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Purpose: Proton dose distribution is sensitive to uncertainties in range estimation and patient posi-
tioning. Currently, the proton robustness is managed by worst-case scenario optimization methods,
which are computationally inefficient. To overcome these challenges, we develop a novel intensity-
modulated proton therapy (IMPT) optimization method that integrates dose fidelity with a sensitivity
term that describes dose perturbation as the result of range and positioning uncertainties.
Methods: In the integrated optimization framework, the optimization cost function is formulated to
include two terms: a dose fidelity term and a robustness term penalizing the inner product of the
scanning spot sensitivity and intensity. The sensitivity of an IMPT scanning spot to perturbations is
defined as the dose distribution variation induced by range and positioning errors. To evaluate the
sensitivity, the spatial gradient of the dose distribution of a specific spot is first calculated. The spot
sensitivity is then determined by the total absolute value of the directional gradients of all affected
voxels. The fast iterative shrinkage-thresholding algorithm is used to solve the optimization problem.
This method was tested on three skull base tumor (SBT) patients and three bilateral head-and-neck
(H&N) patients. The proposed sensitivity-regularized method (SenR) was implemented on both
clinic target volume (CTV) and planning target volume (PTV). They were compared with conven-
tional PTV-based optimization method (Conv) and CTV-based voxel-wise worst-case scenario opti-
mization approach (WC).
Results: Under the nominal condition without uncertainties, the three methods achieved similar
CTV dose coverage, while the CTV-based SenR approach better spared organs at risks (OARs) com-
pared with the WC approach, with an average reduction of [Dmean, Dmax] of [4.72, 3.38] GyRBE
for the SBT cases and [2.54, 3.33] GyRBE for the H&N cases. The OAR sparing of the PTV-based
SenR method was comparable with the WC method. The WC method, and SenR approaches all
improved the plan robustness from the conventional PTV-based method. On average, under range
uncertainties, the lowest [D95%, V95%, V100%] of CTV were increased from [93.75%, 88.47%,
47.37%] in the Conv method, to [99.28%, 99.51%, 86.64%] in the WC method, [97.71%, 97.85%,
81.65%] in the SenR-CTV method and [98.77%, 99.30%, 85.12%] in the SenR-PTV method, respec-
tively. Under setup uncertainties, the average lowest [D95%, V95%, V100%] of CTV were increased
from [95.35%, 94.92%, 65.12%] in the Conv method, to [99.43%, 99.63%, 87.12%] in the WC
method, [96.97%, 97.13%, 77.86%] in the SenR-CTV method, and [98.21%, 98.34%, 83.88%] in the
SenR-PTV method, respectively. The runtime of the SenR optimization is eight times shorter than
that of the voxel-wise worst-case method.
Conclusion: We developed a novel computationally efficient robust optimization method for IMPT.
The robustness is calculated as the spot sensitivity to both range and shift perturbations. The dose
fidelity term is then regularized by the sensitivity term for the flexibility and trade-off between the
dosimetry and the robustness. In the stress test, SenR is more resilient to unexpected uncertainties.
These advantages in combination with its fast computation time make it a viable candidate for clinical
IMPT planning. © 2018 American Association of Physicists in Medicine [https://doi.org/10.1002/
mp.13344]
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1. INTRODUCTION

Multifield optimized intensity-modulated proton therapy
(MFO-IMPT, short for IMPT in this paper) is an effective
technique to deliver highly conformal dose to the target vol-
ume while achieving superior organs at risk (OARs) sparing.
However, due to the sharp drop-off at the proton Bragg peak1

and the beam-by-beam dose heterogeneity in the MFO
plans,2 IMPT is more susceptible to patient positioning errors
or proton beam range uncertainties.3–8 If the setup and range
uncertainties are unaccounted for, dose to the tumor or OARs
can substantially differ from what is indicated in the treat-
ment plan. Different from x-ray treatment planning, the pro-
ton dose deviation can happen not only at the target
boundaries but also inside the target, making traditional plan-
ning target volume (PTV)-based optimization, which expands
the clinic target volume (CTV) by a safety margin, ineffective
for IMPT.9

Several approaches have been developed to address this
problem. Rather than a constant margin, a beam-specific
PTV10 is introduced, to vary the margin based on the field
and tissue property for passive scattering and single field
uniform dose IMPT (SFUD-IMPT). Nevertheless, this
approach is inapplicable to MFO-IMPT. A theoretically
appealing way to account for uncertainties was reported to
calculate the dose distribution under random perturbations
and optimizes the expectation value of the objective func-
tion.7,8 However, due to the large statistical sampling
required, the probabilistic approach is too slow for practical
use. An alternative probabilistic approach is analytical prob-
abilistic modeling (APM),11,12 which uses a Gaussian pencil
beam dose calculation algorithm to generate closed-form
propagation of probability distributions to quantify uncer-
tainty input for probabilistic optimization. APM is faster
because scenario-sampling is not required, but estimation of
the covariance requires nontrivial amount of computational
resource that increases the optimization time. Furthermore,
APM is incompatible with nonmodel-based pencil beam
dose calculation, for example, Monte Carlo, that is particu-
larly important in handling the lateral dose profile and tissue
heterogeneity in proton treatment planning. Coverage opti-
mized planning13 is also a probabilistic treatment planning-
based method, which uses dose coverage histogram criteria
to replace PTV margin and improves target dose coverage
against geometric uncertainties, for example, setup error.
Nonetheless, range uncertainty is not considered in this
method. Alternatively, Pflugfelder et al.14 proposed to use a
heterogeneity number to quantify lateral tissue heterogeneity
of single scanning spot, and incorporated it in the inverse
optimization to suppress the spots with a high heterogeneity
number. This empirical method only considers the effect of
tissue lateral heterogeneity to setup uncertainty without
accounting for the range uncertainties. This method later piv-
oted towards beam angle selection,15,16 a separate problem
from our current focus of robust scanning spot intensity
optimization.

Presently, a class of methods referred as “worst-case
robust optimization” is more commonly used to handle setup
and range uncertainties.2,7,17–26 Instead of considering all
possible variations, the worst-case method penalizes the max-
imal dose deviation for the estimated worst positioning and
range estimation errors, to ensure acceptable dose distribu-
tion in these cases. In practice, the worst-case approach has
reduced plan sensitivity to uncertainties, but on the other
hand increased computational cost. Furthermore, the worst
cases use generic estimation that may not be applicable to all
cases. The actual patient anatomical and range uncertainties
may still exceed the estimation, causing unexpected dosimet-
ric deviations.

In this work, we aim to overcome these limitations and
develop a novel mathematical framework to exploit the intri-
cate balance between the proton scanning spot distribution,
robustness, and dose conformality. The plan robustness is
incorporated as a sensitivity term in IMPT optimization,
which minimizes the dose deviation from ideal dose distribu-
tion and penalizes the combination of scanning spots with
high sensitivity.

2. MATERIALS AND METHODS

The sensitivity-based robust optimization problem is for-
mulated with a dose fidelity term and a robustness regulariza-
tion term. The details are described as follows.

2.A. Sensitivity analysis

The dose calculation matrix, or the dose influence
matrix, denoted as A, contains the vectorized dose infor-
mation delivered to the patient volume from scanning
spots of unit intensities. In this study, the position of
individual scanning spots is denoted by the location
of the Bragg peak in the patient volume. The sensitivity
of a spot is determined by the magnitude of dose distri-
bution for the perturbation due to patient position and
range variations. To make the plan more resilient to
changes, the spot position combinations with high sensi-
tivity are penalized. Spatial dose gradient, which is used
as a surrogate of spot sensitivity, is mathematically
described as follows.

As shown in Fig. 1, a laboratory coordinate (e1, e2, e3)
is firstly created with its origin at the isocenter. bi is the
vector representing the direction of ith beam, pointing
from the source to the isocenter. Because of the typically
long proton source-to-axis distance, the scanning pencil
beams from the same beam angle are nearly parallel. For
simplicity, all the scanning spots belonging to the same
beam share one bi vector. pj is a vector representing the
spatial position of scanning spot j, which points from
the isocenter to the Bragg peak position of spot j in the
patient. Then let aj (bi, pj) be the jth column in matrix A,
which represents the dose from the jth scanning spot in
the ith beam.
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The gradient of aj (bi, pj) with respect to pj is written as:

rpjajðbi; pjÞ:

If there are m elements (meaning m voxels in the patient
volume) in the vector aj(bi, pj), then rpjajðbi; pjÞ is a 3 9 m
matrix, with each row representing a directional derivative.

A beam’s eye view is created for each beam, as shown in
Fig. 1, denoted as (bi, ui, vi), while (ui, vi) is the plane per-
pendicular to bi. Therefore, the gradient along the beam
direction is:

hbi;rpjajðbi; pjÞi;

and the gradients orthogonal to beam direction are:

hui;rpjajðbi; pjÞi;

hvi;rpjajðbi; pjÞi:

The 〈�〉 operator stands for vector inner product. Each of
the directional gradients is a 1 9 m vector. The absolute
value of each component in the directional gradients, which
measures the magnitude of dose variation between neighbor-
hoods spots, is more useful in this framework. The definition
of directional gradient based on the variation between neigh-
boring spots can be intuitively understood as follows. If the
beam directions are nearly parallel to the interface of different
densities, which means high lateral tissue heterogeneity,
neighboring spots will then contribute dose to very different
voxels, resulting in a higher gradient and sensitivity value.

Our algorithm will then penalize more heavily on these spots
that are affected by higher lateral tissue heterogeneity to
improve plan robustness. We use the notation |x| to mean the
absolute value of each component of the vector x. The ele-
ment-wise absolute values of the three directional gradients
are written as:

hbi;rpjajðbi;pjÞi
��� ���; hui;rpjajðbi;pjÞi

��� ���;and hvi;rpjajðbi;pjÞi
��� ���:

Applying this operation to every column of the A matrix
(j = 1, . . ., n, i = 1, . . ., r, where n is the number of scanning
spots and r is the number of beams), we acquire three sensi-
tivity matrices: DAb, DAu, and DAv, which are formulated as:

DAb¼ hb1;rp1a1ðb1;p1Þi
T�� ��; . . .; hbr;rpnanðbr;pnÞi

T�� ��� �
;

DAu¼ hu1;rp1a1 b1;p1ð ÞiT
�� ��; . . .; ur;rpnan br;pnð ÞiT

�� ��� �
;

DAv¼ hv1;rp1a1 b1;p1ð ÞiT
�� ��; . . .; hvr;rpnan br;pnð ÞiT

�� ��� � :

The three matrices have a size of m � n. DAb evaluates
the dose sensitivity level at each element from each scanning
spot along longitudinal direction (beam direction), and DAu

and DAv both evaluate the lateral sensitivity (perpendicular to
beam direction). In this study, only DAb and DAu are used for
optimization in the following sections.

2.B. Problem formation

As mentioned before, the spots are penalized based on
their sensitivities. With the formation of sensitivity matrices
along the beam direction and perpendicular to the beam
direction, an intuitive approach is to penalize the L2,2-norm
of DAkx; k 2 b; uf gð Þ, which is formulated as:

minimize
x

CðAxÞ þ kb DAbxk k22þku DAuxk k22;

subject to x� 0;
(1)

where x is the optimization variable representing the scanning
spot intensities, Γ(Ax) is the dose fidelity term penalizing the
dose deviation from ideal dose distribution, and kb and ku are
the sensitivity regularization parameters. A common choice for
Γ(Ax) is the quadratic loss function, which is written as:

CðAxÞ ¼
X
q2T

wqkðlq � AqxÞþk
2
2

þ
X
q2O

wqkðAqx� dqÞþk
2
2; (2)

where T is the dose-promoting structure set which usually
includes all the target volumes, and O is the dose-limiting
structure set which includes the OARs as well as the target
volumes if the hot spots need to be suppressed. Aq is the dose
calculation matrix of structure q. lq is the prescription dose to
qth target volume, dq is the prescribed maximal allowed dose
to mth structure, and wq is the structure-specific weighting
parameter.

FIG. 1. Diagram showing the coordinates and the vectors used in spot sensi-
tivity calculation. The beam divergence due to spot lateral distance to the
isocenter is exaggerated for illustration purposes. The actual proton system
source-to-axis distance is substantially greater than the target size and the
individual pencil beams in the same beam direction are nearly parallel.
[Color figure can be viewed at wileyonlinelibrary.com]
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However, the matrix DAk (k 2 {b, u}) has the same size
as the matrix A, which makes it time and memory expensive
to solve the problem (1). To improve the computational effi-
ciency, as suggested by Ungun et al.27, an L1-norm is used
as a surrogate of the L2, 2-norm and column clustering on
the sensitivity matrix is performed to reduce the problem
size. The problem is then formulated as:

minimize
x

CðAxÞ þ
X

k2fb;ug
kkkDAkxk1;

subject to x� 0;
(3)

The sum of the absolute values of the row vectors of DAb

and DAu is calculated and the corresponding transpose is
denoted as sb and su, respectively, which is called the sensi-
tivity vector. Then, the sensitivity-regularized robust opti-
mization problem is written as:

minimize
x

CðAxÞ þ
X

k2fb;ug
kksTk x;

subject to x� 0;
(4)

The initial large-scale matrix and vector multiplication in
problem (1) is reduced to a vector inner product, which is
computationally inexpensive. Moreover, problem (4) is a con-
vex problem and can be solved by FISTA, an accelerated
proximal gradient method known as the fast iterative shrink-
age-thresholding algorithm.28 The details of solving the prob-
lem (4) using FISTA are shown in Appendix A.

2.C. Evaluations

This proposed sensitivity-regularized (SenR) method was
tested on three patients with skull base tumor (SBT) and
three bilateral head-and-neck (H&N) patients, and was com-
pared against conventional PTV-based optimization method
(Conv) and voxel-wise worst-case optimization method
(WC).2,7,19,21 The voxel-wise worst-case optimization consid-
ered nine scenarios, including one nominal scenario and
eight worst-case scenarios. The eight worst-case scenarios
consist of (a) six setup uncertainty scenarios, by shifting the
beam isocenter by �3 mm along anteroposterior, superior-
inferior, and mediolateral directions; (b) two range uncer-
tainties scenarios, by scaling the computed tomography
(CT) number by �3%. The same quadratic cost function as
Eq. (2) is used for worst-case method and it is solved by a
first-order primal-dual algorithm known as Chambolle–Pock
algorithm.29 The details of solving this problem in our study
are shown in Appendix B.

For every patient, the same beam arrangement, scanning
spot population scheme, and dose calculation engine were
used for the three methods. The dose calculation for all scan-
ning spots covering the CTV and a 5-mm margin was per-
formed by matRad,30,31 a MATLAB-based three-dimensional
(3D) treatment planning toolkit. The dose calculation resolu-
tion was 2.59 2.59 2.5 mm. The target volume for worst-

case approach was chosen to be CTV, and the conventional
method was planned based on the PTV, which was a 3-mm
isotropic expansion of the CTV. Our sensitivity-regularized
method was applied to both CTV and PTV to investigate the
impact of margin in the new optimization framework. The
prescription dose, target volume and the beam arrangement
are shown in Table I.

The nominal dose distribution and robustness against
range uncertainties and setup uncertainties were both evalu-
ated. Under the nominal situation, The CTV homogeneity,
D95%, D98%, and maximum dose were evaluated. CTV
homogeneity is defined as D95%/D5%. The maximum dose
is defined as the dose to 2% of the structure volume, D2%,
following the recommendation by IRCU-83.32 The mean and
maximum doses for OARs were also evaluated. The robust-
ness was evaluated by the same nine scenarios used for worst-
case optimization. The dose volume histogram (DVH) band
plot, as well as the worst dose metrics occurred among uncer-
tainties scenarios, was used for analysis. In addition to the 3%
range uncertainty, a stress test was performed on the normal-
ized CTV volume covered by the 100% prescription dose for
the range estimation error varying from 0.5% to 4.0%, with
0.5% interval.

In order to assess the applicability of L1-norm and column
clustering, we compared the nominal dose and robustness of
plans for an SBT and a H&N patient using function (1),
which is sensitivity matrix based, and function (4), which is
sensitivity vector based.

Because matRad uses a pencil beam algorithm for dose
calculation, which can cause inaccurate sensitivity matrix
assessment in heterogeneous tissue, it was benchmarked
against goPMC,33–35 a graphics-processing unit (GPU)
OpenCL-based Monte Carlo (MC) proton dose calculation
engine for a selected beam in an SBT case. The same proton
phase space data were used for matRad and goPMC. 1 9 106

primary proton particles per pencil beam were simulated in
goPMC. The differences in sensitivity vectors from the two
engines were evaluated.

TABLE I. Prescription doses, CTV volumes, and the beam angles (gantry,
couch).

Case
Prescription

dose (GyRBE)
CTV volume

(cc) Beam angle

SBT #1 CTV63 63 86.07 (270, 0)
(90, 0)
(180, 0)
(60, 275)

CTV74 74 26.42

SBT #2 70 36.8

SBT #3 56 33.7

H&N #1 CTV54 54 141.29 (0,0)
(160,0)
(200,0)

CTV60 60 160.89

CTV63 63 68.00

H&N #2 CTV54 54 108.00

CTV60 60 127.26

H&N #3 CTV54 54 110.38

CTV60 60 98.94

CTV63 63 10.23
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3. RESULTS

Using an i7 6-core CPU desktop, the time spent on
dose calculation, sensitivity vector evaluation, and opti-
mization of each method are listed in Table II. Parallel
computing toolbox in Matlab was used to accelerate the
worst-case dose calculation and sensitivity evaluation. The
preparation time before optimization for the WC method
and the SenR method was comparable. During optimiza-
tion, the SenR method using PTV as target volume (SenR-
PTV) was as efficient as the Conv method, and it was on
average 22 times faster than the WC method. And the
SenR plans using CTV as target volume (SenR-CTV) were
faster than the SenR-PTV plans due to fewer voxels to
consider during optimization. One thing to note is that the
computational time comparison is based on the solvers
developed in our group, and the actual time of voxel-wise
worst-case method will be different in commercial treat-
ment planning system.

A sensitivity color map is shown in Fig. 2, which indi-
cates the intensity of each element in the sensitivity vector
and its spatial position, for a right lateral beam in the SBT
#2 patient case. The sensitivity values in both longitudinal
and lateral directions varied with the spot spatial positions.
The scanning spots located in the region with higher tissue
heterogeneity, like ones near the nasal cavity shown in the
CT image, tended to be more sensitive to perturbation. Fig-
ure 2 compares the sensitivity results calculated using
matRad and goPMC. The sensitivity distributions from the
two dose calculation engines visually agreed with each
other. The range of sensitivity values from matRad was
smaller than that from goPMC. Quantitatively, the average
difference of sensitivities between matRad and goPMC was
1.45% and 6.61% in the lateral and the longitudinal direc-
tions, respectively.

3.A. Nominal dose comparison

Figure 3 shows the nominal DVH comparison among the
WC plans, SenR-CTV plans, and SenR-PTV plans for
the SBT #1 patient and H&N #2 patient. Figure 4 compares
the nominal CTV statistics of each patient using different

optimization methods. Several OARs are selected for the
SBT and H&N sites, respectively, and the differences in their
mean and maximum doses between the SenR plans and the
WC plans are presented in Tables III and IV. Without uncer-
tainties, the Conv, WC, SenR-PTV, and SenR-CTV methods
achieved similar CTV dose coverage.

The SenR-CTV plans had better OAR sparing compared
with the WC plans. For example, in the SBT #1 patient,
SenR-CTV reduced the mean dose and max dose of the left
cochlea by 20.15 GyRBE and 18 GyRBE from WC, and the
dose sparing of other OARs were also improved except the
max dose to the right optical nerve. In the H&N #1 patient,
the doses to the parotids were also lower in SenR-CTV plan
compared with the WC plan. The average reduction of
[Dmean, Dmax] of the SenR-CTV plans from the WC plans
were [4.72, 3.38] GyRBE for the SBT cases and [2.54,
3.33] GyRBE for the H&N cases.

The overall OAR sparing of SenR-PTV was comparable
with the WC. For example, in the three SBT cases, the mean
and max brainstem doses were both reduced in SenR-PTV
relative to WC. SenR-PTV plans also achieved lower Dmax
to the left optical nerve and chiasm, but the Dmax to the left
cochlea in the SBT #2 patient was greater due to an overlap
with PTV. In the H&N case, a reduction of dose in the brain-
stem, larynx, and spinal cord was observed in the SenR-PTV
plans. The average reduction of [Dmean, Dmax] of the SenR-
PTV plans from the WC plans were of [2.00, 1.51] GyRBE
for the SBT cases, and [0.81, 0.80] GyRBE for the H&N
cases.

3.B. Robust analysis

The DVH bands of CTVs and selected OARs indicat-
ing the plan robustness with range and setup uncertainties
for the SBT #1 and the H&N #2 patients are shown in
Figs. 5 and 6, where the solid lines in each plot are the
DVHs of the nominal case, and the bands bound the
worst-case distributions. A narrower band means greater
resilience to uncertainties. Qualitatively, both the SenR
approach and WC method improved the robustness of
CTVs and OARs from conventional PTV-based method
for the two disease sites.

TABLE II. Computational time comparison of the four plans of each patient.

Case

Pre-optimization time (s) Optimization runtime (s)

Nominal dose
calculation

Worst-case
dose calculation

Sensitivity
calculation Conv WC SenR-PTV SenR-CTV

SBT #1 41.87 106.3 129.8 75.5 2296.5 74.1 66.7

SBT #2 29.95 66.8 55.3 73.1 1070.6 73.4 73.0

SBT #3 28.22 75.5 44.7 76.0 909.5 75.1 59.9

H&N #1 210.01 638.1 408.6 129.7 2211.6 129.4 93.8

H&N #2 208.73 649.2 346.6 114.7 2477.0 105.4 80.9

H&N #3 174.32 546.6 408.6 121.5 3269.0 133.0 103.4
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FIG. 2. The Bragg peak position of the scanning spots from a right lateral beam, on a selected transverse plane of the SBT #2 patient, and the intensities of sensi-
tivities of these scanning spots shown in color map. The result from matRad is shown on the left and the result from goPMC on the right. The sensitivity perpen-
dicular (lateral) to the beam direction is in the top row and the sensitivity along beam direction (longitudinal) is in the bottom row. The red contour in the CT
image is CTV. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 3. Comparison of nominal DVHs for patients skull base tumor #1 and H&N #1 of the WC method (solid), SenR-CTV method (dotted), and SenR-PTV
method (dashed). [Color figure can be viewed at wileyonlinelibrary.com]
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With range uncertainties, similar or more compacted CTV
bands were observed in the SenR-PTV plans compared with
the WC plans. The SenR-CTV plans also resulted in narrow

CTV bands, but there was a slightly larger underdosage region
of CTV in these plans. The robustness against setup uncertain-
ties was similarly improved by SenR-PTV and SenR-CTV.

FIG. 4. Comparison of clinic target volume homogeneity, D98%, D95%, and Dmax for skull base tumor patients (top row) and H&N patients (bottom row)
under nominal situation. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE III. Organs at risk mean dose and max dose reduction of the SenR plans from the WC plans, for the skull base tumor (SBT) cases under nominal
situation.

SBT case

SenR-CTV — WC (GyRBE) SenR-PTV — WC (GyRBE)

Dmean Dmax Dmean Dmax

#1 #2 #3 #1 #2 #3 #1 #2 #3 #1 #2 #3

Left optical nerve �8.38 �4.34 �4.82 �3.50 �2.93 �1.06 �2.31 �4.95 +1.10 �1.50 �2.13 �0.65

Right optical nerve �4.51 �0.96 �9.87 +0.53 �4.20 �2.68 �0.71 �0.71 �2.04 +1.34 �1.00 +2.00

Chiasm �1.21 �8.92 �1.57 0.00 �4.20 �0.29 +2.06 �3.29 +0.54 �0.10 �8.00 �0.86

Brainstem �6.78 �3.60 �1.29 �1.94 �7.58 �3.65 �6.23 �2.54 �1.16 �2.36 �0.92 �2.73

Left cochlea �20.15 �3.45 0.00 �18.0 �1.00 0.00 �13.11 +6.23 0.00 �9.00 +11.40 0.00

Right cochlea �4.44 �0.63 0.00 �9.61 �0.80 0.00 �7.00 �2.01 0.00 �11.20 �1.44 0.00
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In addition to better target volume robustness, a
decrease in OAR sensitivity was observed in both the
SenR-PTV and SenR-CTV plans. For example, the DVH
bands of the optical nerves and optical chiasm in the SBT
#1 patient, and the left parotid in the H&N#2 patient are
narrower than that in Conv.

The lowest (worst) D95%, V95%, and V100% of each
CTV with range uncertainties and setup uncertainties were
also evaluated and plotted in Fig. 7. Compared with Conv
plans, the D95%, V95%, and V100% were improved by
SenR and WC. Overall SenR-PTV and WC achieved better
CTV dose metrics. On average, under range uncertainties, the
lowest [D95%, V95%, V100%] of CTV were increased from
[93.75%, 88.47%, 47.37%] in Conv, to [99.28%, 99.51%,
86.64%] in WC, [97.71%, 97.85%, 81.65%] in SenR-CTV,
and [98.77%, 99.30%, 85.12%] in SenR-PTV, respectively.
Under setup uncertainties, the average lowest [D95%, V95%,
V100%] of CTV were increased from [95.35%, 94.92%,
65.12%] in Conv, to [99.43%, 99.63%, 87.12%] in WC,
[96.97%, 97.13%, 77.86%] in SenR-CTV, and [98.21%,
98.34%, 83.88%] in SenR-PTV, respectively.

Figure 8 shows the V100% stress test results, where the
range estimation error was increased from 0% to 4%,
which is 1.0% outside of the expected worst case. V100%
degrades with increasing range estimation error but the
SenR-PTV method shows slower degradation and greater
robustness than WC.

The sensitivity regularization parameter tuning is demon-
strated for a SenR-PTV plan for H&N #2 by varying longitu-
dinal direction (kb) or lateral direction (ku) parameter while
fixing the structure weighting parameters. The worst D95%
of the CTV60 as a function of kb and ku is shown in
Fig. 9(a). Both the range robustness and setup robustness
were improved with kb and ku increasing from 0 but the
improvement plateaued or started to slowly reverse once the
two parameters reached certain values. The presence of pla-
teau region makes parameter selection repeatable. Under-
standably, ku and kb tunings have different effectiveness in
improving plan range robustness and setup robustness. Fig-
ures 9(b) and 9(c) show that the increase in ku and kb leads

to lower CTV heterogeneity and higher dose in some OARs.
In our study we choose approximately the smallest value of
ku and kb in the plateau region to improve robustness and
maintain dosimetry. For example, in this H&N #2 patient, ku
is chosen to be 1 and kb is chosen to be 1.2.

To study if the collapse of the sensitivity matrix to vector
in Eq. (3) and (4) would adversely impact the performance,
the plans using sensitivity vector regularization (SenVec)
and sensitivity matrix regularization (SenMat) were com-
pared. The plans were created using PTV as target volume.
For the two patient cases shown in Fig. 10, compared with
the SenMat plans, the SenVec plans had similar or slightly
better OAR sparing, and evidently superior robustness
against either range error or setup error. As expected, the
SenVec plans were two to three times faster to compute than
the SenMat plans.

3.C. Spot-level analysis

In order to better understand the mechanism of SenR
method, an analysis on scanning spot level is demonstrated
using the SBT #1 patient as example. The spot-level dose dif-
ference between Conv method and SenR-CTV method when
undershooting (+3% range uncertainties) happens is shown
in Fig. 11. In this analysis, a point of interest in the target,
which is inside an underdosing area when undershooting, is
found and the scanning spots located within a 2-cm radius
sphere of this cold spot are extracted. These scanning spots
from four different beam directions are the main contributors
to the dose of the point of interest. The total dose from these
local scanning spots is shown in Fig. 11(a), with the first row
being the transverse plane and the second row being the
sagittal plane. From left to right, each column represents the
Conv nominal, the Conv undershooting, SenR-CTV nominal
and SenR-CTV undershooting conditions, respectively. The
peak position of the dose distribution in the Conv (SenR)
nominal plan is marked P1�(P2), denoted as the crosshairs in
the first (last) two columns of images in Fig. 11. P1 and P2

are used as the reference points when comparing the dose
change when undershooting. For comparison, the isodose

TABLE IV. Organs at risks mean dose and max dose reduction of the SenR plans from the WC plans, for the H&N cases under nominal situation.

H&N case

SenR-CTV –WC (GyRBE) SenR-PTV –WC (GyRBE)

Dmean Dmax Dmean Dmax

#1 #2 #3 #1 #2 #3 #1 #2 #3 #1 #2 #3

Brainstem �0.45 �1.09 �0.21 �2.00 �4.75 �2.56 �0.08 �1.22 �0.13 �1.00 �8.27 �1.60

Constrictors �3.50 �3.17 �2.87 �10.60 �3.13 �1.24 �1.01 +0.50 +3.25 +3.70 +2.42 +3.21

Right submandibular gland +3.38 �15.98 +1.16 +0.04 �3.65 �1.15 +2.98 �0.58 �10.01 +0.36 �1.22 �1.45

Larynx �6.31 �1.88 �2.84 �11.68 �4.90 �7.49 �3.42 �0.78 �2.73 �4.07 �1.04 �6.29

Left parotid �3.80 �9.47 �1.15 �0.48 �2.10 �0.34 �0.76 �2.06 +1.58 �0.74 �1.07 +1.71

Right parotid �0.80 �0.66 �0.07 �3.08 �0.22 �0.69 +0.21 �0.83 +1.08 +3.40 �1.76 +3.89

Spinal cord �1.31 �1.08 �1.27 �3.29 �2.30 �4.29 �1.07 �0.68 �1.32 �1.50 �0.10 �5.39
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display is normalized to the P-point dose of the correspond-
ing nominal case without range error. When the range is over-
estimated, a 20% reduction in the P-point dose is resulted in
the Conv case. However, the high sensitivity combination is
quantified in the new optimization framework and correctly
penalized. As a result, to deliver dose to the same point of

interest, a different combination of spots is selected. When
the same undershooting happens, the P-point dose only drops
5% in the SenR plan. A closer examination of the scanning
spots distribution reveals why the SenR-optimized combina-
tion is more resilient to the range estimation error. Different
from the Conv approach that chooses spots that match their

FIG. 5. DVH bands of the skull base tumor #1 patient including two range uncertainties (left column) and six setup uncertainties (right column). The first row is
Conv plans, the second row is the WC plans, the third row is SenR-CTV plans, and the last row is the SenR-PTV plans. [Color figure can be viewed at wileyon
linelibrary.com]
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distal edges, in the SenR approach, spots are slightly mis-
matched. Spots from beam 1 and 4 contribute their proximal
edges to P and the spot from beam 3 contributes its lateral
edge. When the range is overestimated, the slightly undershot
spots from beam 1 and 4 would retract while the contribution
from beam 3 remains unchanged due to the smooth lateral
dose profile. This combination is equally resilient to range
underestimation due to the same reason that the dose to a

given point is contributed by a mixture of distal, lateral, and
proximal edges. The last two are not as sharp as the distal
edge and are thus more resilient to range estimation error.

4. DISCUSSION

Current proton treatment planning methods manage
robustness by performing optimization on a finite number of

FIG. 6. DVH bands of the H&N#2 patient including two range uncertainties (left column) and six setup uncertainties (right column). The first row is Conv plans,
the second row is the WC plans, the third row is SenR-CTV plans, and the last row is the SenR-PTV plans. [Color figure can be viewed at wileyonlinelibrary.com]
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hypothetical worst cases. A drawback for the existing
worst-case method is that it may be too conservative in cer-
tain cases, resulting in unacceptable dosimetric compro-
mise36 yet is inadequate for extreme case where the error
exceeds expectation. The uncertainties are sparsely sampled
in the worst-case approach, which is unprepared for position-
ing and range errors different from these sparsely sampled
cases. In comparison, in the SenR framework, robustness is

included as a linear regularization term that not only softens
the impact of robustness consideration but also allows flexi-
ble adjustment of the robustness to meet varying require-
ments. In the nominal cases where the uncertainties are low,
the dosimetric quality is better preserved. Due to the differ-
ences, SenR method may particularly benefit cases where the
uncertainties are difficult to accurately estimate, highly
heterogeneous in the same cohort, or variable over the

FIG. 7. The comparison of worst D95% (top row), worst V95% (second row), and worst V100% of the clinic target volumes as a percentage of prescription
doses, for every patient. Situation with only range uncertainty is shown on the left and situation with only setup uncertainty is shown on the right. [Color figure
can be viewed at wileyonlinelibrary.com]
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treatment course. Since the sensitivity is calculated as a gra-
dient of the spot dose distribution, our method does not
depend on a specific set of expected positioning or range
uncertainties, which is needed in the worst-case optimization.
This difference lends the flexibility of trading off the robust-
ness with dosimetry by adjusting the sensitivity term weight-
ing without needing to estimate the uncertainties explicitly.
This new robust optimization method is thus different from
previous approaches of adjusting the worst-case weights,19

using multicriteria optimization,22 and using the normalized
dose interval volume constraints.37

Another drawback of worst-case methods is that they are
computationally inefficient due to the time needed to opti-
mize a significantly larger optimization problem for all sce-
narios. The runtime of the SenR optimization is 22 times
shorter than that of the voxel-wise worst-case method exclud-
ing preoptimization calculation of the sensitivity matrix and
worst-case doses, and eight times shorter including

FIG. 8. The patient-averaged worst V100% of the three methods, when range uncertainty varies from 0.0% to 4.0%. [Color figure can be viewed at wileyonline
library.com]

FIG. 9. (a) The worst D95% of CTV60 in the H&N #2 patient, and its relationship with the lateral sensitivity parameter ku and longitudinal sensitivity parameter
kb. (b) The nominal DVH of the H&N #2 patient when ku = 0 (solid line), 1 (dotted line), 4 (dashed line). (c) The nominal DVH of the H&N #2 patient when
kb = 0 (solid line), 1 (dotted line), 4 (dashed line). [Color figure can be viewed at wileyonlinelibrary.com]
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preoptimization calculation, while achieving comparable
robustness in the hypothetical worst cases.

In this study, the SenR method is implemented on both
CTV and PTV. The SenR-PTV method achieves comparable
robustness towards the expected worst cases and OAR spar-
ing as the WC method. Sen-CTV attains superior OAR spar-
ing with a slight compromise in the CTV robustness while
avoiding the substantial degradation seen in the conventional
PTV plans. The different target volumes offer additional flex-
ibility in clinical practice for the trade-off between OAR spar-
ing and CTV coverage robustness. This is feasible also due to
the demonstrated fast SenR planning speed. As an additional
advantage, SenR is versatile and independent of the underly-
ing proton dose calculation algorithms, of which, a model-
based method and a Monte Carlo method were used showing
consistent results.

In the implemented SenR method, L2, 2-norm and the
sensitivity matrices were replaced by L1-norm and the
sensitivity vectors to improve the computational efficiency.
Interestingly, the replacement is not only faster but also

performs better for CTV robustness. A possible reason is
due to the presence of spots with large sensitivity to
uncertainties. L1-norm is forgiving to these outliers and
then more effectively regularizes most spots with moderate
sensitivities.

The proposed method is particularly effective for targets
in the heterogeneous environment where the sensitivity is
captured in the perturbation term. The effectiveness of the
regularized-sensitivity is highly dependent on the beam and
spot arrangement. As shown by the spot-level analysis,
instead of matching the distal edges, SenR tends to com-
bine distal, proximal and lateral edges of spots for
improved robustness. Figure 11 shows one of such possible
robust combinations and the new optimization framework
allows us to be efficient and globally find these combina-
tions. The importance of combining spots for both plan
robustness and conformality was discussed by Liu et al.2,38

One of the main contributions here is to describe the intri-
cate spot interdependence with a new mathematical model
that can be efficiently solved.

FIG. 10. Comparison of plans using sensitivity vector and sensitivity matrix regularization. The nominal DVH is shown in the first column, with SenMat in solid
line and SenVec in dotted line. The latter two columns show the DVH band of the clinic target volumes under the range uncertainty (middle column) and setup
uncertainty (last column). The skull base tumor #2 patient is shown in the top row and H&N #2 patient in the bottom row. [Color figure can be viewed at wileyon
linelibrary.com]
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The proposed method applies to scenarios where the same
location is covered by multiple beams. However, field-match-
ing may happen when different parts of the CTV are treated
by different beams. The proposed method may result in a

mismatch in the gradients at the field-matching lines that
leads to cold and hot spots with position and range uncertain-
ties. Further investigation is needed to understand and miti-
gate such dose heterogeneities.

(a)

(b)

FIG. 11. Spot-level analysis around a cold spot for the skull base tumor #1 patient when range undershooting. (a) The total dose from the local scanning spots
within the 2-cm radius sphere of the cold spot. The first row is the transverse plane and the second row is the sagittal plane. (b) The dose contribution of the local
spots from each beam direction. From left to right, each column represents the Conv nominal condition, Conv undershooting condition, SenR-CTV nominal
condition and SenR-CTV undershooting condition. [Color figure can be viewed at wileyonlinelibrary.com]
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The optimal spot combinations are likely beam orientation
dependent. We have previously developed a beam orientation
optimization framework for IMPT.39 In this study, fixed beam
orientations are used but both the SenR plan optimality and
robustness can be conceivably improved by unifying the two
optimization frameworks in future research.

5. CONCLUSIONS

We developed a novel computationally efficient robust
optimization method for IMPT. The robustness is calculated
as the spot sensitivity to both range and shift perturbations.
The dose fidelity term is then regularized by the sensitivity
term. The new SenR method offers the flexibility to balance
between the dosimetry and the robustness. In the stress test,
SenR is shown to be resilient to greater than expected uncer-
tainties. These advantages in combination with its fast com-
putation time make it a viable candidate for clinical IMPT
planning.
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APPENDIX A

To solve an optimization problem using FISTA, the prob-
lem needs to be formulated in the following form:

minimize
x

f ðxÞ þ gðxÞ; (A1)

where f is a smooth convex function, which is continuously
differentiable with Lipschitz continuous gradient (∇f); g is a
function which is possibly nonsmooth, but has a proximal
operator that can be evaluated efficiently. The proximal oper-
ator with step size t > 0 for function g is defined by:

proxtgðxÞ ¼ argmin
y

gðyÞ þ 1
2t
ky� xk22: (A2)

Once the optimization problem is formulated as in
Eq. (A1) and the conditions for f(x) and g(x) are satisfied,
FISTA is relatively straightforward to implement as it only
involves elementary matrix-vector arithmetic operations and
inexpensive proximal operator evaluations. FISTA with line
search is used in this work, which follows the steps shown in
Table AI

In the problem (4), the objective function can be rewritten
in the following format:

f ðxÞ ¼ CðAxÞ þ
X

k2fb;ug
kksTk x

gðxÞ ¼ I� 0ðxÞ
; (A3)

where I≥0(x) is an indicator function on non-negative orthant,
with its ith element equal to 0 if xi ≥ 0 and ∞ otherwise.

For the quadratic fidelity formulation, the gradient of f is
given by:

rf ðxÞ ¼ ATrCðAxÞ
þ

X
k2fb;ug

kksk ¼
X
q2T

wqA
T
q ðlq � AqxÞþ

þ
X
q2O

wqA
T
q ðAqðxÞ � dqÞþ þ

X
k2fb;ug

kksk;

(A4)

The proximal operator of the function g is:

proxtgðxÞ ¼ P� 0ðxÞ; (A5)

where P≥0(x) is the projection of x onto non-negative
orthant.

Using these formulas for the gradient of the function f
and the proximal operator of function g, the sensitivity
regularization robust problem is readily solved using
FISTA.

APPENDIX B

The set of considered error scenarios is denoted as K,
and the dose calculation matrix of each scenario is
Ak; k 2 K. The voxel-wise worst-case optimization with

TABLE AI. Pseudo code for FISTAwith line search.
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quadratic cost function is formulated as the following
problem:

minimize
x

X
i2T

Wi li �min
k2K

faTi;kxg
� �2

þ

þ
X
i2O

wi max
k2K

faTi;kxg � di

� �2

þ

subject to x� 0;

(B1)

where aTi;k is ith row in the Ak matrix, aTi;kx is the actual dose
delivered to voxel i in the scenario k, mink2KfaTi;kxg is the
minimum dose to voxel i across all scenarios, and
maxk2KfaTi;kxg is the maximum dose to voxel i across all sce-
narios. The problem consists of two components. The first
one-sided quadratic function is the dose-promoting function,
which encourages the scenario-wise minimum dose of each
voxel i in the target volume (T ) to be no smaller than the pre-
scription dose li. And the second one-sided quadratic func-
tion is the dose-limiting function, which encourages the
scenario-wise maximum dose of each voxel i in the target vol-
ume and OARs to be no larger than the dose di. The dose-
limiting structure set is denoted as O. wi is the structure
weighting parameter.

The problem (B1) is equivalent to the following problem:

minimize
x

X
i2T [O

wit
2
i ;

subject to x� 0;

ti � li � aTi;kx; 8i 2 T ; k 2 K;

ti � aTi;kx� di; 8i 2 O; k 2 K

: (B2)

Before further steps, let us first define two vectors u and t,
and a matrix Bk.

u is a vector whose ith component is:

ui ¼
li; if i 2 T ,
�di; if i 2 O:

�

And t and Bk are defined as:

t ¼ tT
tO

� 	

Bk ¼
Ak
T IT 0

Ak
O 0 IO

� 	

where tT is a concatenation of all ti; i 2 T , tO is a concatena-
tion of all ti; i 2 O, and Ak

T and Ak
O represent the dose calcu-

lation matrix in scenario k of the voxel set T and O,
respectively. IT and IO are identity matrices.

Then the latter two constraints in problem (B2) can be
expressed in matrix notation as:

Bk
x
t

� 	
� u; 8k 2 K

Let B be a matrix that concatenates all Bk; k 2 K, and ~u be
a vector that repeats u for K times. That is:

B ¼

B1

B2

..

.

BK

2
6664

3
7775; ~u ¼

u
u
..
.

u

2
664

3
775

Therefore, the problem (B2) can be reformulated as:

minimize
x;t

X
i2T [O

wit
2
1

subject to x� 0;

B
x

t

� 	
� ~u

: (B3)

Let us define a new optimization variable z as

z ¼ x
t

� 	
:

The optimization problem (B3) is equivalent to the follow-
ing problem:

minimize
z

f ðzÞ þ gðBzÞ; (B4)

where the function f and function g are defined as:

f ðzÞ ¼
X

i2T [O
wit

2
i þ I� 0ðxÞ;

gðyÞ ¼ I� ~uðyÞ
;

Here, I≥0(x) is the indicator function on non-negative
orthant, and I� ~uðyÞ is also an indicator function with its ith
element equal to 0 if if~ui � 0 and ∞ otherwise.

The proximal operator of the function g can be easily
derived, which is:

proxsgðyÞ ¼ P� ~uðyÞ;

where P is the projection operator. Its conjugate is

proxsg� ðyÞ ¼ y� sP� ~uð
y
s
Þ

The calculation of the proximal operator of the function f
follows the separate sum rule.40 If a new function h is defined
as:

hðtiÞ ¼ wit
2
i

The proximal operator of h is:

proxrhðtiÞ ¼
ti

1þ 2rwi

Then the proximal operator of the function f is:

proxrf ðzÞ ¼

proxrI � 0
ðxÞ

proxrhðt1Þ
..
.

proxrhðtT [OÞ

2
6664

3
7775
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After knowing the proximal operator of the function f and
g, the problem (B4) can be solved by a first order primal-dual
algorithm known as Chambolle–Pock algorithm.29 A Cham-
bolle–Pock algorithm with line search is used in this work,
which follows the steps shown in Table BI.

a)Author to whom correspondence should be addressed. Electronic mail:
ksheng@mednet.ucla.edu.
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