepared following 

the preparation process for all samples. Targeted compounds used are reported elsewhere 

[38] with names, molecular formulae, exact masses, LC-MS retention times and preferred 

precursor ions used for MS/MS data. Mainly, we were interested in the compounds 

related to inflammation and oxidative stress, which are involved in cyclooxygenase (e.g. 

prostaglandins and thromboxanes), lipoxygenase (e.g. 5-, 12-, 15-HETE, leukotrienes, 

DiHETEs, HEPE, etc), and cytochrome P450 (e.g. HETEs, EETs, DiHOMEs, etc) pathways.

2.5. Instrumental analysis

All samples were analyzed with an Agilent 1290 series HPLC system coupled with an 

Agilent 6530 quadrupole-time of flight (qTOF) mass spectrometer (Agilent Technologies, 

Santa Clara, CA, USA). Twenty micro liters of sample were injected into the column using 

an autosampler at 5 °C. An InfinityLab Poroshell 120 EC-C18 column (3.0 mm × 50 mm, 

2.7 μm) (Agilent Technologies, Palo Alto, CA, US) held at 35 °C was used to separate 

compounds at a flow rate of 600 μl min−1. Compound separation was achieved using 
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gradient of solvent, with water (A) and acetonitrile (B), both with 0.1% formic acid during a 

total run time of 30 min.

An Agilent Jet Stream nebulizer was used as electrospray ionization (ESI) source. Samples 

ran twice, one in positive and one in negative ESI mode, with mass ranges of 60–1000 

and 100–970 m z−1 for positive and negative, respectively. It was operated at 250 °C 

with ionization set at 3000(+)/4000(−) V and fragmentor voltage at 130 V. Nebulizer gas 

pressure, temperature and drying gas flow rate were set at 45 psi, 400 °C and 10 l min−1. 

Mass measurements were recalibrated using Agilent reference masses m/z 121.0508 and 

922.0098 in positive mode, and m/z 119.0363 and 966.0007 in negative mode. In both cases, 

all ions MS/MS was performed at collision energies of 0 and 15 V. Mass spectra were 

acquired at a scan rate of 2 spectra/s.

2.6. Data analysis

The data analysis process was divided in two strategies: targeted and untargeted approaches. 

Targeted and untargeted information were acquired simultaneously in a single LC-MS run 

in negative mode. Positive mode only was treated for untargeted purposes. Preliminary raw 

data require an initial check for qualitative reasons with Agilent’s Mass Hunter Qualitative 

Analysis B.06.00 software.

For targeted purposes, data was treated with Agilent’s Mass Hunter Quantitative (qTOF) 

Analysis B.07.00 software, and compounds were identified, confirmed, and integrated 

using accurate mass, retention time and MS/MS information. All detected compounds were 

quantified using standard calibration curves and correcting their responses by corresponding 

surrogates. QCs were quantified to determine the validity of the calibrations.

For untargeted analysis, data were deconvoluted, aligned and integrated using Agilent’s 

Mass Hunter Profinder B.08.00 software. Initial peaks were found using 30 ppm and 0.025 

Da mass tolerance, and retention time window of 0.3 min. Generated data (.pfa) was 

imported to Agilent’s Mass Profiler Professional (MPP, V13.0) software for re-alignment 

and initial identification. MPP generates datasets used for statistical purposes, with samples 

in columns and variables (called features) in rows, like targeted data, but containing peak 

areas instead of concentrations. To obtain reliable data, samples were randomly injected 

on the LC-MS, and QCs and IS signals were checked for a correct data analysis. Raw 

datasets were cleaned by removing features that: appear in blank samples with signals higher 

than 10 (peak sample/b-lank ratio), are missing in more than 50% of samples, have low 

repeatability (RSD >25% in the QC pooled samples), and have near-constant values (RSD 

<5% in all samples). Data were normalized to remove systematic bias between sample 

measurements using different approaches: by specific factor, such as sample volume, IS 

area, or combination of volume/IS, and by sum or median values of all features for each 

sample. All missing values were also replaced by the LOD/5 or by minimum positive 

value divided by 5, in targeted and untargeted data, respectively. Final datasets were log 

transformed to correct data heteroscedasticity [39]. Although, all data were initially studied 

separately from positive and negative mode perspective, results for untargeted approaches 

were considered using merged datasets from both ionization modes.
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Targeted and untargeted datasets were analyzed using univariate and multivariate techniques 

using Excel, MATLAB R2017a and PLS Toolbox V8.6.2 software. First, descriptive 

univariate analyses were performed by comparative analyses of means to assess the 

significance of the changes using fold change (FC) and parametric/non-parametric tests like 

t-tests/Wilcoxon rank sum test, or ANOVA/One-way Kruskal–Wallis test. These tests allow 

to determine features that explain the groups aimed to differentiate by using Volcano Plots, 

where features with p-values less than 0.5 (FDR adjusted values Bonferroni correction) and 

FC values higher than 2 show statistical difference. An initial variable selection was applied 

on untargeted datasets using univariate methods. Then, multivariate models were used 

for comparative analyses. Principal component analysis (PCA) is initially used to obtain 

an overview of large datasets, visualize similarities and differences between observations, 

detect potential outliers and gain information about the metabolite features responsible for 

the observed patterns. PCA is a projection of maximum variance in the dataset based on the 

magnitudes of orthogonal variables. PCA is a linear additive model, where each principal 

component (PC) is an orthogonal variable that ranks the variance of each metabolite in 

the multivariate dataset, and accounts for a portion of the total variance. PCs data is used 

to reduce the dimensionality of the data set. Partial least-squares discriminant analysis 

(PLS-DA) is a classification method, where PLS models the correlation between the dataset 

of features and a matrix of responses that contains sample information and classes/groups. 

PLS models a maximum covariance between metabolomics datasets and the defined class 

membership, separating different groups of samples on the basis of their metabolite features 

[40, 41]. Sensitivity (probability of correctly detect a condition), specificity (ability to reject 

a condition) and area under the curve (AUC) values of the receiver operating characteristic 

(ROC) curves were defined as parameters to describe model results. AUC measures the 

classification problems at different thresholds, telling how much a model is capable to 

distinguish classes or groups [42]. Additionally, other chemometric methods were tested to 

enhance results, such as support vector machines (SVMs) that separates clusters using a 

hyperplane; and eXtreme Gradient Boosting (XGBoost), a form of gradient-boosted decision 

trees [43].

PLS-DA provides a list of potential markers related to condition and other relevant 

biological information, ranked by variable importance in projection (VIP) values, which 

summarize the contribution of each feature makes to the model. VIPs higher than 1 are 

considered relevant markers and, the next step, was to attempt an identification of these 

molecules. Identifications were performed searching through METLIN database and using 

accurate mass information to calculate a molecular formula and a compound name for each 

marker. Matching experimental and theoretical spectral pattern (scores) compounds were 

tentatively characterized when score values were higher than 70%.

3. Results and discussion

3.1. Effects from the influenza vaccine

3.1.1. Targeted analysis—Targeted analysis showed low concentrations of the 

compounds we were pursuing. Most of the compounds were detected closer to the limit 

of detection (LOD) defined by the method. Only 21 compounds out of 55 showed enough 
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concentrations above LOD on more than 50% of the samples. 9(10)-EpOME and 12(13)-

EpOME were found at higher concentrations, with an average amount of 0.18 and 0.25 ng 

ml−1, respectively. 9-HODE and 13-HODE followed with amounts around 0.1 ng ml−1. All 

detected compounds were corrected by IS and amount of EBC used in sample preparation 

step.

When data are compared by pre (day 0) and post (days 1, 2 and 3) flu shot days, we 

only found significant differences for 13-HODE (p < 0.05). Figure 1 show concentrations 

achieved each day of the study for this compound (figure 1(a)), where mean values show and 

increasing of 13-HODE the day after the vaccine, and then progressively decreasing until 

day 3. Boxplots explain differences pre vs. post, considering different days after flu shots. 

In general, there are differences between pre and post, when considered days 1–3 together, 

but no differences from prior concentrations (day 0) and days 1 and 2, individually. Day 

3 show clear differences of 13-HODE decreasing compared to initial levels. 13-HODE is 

an intermediate product from linoleic acid lipoxygenation, and it prevents cell adhesion to 

endothelial cells and can inhibit cancer metastasis [44].

Surprisingly when using a multivariate approach, good classifications were not possible. An 

initial PLS-DA show low discrimination between compounds detected in EBC before flu 

shot (pre) and after it (post). We considered classifications with three post days merges and 

individually, and AUC values lower than 0.6 and sensitivities and specificities around 50% 

(data not shown). Other classification methods were applied, such as SVM-C and XGB-DA, 

but AUC < 0.5 were achieved in both cases (figure 1(c)).

3.1.2. Untargeted analysis—Initial raw datasets contained 3875 and 6176 features for 

negative and positive modes, respectively. After data processing, the number of features 

was reduced around 50%, and samples were normalized by the volume of EBC used and 

responses of IS. Both ionization modes were then merged into a dataset with 5448 features. 

First, a PCA was applied to check and visualize data distribution (figure 2). It could be 

observed that main differences were clearly explained by sample flu season (figure 2(a)), 

which makes sense since as the components of the flu vaccine change each season. This 

seasonal variation was corrected by subtracting median values per each season. After season 

correction, PCA showed high reduction of seasonal differences (figure 2(b), (I)) and, when 

coloured by pre- and post-vaccination, it started showing a slight differentiation of some of 

the samples prior the shot (figure 2(b), (II)).

Corrected data were then filtered by an initial variable selection based on differences from 

prior flu shot (pre/day 0). For that, volcano plot was used and variables with p-values higher 

than 0.05 and FC < 2 were removed. Noise and unwanted features were reduced around 

90%, and these new datasets were used to predict specified classes using PLS-DA. A second 

feature selection was applied by selecting variables with VIP values higher than 1. This 

new data were then used to build final PLS-DA models and find main differences between 

pre vaccination and the posterior days after the shot (table 2). To get accurate results, 25 

PLS-DA iterations were run using random split data between calibration and validation sets 

(66% samples in calibration set). Model iterations got average and standard deviation values 

for AUC, sensitivity, and specificity, both for cross-validation (CV) and prediction (Pred).
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AUC values were higher than 0.9 in all models, with low variability for models including all 

days or individual days for post vaccination samples. Sensitivities and specificities were also 

over 0.8 in all cases, with low standard deviations.

Figure 3 shows four PLS-DA models grouping of samples that have differences by injection 

day considering: all post vaccine days together (figure 3(a)), and individual-day differences 

between day 0 (before flu shot), and day 1 (figure 3(b)), day 2 (figure 3(c)), and day 

3 (figure 3(d)). A clear separation was observed in all models, with samples before flu 

shot (figure 3, green dots) clustered and separated from samples collected after the flu 

shot (figure 3, reddish dots). These optimal models allowed a final identification of the 

features that explain these differences in EBC metabolomic profile between pre and post 

flu vaccines. A total of 220 features were determined as important (VIP > 1), being 98 

compounds the ones for the pre vs. post model (model A), then, 58, 54 and 99 features were 

found relevant for the differentiation between day 0 and day 1 (model B), day 2 (model C), 

and 3 (model D), respectively. Table 3 summarize 25 these main biomarkers found in all 

the prediction models. It describes the ESI mode detected, molecular formula and compound 

tentative identification with a score value, that corresponds to a percentage of matching 

between experimental spectra and the one from METLIN database. Only formulas and IDs 

were listed with score values higher than 70%. Some characterizations gave high scores for 

multiple compounds. The regulation based on post vaccine effect is also described, as well 

as the model where these biomarkers were highlighted as remarkable for the differentiation.

Figure 4 shows up- and down-regulation profiles of some of the compounds from table 

3. It presents the evolution of the compound abundances (after normalization) through 

each day after the vaccine (left graphs) and through all responses after vaccination 

together (right graph, pre/post). From all the 220 compounds, only 20% were up-regulated, 

meaning that their abundances increased after getting the vaccine (figure 4(a)). Some were 

identified as fatty acyls or prostaglandins (compounds 2 and 22), molecules commonly 

related to metabolomic processes associated to pro- and anti-inflammation and oxidative 

stress. However, most of the compounds were down-regulated, with signal reduction 

after the flu shot was administered (figure 4(b)). That was the case of known oxylipins, 

such as DiHOMEs or DiHODEs (compounds 4 and 21), associated to lipoxygenase and 

cytochrome P450 pathways. Amino acids (compounds 6 and 16) and other prostaglandins 

or thromoboxanes (compound 25) also showed decreasing in EBC content. Although most 

of these compounds showed same up or down-regulation for each of the three days after 

the shot, some compounds only showed significant differences just one of the days. For 

example, compound 25 showed VIPs > 1 and reduced signals for days 2 and 3, but and 

increasing signal (although non-significant with VIP < 1) on day 1, making it not remarkable 

for the general mode defining pre vs. post differences.

3.2. Patients with respiratory infection

3.2.1. Targeted analysis—In this study, only ten compounds showed concentrations 

detectable over the LOD of the method. From those compounds, lipoxin A4 (LXA4), 

prostaglandin J2 (PGJ2), 12(13)-EpOME and 9(10)-EpOME were detected at higher 

concentrations, around 2 ng ml−1 of EBC, in some of the samples. 14(15)-DiETE and 
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9(10)-DiHOME reached amounts over 1 ng ml−1. Compounds were studied by RVP results 

and type of virus detected in the viral panel (figure 5).

Significative differences between negative and positive viral panel results were only found 

for LXA4 amounts (p = 0.018) (figure 5(a), left) [45]. However, when these differences were 

studied by the type of virus defined in the positive samples, we could observe that influenza 

A virus showed main differences compared to control or negative samples. That also 

happened for three of the compounds: LXA4, PGJ2 and 9,10-DiHOME (figure 5(a), right), 

suggesting that positive differences were mainly explained by the samples characterized 

by FluA. When all compounds were studied in a multivariate way we could confirm that 

trend (figure 5(b)). PLS-DA models separating positive and negative RVP samples were not 

able to achieve discriminating abilities, with AUC around 0.5 and sensitivity and specificity 

lower than 0.6 (dashed line). However, models that classified virus types, although the 

overall model ability was not reliable (non-dashed lines), were able to discriminate Flu A 

from the rest of samples with AUC around 0.9, but not the rest of the viruses.

3.2.2. Untargeted analysis—Similar data pre-processing to pre/post vaccination was 

applied to untargeted data obtain from patients with respiratory infections. Almost half of 

the raw data were cleaned, and the merged dataset listed 8092 features, containing variables 

from positive and negative modes. In this case, the dataset was normalized just by the initial 

volume of matrix used for the analysis, including EBC and the ethanol rinse fractions in 

the same dataset. Variable selection was then applied based on the differences between RVP 

results, and between the specific virus detected in the clinical tests. P-values and fold change 

information was used to initially reduce features and remove noise from the datasets. RVP 

data (1723 features) was focused on differences between positive and negative results, and 

virus dataset (3029 features) was aimed on distinguishing influenza A, HMPV, rhinovirus/

enterovirus, and non-virus. Relevant features were subsequently selected using VIP values 

from initial PLS-DA models. All PLS-DA iterations were built 50 times using random 

split between calibration and prediction datasets (table 4). Table 4 shows the increasing 

classification abilities, such as AUC, sensitivity and specificity values, once feature selection 

was applied using VIP scores.

RVP classifications achieve AUC around 0.86 but raise to 0.98 when VIP > 1 variables are 

selected (table 4). Sensitivities and specificities raised from 0.74 to 0.83 to more than 0.9 

with low standard deviations. Figure 6 showed optimal PLS-DA models built with the final 

selected features.

Clear differences were observed between RVP positive and negative samples (figure 

6(a)). In that case, 90 features determined the classification (VIP > 1) with almost 50 

of these with high score values for tentative identifications. Table S1 (available online 

at stacks.iop.org/JBR/15/046004/mmedia) (supplemental information) lists biomarkers 

identified for the RVP discrimination between positive and negative results. Each biomarker 

variation is defined by up-regulation depending on presenting significative higher intensities 

in RVP positive or negative. These differences are represented with some examples in figure 

7(a), where most of the compounds were up-regulated by negative RVP, meaning that their 

abundances in breath were higher when negative test was obtained. Some of the identified 
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molecules could be related to pro- and anti-inflammatory processes and oxidative stress, 

such as fatty acyls, phenols or sphingolipids. When we look at the variations between 

specific viruses (figures 6(b) and (c)) there is a clear difference between subjects diagnosed 

with influenza A and the others. Although the low number of samples for each positive virus 

type, these results direct promising expectations for future studies using a greater number of 

subjects. Also, the rest of the viruses were highly differentiated between them and negative 

results. A total of 146 features were defined as relevant for virus separation, being 75 of 

them tentatively identified. Table S2 (supplemental material) shows identified biomarkers 

for the virus type classification. In this case, each compound is up- or down-regulated 

considering the three viruses and non-virus class. Most of the compounds were up-regulated 

by virus presence, being characteristic markers of influenza A, HMPV and HRV/ENT 

present in higher intensities in 77%, 73% and 68% of the cases, respectively. Only 10% of 

the markers were up-regulated when no virus was detected. Similarly to the general RVP 

model, several fatty acyls were identified, as well as ceramides, sphingolipids and tripeptides 

(table S2). Some examples of specific biomarkers regulation are presented in figure 7(b). 

When we observe the specific markers, a total of 32 appear in both models, the one from 

general RVP response and from specific virus determination.

4. Conclusion

This study provides information about metabolomic markers that can be potentially related 

to the effect of viruses from two different approaches. First, we were able to determine 

the changes in the breath metabolomic profile when flu shot immunization is applied. In 

this case, clear differences were detected between day 0 (before shot) and after 1, 2 and 3 

d. Several potential biomarkers were identified and related to inflammatory processes and 

oxidative stress. Moreover, we discriminate patients with flu-related symptoms that were 

diagnosed with positive or negative RVPs. These general differences were identified and are 

relevant for an initial screening for the presence of virus. Additionally, differences between 

specific viruses defined, such as influenza A, HMPV and HRV/ENT were also identified, 

providing important information to distinguish the type of virus affecting the subject.

Although this was a pilot study, with low numbers of subjects, we included differences 

by seasons (in both parts of the study) that allow higher variability of the limited data 

available. These promising results should be further studied as a diagnostic tool to be able 

to detect presence of influenza A and other viruses in human systems by using a simple and 

non-invasive specimen like exhaled breath.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Targeted results from flu vaccination effects. (a) Concentration of 13-HODE detected 

through the days analyzed; (b) Boxplots comparing concentrations of 13-HODE at different 

days, considering pre (day 0), and post* (days 1, 2 and 3); and (c) ROC curves obtained 

from multivariate analysis using all targeted compounds detected. ROC curves compare 

AUC for different classification methods: PLS-DA, SVM-C and XDB-DA.
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Figure 2. 
Scores plots from principal component analysis (PCA) of the untargeted data from flu 

vaccination effects. (a) non-corrected dataset; (b) dataset after correction by season of flu 

vaccine showing samples by season (I) and by pre and post flu shot (II).
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Figure 3. 
Scores plots from PLS-DA of the untargeted data from flu vaccination effects. 

Classifications obtained between (a) pre (day 0) and post (day 1, 2, and 3); (b) day 0 and day 

1; (c) day 0 and day 2; and (d) day 0 and day 3.
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Figure 4. 
Examples of up- and down-regulations for some of the compounds that explain differences 

before and after flu vaccine. Post up-regulated markers (a) show an increase in EBC 

abundance once the flu shot was administered; and Post down-regulated markers (b) show a 

reduction of signal after the flu shot. Right graphs for each compound represent evolution of 

the abundances through the days; and left graphs represent a general difference between pre 

and post vaccine (including days 1, 2, and 3).
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Figure 5. 
Targeted results from respiratory infections in patients. (a) Concentrations of detected 

compounds with significant differences by RVP positive/negative results (left), and by type 

of virus detected by RVP (right). (b) ROC curves obtained from multivariate analysis using 

all targeted compounds comparing AUC for different PLS-DA models: negative vs. positive 

RVP (−); and type of virus (−).
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Figure 6. 
PLS-DA models for untargeted data from subjects with respiratory infections. Models 

built with final selection of variables. (a) Scores plot from RVP positive and negative 

classification, (b) scores plot from virus type classification, and (c) ROC curves for virus 

differentiation model.
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Figure 7. 
Examples of up- and down-regulations for some of the compounds that explain differences 

between RVP positive and negative (a), and between each type of virus detected (b).
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Table 1.

Clinical data from patients included in the respiratory infection study

Variable Total Age (SD)

Patients 15 + 1* 39.7 (20)

POC Flu test 4 52 (15)

RVP positive 7

 Flu A 2 48 (11)

 HMPV 2 48 (41)

 HRV/ENT 3 40 (19)

Asthmatic 9 31 (14)

EBC samples 16

Ethanol rinse samples 14

*
control subject with no respiratory infection symptoms

SD: standard deviation; POC: point-of-care flu test

RVP: Respiratory viral panel; FluA: Influenza A

HMPV: Human Metapneumovirus; HRV/ENT: Rhinovirus/Enterovirus
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Table 2.

PLS-DA classification results presented as average and standard deviation (SD) of 25 random splits of 

calibration and prediction data.

Classification AUC Sens (CV) Spec (CV) Sens (Pred) Spec (Pre)

pre vs. post (day 1, 2 and 3) 0.94 (0.06) 0.84 (0.08) 0.90 (0.07) 0.80 (0.15) 0.89 (0.18)

day 0 vs. day 1 0.99 (0.03) 0.89 (0.13) 0.91 (0.08) 0.93 (0.15) 0.91 (0.16)

day 0 vs. day 2 0.94 (0.08) 0.87 (0.11) 0.95 (0.10) 0.82 (0.21) 0.89 (0.15)

day 0 vs. day 3 0.97 (0.12) 0.80 (0.14) 0.89 (0.10) 0.82 (0.27) 0.91 (0.21)
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Table 4.

PLS-DA classification results before and after variable selection. Values presented as average and standard 

deviation (SD) of 25 random splits of calibration and prediction data.

# Features RVP
Virus

FluA HMPV HRV/ENT None

AUC 1723 0.86 (0.13) 0.94 (0.14) 0.64 (0.34) 0.67 (0.35) 0.81 (0.15)

202 0.98 (0.50) 1.00 (0.01) 0.83 (0.14) 0.96 (0.05) 0.93 (0.07)

Sens (CV) 3029 0.83 (0.10) 0.50 (0.41) 0.23 (1.13) 0.34 (0.75) 0.69 (0.21)

322 0.98 (0.03) 0.82 (0.22) 0.44 (0.70) 0.61 (0.35) 0.78 (0.15)

Spec (CV) 3029 0.78 (0.12) 0.99 (0.03) 0.83 (0.12) 0.80 (0.14) 0.68 (0.14)

322 0.97 (0.04) 0.99 (0.02) 0.85 (0.11) 0.89 (0.11) 0.85 (0.08)

Sens (Pred) 3029 0.80 (0.19) 0.73 (0.56) 0.32 (0.99) 0.42 (0.86) 0.70 (0.27)

322 0.96 (0.07) 0.89 (0.31) 0.63 (0.45) 0.74 (0.39) 0.80 (0.16)

Spec (Pre) 3029 0.74 (0.27) 1.00 (0.02) 0.85 (0.16) 0.82 (0.18) 0.73 (0.27)

322 0.93 (0.14) 0.99 (0.03) 0.87 (0.12) 0.93 (0.11) 0.88 (0.13)
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