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Dissertation Abstract 

 

Using Remote Sensing to Monitor Water Quality in Climate and Wildfire Stressed 

California Reservoirs 

 

By 

Brittany Lopez Barreto 

 

Doctor of Philosophy, Environmental Systems 

University of California, Merced, 2024 

Dr. Erin Hestir, Graduate Advisor 

 

The increasing frequency of cyanobacterial harmful algal blooms (cyanoHABs) in 

California’s inland waters poses significant risks to public health and recreational water 

use. Wildfires, by increasing nutrient runoff and altering water temperature and light 

conditions, may exacerbate the occurrence of cyanoHABs. As wildfires become more 

frequent and severe in California, understanding their effects on water quality is essential. 

This dissertation leverages satellite remote sensing (SRS) to monitor cyanoHABs, 

quantify their temporal and spatial trends on a large scale, and explore the role of wildfire 

as a driver of cyanoHABs across the entire state of California. SRS provides temporally 

dense and spatially explicit data, which is crucial for timely cyanotoxin risk assessments 

and could enhance traditional in-situ sampling methods. Chapter 1 provides a framework 

for evaluating the public health utility of SRS for enhancing global cyanotoxin 

monitoring, using San Luis Reservoir as a case study. The findings indicate that public 

health alerts derived from SRS and World Health Organization guidelines correspond 

highly with public health advisories issued by state authorities based on laboratory toxin 

analyses. Chapter 2 expands on these findings with four additional lakes, demonstrating 

that point-based data outperforms lake-wide summaries. Lake-wide approaches offer a 

broader perspective but often underestimate the true variability and potential hotspots 

within a lake. This chapter also identified lakes with persistent high advisory levels of 

cyanoHABs across the state (74 lakes in total). Chapter 3 investigates the relationship 

between wildfires and cyanoHABs across California, finding a reduction in differences 

between burned and unburned lakes from 2016 to 2022, along with increased bloom 

occurrences. Although most sites didn't show a significant post-fire increase in 

cyanobacteria alerts, those that did often saw increases, with some recovering by the 

second year. The findings from this dissertation underscore the need for more extensive 

studies and long-term monitoring to address the impacts of changing climate and 

wildfires on water quality and public health.
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Chapter 1: Introduction 

Monitoring and researching cyanobacteria is of paramount importance due to their 

significant implications for public health, ecosystem integrity, and water resource 

management. Cyanobacteria can produce toxins (Smayda, 1997; Stumpf & Tomlinson, 

2007), creating cyanobacterial harmful algal blooms (cyanoHABs), that pose serious 

health risks to humans and animals, including liver damage, neurotoxicity, and 

gastrointestinal illness (Erdner et al., 2008; Backer et al., 2013). These blooms can also 

disrupt aquatic ecosystems by depleting oxygen levels, causing fish kills, and altering 

food webs (Paerl et al., 2011). In recreational waters, cyanoHABs can lead to beach 

closures and economic losses for communities dependent on tourism (Hoagland et al., 

2002; Stroming et al., 2020) and for individual medical costs (DeFlorio‐Barker et al., 

2018; Stroming et al., 2020). Therefore, understanding the dynamics of these blooms, 

their triggers, and their impacts is essential for protecting public health and maintaining 

the ecological balance of aquatic environments. 

  

The urgency of monitoring cyanobacteria is heightened by the increasing frequency and 

intensity of climate change-induced phenomena, such as wildfires, droughts, and extreme 

weather events (Gámez et al., 2019; de Barroso et al., 2018; Lehman et al., 2017; García-

Prieto et al., 2012). Wildfires, for instance, can significantly alter watershed dynamics by 

increasing nutrient runoff, which in turn fuels cyanoHABs (Neary et al., 2005; Sheridan 

et al., 2007; Emelko et al., 2011). Elevated temperatures and altered precipitation patterns 

associated with climate change can further exacerbate bloom conditions (Smith et al., 

2009; Bladon et al., 2014), creating a feedback loop that intensifies the frequency and 

severity of blooms. Consequently, it is crucial to integrate climate change projections into 

cyanobacteria research to predict future bloom scenarios and develop adaptive 

management strategies. 

  

Remote sensing technology offers a powerful tool to enhance the monitoring and 

management of cyanobacteria in the context of these environmental changes. Satellite 

remote sensing (SRS) enables the continuous, large-scale observation of water bodies, 

providing timely and spatially comprehensive data on bloom dynamics (Urquhart et al., 

2017; Coffer et al., 2021). This technology can detect cyanobacteria changes in presence 

and intensity (Lunetta et al., 2015; Ruiz‐Verdú et al., 2008; Wynne et al., 2008), allowing 

for early warning systems and more accurate risk assessments. The integration of SRS 

with traditional in-situ sampling can improve the precision and reliability of monitoring 

programs, offering a cost-effective solution for covering vast and remote areas that are 

otherwise difficult to access (Urquhart et al., 2017; Schaeffer et al., 2022). By leveraging 

remote sensing, researchers and policymakers can better understand the spatial and 

temporal patterns of cyanoHABs, implement more effective intervention measures, and 

ultimately protect public health and aquatic ecosystems from the growing threats posed 

by climate change and wildfires.  

 



 

     

19 

Chapter 1 is a case study in San Luis Reservoir, a key infrastructure in California’s 

water infrastructure, to determine if using SRS-derived chlorophyll-a (chl-a) and/or 

cyanobacteria as proxies for cyanotoxins. Chl-a is a common water quality metric, unlike 

cyanobacteria and cyanotoxins, correlated with cyanobacteria. The World Health 

Organization (WHO) recently updated their cyanoHAB guidance values (GVs) to be 

based on chl-a concentration, enabling widespread monitoring using chl-a proxies. We 

used Sentinel-2 (S2) and Sentinel-3 (S3) to map chl-a and cyanobacteria, classifying chl-

a values according to WHO GVs, and compared them to cyanotoxin advisories from the 

California Department of Water Resources (DWR) for 2016 to 2022. We found high 

agreement rates between DWR advisories and SRS, with S3-derived cyanobacteria 

slightly outperforming chl-a (83% vs 79%). SRS-based chl-a GVs can serve as early 

indicators for exposure advisories and triggers for in situ sampling, improving public 

health warnings and filling data gaps with greater spatial information than in-situ 

measurements alone. 

  

Chapter 2 expands the work and findings from Chapter 3 with an additional four lakes 

owned by the DWR for 2016 to 2023. This work further supports the use of SRS-derived 

cyanobacteria to use as a proxy for cyanotoxins since there was a strong agreement 

(overall accuracy = 72% and balanced accuracy = 80%) across multiple lakes spanning 

diverse climates and ecosystems. Point-based and lake-wide cyanobacteria summaries 

were compared against cyanotoxins to test the effectiveness of either method. Both 

measures provide reasonable agreement, however point-based performed better, 

demonstrating a high accuracy in detecting localized blooms. Because the rates of 

agreement did vary site-by-site, in-situ data should be still used to help establish a better 

comprehension of the toxicity rates of the lakes. From these reasonable results, we did a 

statewide assessment of the frequency of cyanoHAB alerts for lakes resolvable from 

SRS. Of the 76 number of lakes, eight of them were frequently in exceedance (>25%) of 

WHO levels for cyanobacteria and primarily located in Southern California.  

  

Chapter 3 investigates the effect of wildfires on cyanoHABs for the same statewide 

resolvable lakes used in Chapter 2. This chapter includes an earlier time period, 2008 to 

2012, in our study compared to the previous chapters. From 2008 to 2011, cyanoHAB 

alerts were generally less frequent, with 35 lakes showing no cyanobacteria levels above 

the WHO99 guideline values. However, from 2016 to 2022, there was a noticeable 

increase in both the number and size of alerts, with only eight lakes showing no signs of 

cyanoHAB alerts, indicating more frequent and widespread cyanobacteria blooms across 

the state. Findings proved that lakes with wildfires in their watersheds had fewer 

cyanoHAB alerts than those that remain unburned, although statistically significant, the 

differences were relatively small. The majority of lakes analyzed for differences in 

cyanobacteria alerts before and after wildfires showed no significant change. In the first 

year post-fire, seven lakes showed a significant increase in cyanoHAB alerts, while three 

decreased. Two years post-fire, eleven lakes had significant increases in alerts, and all 

sites that previously decreased recovered. Nine lakes shifted between significant and non-

significant change in cyanoHAB alerts between both periods. Given the large-scale 

nature of this study, further research is necessary to disentangle the specific contributions 
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of wildfire activity, climate change, and land use changes to improve the understanding 

of cyanoHABs and wildfire. This research underscores the vital role of remote sensing in 

monitoring and mitigating the ecological impacts of wildfires on water quality. 
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Abstract:  

Cyanobacterial harmful algal blooms (cyanoHABs) can harm people, animals, and affect 

consumptive and recreational use of inland waters. Monitoring cyanoHABs is often 

limited. However, chlorophyll-a (chl-a) is a common water quality metric and has been 

shown to have a relationship with cyanobacteria. The World Health Organization (WHO) 

recently updated their previous 1999 cyanoHAB guidance values (GVs) to be more 

practical by basing the GVs on chl-a concentration rather than cyanobacterial counts. 

This creates an opportunity for widespread cyanoHAB monitoring based on chl-a 

proxies, with satellite remote sensing (SRS) being a potentially powerful tool. We used 

Sentinel-2 (S2) and Sentinel-3 (S3) to map chl-a and cyanobacteria, respectively, 

classified chl-a values according to WHO GVs, and then compared them to cyanotoxin 

advisories issued by the California Department of Water Resources (DWR) at San Luis 

Reservoir, key infrastructure in California’s water system. We found reasonably high 

rates of total agreement between advisories by DWR and SRS, however rates of 

agreement varied for S2 based on algorithm. Total agreement was 83% for S3, and 52-

79% for S2. False positive and false negative rates for S3 were 12% and 23%, 

respectively. S2 had 12-80% false positive rate and 0-38% false negative rate, depending 

on algorithm. Using SRS-based chl-a GVs as an early indicator for possible exposure 

advisories and as a trigger for in-situ sampling may be effective to improve public health 

warnings. Implementing SRS for cyanoHAB monitoring could fill temporal data gaps 

and provide greater spatial information not available from in-situ measurements alone.  
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2.1 Introduction 

Harmful algal blooms (HABs) are defined as an increase in phytoplankton concentration 

that has an adverse impact on aquatic environments and/or people. When cyanobacteria, 

also known as blue-green algae, produce HABs, human and wildlife health are threatened 

because cyanobacteria often produce toxins (Smayda, 1997; Stumpf and Tomlinson, 

2007). Freshwater HABs occur worldwide and acute exposure to the cyanotoxins created 

by cyanobacteria HAB events (cyanoHABs) can lead to gastrointestinal illness. Chronic 

exposure to cyanotoxins can lead to liver damage, and recreational exposure can result in 

respiratory and skin irritation (Erdner et al., 2008). Wildlife are also affected by exposure 

to toxins released during blooms that can lead to illness or death (Backer et al., 2013). 

Subsequent hypoxia in the water body following HABs may contribute to fish kills and 

other detrimental ecosystem effects (Paerl et al., 2011). A major goal of water 

management and public health authorities is to monitor and eventually forecast 

cyanoHABs at local, regional, national, and global scales to inform and protect public 

health (Schaeffer et al., 2018; Stroming et al., 2020). 

  

Because of the human health concerns posed by cyanotoxins, the World Health 

Organization (WHO) has issued guidance on exposure to cyanoHABs. Until recently, a 

commonly used method was based on cell counts. Using a microscope, an analyst can 

directly assess the presence of cyanobacteria by counting the number of cells (Sklenar, 

2016). While it is a relatively straightforward procedure, accurate quantification is time 

consuming and requires careful quality control (Chorus and Bartram, 1999). Because of 

the laborious and costly nature of this approach, other methods have been suggested by 

the WHO, such as using chlorophyll-a (chl-a) as a proxy for water bodies where blooms 

are dominated by cyanobacteria.  

 

In the United States, various state and regional authorities also have guidance for public 

health exposure and warnings for drinking water reservoirs and recreational water bodies 

impacted by HABs. For example, in California (CA), the Department of Water Resources 

(DWR) is the responsible authority for monitoring HABs at key water intake structures, 

and issues guidance based on the concentration of four specific cyanotoxins: 

microcystins, saxitoxins, cylindrospermopsin, and anatoxin-a. The toxin concentrations 

are measured in the laboratory using analytical biochemistry assays (typically via 

enzyme-linked immunosorbent assay, ELISA,  

(Sklenar, 2016)). The voluntary guidance relies on the science presented in the California 

Office of Environmental Health Hazard Assessment’s (OEHHA) risk assessment for 

microcystin, anatoxin-a and cylindrospermopsin (OEHHA, 2012). The trigger level of 0.8 

μg/L microcystin prompts increased monitoring and the placement of a caution sign that 

advises people, pets and livestock be kept away from the water and scum. A trigger 

warning of 6 μg/L microcystins prompts a warning stating that swimming is not 

recommended, and that pets and livestock should be kept away from the water. Both of 

OEHHA’s action levels are based on the short-term rat ecotoxicology study by Heinze 

(1999). The WHO (1999) suggests a concentration of 20 μg/L microcystin as a warning 
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level for the protection of human health based on the sub-chronic mouse study by Fawell 

et al. (1994; 1999a).  

 

In recognition of the challenges associated with toxin monitoring, including access to 

specialized equipment, many studies have either used or promoted the use of other water 

quality variables that are much easier to measure (e.g., chlorophyll-a) as a proxy for 

potential toxin exposure (Chorus and Bartram, 1999; Hunter et al., 2009; Tebbs et al., 

2013; Stumpf et al., 2016). The WHO has recently changed its guidance on public health 

warnings for exposure to toxins from cyanoHABs (Chorus and Welker, 2021), 

specifically linking chl-a to cyanotoxins in water bodies known to have cyanobacteria 

(Table 1). This has simplified monitoring for potential public exposure because chl-a is a 

readily measured water quality variable; it is easily monitored from a variety of 

accessible technologies, including laboratory-based spectrophotometry or fluorometry of 

water samples (Arvola, 1981; Johan et al., 2014;  Basak et al., 2021), in-situ optical 

fluorometry instruments (Campbell et al., 1998; Stirbet et al., 2019), and increasingly, 

satellite remote sensing (SRS) (Stumpf and Tomlinson, 2007; Urquhart et al., 2017; 

O’Reilly and Werdell, 2019; Seegers et al., 2021; Gons et al., 2012; Moses et al., 2012).  

 

Of the measurement technologies available to measure chl-a, SRS offers unique 

capabilities: it provides continuous spatial coverage over large areas with systematic, 

repeated visits that can be collated into a time series. This can enable better 

understanding of spatial and temporal patterns of surface water quality. Chl-a has been 

successfully measured from satellites for decades (Gitelson, 1992; Wynne et al., 2008, 

2010), and has been used to support detection of HABs (Anderson, 2009; Kutser et al., 

2006; Dekker et al., 2018; Papenfus et al., 2020). Of the currently operational Earth 

observing satellites, the European Space Agency’s (ESA) Sentinel-2 (S2) provides one of 

the best combinations of spatial, temporal, and spectral coverage for chl-a for inland 

waters (Bramich et al., 2021). S2 is a constellation of two satellites, Sentinel-2A and 

Sentinel-2B. Each has a 10-day repeating orbit and combined create a revisit time of 5-

days over an area. Each S2 satellite carries a MultiSpectral Instrument (MSI) with 13 

spectral bands that measure across the visible to shortwave infrared region. The spatial 

resolution of this satellite varies (10, 20 and 60-meters) depending on the band. S2’s 

“red-edge” bands (measuring within the visible red and near infrared) are well suited to 

chl-a detection by taking advantage of the spectral peak phytoplankton have near 700 nm. 

Spectral coverage in this range is beneficial for aquatic environments since colored 

dissolved organic matter (CDOM) and non-algal particles (NAP) can confound 

algorithms in shorter wavelength visible bands (Bramich et al., 2019, Gitelson et al., 

1992, Gitelson et al., 2008). 

 

Cyanobacteria contains a specific pigment, phycocyanin, which has an absorption 

maximum near 620-nm that allows for successful cyanobacteria estimation from some 

satellite sensors (Ruiz-Verdú et al., 2008; Wynne et al., 2008; Lunetta et al., 2015). 

Unfortunately, few current and operational satellites have the spectral resolution required 

to detect the phycocyanin absorption feature. Envisat’s MERIS (Medium Resolution 

Imaging Spectrometer) was designed for aquatic targets and was used for cyanobacteria 
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estimation from 2002-2012, when it was decommissioned. Sentinel-3’s (S3) Ocean and 

Land Colour Instrument was launched in 2016 and has the spectral bands to detect 

phycocyanin and enable estimates of cyanobacteria. S3 currently underpins an 

operational cyanoHABs monitoring system developed through a multi-agency effort led 

by the Environmental Protection Agency (EPA), called the Cyanobacteria Assessment 

Network (CyAN). Both MERIS and Sentinel-3 have suitable spectral resolution and 

frequent revisit time (1-2 days) that make them attractive for cyanoHAB monitoring, but 

their spatial resolution is limited (300-m x 300-m pixels).   

 

The use of chl-a and cyanobacteria pigments as reasonable proxies for toxin monitoring 

has been demonstrated by several studies across a range of different water bodies. 

Matthews et al. (2014) used chl-a products from the MERIS sensor to demonstrate the 

ability to identify cyanobacteria-dominated blooms in one marine setting and, later, this 

was extended to three eutrophic reservoirs in South Africa (Matthews and Bernard, 

2015). In Tomlinson et al. (2016), they used the Cyanobacteria Index (CI) to track HABs 

across lakes in Florida using MERIS, and Seegers et al (2021) expanded this effort across 

the United States. The relationship of chl-a and cyanobacteria has also been shown using 

spectrophotometry (Randolph et al., 2008; Sendersky et al., 2017).  

 

The use of proxies is not without its limitations, however. The relationship between 

pigments such as chl-a and toxins can vary over time based on the dynamics of bloom 

formation and as species composition and dominance varies (Kudela et al., 2015). For 

example, Stumpf et al. (2016) showed that SRS of chl-a and phycocyanin can be used to 

estimate cyanobacterial toxins if a model is established between measured pigments and 

toxins. They found that a relationship can remain constant for days to weeks in a lake, but 

over longer periods the relationship can weaken and may lead to large errors. 

Furthermore, just because cyanobacteria are present does not mean that they are 

necessarily toxin producing (Carmichael, 2001) and cyanotoxins do not have any 

optically detectable characteristics, which limits monitoring. The United States 2007 

National Lakes Assessment reported that detected or high chl-a rates does not always 

lead to cyanoHABs; they found that only 27% of cases that indicated a recreational WHO 

risk through cyanobacterial abundance, microcystin or chl-a had any actual cyanotoxin 

risk (Loftin et al., 2016).  

 

Given the variability in SRS of chl-a and cyanobacteria as a proxy for assessing 

cyanotoxin risk, there remains a need to better quantify the uncertainty of proxies relative 

to public health advisory levels. The objective of this study is to evaluate SRS-based chl-

a and cyanobacteria proxies for cyanotoxin health advisories using a major multi-use 

reservoir in California’s water system, San Luis Reservoir (SLR), as a case study. This 

study utilizes data from ongoing toxin monitoring conducted by the DWR to quantify the 

agreement between DWR toxin-based public health advisories and the new 2021 WHO 

(WHO21) chl-a based guideline values when applied to both field samples and SRS of 

chl-a from the S2 satellite sensors. We further evaluate the agreement between DWR 

advisories and the previous 1999 WHO (WHO99) cyanobacteria cell-count based 

guidance applied to the CyAN satellite product derived from the S3 satellite sensors.  
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2.2 Materials and Methods 

2.2.1 Study Site 

 
Figure 2-1. San Luis Reservoir in Los Banos, California, United States. Blue points are 

approximate locations where the California Department of Water Resources (DWR) 

measure cyanotoxins. 

SLR is in the western San Joaquin Valley in CA and was created by the Bureau of 

Reclamation (Figure 1). It is the fifth largest reservoir in CA, the largest off-stream 

reservoir in the United States and is a key part of the State Water Project (SWP) and 

federal Central Valley Project (CVP) (United States Bureau of Reclamation, 2023). SLR 

is approximately 14-km from north to south and 8-km from west to east when full. The 

water level has an elevation height range of 105-165 meters and the reservoir can hold 

approximately 2.5 km3 of water (United States Bureau of Reclamation, 2023). The SWP 

is a water storage and delivery system that delivers water to about 27 million Californians 

and 750,000 acres of farmland and business throughout the state (California DWR, 

2022), while the CVP serves another 2.5 million people and delivers water to 

approximately 3 million acres of the state’s farms (United States Bureau of Reclamation, 

2023). Water from SLR also serves the Santa Clara Valley Water District in the Southern 

San Francisco Bay Area, serving 15 cities with over 2 million residents (Santa Clara 

Valley Water, 2023). Most SLR water inflow is from man-made aqueducts which are 

supplied by northern California rivers. This reservoir grants flexibility for both water 

projects since it allows for state and federal water storage when there is excess winter or 
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spring flows from the Sacramento-San Joaquin Delta. SLR is also a popular destination 

for recreational fishing, boating, and swimming for locals. 

 

Summers at SLR can see temperatures as high as 110°F (43°C) and winters as low as 

32°F (0°C). The warm, low-pressure atmospheric conditions in the Central Valley brings 

cool ocean air from the Pacific Ocean that then produces strong wind and gust conditions 

that level off in the late afternoon. High winds tend to break apart thick mats of algae, 

limiting surface bloom formation. However, the high onshore winds at SLR mixes the 

water column leading to low stratification (Kraus et al., 2011), mobilizing deeper 

nutrients. These strong winds can lead to high temporal and spatial variability of blooms 

across the reservoir (Binding et al., 2018). Boat use closures are frequent due to high 

winds, which heavily impact monitoring within the reservoir. Algal blooms have been an 

increasing concern for SLR managers; the DWR has made multiple public 

announcements regarding dangerous toxin levels in recent years (DWR, 2022). SLR is a 

good candidate to evaluate chl-a as a proxy for cyanotoxin estimation based on the new 

WHO21 guideline values because of the well documented presence of cyanotoxins. 

2.2 Toxin Monitoring Data 

The DWR has conducted cyanotoxin monitoring at SLR since 2013. The DWR collects 

one surface water grab sample off the dock in SLR from Basalt Boat Launch or Dinosaur 

Point (dependent on road closures), and from a raw water tap from the upper intake of the 

Pacheco Pumping Plant (Figure 1). For this study, we used the surface water grab 

samples collected at Basalt Boat Launch to compare with our field data and SRS. While 

the DWR has collected cyanotoxins since 2013, the sampling was sparse (5-8 samples per 

year from 2013-2015). For our analysis, we used data from 2016-2022 due to the larger 

DWR dataset during these years and coincident with the launch of Sentinel-2 in mid-

2015. 

 

The DWR begins to officially sample when there is a bloom sighting by the local rangers 

or if there is a notification made by the public. Not all initial visits have any toxin levels 

that trigger an advisory warning when the sampling period begins. On average, across the 

period of study, advisories were triggered on the first to third visit – beginning around 

May and lasting through October of each year. Monitoring can extend past October and is 

usually conducted until cyanotoxin levels falls below caution levels for two consecutive 

testing dates. Microcystin has been the only cyanotoxin detected during the period of 

record, except for a detection of anatoxin-a and cylindrospermopsin in August of 2022. 

 

The DWR prepares their water samples by ultrasonication, where samples are inverted 

for 60 seconds to mix, then a subset is removed for algal identification purposes. The 

remaining samples are then sonicated to release toxins and prepared for analyses. In 

2019, samples were freeze-thawed instead of sonicated. Sonication recommenced in 2020 

(CA DWR, 2023). Toxin detection is performed using Enzyme-Linked Immunosorbent 

Assay (ELISA) techniques (EPA, 2023). The DWR uses the microcystins/nodularins 

(ADDA) kit, which is designed to detect over 100 microcystin congeners identified to 

date (but cannot distinguish between congeners; EPA, 2022). Data can be obtained for 
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the cyanotoxins measurements in SLR through contacting the DWR’s O & M 

Environmental Assessment Branch.  

2.2.3 Chl-a Field Data Collection 

We conducted four chl-a sampling events that occurred on the same day as a S2 satellite 

overpass and occurred within ± three days of a DWR sampling event. Three of these trips 

were conducted during the 2021 bloom season when DWR performs regular monitoring 

(08/27/2021, 09/06/2021, and 09/23/2021). We added one field trip (05/01/2022) before 

the bloom season to characterize non-bloom conditions. The DWR began toxin 

monitoring five days earlier, on 04/25/2022 but found no toxins. The next DWR 

sampling event was not until 05/23/2022. Thus, for spring 2022 the match-up between 

DWR data and field and SRS S2 data was five days rather than three. A total of nine 

sampling events were attempted, but frequent reservoir closures due to high winds 

limited the number of match-up sampling events. Each sampling event started at 

approximately 9:30 am PST and concluded about 11 am PST to best match the time of 

mid-morning satellite overpasses (10:00 and 10:30 am PST for S3 and S2, respectively). 

Surface water samples were collected from a utility boat and stored in 1-L Nalgene 

bottles. The bottles were kept in a cooler filled with ice and then refrigerated until 

laboratory analysis. Water collection sites were marked using a handheld Trimble Geo-

XT GNSS unit. For the first sampling event, we collected triplicate samples at each site. 

Following analysis of the first round of samples, subsequent sampling events collected 

duplicate samples based on low sample variance.  

 

For each sampling date, we visited pre-established sampling locations that were 

approximately 1-km apart. Due to wind conditions, we were unable to revisit the same 

location with high geolocational precision. The average distance of each sampling event 

from the pre-established sampling location was 56-m with a standard deviation of 36.6. 

An extra site was added for the 05/01/2022 sampling event because we wanted to include 

another sample closer to the edge of the reservoir while it was still full.  

2.2.4 Laboratory Analysis of Chl-a 

The refrigerated water samples were filtered following the EPA’s Standard Operating 

Procedure for Chlorophyll-a Sampling and Analysis (Environmental Protection Agency, 

2013). All samples were processed within 24 hours of collection and shaken in case of 

settling. Volumes of water filtered ranged from 50 – 500 mL based on water quality 

conditions using Whatman glass microfiber filter pads. An absorption spectrophotometer 

(Visible Spectrophotometer 721 LDC Digital Lab Spectrophotometer) measuring at 665 

and 750 nanometers with a 90% acetone extraction solution was used for chl-a 

measurement following standard methods (APHA, 2005). 
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2.2.5 Remotely Sensed Data 

2.2.5.1 Chl-a Products from Sentinel-2  

S2 level-1C (L1C) top of atmosphere (TOA) reflectance products from 01/01/2016 to 

12/31/2022 that provided coverage for SLR (tile 10SFG) were downloaded from the ESA 

Copernicus online database. We filtered 10SFG images for less than 25% cloud cover 

and visually inspected each image to further ensure cloud-free conditions over the 

reservoir. This resulted in a S2 dataset of 377 images.  

Because of the absorption and scattering of light in the atmosphere, coupled with the 

overall low signal of water in SRS, atmospheric correction is crucial for water quality 

monitoring and assessment (Mobley et al., 2016; Seegers et al., 2021). The TOA data 

obtained from Copernicus were converted to aquatic remote sensing reflectance (Rrs) 

using ACOLITE version 20220222.0 software package (Vanhellemont and Ruddick, 

2018). ACOLITE is an open-source software developed for aquatic applications. It 

applies the dark spectrum fitting method (DSF) for atmospheric correction, which 

determines the reflectance based on multiple dark targets in the image (Vanhellemont and 

Ruddick, 2018). This processor has been shown to be more effective for aquatic inland 

applications for S2 compared to other existing algorithms (Vanhellemont, 2019) and has 

been used in other inland aquatic studies (Bramich et al., 2019; Rodríguez-Benito et al., 

2020; Theenathayalan et al., 2022), including in California (Lee et al. 2021). Images were 

resampled to 20-meters and the default sunglint correction was applied.  

We selected three commonly used chl-a algorithms shown to work well for inland waters: 

Mishra and Mishra (2012), Gons et al. (2002), and Moses et al. (2012). Mishra and 

Mishra (2012) use bands 4 and 5. Gons et al. (2002) uses bands 4 and 7 (with central 

wavelengths of approximately 665 and 780-nm, respectively) and the additional option 

ACOLITE provides by switching band 7 with band 6 (approximate central wavelength of 

740-nm). Moses et al. (2012) is a 3-band model using bands 4, 5 (approximate central 

wavelength of 705-nm) and 7, with again the addition of switching band 7 with 6. For the 

Gons et al. (2012), Mishra and Mishra (2012), and Moses et al. (2012) algorithms, we 

used the published coefficients in our implementation. 

Our criteria to consider a match-up for S2 images and DWR sampling is that both must 

be acquired on the same day. This resulted in a total of 38 S2 images that had a match-up 

with DWR for further comparison. While 38 out of 377 represents only 10% of available 

images, we limited the time frame for S2 and DWR data comparison for the same day 

because varying winds can lead to different bloom spatial variability, which could have 

influenced the results. 

2.2.5.2. Cyanobacteria cell counts from Sentinel-3  

Remote sensing-based cyanobacteria cell count products were obtained from the 

Cyanobacteria Assessment Network (CyAN), a collaborative project between the EPA, 

National Aeronautics and Space Administration (NASA), National Oceanic and 

Atmospheric Administration, and the United States Geological Survey. The CyAN 
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products, CIcyano, are based on the Cyanobacteria Index (CI) (Wynne et al., 2008), and 

modified by Lunetta et al. (2015). CyAN offers daily and 7-day maximum value 

composite CIcyano products in GEOTIFF format. The daily product was used for this 

study. The CI data were produced from ESA’s Envisat’s MERIS (2002-2012) and 

Sentinel-3 OLCI (2016-present) satellite data. The NASA Ocean Biology Processing 

Group converted OLCI’s Level-1B data to Level-3 Rayleigh-corrected reflectance, 

masking clouds and sunglint. Their output products have a land and mixed land-water 

mask. Data were downloaded from NASA’s Ocean Color’s CyAN File search for 2016-

2022 on 01/15/2023 (https://oceandata.sci.gsfc.nasa.gov/api/cyan_file_search). We 

converted the downloaded data products from digital numbers to CI following Eq 1 

(Lunetta et al., 2015; Wynne et al., 2008) and finally to cyanobacteria abundance 

following Eq 2 (Lunetta et al., 2015). Note that Eq 2 is the general estimate of 

cyanobacterial abundance, however CyAN’s converted range is limited from ~10,000-

7,000,000 cells/mL. From the S3 time series, we selected images over SLR that were 

acquired on the same day that a DWR sampling event occurred, resulting in 71 images.  

 

                                               CIcyano  = 10(3.0/(250.0*Digital Number)-4.2)                                                           (1) 

                                Cyanobacteria Abundance cells/mL = CIcyano * 1E+08                      (2) 

2.2.5.3 Data Extraction and Time Series Development 

We extracted the pixel values corresponding to our field sampling locations from the S2 

chl-a and S3 cell count maps using the R raster package (R package version 3.5-15, 

Hijmans, 2022). For S2, the mean value in a 6 x 6 window (120-m) centered on the 

geolocation of each field sampling locations was extracted for each of the match-up dates 

in the time series. This spatial buffer was selected following a semi-variogram-based 

sensitivity analysis and follows findings from Sharp et al. (2021) who showed that critical 

scales of cyanobacterial blooms range from 70-175-m in a similar system (Clear Lake, 

CA). We did not incorporate any spatial buffer to the extraction of pixel values from the 

S3 maps since the pixel size is 300-m. These extractions were then used to create a time 

series of SRS-based chl-a and cyanobacteria abundance that could be compared against 

the DWR cyanotoxin monitoring data. Given the variability in geolocation for sampling 

stations between each field date, a different set of extractions was performed for each 

image date, with the window centered on the geolocation of the sampling station for that 

respective field date.  

2.2.6 Data Analysis  

To determine the agreement between the advisories suggested by the WHO and the DWR 

recreational health advisory levels, we created confusion matrices where a conceptual 

representation of the methods is shown in Figure 2.  
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Figure 2-2. A representation of the approach used to examine agreement through 

confusion matrices between the California Department of Water Resources cyanotoxin 

advisories and laboratory/SRS chl-a and cyanobacteria classified by WHO GVs. 

2.2.6.1. DWR vs S2 chl-a or lab chl-a 

First, we classified the chl-a data from both the field campaign and S2 into two 

categories: no alert (Chl-a ≤  24 µg/L) or elevated alert (Chl-a ≥ 24 µg/L) based on the 

WHO21 Alert Level 2 GVs for recreational waters (Table 1). We then classified the 

DWR advisories at the “warning” or “danger” level as “elevated alerts”. When DWR 

issued “caution” advisories, or when no advisory was issued, we classified these as “no 

alert”. There were no “caution” DWR advisories during our field campaign dates, 

however there were cautions present for both S2 and S3 dates.  The DWR and WHO21 

classes were then compared in a confusion matrix that tabulates how many observations 

agree and disagree per class.      

2.2.6.2. DWR vs S3 cyanobacteria counts 

The S3 cyanobacteria counts were classified using the WHO99 GVs (Table 1). WHO99 

GVs of moderate or high probability of adverse health effects were classified as “elevated 

alert,” and WHO99 GVs of relatively low probability were classified as “no alert”. The 

classified data were then also compared with DWR advisories in a confusion matrix.   

 

Table 2-1. The Guideline Values (GVs) for recreational waters by the WHO and 

advisories set by the Department of Water Resources (DWR) for cyanotoxins. Our 

classification for each guideline value for both agencies is defined in the table. 

Authority Authority Guideline 

Level 

Quantity SRS Guideline 

Value 

Classification 

Caution 0.8 - 5.99 µg/L Microcystins No alert 
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CA DWR* (basis of 

comparison for this 

study) 

Warning 6 - 19.99 µg/L Microcystins Elevated Alert 

Danger 20 µg/L ≤  Microcystins Elevated Alert 

WHO (2021) GV for Microcystins for 

recreational waters. 

Chl-a ≤ 24 µg/L No Alert 

Chl-a ≥ 24 µg/L Elevated Alert 

WHO (1999) Relatively low probability 

of adverse health effects 

≤ 20,000 cyanobacterial 

cells/ml or 

≤ 10 chl-a µg/L 

No Alert 

Moderate probability of 

adverse health effects 

20,000-100,000 

cyanobacterial cells/ml or  

10.1 - 50 chl-a µg/L 

Elevated Alert 

High probability of 

adverse health effects 

≥ 100,000 cyanobacterial 

cells/ml or  

 ≥ 50 chl-a µg/L 

Elevated Alert 

*Recreational health advisory levels. Note: US EPA finished drinking water 10-day health advisory for 

adults is 1.6 µg/L Microcystins, CA drinking water acute notification level is 3 µg/L Microcystins.  

2.2.6.3. Confusion matrix analysis  

To quantify the level of agreement between lab/SRS advisories and DWR advisories, we 

calculated the total agreement (TA), false positive rate (FPR), and false negative rate 

(FNR) from the confusion matrices. TA is the proportion of observations that agree on 

the level of advisory from both methods (i.e., SRS triggers an alert when the DWR 

indicates an elevated advisory) (Eq 3). If both advisory approaches agreed for every 

match-up, the TA value would be 100%. A disagreement would result in either a false 

positive or a false negative. The False Positive Rate (FPR) (Eq 3) is the probability that a 

false alarm would be raised, which for this study means that an alert by either lab or SRS 

would be triggered when there is no alert by the DWR. The False Negative Rate (FNR), 

often known as the miss rate, is the probability that either lab or SRS would not trigger an 

alert while the DWR would issue one.     

 

    Total Agreement (TA) = 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 +𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
       (3) 

    False Positive Rate = 
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
                                                         (4) 

    False Negative Rate = 
𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
                                                        (5) 

2.3 Results 

2.3.1 DWR Cyanotoxin monitoring  

During the period of study, 41% of the DWR cyanotoxin monitoring visits resulted in “no 

advisory”, and 59% of the sampling visits resulted in some form of advisory (Figure 3). 
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The average duration of any triggered advisory (i.e., caution, warning, or danger) was 

15.5 weeks for at least one site (Pacheco Pumping Plant and/or Dinosaur Point/Basalt 

Boat Launch). Warning or danger advisories for at least one site lasted an average 

duration of about 8 weeks, with high interannual variability. For example, in 2016 there 

were no consecutive warning or danger alerts, just two warning alerts for the year. 

However, sampling in 2016 was also minimal, with just seven visits for that year. The 

year with the greatest proportion of “danger” alerts was 2017, with about 20%, or 9 total 

alerts. The number of monitoring visits increased from 2016 to 2018; there were seven 

sampling visits for 2016, 29 in 2017, 19 in 2018, 32 in 2019, 26 in 2020, 29 in 2021 and 

31 in 2022 (Figure 3). 

 

 
Figure 2-3. Microcystin samples collected from the CA DWR and determined via ELISA 

kits for 2016-2022 with indicated advisory levels. 

2.3.2. Advisory comparisons 

Table 2-2. The total agreement, false positive and negative rate of WHO GV 

classifications of laboratory chl-a, and SRS (chl-a and cyanobacteria) compared to DWR 

cyanotoxin advisories at San Luis Reservoir, CA. 

Data Source Product False Positive False Negative Total Agreement 

Field Campaign Laboratory 10% 32% 74.3% 

Sentinel-2 (20-m) Mishra 12% 38.4% 78.9% 

Moses 80% 0% 51.5% 

Gons 45.8% 15.4% 67.6% 
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Sentinel-3 (300-m) CyAN 12.2% 23.3% 83.1% 

 

Table 2 summarizes the total agreement, false positive and false negative statistics. S3 

had the highest TA (83%), followed by S2 (79%), and then the lab-based chl-a samples 

(74%). FPR and FNR were highly variable between the lab-based and SRS-based 

approaches (Table 2).  

 

Lab chl-a-based advisories had a TA of 74% with DWR advisories (or non-advisories) 

(Table 2). Of all the methods, the lab-based advisories had the lowest FPR; in only 10% 

of the match-ups, lab-based chl-a measurements would have triggered an advisory while 

DWR monitoring did not. However, the lab samples had high FNR; in 32% of the match-

up cases, DWR monitoring triggered an advisory where advisories from lab chl-a 

samples would not. The chl-a range measured from the field campaigns was 1.6-311 

μg/L, with an average of 54.8 μg/L and standard deviation of 76.2 μg/L. The chl-a values, 

summary statistics, and coordinates of the centroids for each sampling site can be found 

in Table 2A-1 in supplementary materials. The date with the highest chl-a value was 

09/06/2021 and the lowest value was from 05/01/2022. There was high spatial variability 

in chl-a measurements across the reservoir and across sampling dates (Figure 5). Across 

the four dates of field-collected samples for laboratory chl-a, about half would have 

triggered an advisory based on WHO21 (51%). From the three field dates in 2021 when 

SLR had higher bloom conditions, 68% of lab samples would have triggered a WHO21 

advisory.  

 

The TA between DWR and S2 advisories ranged from 51% to 79%, depending on 

algorithm used. The S2 chl-a algorithm that resulted in the highest TA was Mishra, 

followed by Gons and then Moses (Table 2). Moses had the highest FPR at 80% but had 

no false negative advisories. Gons and Moses’s FPR were high (46% and 80% 

respectively). FNR for Gons and Mishra (15% and 38%, respectively) were similar or 

lower than lab chl-a-based advisories.  

Of all proxies investigated, S3 had the highest overall TA: 83%. S3 FPR was similar to 

FPR values for lab and S2 Mishra. S3 had lower FNR than the lab samples, but S3 FNR 

was still higher than S2 Gons and S2 Moses. Of the 71 match-ups between S3 and DWR 

sampling events, there were 30 warning and danger DWR advisories, and in seven of 

these instances S3 resulted in no advisory. Figure 4 displays the confusion matrices of 

DWR alerts compared to alerts classified from lab-based chl-a samples, the best 

performing S2 algorithm, and S3. 
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Figure 2-4. Confusion matrices comparing the field campaign samples, SRS Mishra, and 

CyAN to the advisory level determined by the DWR. SRS Mishra and CyAN are 

compared to the Basalt Boat Launch/Dinosaur Point location. The 05/01/2022 is not 

included since there was no DWR collection near that date.  

 

There was high spatial variability within the reservoir across all proxy methods (Figure 

5), indicating that a single advisory value does not apply to all areas. A spatial 

comparison of maps generated from S2, S3, and the field data shows that all proxy 

methods capture similar spatial patterns across the reservoir. Across the time series, 

northern portions of the reservoir tend to have fewer advisory conditions, whereas the 

middle-west portion (corresponding with sites 5 and 6) have the most frequent blooms. In 

general, areas of the reservoir where the lab chl-a indicated either an advisory or no 

advisory also match with SRS -based advisories, except for the September 23rd date. This 

exemplifies a case in which the S2 proxy indicates that the majority of the reservoir 

would be under advisory while the lab chl-a and S3 image showed regions where there 

would be no alert. The DWR did have an alert for SLR on this date. On 05/01/2022 there 

was no DWR alert, and all but one of the lab-based chl-a would not have triggered an 

advisory based on WHO21 GV. For 05/01/2022, S3 shows that most of the image had 

either no cyanobacteria present or levels too low to trigger any type of WHO99 alert. 

However, the S2 image indicates that large areas of the reservoir would not trigger an 

advisory apart from some small areas, especially in the southeastern part of the reservoir 

where S3 also had a few pixels indicating an alert.  
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Figure 2-5. Left: field chl-a campaign points and DWR cyanotoxins color-coded based 

on WHO21 GVs. Middle: S2 (Mishra)-based WHO21 GVs. Right: S3 (CyAN)-based 

WHO99 GVs where white pixels represent CI detection below threshold limits. For the 

purposes of this study the WHO99 GV of moderate and high were collapsed into a single 

class of alert.   
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2.3.3 SRS and DWR Time Series 

 
Figure 2-6. Dashed vertical lines indicate the beginning of a calendar year. (a) 

Cyanotoxins measured by the CA DWR with the state’s recreational health advisory 

levels indicated by the horizontal lines. (b) Chl-a derived from Sentinel-2 using the 

Mishra et al. (2012) algorithm with the WHO21 recreational waters advisory value of 24 

μg/L depicted as a green horizontal line. Chl-a y-axis limits are up to 125 μg/L, removing 

5 outlier points. (c) Cyanobacteria abundance from Sentinel-3 with the WHO99 GVs on 

the horizontal scaled by 100,000. (d) Cyanobacteria abundance (from Sentinel-3) scaled 

on the y-axis for levels <1,000,000 cells/ml. Points for all graphs are the spatial mean of 

the day based on locations of field samples. 

 

Figure 6 visualizes the time series of cyanotoxins, chl-a and cyanobacterial cell 

abundance over the period of the study. The figure highlights the temporal 

correspondence of DWR-based cyanotoxin values with proxy values from S2 and S3 as 

well as the temporal density of SRS-based proxies, particularly Sentinel 3. The DWR 

sampling campaigns occur when cyanotoxins are expected to spike soon and finish when 

values fall below caution (Figure 6a). The greatest cyanotoxin values occur around July-

September and the values tend to fall below caution around late October-December. 

While DWR monitoring is strategically conducted during peak algal blooms seasons, it is 
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evident that the absence of sampling during the remainder of the year may potentially 

miss conditions that would trigger an advisory.  

 

The time series shows that the S2 chl-a (Mishra) results are mostly temporally concurrent 

with the DWR cyanotoxin time series (Figure 6b). The greatest chl-a values for S2 can be 

seen typically in July-August (Figure 6b), which is summer in California and typical for 

algal bloom trends. The lower S2 chl-a values where a WHO21 alert would be triggered 

generally ranges from October-April (Figure 6b). Much like the summarized in Table 2, 

there is agreement between the times when there were DWR danger levels and SRS chl-a 

values greater than 24 μg/L. Notably, there were times when SRS-based chl-a exceeded 

24 μg/L, but there were no cyanotoxin data collected. While DWR cyanotoxin results 

tend to trigger some form of advisory in May, S2 chl-a exceeds 24 μg/L as early as 

February for all years. The S2 A/B satellites have a combined revisit time of 5 days, 

however, there are tiles that are excluded from the time series due to cloud, smoke or 

missing data within the images, which create data gaps in some parts of the year (Figure 

6b). This is especially evident around December-April, which is winter and early spring 

in California when cloud cover and precipitation is higher.  

 

S3 provides the most temporally dense time series since it has a daily revisit time. It is to 

be expected that S3 corresponds closely to DWR’s findings since cyanotoxins ultimately 

originate from cyanobacteria. However, we found that S3 had at least a moderate 

cyanobacteria abundance level starting in April, which is before the DWR typically 

samples. 

2.4 Discussion 

This study sought to evaluate the utility of SRS for cyanotoxin health advisories using 

SLR, a major multi-use reservoir in California, as a case study. This study found high 

rates of total agreement between public health advisories for cyanotoxin exposure in 

recreational waters issued by the CA DWR and proxy methods from both lab-based chl-a 

measurements and SRS. Over the period of study there were 71 match-ups between DWR 

cyanotoxin monitoring and S3, 38 match-ups with S2, and 4 match-ups with field 

sampling. With a total agreement of 83% for S3 and 79% for S2, SRS has good potential 

for augmenting cyanotoxin monitoring at SLR.  

While the rate of false positives for S3 was low, S3 missed nearly one quarter (23%) of 

public health advisories that the DWR issued. However, these rates of false negatives 

may not solely be due to erroneous measurements by SRS, but rather spatial mismatch in 

sampling. With a 300-meter spatial resolution, S3 may have difficulty resolving 

nearshore point sampling conducted by the DWR. The DWR’s sampling is conducted off 

a dock (Basalt Boat Launch or Dinosaur Point; Figure 1), and there were multiple 

instances where a pixel was masked by CyAN because of its proximity to pixels 

classified as land (dock or shoreline). Thus, the closest available pixel may not represent 

the DWR sampling location or measurement. Furthermore, as visualized in Figure 5, 

there are many cases in which bloom conditions were present in some portions of the 
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reservoir, but not necessarily at the locations of point-based sampling. The greatest 

advantage of using S3 for cyanotoxin warnings is its ability to directly approximate 

cyanobacteria abundance due to the position of its spectral channels as well as the near 

daily data it provides. Nonetheless, the 300-m pixel resolution limits the ability to resolve 

the spatial dynamics of cyanoHABS and precludes similar applications in smaller water 

bodies (Schaeffer et al., 2022 and Coffer et al., 2021).   

Encouragingly, S2 also had high rates of total agreement with DWR advisories; with a 

20-m pixel resolution, the sensor is ideal for enhancing monitoring in smaller inland 

water bodies impacted by cyanoHABs. While S2 spatial capabilities are better than S3, 

the 5-day revisit time is less ideal for water quality measurements since they can vary day 

to day. However, when combined with DWR measurements, the sampling frequency for 

SLR would be about every 3 days. Despite this, cloud cover remains a persistent issue for 

both sensors. While S2 does not have the spectral capability of detecting cyanobacteria, 

other studies have also suggested the use of both, given what is known about the high 

correlation with chl-a concentration and cyanotoxins (Rodríguez-Benito et al., 2020; 

Kislik et al., 2022). Rodríguez-Benito et al. (2020) proposed the use of S3 as an 

operational surveillance mode at mesoscale and then, when there is a positive chl-a 

detection, they suggested implementing S2 to locate the areas of bloom. While their 

paper focused on chl-a only, the same idea could be used in the case for cyanotoxin 

monitoring to inform and augment DWR monitoring efforts, whereby S3 could be used to 

detect high concentrations of cyanobacteria cells on a near-daily basis and the higher 

spatial resolution of S2 could be used to help inform the timing and location of DWR 

sampling efforts, potentially issue earlier warnings while awaiting lab results, and 

targeting warnings to certain recreational areas most likely to be impacted by the bloom. 

While the spatially limited sampling locations for DWR is understandable due to 

financial, time and access constraints, it is still very likely that during times the DWR 

collects no or low levels of cyanotoxins from their sampling stations, there are other areas 

of SLR that may harbor conditions warranting an advisory. With the short time period 

between overpass and CyAN products available, S3 can be easily integrated in the DWR 

sampling plans. S2 has images available the day after overpass; however, there are no 

operational chl-a products suitable for inland waters available yet, and further 

development would be needed to operationally support a monitoring program.  

The time series of different cyanoHAB proxy indicators (Figure 6) further indicates the 

utility of SRS in augmenting or complementing routine toxin monitoring. Overall, we 

observed that peaks in chl-a concentration and high cyanobacteria cell abundance levels 

measured by SRS coincide with periods when DWR has confirmed cyanotoxin presence. 

However, SRS provides data at a regular sampling interval that occurs year-round, 

whereas the current DWR program typically samples between May-October, during 

“bloom” season, which results in substantially fewer observations and alerts. In some 

years, such as early 2018 and 2020, SRS indicated that possible recreational advisories 

were occurring before DWR monitoring commenced for the season. Thus, while SRS 

also does not provide a complete time series due to cloud cover (which has a winter 

seasonal bias in this system), it can still be used to supplement cyanoHAB monitoring, 
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particularly when and where field sampling is not occurring. While some out-of-season 

alerts may be due to overprediction errors, some may also be due to real bloom 

occurrences that were not observed and reported to DWR to commence monitoring due 

to their location on the reservoir.  

2.4.1 S2 Chl-a Algorithm Impacts 

The choice of chl-a algorithm had a substantial impact on the total agreement as well as 

rates of false positives and false negatives. We would recommend the use of Mishra for 

San Luis Reservoir to augment cyanotoxin monitoring efforts based on the highest total 

agreement and lowest rate of false positive. However, further investigation in testing 

different algorithms, or the same algorithms used in our study, with more field data 

would strengthen these recommendations. Underestimation of chl-a is a well-documented 

challenge for SRS of inland waters that have high chl-a concentrations. The Mishra 

(2012) algorithm was originally developed with in-situ chl-a values ranging from 0.9-

28.2 μg/L. Bramich et al. (2019) found that using the Normalized Difference Chlorophyll 

Index (NDCI), which is what the Mishra algorithm is built upon, underestimated chl-a 

measurements especially when samples were greater than 30 μg/L. Recently, Tóth et al. 

(2021) used ACOLITE and tested the Gons, Mishra, and Moses algorithms on S2 satellite 

data and found that SRS data overestimated chl-a if it was low (< 10 μg/L) and 

underestimated chl-a if it was too high (values ranged up to 653 μg/L). Algorithms such 

as Mishra specifically use formulations that combine reflectance data measured in both 

the red and near-infrared portions to be more robust to confounding water quality factors 

such as CDOM and other non-algal particulate matter such as suspended sediments that 

contribute to the overall turbidity of the water. Despite this, others have also reported that 

these algorithms using this band to tend to overestimate chl-a for low values (~ 5 μg/L) 

(Werther et al., 2022; Pahlevan et al., 2020).  

Another possible explanation for when S2 chl-a algorithms under-predicted public health 

advisories may be due to the 2021 WHO GV’s new threshold reasoning for chl-a. The 

second edition “Toxic Cyanobacteria in Water” states that the value for chl-a is much 

more conservative compared to the WHO99 GVs. They also state that in most field 

scenarios, cyanotoxin levels should be lower than given by the GV. They comment that 

local areas that understand their cyanobacterial population should set their own alerts. 

While California’s DWR set their own advisory levels, they have used the previous 

WHO99 GVs as the reference for their warning and danger level. Whether it is more 

consequential to under or overpredict advisories should be weighed: the WHO21 GVs err 

on the side of lower chl-a threshold values to ensure that blooms are not underestimated. 

The WHO21 framework supports parameters that are more locally or nationally 

accessible for cyanoHABs proxies. Along with chl-a, they have also recommended 

parameters such as Secchi disk depth or turbidity, two popularly measured water clarity 

indicators, as proxies for cyanoHABs (Chorus and Welker, 2021). Turbidity has been 

measured successfully through satellite remote sensing for decades (Moore, 1980; 

Choubey, 1992; Nechad et al., 2009; Dogliotti et al., 2015). While this study only focused 
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on chl-a and CIs as proxies, future research could also investigate the utility of SRS-

based turbidity for recreational alerts, and potentially a combined alert system that 

leverages both SRS-based chl-a and turbidity.  

2.4.2 Consequences of False Negative and False Positive Public Health Advisories  

While a high total agreement is the most ideal in the analysis, the performance of these 

proxies in terms of false negative and false positive advisories has consequences on 

information for the public to protect health and safety. A proxy method for cyanoHAB 

advisories that tends to overpredict blooms would maintain a conservative approach that 

prioritizes public safety. However, imposing multiple reservoir closures when there are 

no actual cyanoHAB events could lead to incurred costs for unnecessary water treatment 

or pumping interventions, fishing license and tourism revenue loss and general 

inconvenience to local and visiting recreational users (Wolf et al., 2017). CyanoHAB 

presence and cyanoHAB advisories can lead to millions of dollars in lost revenue 

annually for states that rely on tourism and recreation for revenue (Stroming et al., 2020; 

Hoagland et al., 2002). With high rates of false positive advisories, water managers may 

lose trust in monitoring technologies, and the community might lose trust in local and 

state authorities.  

 

Unnecessary closures are not ideal and may incur costs, but those that become ill due to 

cyanoHAB exposure also incur a cost. There is limited literature and data on the financial 

cost of cyanoHAB-related illness, however DeFlorio-Barker et al. (2018) estimated the 

social cost of an individual to develop a gastrointestinal illness from a cyanoHAB to 

range from $10 to just over $300,000 in 2007 dollars. The lower value is based on typical 

over-the-counter medicine while the much higher price is associated with severe 

hospitalization. A follow up study by Stroming et al. (2020) adjusted this cost to exclude 

potential loss of life since cyanoHABs cannot be directly linked with death. Their new 

adjusted cost was $11 for mild, $264 for moderate, and $10,700 per person for severe 

gastrointestinal illnesses linked to cyanoHABs. Further, frequent failure to issue public 

health advisories in the presence of a cyanoHAB may also erode manager and public 

trust. Thus, while false positive advisories may have economic and perceptual 

consequences, favoring proxies that minimize false negatives would help prevent 

potential cyanoHAB related illnesses. In this study, the S2 Mishra chl-a algorithm had 

higher rates of total agreement relative to the Gons algorithm (79% and 68%, 

respectively). However, Gons had lowers rates of false negatives, while Mishra had lower 

rates of false positives. Which algorithm is selected for enhanced monitoring, and 

whether that is ultimately used to issue public advisories is dependent on what is 

considered is more important to the user, minimizing the potential for illness, or 

minimizing unnecessary costs and impacts to recreation.  

 

2.4.3 Strengths and limitations of the study 

SRS for cyanoHAB alerts provides spatially explicit mapping capability and additional 

monitoring throughout the year, inclusive of typical bloom seasons. Some of the 
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disagreement between the SRS and DWR alert levels may be due to the high spatial 

variability of the blooms. Because of the strong winds, the spatial variability of blooms in 

this reservoir are high, meaning DWR samples collected from one side of the reservoir 

may not be indicative of the entire reservoir. Ultimately, the DWR samples are taken at 

only a few point locations at the shore of the reservoir (Figure 1) (and one from a tap), 

whereas S3 has 100s of pixels in the reservoir, and S2 has > 60,000 pixels measuring the 

reservoir. While the last day of our field campaign (05/01/2022) did have overall low 

values compared to the other dates, there was one sample that would have triggered an 

alert according to the WHO21 GV. As noted in our results, site five had high chl-a 

concentration, but there were no DWR toxin values for comparison. If there were DWR 

data for comparison, the sample would have been collected from a dock or at Pacheco 

Pumping Plant, which is on the opposite side of the reservoir from site five. From the S2 

imagery shown in Figure 5, it is evident that these blooms form in different areas of the 

reservoir, where toxin sampling by the DWR would miss the event. This illustrates an 

important potential utility of remote sensing since it can measure areas where DWR does 

not, and during the times of the year they do not measure.  

 

We have already seen great success with S3’s CyAN products being used to reduce 

public exposure to cyanoHABs by guiding where to sample water quality and implement 

beach closures in states such as Utah, Wyoming, Oregon and New Jersey (Seegers et al., 

2021; Schaeffer et al., 2018; WDEQ, 2019; OHA, 2019; NJDEP, 2020). The CyAN 

project has created an app that is the first of its kind to provide cyanoHAB data products 

to water quality managers for both recreational and drinking water sources in a cost-

effective way (Schaeffer et al., 2018). In a recent study by Mishra et al. (2021) it was 

reported that data from CyAN had 84% bloom agreement detection across lakes from 11 

states in the contiguous United States, a value remarkably similar to the findings from 

this study (83% overall agreement). 

 

The current latency of water quality products is not always ideal for public health 

advisories, which are expected to represent the most up-to-date conditions. Field 

sampling and laboratory analysis of chl-a may be a reliable and simpler method than 

using SRS, however, it is also a slower process with smaller spatial coverage compared to 

using SRS. With field data, the time to collect samples and transport them back to a lab 

for analysis may take longer than using SRS data. ESA S2 images and NASA S3 CyAN 

products are available the next day of satellite overpass via their website 

(oceandata.sci.gsfc.nasa.gov/api). The availability of data is time sensitive for the 

issuance of public health advisories, so methods such as SRS that can provide quick and 

reliable measurements are necessary for enhancing monitoring. 

2.5 Conclusion 

The main takeaway from this research is that SRS can become an important tool for 

monitoring potential cyanotoxin exposures in cyanobacteria dominated lakes nationally 

or globally. This study assessed how well various proxies for public health advisories for 

cyanotoxin exposure agree with current government monitoring approaches. This study 
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examined how well the recent WHO21 GVs work for using chl-a as a proxy for 

cyanotoxins and assessed the utility of SRS as a measurement modality for this proxy. 

The WHO21 GVs are relatively new and to the knowledge of the authors of this paper, 

have not been extensively explored in the context of SRS as of this study. Our results 

suggest that using SRS of chl-a is an acceptable proxy for predicting potential exposure 

to cyanotoxins from cyanoHABs. Our findings support previous research showing high 

rates of agreement between S3 and cyanoHABs. Further, we found that using the 

WHO21 GV was nearly as successful as using S3-based SRS based on the prior WHO99 

GVs focused on cyanobacteria cell counts. Integrating SRS data with concurrent in-situ 

monitoring could create a cohesive time series for any lake such as San Luis Reservoir, 

an important instrument in California’s water supply.  
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2.8 Appendix 

Table 2A-1. Chlorophyll-a (μg/L) concentrations of all field sites collected with dates 

and coordinates. The latitude and longitude in the table are centroids of the four 

collection days (except for site 10 since that was done only on 05/01/2022).  

 

 

 

 

 

 

 

 

 

Site Latitude Longitude 08/27

/2021 

09/06/

2021 

09/23/

2021 

05/01/

2022 

Mean  Median 

1 37.067921°N 121.140481°W 15.7 41.5 16.7 2.3 19.1 16.2 

2 37.059761°N 121.132072°W 148 20.7 17.4 3.9 47.5 19.05 

3 37.053367°N 121.125202°W - 189 37.1 3.5 76.5 20.1 

4 37.046964°N 121.117744°W 23.5 - 17.8 6.9 16.1 17.8 

5 37.051922°N 121.110261°W 61.9 311 26.4 68.7 117 65.3 

6 37.056357°N 121.103118°W 22.5 47.1 24 10 25.9 23.3 

7 37.061628°N 121.112120°W 27.1 42 42.1 4.3 28.9 34.6 

8 37.065825°N 121.120100°W 233 10.1 64.5 3.1 77.7 37.3 

9 37.071286°N 121.130662°W 236 103 34.9 2.0 94.0 69.0 

10 37.082579°N 121.131882°W

  

- - - 1.6 - - 
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Abstract: Monitoring cyanobacteria is crucial for assessing water quality, safeguarding 

public health, and understanding ecosystem dynamics impacted by harmful algal blooms. 

This study explores the potential of satellite remote sensing (SRS) to assess risks of 

cyanotoxin exposure in California's recreational waters, which have some of the highest 

microcystin levels globally, from 2016 to 2023. Utilizing SRS data, we compared 

cyanobacteria abundance in five lakes across California, with cyanotoxin advisories 

issued by the California Department of Water Resources (DWR). Analysis revealed SRS 

and DWR methods agreement ranged from overall agreement (OA) of 54% to 100% and 

balanced accuracies from 49% to 79%. Lake-specific assessments showed Lake Oroville 

with the highest OA (100%) and Pyramid Lake with the lowest (54%). SRS generally 

overpredicted alerts (false positive rate = 30%) and under-detected true positives (false 

negative rate = 42%), influenced by spatial variability and the nature of satellite detection 

versus point-based sampling. We found that sampling done in two different locations in 

San Luis Reservoir resulted in differing toxicity levels, likely influencing agreement 

rates. When doing a statewide cyanoHAB frequency assessment, six lakes showed no 

alerts, 56 lakes were below 10%, and nine lakes had alerts ranging from 11% to 25% 

above the WHO99 GV for recreational cyanobacteria. The remaining seven lakes 

exceeded 25%, with one nearing 100%, were primarily located in Southern California, 

often used for swimming and other recreation. Despite limitations in spatial resolution, 

SRS provides consistent, near real-time data essential for timely cyanotoxin risk 

assessments, complementing traditional in-situ sampling. 
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3.1 Introduction  

Freshwater cyanobacteria occur naturally and play vital ecological roles as primary 

producers, nitrogen fixers, carbon sinks, and sources of oxygen (Bhardwag, et al. 2024; 

Demoulin, et al., 2019). Certain cyanobacteria species produce cyanotoxins, such as 

microcystins, anatoxins, cylindrospermopsin, and saxitoxins, which can pose risks to 

human health, animals, and the environment (Turner et al., 1990; Smayda, 1997; 

Carmichael et al., 2001; Metcalf et al., 2021). Cyanobacteria-dominated harmful algal 

blooms (cyanoHABs) can lead to overabundant biomass and toxin production, adversely 

affecting recreation, drinking water consumption, livestock watering, fisheries, and 

irrigation use (Landberg, 2002; Briand et al., 2003; Falconer and Humpage, 2005; 

Stewart et al., 2008; Backer et al., 2013). Additionally, cyanoHABs create economic 

burdens such as increased water treatment expenses, loss of water access, healthcare 

costs, and diminished recreational opportunities (Anderson et al., 2000; Bingham, 2015; 

Graham et al., 2016; Kouakou and Poder, 2019). CyanoHABs are a worldwide 

phenomenon (Paerl and Huisman, 2009; Brooks et al., 2016; Intergovernmental Panel on 

Climate Change; 2022) and the frequency and intensity of cyanoHABs are a concern for 

many water managers and communities because of eutrophication and global warming 

(Moss et al., 2011; Meerhoff et al., 2022).  

 

A study found that in the United States (U.S) the spatial coverage of water quality 

monitoring is limited (Schaeffer et al., 2018). Around 90% of water bodies that sampled 

for water quality have less than five sampling stations, and ~50% have only one sampling 

station (Schaeffer et al., 2018). Satellite remote sensing (SRS) data can complement 

traditional in-situ water quality monitoring for cyanotoxins by providing vast temporal 

and spatial coverage of cyanobacteria (Wynne and Stumpf, 2015; Urquhart et al., 2017; 

Schaeffer et al., 2022), thereby expanding current monitoring programs (Schaeffer et al., 

2015; Papenfus et al, 2020; Stroming et al, 2020). SRS cannot directly measure 

cyanotoxins (Stumpf et al., 2016). However, it has been used to identify areas where 

cyanotoxin concentrations are likely to be elevated based on the presence and density of 

cyanobacterial blooms (Kutser, 2009; Lunneta et al., 2015; Mishra et al., 2019). 

Integrating in-situ cyanotoxin measurements allow validation and calibration of SRS-

based approaches, improving the accuracy and reliability of cyanotoxin monitoring 

efforts.  

 

SRS can capture cyanoHAB variability throughout a lake, providing an understanding of 

cyanobacteria distribution and ensuring that remote areas are overlooked. California 

water bodies have some of the highest microcystin levels in the world, where in some 

cases it was >10,000 μg/L during bloom seasons (California Regional Water Quality 

Control Board, 2023). Spatial information is crucial because blooms often occur in areas 

not routinely tested. In Lopez Barreto et al. (2024), they found instances where blooms 

were more concentrated in areas compare to those that were being sampled, highlighting 

the importance of comprehensive monitoring. 
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The Department of Water Resources (DWR) manages California’s water resources, 

systems, and infrastructure, including the State Water Project (SWP) (California DWR, 

2024). The DWR tests for cyanotoxins in their managed waters every year, however their 

testing is not year-round and has limited sampling locations due to cost and time 

constraints. In instances where cyanotoxins are detected within SWP water bodies, the 

DWR advises recreational users to exercise caution and refrain from any direct contact 

with algae (DWR, 2024). Recreational water activities may be restricted as a 

precautionary measure to safeguard public health if the algae are confirmed to be a 

harmful algal bloom (HAB). The DWR recreational health advisory levels are based on a 

risk assessment done by the Office of Environmental Health Hazard Assessment 

(OEHHA) using the best available science and while being public health conservative 

(California CyanoHAB Network, 2016). Recently, Lopez Barreto et al. (2024) classified 

cyanobacteria abundance derived from the Sentinel-3 (S3) satellites according to the 

World Health Organization’s 1999 guideline values (WHO99 GV) for cyanobacteria in 

recreational waters and compared them against cyanotoxin public health advisories issued 

by the DWR for San Luis Reservoir, a keystone reservoir in the SWP. They found an 

83% agreement between SRS and DWR advisories, demonstrating the potential and 

utility for SRS to enhance monitoring efforts for harmful algal blooms.   

 

This study assesses large scale regional risk of public recreational exposure to 

cyanotoxins by examining seven lakes distributed across California. This study tested the 

agreement between SRS and DWR advisories in an additional six lakes owned, managed, 

and monitored by the DWR, and tested the extensibility of the approach to a lake-level 

assessment. In the previous study, the cyanobacteria value used for comparison was from 

a pixel that was closest to the DWR sample collection site from their lake field sampling. 

However, using a single point to summarize the entire lake’s cyanotoxin level potential is 

not leveraging the true capability of SRS, and makes extension to unmonitored lakes 

challenging. Thus, in this study we used SRS to summarize cyanobacteria levels across 

the entire lake, then classified this value to the WHO99 GV. Our study includes San Luis 

Reservoir, the focus of Lopez et al. (2024), with the addition of six other California lakes 

of varying size and trophic status including Castaic Lake, Lake del Valle Lake Oroville, 

Perris Reservoir, and Pyramid Lake. We then classified all SRS-resolvable lakes in CA 

using the WHO99 GV and identified lakes with highest risk for public recreational 

exposure to cyanotoxins. With California’s diverse ecosystems, the findings from this 

study would be applicable to a great range of other local, regional, national, or even 

global systems.  

 

Using SRS to create a lake-wide cyanoHAB summary allows us to capture locations that 

are not sampled by point-based measurements. This approach enables the collection of 

more comprehensive data than point-based sampling, potentially leading to discrepancies 

between SRS data and point-based samples. We believe SRS data based on the area 

closest to the collected reference cyanotoxin data would lead to a higher agreement. If 

there is a strong agreement for either or both methods, this will further support the use of 

SRS for cyanotoxin approximation.  
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3.2 Methods 

3.2.1 Study Sites 

The climates of Lake Oroville, San Luis Reservoir, Lake Del Valle, Pyramid Lake, 

Castaic Lake, Perris Reservoir, and Silverwood Lake exhibit distinct regional 

characteristics influenced by their diverse geographies. Lake Oroville and Lake del Valle 

experiences a Mediterranean climate with hot, dry summers and cool, wet winters 

(Ackerly et al., 2018; Houlton and Lund, 2018). San Luis Reservoir, situated in the semi-

arid San Joaquin Valley, endures hot summers and mild winters, with most precipitation 

occurring during winter (Fernandez-Bou et al., 2022). Pyramid Lake and Castaic Lake, 

both in Southern California, share similar Mediterranean climates with hot, dry summers 

and mild, wet winters (Hall et al., 2018; Kalansky, et al., 2018). Perris Reservoir in 

Riverside County experiences a hot, dry climate with mild winters, typical of Southern 

California's inland regions (Hopkins, 2018). In contrast, Silverwood Lake, located in the 

higher elevations of the San Bernardino Mountains, enjoys cooler temperatures and 

higher precipitation, including occasional snowy winters and mild summers (Hopkins, 

2018). 
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Figure 3-1. Map of the seven reservoir sites (names italicized) across California, US. 

Reservoir sizes are exaggerated for visualization purposes. The orange dots are large 

metropolitan Californian cities (in bold). 

 

Our study sites include seven reservoirs of varying size and trophic status, all of which 

are part of California’s SWP (Table 1 and 2). Two of the reservoirs are in Northern 

California, one in the Central Valley, and four in Southern California (Figure 1). While 

the primary purposes of these reservoirs are for water supply, flood risk reduction or 

hydroelectricity (U.S Army Corps of Engineers, 2024), all the reservoirs are commonly 

used for recreational activities, attracting residents and visitors for fishing, boating, 

swimming, hiking, and camping (California State Parks, 2024). 
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Table 3-1. Summary of the physical and geographic (Meyer et al., 2023; US Army Corps 

of Engineers National Inventory of Dams, 2024; Messager et al., 2016; CA DWR, 2024) 

reservoir metrics in this study in order from largest to smallest by area. Trophic level was 

determined by the most prevalent class for each lake from 2015-2019 by the Meyer et al. 

(2023) dataset. 
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Table 3-2. Summary of the geographic coordinates, land characteristics and the averaged 

climate of our study. The primary national land class (NLCD) (U.S Multi-Resolution 

Land Characteristics Consortium), for both 2019 and 2021, and the California wildlife-

habitat relationship (WHR), the vegetation type most important to wildlife (California 

Department of Forestry and Fire Protection, 2023), was summarized for each lake’s 

Hydrologic Unit Code-8 sub-basin. 
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3.2.2 Cyanotoxin Validation Data 

The SWP is a crucial water management system that plays a vital role in supplying water 

to California's urban and agricultural areas, supporting economic development, and 

ensuring environmental sustainability (Lund et al., 2010; U.S Bureau of Reclamation, 

2023; California DWR, 2022). The primary purpose of the SWP is to transfer water from 

northern regions of the state to water-deficient central and southern regions of California. 

Since 1968 the Division of Operations and Maintenance (O&M), the Environmental 

Assessment Branch of the DWR, has overseen water quality monitoring for the SWP. 

Beginning around 2006, the DWR has conducted cyanotoxin monitoring across important 

and key reservoirs in the SWP (CA DWR, 2021).  

 

DWR weekly cyanotoxin sampling typically begins from mid-April (spring) until late 

September/early October (late summer/early fall) which is the typical algal bloom season 

in California (California DWR, 2024). They will sample for cyanotoxins prior to the 

expected bloom season if there are algal bloom sightings by local rangers or if there is a 

report made by the public. If a test returns positive confirming cyanotoxins, the DWR 

will post these corresponding health advisories at the sampling facilities, reservoir, and 

park entrances, and online (DWR, 2024). Their routine weekly sampling will continue 

until toxin levels (Table 2) are below caution levels for two consecutive weeks. The 

DWR collects water samples at the surface, 1-meter depth and raw water tap samples 

from lower or upper intakes, depending on the site. Toxins are measured using laboratory 

assay conducted by a DWR subcontractor, Greenwater Laboratories using ADDA-ELISA 

kits. Microcystin has been the primary and dominating cyanotoxin detected for all lakes 

during the period of study. For this study, we used only surface and 1-meter water 

samples to compare against SRS data. We used DWR data from 2016 to 2023 because 

while there was earlier DWR data available, sampling was very sparse. A description of 

how they estimate cyanotoxins can be found in Lopez Barreto et al. (2024) or through 

DWR's O & M Environmental Assessment Branch. 



 

     

60 

3.2.3 Cyanobacteria Cell Counts from Sentinel‐3 

Cyanobacteria SRS products were obtained from the Cyanobacteria Assessment Network 

(CyAN), a collective project between several federal agencies (EPA, 2023). The 

cyanobacteria data, CIcyano (CyAN, Schaeffer et al., 2015), is based on the modified 

Cyanobacteria Index (CI) (Wynne et al., 2008; Lunetta et al., 2015). The CIcyano data for 

2016 until present are from the European Space Agency's Sentinel‐3 Ocean and Land 

Colour Instrument (OLCI). Quality control flags to indicate potential contamination from 

clouds, sun glint, shadows, and land adjacency effects are applied to the CyAN products 

(Wynne et al., 2018, Urquhart and Schaeffer, 2019; Schaeffer et al., 2022). We used daily 

data to best match the DWR sampling data. 

 

We converted digital numbers to CIcyano using Equation 1 (Lunetta et al., 2015; Wynne et 

al., 2008) to estimate cyanobacteria abundance (Equation 2) (Wynne et al., 2010; Lunetta 

et al., 2015).  

CIcyano = 10(𝐷𝑖𝑔𝑖𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 ∗ 0.011714−4.1870866) (1) 

 

Cyanobacteria Abundance cells/mL = CIcyano ∗ 1E + 08 (2) 

 

Lake shapefiles created for the OLCI sensors, intended for CyAN data (Urquhart and 

Schaeffer, 2019), were used as the boundaries for each lake. However, Lake del Valle 

and Silverwood Lake were not part of this dataset. Despite having more than three valid 

water pixels, a parameter for the OLCI lake shapefile (Schaeffer et al., 2022), CyAN data 

consistency was an issue for these lakes likely due to lake area, land adjacency effects, 

and possible mixed pixels. Consequently, both lakes were omitted from the final results. 

The limited results and a visual representation of the limited data for Lake del Valle and 

Silverwood Lake are provided in supplemental Table S1 and Figure S1 respectively. Data 

extractions were performed using the raster package in R software (version 3.6-26, 

Hijmans, 2022). 

 

3.2.4 Using Closest Pixels for SRS Cyanotoxin Approximation  

In this study, we are interested in assessing potential bloom spatial variability within 

other regions of the lake not captured by single SRS pixel estimations or in-situ grab 

samples. In Lopez Barreto et al. (2024), one SRS-pixel based on the closest water sample 

location from their field work was used to compare to the closest DWR cyanotoxin 

collected sample. This was acceptable as that pixel was located within lake limits and not 

along the lake edge where mixed pixel effects could impact SRS values. But 

georeferenced points that can be confirmed to be within the lakes edges during 

fluctuating lake levels were unavailable. To mitigate this, we used a 600-meter buffer 

around collection sample locations. This distance was chosen because with S3’s pixel 

resolution of 300-meters, this would allow up to two pixels of data from the DWR 

sampling point. If only one pixel was used, there is a high likelihood of being invalid 

during dry/low lake level locations. The average was calculated from the buffer to create 

a point-based comparison against the DWR cyanotoxins.  
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3.2.5 Lake-wide Summarization and Data Extraction for the Time Series 

To use SRS’s capability of measuring entire lakes, especially for those with no in-situ 

sampling locations, we summarized the cyanobacteria abundance across the lakes to a 

single value by using the lake’s median cyanobacterial abundance. This single value still 

captures potential spatial variability of cyanobacteria in the sites rather than single-point 

samples.  

3.2.6 Comparing DWR Cyanotoxins With S3 Cyanobacteria Counts 

The S3 cyanobacteria counts for each lake were classified into public health-relevant 

categories of alert using the WHO99 GVs (Table 2). WHO99 GVs of moderate or high 

probability (≥ 20,000 cells/ml) of adverse health effects were classified as an “alert” and 

WHO99 GVs of relatively low probability (< 20,000 cells/ml) were classified as “no 

alert”. The alert categories were then compared to the DWR advisory categories (Table 2) 

for that same day. We set a threshold for cyanobacterial abundance of ~20,000 cells/ml. 

Because of the limited digital number range (0-255), the actual threshold was 19,642 

cells/ml. Pixels that were at or above this threshold were given a “1”, and those below a 

“0”. While “caution” is an alert that is important for long-term cyanotoxin monitoring 

and may help prepare for future closures, the DWR advises users to not enter the water 

only under warning and danger levels. Because of this, we classified only the latter two 

higher classes as “alerts”.  

 

Table 3-3. Guideline Values (GVs) for recreational waters by the WHO for 

cyanobacteria and advisories levels set by the CA Department of Water Resources 

(DWR) for cyanotoxins. 

Authority Authority Guideline Level Value Classification 

for this 

Study 

California Department 

of Water Resources 

Recreational 

Cyanotoxin Advisory 

Levels 

Caution 0.8–5.99 μg/L Microcystins No Alert 

Warning 6–19.99 μg/L Microcystins Alert 

Danger 20 μg/L ≤ Microcystins Alert 

World Health 

Organization 1999 

Guideline Values for 

Cyanobacteria in 

Freshwater 

Relatively low probability of 

adverse health effects 

≤ 20,000 cyanobacterial 

cells/ml or ≤10 chl‐a μg/L 

No Alert 

Moderate probability of 

adverse health effects 

100,000 cyanobacterial 

cells/ml or 10.1–50 chl‐a μg/L 

Alert 

High probability of adverse 

health effects 

≥100,000 cyanobacterial 

cells/ml or ≥50 chl‐a μg/L 

Alert 
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3.2.7 Contingency Table Analysis Agreement between DWR and SRS-based advisories  

We compared the DWR cyanotoxins against S3 cyanobacteria abundance classified by 

the WHO99 GV. We performed a contingency table analysis and calculated the overall 

agreement (OA), false positive rate (FPR), and false negative rate (FNR) to compare SRS 

alerts and DWR advisories. OA is the sum of the true positive (TP) and true negative 

(TN) of observations that agree on the level of advisory from both methods (i.e., both 

SRS and DWR alert trigger) divided by all observations (Equation 3). A false positive 

(FP) or a false negative (FN) would be the result of a mismatched alert or advisory. The 

FPR (Equation 4) is the probability that a false alarm would be raised, which for this 

study means that an alert by SRS would be triggered when there is no alert by the DWR. 

The FNR, often known as the miss rate, is the probability that SRS would not trigger an 

alert while the DWR would (Equation 5). A higher FNR would mean SRS-cyanobacteria 

underpredicts the DWR advisories, while a high FPR means it overpredicts.  

 

Overall Agreement (OA) = 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (3) 

False Positive Rate (FPR) = 
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 (4) 

False Negative Rate (FNR) = 
𝐹𝑁

𝐹𝑁 + 𝑇𝑃
  (5) 

 

We also calculated sensitivity (SN), specificity (SP) and balanced accuracy (BA). SN 

(Equation 6), or the true positive rate, measures the proportion of actual positives 

correctly identified. SP (Equation 7), or the true negative rate, assesses the proportion of 

actual negatives correctly identified. BA (Equation 8), the average of SN and SP, 

provides a comprehensive measure for imbalanced classes since the total alert rate of the 

DWR is not evenly split.  

Sensitivity (SN) = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (6) 

Specificity (SP) = 
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
  (7) 

Balanced Accuracy (BA) = 
𝑆𝑁+ 𝑆𝑃

2
 (8) 

3.2.8 WHO99 Alert Frequency Maps 

In addition to calculating lake-wide alerts, we also visualized the spatial variability of 

blooms for the five DWR owned sites by creating pixel-by-pixel cyanoHAB alert 

frequency maps. We created maps of pixels that were classified as “alerts” following the 

WHO99 GV (Table 2) for the 2016 to 2023 to visualize how often a pixel was likely to 

be in exceedance of the WHO99 GV level (Equation 9).  

 

Pixel Alert Frequency (%) = 
n of pixels above the WHO99 GV 

n of total images
 *100 (9) 

3.2.9 Applying the WHO99 GVs Statewide 

Using the same lake shapefile created for S3’s OLCI, we created a time series for 76 

lakes and reservoirs in California, including those that the DWR does not own, manage 

nor sample for cyanotoxins. The lake median CIcyano was converted to cyanobacteria 
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abundance and classified as “alert” and “no alert” following the WHO99 GV (Table 2), 

as was done for our other five study lakes.  

 

We excluded three lakes in our analysis. Lake Tahoe was omitted due to its extremely 

clear, dark waters (Wang et al., 2020) particularly in the nearshore (Pearson and 

Huntington, 2019). The Salton Sea and Mono Lake were removed due to their extensive 

and complicated hydrology and water quality history (Stine, 1991; Wiens et al., 1993; 

Holdren and Montaño, 2002; Cohen, 2009), which make SRS of cyanoHABs less reliable 

for those water bodies.  

3.3 Results 

3.3.1 DWR and S3 Agreement Results: Point-Based Comparison  

Table 3-4. Results of overall agreement (OA), false positive rate (FPR), false negative 

rate (FNR), sensitivity (SN), specificity (SP) and balanced accuracy (BA) of cyanotoxin 

advisories set by the California DWR against WHO99 GV using SRS of S3 for each lake. 

The percentage of DWR samples that triggered an alert and the totals for each 

contingency analysis are shown. The true positive (TP), true negative (TN), false positive 

(FP) and false negatives (FN) are also given. 

 

Rates of OA between SRS-based advisories and DWR-based advisories using a point-

based comparison from the DWR sampling site ranged between 56 to 100% and the BA 

was 46 to 100% (Table 4). When all samples for all lakes were pooled, OA was 72%, 

FPR was 27%, FNR was 36%, SN was 64%, SP was 97% and BA was 80%. A minority 

of the DWR sampling (17%) led to alert level advisories. Lake Oroville had a low sample 

size, however had an OA and BA of 100%. There were no alerts set by the DWR and 

SRS at Lake Oroville. 

Name n OA FPR FNR SN SP BA DWR 

Alert 

TP TN FP FN 

Lake 

Oroville 

11 100% 0% 0% - 100% 100% 0% 0 11 0 0 

San Luis 

Reservoir 

113 84% 15% 18% 82% 85% 84% 35% 32 63 11 7 

Castaic 

Lake 

56 88% 9% 100% 0% 91% 46% 3.6% 0 49 5 2 

Pyramid 

Lake 

218 56% 48% 13% 87% 52% 69% 11% 20 101 94 3 

Perris 

Reservoir 

164 77% 11% 73% 27% 89% 58% 18% 8 119 15 22 

All Lakes 562 72% 36% 53% 64% 97% 80% 17% 60 343 125 34 
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Following Oroville, Castaic Lake had the next highest OA, a low FPR/high SP but a FNR 

of 100% and SN of 0%. There were no alerts by the DWR for this lake, however SRS 

created five alerts leading to the high FNR/low SN. Perris Reservoir followed (OA = 

77%) but had the second lowest BA due to the low FPR/high SP, and high FNR/low SN. 

Over 80% of the samples from Perris Reservoir were no alerts according to the DWR, 

however the few times it was an alert, SRS under-detected the alert. Pyramid Lake had 

the greatest sampling size but had the lowest OA across all lakes. It had the highest FPR 

across all the lakes, but conversely had one of the lowest FNR which is why it the BA 

was higher than two other lakes with a greater OA. Only  

11% of the DWR samples were an alert level of advisory, however SRS greatly 

overpredicted the presented alerts.  

3.3.2 DWR and S3 Agreement Results: Lake-wide comparison 

Table 3-5. Results of the total agreement, false positive and false negative rate 

summarized lake-wide. 

Name n OA FPR FNR SN SP BA DWR Alert TP TN FP FN 

Lake 

Oroville 

26 100% 0% 0% - 100% - 0% 0 26 0 0 

San Luis 

Reservoir 

146 73% 31% 17% 83% 69% 76% 32% 38 69 31 8 

Castaic 

Lake 

124 90% 9% 33% 67% 91% 79% 4% 4 107 11 2 

Pyramid 
Lake 

312 54% 49% 15% 85% 51% 68% 8% 22 145 141 4 

Perris 
Reservoir 

195 72% 13% 90% 10% 87% 49% 20% 4 136 20 35 

All Lakes 803 69% 30% 42% 58% 70% 64% 15% 68 483 203 49 

Table 5. Results of the total agreement, false positive and false negative rate summarized 

lake-wide. 

 

The OA between SRS-based advisories and DWR-based advisories using the lake-wide 

approach ranged between 54 to 100% and BA was 49 to 79% (Table 5). The lake-wide 

method provided 200 additional samples over the point-based comparison. When all 

samples were pooled, OA was slightly lower compared to the point-based approach, but 

BA deceased by 16%. The highest OA was in Lake Oroville (100%), and the lowest OA 

was Pyramid Lake (54%). Castaic Lake was the only site to have a higher OA using lake-

wide summaries versus point-based comparisons. Perris Reservoir OA decreased by 5%, 

Pyramid Lake by 2%, and San Luis Reservoir by 11%. Castaic Lake was the only site to 
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have an increase for BA using this approach, while Lake Oroville was unchanged and the 

remaining decreased.   

 

The remaining performance metrics had differing performances across most lakes. The 

FPR remained stable for all lakes, with only changes up to 2%, except for San Luis 

Reservoir. The SN and SP decreased by 6% and 27% respectively for all lakes. Pyramid 

Lake and San Luis Reservoir FNR were consistent. Castaic Lake’s FNR vastly improved 

but was the only instance. Perris Reservoir’s FNR increased by 17%, despite DWR alerts 

slightly increasing. SP for Castaic Lake, Lake Oroville. Perris Reservoir and Pyramid 

Lake remained stable, while San Luis Reservoir decreased by 16%. Castaic Lake was the 

only site to have SN increase using a lake-wide summary, San Luis Reservoir remained 

stable, and the remaining lakes all decreased.  

3.3.3 WHO99 Pixel Alert Frequency Maps for DWR Sites 

The alert frequency maps (Figure 2) provide a spatial visualization of all cyanobacteria 

classified to WHO99 GV alerts from 2016 to 2023 for the five DWR sites. The values 

represent the percentage of observations in the SRS time series that were classified as an 

alert.  

 

The alert frequency values across all lakes range from 0 to 27%. San Luis Reservoir had 

the highest frequency of WHO99 GV alerts in the time series, with a maximum of 27% 

of the time. Other sites with a higher alert frequency were Perris Reservoir (maximum = 

6.7%) and Pyramid Lake (maximum = 11.9%). The lakes with the overall lowest 

frequency of alerts were Castaic Lake (maximum = 1.5%) and Lake Oroville (maximum 

= 2%).  

 

Castaic Lake and Perris Reservoir appear to have a spatially homogeneous distribution of 

cyanobacterial abundance above the WHO99 GV (Fig 2). San Luis Reservoir has the 

highest frequency of alerts and spatially, these instances do not occur in bays or other 

small clusters of areas with high values, but rather high frequency that is distributed 

throughout the lake. The greatest values appear to be on the east side of the lake. Pyramid 

lake appears to have denser alert rates towards the center of the lake and have lower 

values around the edges, which may be driving the lower OA values calculated for this 

site because the DWR sampling sites were all near the lake edge.   
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Figure 3-2. Frequency of alerts following WHO99GV from 2016-2023 for each study 

site. The DWR surface and 1-meter sampling locations are also shown. 
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3.3.4 WHO99 Alert Exceedance Frequency in California Lakes and Reservoirs  

 
Figure 3-3. Map of the percentage above the WHO99 GV cyanotoxin risk for each lake 

resolvable by S3 in California divided into three regions (northern, central, and southern). 

The top ten lakes with great incidence of WHO99 exceedance are labeled. 
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Most lakes in California (58%) are found in the north, 28% in central, and 14% in the 

south (Fig 3). The six lakes with the greatest rates of a lake-wide median above the 

WHO99 GV were in southern California, three in central California, and one in northern 

California (Figure 3 and Table 5). 

 

The ten lakes with the highest frequency of cyanobacteria alerts had a range of 18 to 

99.3% between 2016 to 2023 according to SRS (Table 5). There were six lakes which 

had 0%, 54 lakes had a range of 0.05-10% and nine lakes had a range of 11-25% of alerts 

above the WHO99GV. The remaining seven lakes were above 25% of above the 

WHO99GV, where one site had a near 100%. The complete table of our statewide 

analysis can be found in Supplemental Table 2.  

 

With SRS data there is almost daily data available for cyanobacteria (assuming there is 

no cloud or image disruptions), while there is limited in-situ cyanotoxin data available on 

the California State Water Board website 

(https://mywaterquality.ca.gov/habs/where/freshwater_events.html) for the top ten 

greatest cyanoHAB frequency lakes (Table 5). Clear Lake had the most data publicly 

available, over three times than the second greatest, while Calaveras Reservoir had no 

data available. Each lake’s corresponding owner or managing agency and the total 

cyanotoxin data publicly available for each is provided by the from 2016 to 2023.  

 

Table 3-6. Top ten lakes of 76 in California with frequently occurring WHO99 GV alerts 

as estimated from SRS data from 2016-2023, where 8 are not owned, managed, or 

sampled by the DWR. The total publicly available cyanoHAB toxin data available in the 

California Water Board data portal 

(https://mywaterquality.ca.gov/habs/where/freshwater_events.html) and cyanobacteria 

data available from CyAN from the time period. 

Lake/Reservoir Frequency 

above 

WHO99 

Owner/Managing 

Agency 

California Data 

Portal Cyanotoxin 

Data (n) 

SRS CyAN 

Data 

(n) 

Lake Elsinore 99.3 City of Lake Elsinore 22 1982 

Lake Henshaw 43.4 Vista Irrigation District 8 1841 

Calaveras 

Reservoir  

32.8 San Francisco Public 

Utilities Commission 

0 1719 

Lake Crowley  29.7 Los Angeles Department 

of Water and Power 

3 1803 

Big Bear Lake  29.3 Big Bear Municipal 

Water District 

41 1946 

https://mywaterquality.ca.gov/habs/where/freshwater_events.html
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3.4 Discussion  

3.4.1 Point-Based vs Lake-Wide Against DWR Cyanotoxins 

One of the motivations of our paper is to use a metric that summarizes the conditions 

across a lake effectively. Comparing an alert that was classified using the lake-wide 

median against the DWR samples is comparing a summarized value from multiple 

locations to a point sample. Because of spatial differences, it is reasonable that the data 

closest to the validation site would have a greater overall agreement against a value that 

condenses cyanobacteria spatial variability to a single value.  

 

Using a point-based comparison greatly outperformed a lake-wide according to the BA. 

The OA treats correct predictions and errors as equally important, whereas BA offers a 

more nuanced perspective by focusing specifically on true positives and true negatives. 

There is over six-times more DWR non-alerts than alerts, which could overestimate the 

true accuracy of using SRS for cyanotoxin monitoring. The BA helps interpret these 

unequal classes. We assumed that the lake-wide results would be similar to the point–

based results, which was true, but we also expected them to have a lower agreement rate 

due to the nature of summarizing a large area to compare to a specific location. With the 

slightly lower OA using lake-wide summaries, we can conclude that it does not perform 

as well as a point-based comparison, but the decrease in OA is small but the BA had a 

greater decrease.  

 

Using a lake-wide approach in a lake well known for its persistent and higher advisory 

levels may be more appropriate than using point-based collection/measurements. We 

found regions with SRS that may have had toxins, whereas the DWR sampled sites did 

not. Lake Oroville overall has low cyanobacteria alert values (Figure 2) which tracks with 

the outcomes of Table 3 where all DWR samples cyanotoxins did not trigger an alert. 

However, there may be locations in the lakes where alert level cyanoHABs may have 

occurred but were not being sampled by the DWR (Figure 2). Castaic Lake and Perris 

San Luis 

Reservoir 

26.0 DWR 12 1979 

Sweetwater 

Reservoir 

25.3 Sweetwater Authority 2 1663 

Diamond Valley 

Lake  

25.0 Metropolitan Water 

District of Southern 

California 

2 1795 

Clear Lake 22.1 Yolo County Flood 

Control and Water 

Conservation District 

142 2064 

Pyramid Lake 18.0 DWR 9 1862 
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Reservoir spatially homogeneous appearance (Figure 2) may be the result from high 

winds or other horizontal mixing processes. Frequent and high winds may influence 

bloom location, where when averaged over time, could lead to similar frequencies across 

the lake (Table 2) which would be missed if only relying on select point samples.  

 

Contributing factors to the high FNR and false positive rate (FPR) include the 

concentration of algal blooms at lake edges, minimal DWR alerts relative to non-alerts, 

and the inability of SRS to explicitly detect cyanotoxins. The FNR was 42% for pooled 

samples using the lake-wide approach, which is 6% higher than using the point-based 

approach. With this metric, SRS underestimates/misses alerts 42% of the time. The FPR 

was 30%, meaning SRS overestimates DWR alerts 30% of the time. There is a total of 

147 DWR alerts (15%) across all sites compared to the 683 non-alerts (85%). The 

quantity of alerts is not necessarily a small sample size, however distributed across five 

sites may not be enough to confidently state this high of an FNR. Another highly 

plausible explanation is that the cyanobacteria found in the lake may not be toxin-

forming (O’Neil et al., 2012; Stumpf et al., 2016). SRS captures a cyanobacteria by 

detecting the associated pigments (phycocyanin) but cannot explicitly sense cyanotoxins 

because these harmful substances do not have distinct spectral signatures detectable by 

current remote sensing technologies. 

3.4.2 Lakes and Reservoirs with High Cyanotoxin Risk 

The ten lakes with the highest frequency of cyanoHAB alerts were mainly in southern 

California, followed by central and northern California. These results align with Urquhart 

et al. (2017), who found the greatest increase in total bloom area from 2008 to 2012 in 

central California, followed by southern California, with northern California showing the 

smallest increase. Our time series from 2016 to 2023 supports these trends, suggesting 

that bloom patterns have shifted over time. Northern California is colder and has higher 

rates of precipitation, central California has a mix of climates with hot inland summers, 

and southern California is warmer and drier. With limited precipitation, if lake levels 

become low then entering nutrients could become more concentrated compared to a fuller 

lake (Jeppesen et al., 2015; Özen et al., 2010; Brasil et al., 2016). Southern California, 

especially closer to the coast, has greater urban cover (U.S Census Bureau, 2020) which 

may influence the concentration, rate and type of nutrients entering the system (Müller et 

al., 2019; Walsh et al., 2015). While central California may not be as urban, it is still well 

known for its hot temperatures and agriculture which would also support high nutrient 

carrying runoff (Moss et al., 2013). Hotter temperatures and higher concentration of 

nutrients would greatly support algal growth which would explain our findings.  

 

Despite being the lakes with the greatest cyanobacteria rates in the state, there was 

limited cyanotoxin data available found in the California State Water Board website. The 

lake with the highest WHO99 GVs frequency was Lake Elsinore, which has a 

documented history of HABs which is likely why it has one of the highest data samples 

available (Table 5). The Santa Ana Regional Water Quality Control Board samples 

various points around the lake and have a similar procedure as the DWR for their 

cyanotoxin monitoring (City of Lake Elsinore, 2024). Clear Lake has a similar 
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monitoring plan in place (Big Valley Band of Pomo Indians, 2024). Lake Henshaw’s 

agency states that they collect cyanotoxins weekly from two sites in the lake. The other 

lakes had some data available in the portal, except Calaveras Reservoir, where there was 

no cyanotoxin data readily available online. The monitoring schedule for Lake Crowley 

and Diamond Valley Lake was not readily available, however there have been previous 

news reports of danger warnings of detected cyanotoxins/HABs (California State Water 

Resources Control Board, 2021; Lassen County News, 2023; NBC Los Angeles, 2018; 

CBS News, 2024).  Say something to emphasize the importance / utility of having a SRS 

dataset, especially with limited toxin data available.     

 

Knowing where there are confirmed high rates of cyanobacteria (Figure 3), paired with 

cyanotoxin data (Table 6), can significantly enhance future cyanotoxin research. Having 

a list of lakes most affected by cyanobacterial blooms can be used to prioritize 

monitoring efforts and allocate resources more efficiently to these regions. Combining 

SRS cyanobacteria and in-situ cyanotoxin data, researchers can further improve the 

accuracy of bloom assessment and better understand the correlation between 

cyanobacteria presence and toxin production, improving predictive models and risk 

assessments. 

3.4.3 Closing Spatial and Temporal Data Gaps 

SRS provides substantially more consistent data for cyanobacteria compared to 

cyanotoxin samples collected by various agencies or managers (Table 5). SRS allows for 

standardized cyanobacteria retrieval with a higher revisit frequency, and the data is freely 

accessible the following day through CyAN. In contrast, cyanotoxin data are distributed 

across different agencies (Table 6), potentially using varying sample collection methods, 

and may not be publicly shared promptly. The total cyanotoxin data for San Luis 

Reservoir and Pyramid Lake available on the California State Water Board’s website are 

much lower than the data used in this study, as obtained by personally inquiring with the 

DWR O&M branch. Furthermore, DWR initializes cyanotoxin sampling based on local 

reports and the duration of detected toxicity levels at sampling locations. SRS provides 

near real-time monitoring and trends of cyanobacterial bloom development, helping 

water managers determine the optimal timing for cyanotoxin testing during peak algal 

activity periods. Including SRS data in current monitoring plans can enhance the focus on 

both timing and location of potential cyanotoxin hotspots for targeted testing. 

 

Cyanotoxin production in algal blooms is highly variable and depends on specific 

environmental conditions (Davis et al., 2009; Chorus and Bartram, 1999), meaning that 

cyanobacteria found in different areas of the same lake may not always produce toxins 

(Szlag et al., 2015). According to the DWR data, not all lakes are toxic such as Lake 

Oroville or (usually) Castaic Lake. While these lakes have little to no cyanotoxins found 

when sampled, the SRS data also align with these findings by indicating low 

recommended alerts during the sampling period. But there may be differing quantities or 

types of cyanobacteria occurring in the lake that may be different in the locations 

collected from the DWR. In Figure 2, Lake Oroville’s DWR sampling points are in the 

lowest areas for alerts (< 0.05% alert exceedance), while the eastern side has greater 
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frequency rates (2% alert exceedance) which may indicate larger cyanobacteria 

concentrations compared to current sampling. SRS can help water managers by providing 

detailed spatial and temporal data on algal bloom distributions, highlighting areas with 

high concentrations of cyanobacteria for targeted cyanotoxin testing.  

 

SRS data can be used to support help monitoring efforts at lakes such as San Luis 

Reservoir because of its well documented toxicity and bloom spatial variability (Figure 

2). Basalt Boat Launch (Figure 2B; south-west point) has over three times the data (n = 

150) and double the alert rate (34%) that Dinosaur Point (Figure 2A; north-east point) has 

(n = 41 and alerts = 15%), which is where current and future cyanotoxin monitoring is 

being done because of road closures. This aligns with the pattern shown in the alert 

frequency maps (Figure 2), where areas close to Basalt Boat Launch have trends of 

higher WHO99 GV alerts, while the Dinosaur Point site has some of the lowest rates of 

the figure. Since we are attempting to summarize the cyanotoxin potential of the whole 

lake, the Dinosaur Point location may be underestimating the bloom status of further 

areas at San Luis Reservoir that can be found in the Basalt area. 

 

3.4.4 Study Limitations 

A disadvantage of using SRS for cyanobacteria detection or screening is the lower spatial 

resolution of the sensor used, which is 300-m resolution, potentially missing small-scale 

blooms and providing less detailed highly local information compared to in-situ data and 

has challenges in lakes that are characterized by complex shape. Other sensors like 

Sentinel-2, with a higher spatial resolution of 10-20 meters, can provide more detailed 

images of smaller blooms and water bodies of chlorophyll-a which has been used as a 

successful proxy of cyanotoxins (Lopez Barreto et al., 2024). NASA's Earth Surface 

Mineral Dust Source Investigation (EMIT) focuses on mapping surface minerals, but its 

technology could also be adapted for water quality applications (Jet Propulsion 

Laboratory, 2024). Future missions, such as and Surface Biology and Geology (SBG), 

specifically designed for terrestrial and aquatic environments, will provide high-

resolution hyperspectral imaging allowing for detailed characterization of cyanobacteria 

pigments and better differentiation between bloom types (Cawse-Nicholson et al., 2021). 

This capability will improve detection accuracy and provide more comprehensive data 

for water quality management. 

 

The WHO99GVs are only applicable to lakes that have confirmed cyanotoxins found in 

the system. SRS can accurately detect cyanobacteria presence and levels, however using 

the WHO99GV, we are assuming denser blooms are toxin-producing. Detected 

cyanobacteria presence does not ensure cyanotoxin exposure because not all 

cyanobacteria strains produce toxins (Chorus and Bartram, 1999; Chorus, 2001; Bláha et 

al., 2009; Szlag et al., 2015). The production of cyanotoxins is influenced by various 

environmental factors that can vary by site (Kaebernick and Neilan, 2001; Holland and 

Kinnear, 2013; Neilan et al., 2013; Boopathi and Ki, 2014). While cyanobacteria 

presence can signal potential risks, actual toxin levels must be measured directly to 

confirm exposure and assess health risks (Stumpf et al., 2016).  
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Pyramid Lake has a low FNR, meaning that SRS has a good rate of detection when it is 

potentially toxic. However, it had the lowest OA because it often overpredicts cyanotoxin 

risk. While this site’s DWR alert frequency is relatively low (7.9%), presence of higher 

toxicity levels is not constant throughout the timeseries. In 2021, there were 19 DWR 

alerts compared to the previous and following year of only 3. In 2023 there were also 

only three DWR alerts, however the levels of cyanotoxins prompted wide news coverage 

(Rodriguez, 2023) and the DWR urged visitors to not enter the lake (DWR, 2023). This 

means that cyanobacteria in Pyramid Lake have confirmed cyanotoxins, however the 

sampling location may not be reflecting potential hotspots which appear to be the center 

of the lake according to Figure 2, or the algal bloom intensity may not be consistent over 

the time period. More sampling at different locations might be able to address the poor 

OA at Pyramid Lake. SRS could likely inform such monitoring, including the addition of 

sampling sites that align with areas of most frequently occurring alerts. 

3.4.5 Additional Sources for Water Quality Data in California 

There are other monitoring organizations that share similar and other water quality data 

like the DWR. Some noted are the Klamath Basin Monitoring Program, East Bay 

Regional Park District, Big Valley Band of Pomo Indians (Clear Lake focused), and Kern 

County Public Health. Some organizations' frequency, methods for sampling, or time 

frame are not the same as the DWR’s. Many organizations give clear past and current 

water quality advisories concerning HABs, however the actual cyanotoxins data is not 

available alongside these notices. While the data may not be immediately available for 

download, the DWR and most agencies/collaborators/organizations do share their 

findings when inquired.  

Several participating organizations contribute water quality information via CEDEN, the 

California Environmental Data Exchange Network. CEDEN represents a collaborative 

initiative across California's water and environmental sectors, welcoming federal, state, 

county, and private entities eager to share data statewide. Facilitating data exchange 

among diverse groups, the CEDEN network aims to provide public access to water and 

environmental data. CEDEN is a direct result of Assembly Bill 1755 (AB 1755), known 

as The Open and Transparent Water Data Act, which was signed into law in 2016. This 

bill directs the DWR, the California Water Quality Monitoring Council, the State Water 

Resources Control Board, and the California Department of Fish and Wildlife, to 

establish, manage, and sustain a comprehensive statewide integrated water data platform. 

The bill requires the development of a strategic plan outlining program implementation, 

as well as protocols for data sharing, documentation, quality control, public access, and 

the promotion of open-source platforms and decision support tools pertaining to water 

data (California Water Code Section 12400, 2016). If those that collect water quality data 

were to publish their data to this public repository, then this can support further 

collaboration, transparency and provide further informed decision-making for important 

sites.  

 

3.5 Conclusions 
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Our study highlights the effectiveness of point-based cyanotoxin monitoring over lake-

wide summaries, demonstrating a higher accuracy in detecting localized algal blooms and 

their associated risks. From our five study lakes, San Luis and Perris Reservoir produce 

the greatest rates of cyanotoxins according to the DWR data. The OA of these lakes for 

both point-based and lake-wide approaches yielded reasonable agreement (~70%). Lake 

Oroville and Castaic Lake had the lowest cyanotoxin alerts and had the highest OA 

across the study, suggesting SRS works best with lower cyanobacteria levels. The 

nuanced evaluation provided by balanced accuracy (BA) versus overall accuracy (OA) 

reveals that while lake-wide approaches offer a broader perspective, they often 

underestimate the true variability and potential hotspots within a lake. Further 

investigation should be done for using lake-wide summaries to compare point samples, 

such as having varied locations of in-situ samples. The increased spatial coverage 

provided by SRS ensures a more accurate representation of cyanobacteria distribution, 

thereby improving the overall monitoring and assessment of cyanoHABs in the lake. 

Overall SRS of cyanobacteria of inland lakes provide reasonable agreement but should 

have in-situ data to help establish a better comprehension of the toxicity rates of the 

lakes.  

 

The spatial and temporal inconsistencies in cyanotoxin presence underscore the need for 

targeted, high-resolution monitoring strategies. In regions with higher cyanobacteria risk, 

such as Southern California, the integration of remote sensing data with traditional 

sampling methods can enhance monitoring precision and resource allocation. By 

identifying lakes with persistent and high advisory levels, we can prioritize these areas 

for more intensive study and intervention. Nine out of the ten lakes with the greatest 

WHO99 GV frequency had less than 50 cyanotoxin data publicly available through the 

official California HAB portal across eight years. These lakes are managed or owned by a 

variety of agencies, including DWR, and likely have more data collected for these lakes 

but may have not been disseminated to the data portal. The combination of satellite 

remote sensing (SRS) and in-situ data collection provides a robust framework for 

understanding cyanobacteria dynamics and mitigating their impacts. 



 

     

75 

3.6 Appendix 

 
Figure 3A-1. Visual representation of the spatial limitations of narrower lakes using 

larger resolution satellites. On the left shows no data available using a 600-meter buffer 

around a sampling location while the right shows successful data retrieval with the same 

 

Table 3A-1. The results of overall agreement (OA), false positive rate (FPR), false 

negative rate (FNR), sensitivity (SN), specificity (SP) and balanced accuracy (BA) of 

cyanotoxin advisories set by the California DWR against WHO99 GV using point-based 

SRS of S3 for the two lakes removed from the results of the study. The percentage of 

DWR samples that triggered an alert and the totals for each contingency analysis are 

shown. 

Name n OA FPR FNR SN SP BA DWR 

Alert 

TP TN FP FN 

Lake del Valle 0 - - - - - - - - - - - 

Silverwood 

Lake 

7 57% 50% 0% 100% 50% 75% 14% 1 3 3 0 

 

Table 3A-2. All California lakes WHO99 GV frequency of alert exceedance as estimated 

from SRS data from 2016-2023, where 8 are not owned, managed, or sampled by the 

DWR. 

ID Lake Name n Frequency Above WHO99 

1 Big Bear Lake 1946 29.29 

2 Big Lagoon 1155 0.52 
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3 Black Butte Lake 1887 2.01 

4 Bouquet Reservoir 1598 0.44 

5 Bowman Lake 1438 0.42 

6 Bucks Lake 1504 1.53 

7 Butt Valley Reservoir 1589 0.31 

8 Calaveras Reservoir 1719 32.75 

9 Camanche Reservoir 1775 0.51 

10 Camp Far West Reservoir 1555 0.00 

11 Castaic Lake 1789 1.90 

12 Cherry Lake 1720 0.12 

13 Clear Lake 2064 22.14 

14 Courtright Reservoir 1439 0.35 

15 Diamond Valley Lake 1795 24.96 

16 Dodge Reservoir 992 12.80 

17 Don Pedro Reservoir 1881 0.27 

18 Eagle Lake 2052 1.66 

19 Folsom Lake 1849 3.19 

20 French Meadows Reservoir 1603 0.12 

21 Frenchman Lake 1524 6.89 

22 Goose Lake 1477 2.64 

23 Grant Lake 1644 2.19 

24 Hetch Hetchy Reservoir 1686 0.30 

25 Indian Tom Lake 1550 1.10 

26 Indian Valley Reservoir 1853 5.50 

27 Isabella Lake 2040 17.16 

28 Jackson Meadows Reservoir 1337 0.07 

29 Lake Almanor 1904 0.95 

30 Lake Berryessa 1972 0.15 

31 Lake Crowley 1803 29.73 

32 Lake Davis 1602 7.62 

33 Lake Earl 1331 0.98 

34 Lake Eleanor 1672 0.42 

35 Lake Elsinore 1982 99.34 

36 Lake Hennessey 1540 6.62 

37 Lake Henshaw 1841 43.40 

38 Lake Mathews 1772 0.00 

39 Lake Nacimiento 1804 0.22 

40 Lake Oroville 1790 1.06 
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41 Lake Pillsbury 1809 13.16 

42 Lake San Antonio 1809 17.08 

43 Lake Shastina 1750 11.83 

44 Lake Success 1589 0.63 

45 Lake Thomas A Edison 1496 0.00 

46 Little Grass Valley Reservoir 1538 0.26 

47 Loon Lake 1398 0.21 

48 Lower Roberts Reservoir 1700 0.71 

49 Medicine Lake 966 6.73 

50 Merle Collins Reservoir 1501 0.13 

51 Millerton Lake 1789 4.86 

52 Moon Lake 1623 1.48 

53 Mountain Meadows Reservoir 1781 5.50 

54 New Bullards Bar Reservoir 1699 0.06 

55 Pardee Reservoir 1617 0.19 

56 Perris Reservoir 1833 9.06 

57 Pine Flat Lake 1794 5.07 

58 Pyramid Lake 1862 18.05 

59 Renner Lake 1245 5.46 

60 Russian River Reservoir 1717 1.11 

61 San Luis Reservoir 1979 26.02 

62 Scotts Flat Reservoir 1466 0.82 

63 Shasta Lake 1821 0.16 

64 Shaver Lake 1764 0.00 

65 Silva Flat Reservoir 926 4.21 

66 Skinner Reservoir 1685 3.92 

67 Sweetwater Reservoir 1663 25.32 

68 Thermalito Afterbay 1796 1.00 

69 Tinemaha Reservoir 1955 3.94 

70 Trinity Lake 1800 0.22 

71 Tule Lake 1353 17.00 

72 Turlock Lake 1769 0.17 

73 Union Valley Reservoir 1679 0.00 

74 West Valley Reservoir 1666 5.58 

75 Whiskeytown Lake 1691 0.59 

76 Woodward Reservoir 1747 0.00 
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Chapter 4: Remote Sensing of Cyanobacteria in California Lakes and Reservoirs: 

Impacts and Implications of Wildfire 

 

Abstract:  

Wildfires, increasingly prevalent in the Western US due to climate change, can 

significantly impact water quality by altering landscape and soil properties. Potential 

changes include increased nutrient transport and the promotion of harmful algal blooms 

(HABs). This study examines the effect of wildfires on cyanobacteria harmful algal 

blooms (cyanoHABs) in 68 California lakes using satellite remote sensing (SRS) data 

from 2008 to 2022. Findings show that most lakes had no significant difference post-

wildfire, however the few that did mainly showed an increase of cyanoHABs, particularly 

within two years post-wildfire. Statistical analyses reveal significant trends in cyanoHAB 

alerts over the study period, emphasizing the need for integrated water management 

strategies in wildfire-prone areas. This research highlights the crucial role of remote 

sensing in monitoring and mitigating the ecological impacts of wildfires on water quality. 
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4.1 Introduction 

A major portion of Western water supply comes from areas where wildfires are a 

frequent and growing concern (Smith et al., 2009), potentially impacting the quality of 

water for many people. Wildfires are increasing in both intensity and frequency due to 

climate change which have resulted in a significant rise in the number of large wildfires 

and the total area burned each year (Westerling et al., 2006; Abatzoglou & Williams, 

2016; Dennison et al., 2014). Wildfire can influence post-fire runoff by altering the 

landscape and soil properties by burning vegetation and organic matter, leaving soil 

exposed and more susceptible to erosion (Neary et al., 2005; Bladon et al., 2014). Higher 

than usual sediment transport post-wildfire can increase nutrients in the system such as 

phosphorus and nitrogen (Spencer et al., 2003; Sheridan et al., 2007; Emelko et al., 2011; 

Mast and Clow, 2008) which can support growth of harmful algal blooms (HABs) (Fogg, 

1969; Padisák, 1997; Flores and Herrero, 2005; Paerl et al., 2011). 

HABs are often caused by the rapid growth of cyanobacteria, also known as blue-green 

algae, which can produce toxins detrimental to human and animal health. These 

cyanobacteria harmful algal blooms (cyanoHABs) can degrade water quality, limit 

recreational use of water bodies, and result in significant ecological and economic 

impacts (Smayda, 1997; Paerl, 2009; Stroming et al., 2020). As cyanoHABs continue to 

impact water quality, ecosystem health, and human well-being, addressing this issue has 

become a pressing national (Bladon et al., 2014; Coffer et al., 2021; Schaeffer et al., 

2024) and global concern (Chorus and Bartram, 1999; Stewart et al., 2006; Chorus and 

Welker, 2021; Paerl and Huisman, 2009; Brooks et al., 2016).  

Studies that have measured algal biomass post-fire have seen increases, decreases, or no 

changes at all (Robinson, 1994; Rushforth and Minshall, 1994; Klose et al., 2015; 

McCullough et al., 2019; Paul et al., 2022). In Tang et al. (2021) they demonstrated that 

the 2019 and 2020 Australian wildfires had a profound impact on marine ecosystems by 

triggering widespread algal blooms. A lake turbidity and chlorophyll-a, an indicator of 

blooms, found no clear signal globally but clearer responses were found for individual 

lakes (Caroni et al., 2024). This is likely because of multiple factors at play such as the 

timing and severity of wildfire and subsequent precipitation, and general factors that 

influence algal growth in the systems (Verkaik et al., 2013). Furthermore, findings are 

from studies focused primarily on one lake or on a few clustered lakes (McCullough et 

al., 2019; Urquhart et al., 2017). Even fewer studies include pre- and post-fire data, 

limiting our understanding of ecosystem recovery.   

In recent years, remote sensing has opened new frontiers for environmental monitoring. 

Satellite remote sensing (SRS), with its ability to collect data over large spatial scales, 

provides invaluable insights into water quality dynamics. By analyzing satellite data 

collected over decades, we can identify long-term trends in cyanobacteria abundance, 

distribution, and potential exposure to toxins (Urquhart et al. 2017; Coffer et al. 2021; 

Schaeffer et al., 2022; Wynne et al. 2010). Water quality records are incomplete in 

various lakes across the United States because of inconsistent monitoring (Schaeffer et 
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al., 2018). Using SRS, it may be possible to assess wildfire influence on cyanobacteria by 

examining spatial and temporal overlaps, revealing the relationship between wildfire 

events and algal bloom dynamics.  

Our objective is to determine the relationship wildfire has on cyanoHABs in lakes across 

California, the largest state in the Western US and the third largest state in the US, by 

using available satellite remote sensing (SRS) imagery. Our hypothesis is that lakes and 

reservoirs whose watershed experienced a moderate or high fire severity within their 

watershed will experience more frequent cyanoHABs than pre-fire conditions. However, 

these levels may decrease after a year as vegetation cover recovers and the fire's effects 

on soil and hillslope hydrological properties return to pre-wildfire conditions (Smith et 

al., 2011; Reneau et al., 2007). We expect cyanobacteria conditions to peak within two 

years post-wildfire to account for ecosystem recovery (Raoelison et al., 2023; Rust et al., 

2018; Nolan et al., 2014; Spencer and Hauer, 1991; Verkaik et al., 2013).  

4.2 Methods  

4.2.1 Study Area 

Areas with Mediterranean climates, such as California, are at high risk of increased soil 

erosion post-wildfire because the fire season is immediately followed by the wet season 

(Mayor et al., 2007). The already limited water supply in California must be preserved 

and be monitored for safe consumption and use for the future. Focusing on California 

with its great climate range and variety of ecosystems (Bedford et al., 2018), would allow 

a new insight on wildfire’s role on water quality that could be applicable to similar 

ecoregions around the world where wildfire and water scarcity risk is high.  

 

California's climate is diverse because of its varied topography and extensive latitudinal 

range. Coastal areas experience mild, wet winters and warm, dry summers characteristic 

of a Mediterranean climate (Ackerly et al., 2018; Houlton and Lund, 2018). The Central 

Valley, an agricultural hub, has a similar pattern but with more pronounced temperature 

extremes (Fernandez-Bou et al., 2022). In contrast, the Sierra Nevada mountains 

experience alpine conditions with cold, snowy winters and mild summers, while 

southeastern regions like Death Valley endure scorching desert climates, featuring some 

of the hottest temperatures on Earth (Hopkins, 2018; Hall et al., 2018; Kalandsky, et al., 

2018).  

 

There are a total of 68 California lakes and reservoirs that were used in our study that are 

resolvable through the primary satellite sensors used to measure cyanobacteria, the 

Medium Resolution Imaging Spectrometer (MERIS) and the Ocean and Land Color 

Instrument (OLCI) (Urquhart and Schaeffer, 2020). Three of the resolvable lakes were 

removed from our analysis. Lake Tahoe was omitted due to its extremely clear, dark 

waters (Wang et al., 2020) particularly in the nearshore (Pearson and Huntington, 2019) 

that may interfere with SRS signals. The Salton Sea and Mono Lake were removed 
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because of its well documented and complicated hydrology and water history (Stine, 

1991; Wiens et al., 1993; Holdren and Montaño, 2002; Cohen, 2009). 

4.2.2 Datasets 

4.2.2.1 Cyanobacteria SRS Data 

SRS observations of cyanobacteria were downloaded from the Cyanobacteria Assessment 

Network (CyAN) (Schaeffer et al., 2015). Their products are in CIcyano (CyAN, Schaeffer et 

al., 2015 based on Wynne et al. (2008) and modified by Lunetta et al. (2015). The 

satellites used to create the CIcyano  data are from the European Space Agency's MERIS 

sensor onboard the Envisat satellite, and OLCI onboard Sentinel 3. The final level-3 

SRS-cyanobacteria products have clouds masked and sunglint, shadows and potential 

mixed pixels from water and land removed (Urquhart and Schaeffer, 2020; Schaeffer et 

al., 2022).  

 

The CIcyano products are available in daily and 7‐day maximum value composites. Because 

of the large spatial coverage and lengthy time series, the weekly products were used for 

this study. The time period in our study for MERIS observations is 2008 to 2012 and 

OLCI is 2016 to 2022. We used the lake shapefiles created for the MERIS/OLCI sensors 

that are intended for CyAN data (Urquhart and Schaeffer, 2020), to use as the boundaries 

for each lake. 

4.2.2.2 Wildfire Data 

We used wildfire perimeter data provided by the Monitoring Trends and Burn Severity 

(MTBS), a comprehensive dataset created through a joint program by the U.S. Geological 

Survey (USGS) and the U.S. Forest Service. MTBS integrates satellite imagery from the 

Landsat satellites and ground-based observations for their products (MTBS, 2023). 

MTBS has their own severity products, but they have limitations including potential 

errors due to subjective severity classification thresholds that are not field-validated 

(Kolden et al., 2015). The wildfire severity data we used comes from Xu et al. (2022), 

which is based on the normalized burn ratio and the differenced normalized burn ratio 

from the MTBS dataset, where severity is consistently based on field-validated equations. 

Their dataset ranges from unburned, low, moderate, high, to grass burn. We then 

summarized wildfire data by calculating the proportion of the watershed burned by 

moderate or high severity fire and distance from the lake edge from 2008 to 2020. Our 

study summarized wildfire data by each lake’s corresponding watershed. We used the 

sub-basin level (HUC-8) as our watershed scale. Some encompass multiple watersheds, 

so each were given a unique identifier so the wildfire history of each could still be 

considered.  

 

Higher burn severity and a larger proportion of a watershed burned significantly increase 

the likelihood of water quality being compromised. (Uzun et al., 2020; Hallema et al., 

2018). To address smaller fires, we included only those wildfires that burned at moderate 

or high severity, resulting in a yearly total of 1% or more of the watershed burned. This 
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ensured inclusion in our analysis if the combined burned area met this threshold. Using 

the sub-basin level to screen for wildfires, we found many fires extended over 150 km 

from the lake edge which may make it become more difficult to distinguish wildfire 

signals with such a great distance (Paul et al., 2022; Smith et al., 2011). We filtered 

watersheds that had at least 1% burned by moderate or high severity fires that year to 

have at least one wildfire within 50 km, categorizing anything beyond as “unburned.” 

This method retained approximately 75% of the wildfires in the dataset. 

4.2.3 Cyanobacteria Time Series 

We calculated the median CIcyano (Equation 1) from the CyAN dataset for each lake’s 

weekly composite image and converted it to cyanobacteria abundance (Equation 2) 

(Wynne et al., 2010; Lunetta et al., 2015).  

 

                                               CIcyano = 10 (Digital Number * 0.011714−4.1870866)                               (1) 

                              Cyanobacteria Abundance cells/mL = CIcyano ∗ 1E + 08                             (2)  
*CyAN's range is limited from ∼10,000 to 7,000,000 cells/mL 

 

Median cyanobacteria abundance for an entire lake was calculated, and this value was 

used to classify the lake into public health alerts following 1999 World Health 

Organization guidelines following Lopez Barreto et al. (2024) (See Chapter 2 for more 

details). Cyanobacteria abundance that was greater than 20,000 cells/mL were classified 

as an alert and those below were considered as no alert. The duration and frequency of 

these WHO99 GVs before and after a wildfire were subsequently calculated.  

 

CyanoHAB alert frequency was calculated as the fraction of occurrences of alerts 

normalized by the total number of observations (Equation 3). This was calculated 

separately for each lake and for each sensor time period; frequencies were calculated for 

2008 to 2011 and 2016 to 2022 separately. There are about three months of MERIS data 

in 2012, however this is during the winter and early spring months that are outside of 

algal bloom season and were thus omitted. There are OLCI data beginning from early 

spring in 2016, before the bloom season, which were kept.  

 

  CyanoHAB Alert Frequency (%) = 
Total n of weekly lake medians above the WHO99GV

Total n of weekly lake data
 *100  (3) 

4.2.4 Post-wildfire Water Quality Assessment 

4.2.4.1 Defining Pre- and Post-Wildfire Conditions and Time Periods   

To compare the frequency of cyanobacteria alerts between pre- and post-wildfire 

occurrences, we defined the pre-wildfire time period to be a year’s worth of prior wildfire 

data to encompass seasonal variability, but not too much climatological variability. We 

considered two different time periods for post-wildfire: one-year, to capture the 

immediate effects of first flush and high precipitation events in the first wet season 

following a wildfire, and two years to capture lagging effects. For lakes with multiple 

wildfires in their watershed, we only included data where there was a minimum three-
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year gap between wildfire years. This gap was necessary to ensure that any altered bloom 

conditions from previous fires, as suggested in our hypothesis, had time to dissipate. If 

the gap was shorter than three years, the residual effects of the prior wildfire could still 

influence cyanobacteria blooms, potentially confounding our analysis. We also made sure 

that there was at least a full year (52 weeks) to compare pre- and post-fire conditions to 

ensure at least one bloom season is captured. An example is if there was a wildfire in 

2011, depending how late the wildfire is, there might not be enough data to capture algal 

bloom seasonality.  

4.2.6 Statistical Analyses 

4.2.6.1 Determining Cyanobacteria and Wildfire Trends  

We tested for monotonic trends for cyanoHAB alert frequency using the seasonal Kendall 

test for each lake (Kendall, 1938; Mann, 1945). This non-parametric test evaluates the 

consistency of trends, providing a robust measure of changes to identify whether 

cyanobacteria presence are increasing, decreasing, or remaining stable over our time 

period. Our analysis defined seasons as individual months as used in other cyanoHAB 

studies (Urquhart et al., 2017; Schaeffer et al., 2022). We used the 2008 to 2012 and 2016 

to 2022 as one timeseries. We used the seasonal Kendall Tau test from the EnvStats 

package (version 2.8.1) in R statistical software (version 4.3.2), recommended by the 

EPA for studying long-term water quality 

trends                                                                                                                            

4.2.6.2 Comparing CyanoHABs in Burned and Unburned Watersheds   

To quantify if there is a significant difference in the distribution of cyanobacteria cell 

count and cyanoHAB frequency, we performed a Mann-Whitney/Wilcoxon rank sum 

two-sided test (Wilcoxon, 1945; Mann and Whitney, 1947) between lakes with 

watersheds categorized as “burned” and “unburned” for the whole time period, and for 

the two sensor time periods separately: 2008 to 2012 and 2016 to 2022. This was 

implemented using the Stats package (version 4.3.2).  

4.2.6.3 Comparing Cyanobacteria Frequency Before and After Wildfire  

We performed the non-parametric Mann-Whitney/Wilcoxon rank-sum two-sided test to 

compare distributions of bloom frequency for each lake pre- and post-wildfire. Wildfires 

in 2008 and from 2012 to 2016 are considered in our study but are not eligible for 

analysis due to lack of cyanobacteria data before 2008 and lack of data from mid-2012 

until mid-2016.  
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4.3 Results  

4.3.1 Cyanobacteria Alerts and Wildfire Trends 

 
Figure 4-1. Trends in moderate and high severity wildfires and cyanobacteria alerts 

classified by the WHO99 GV in California from 2008 to 2022. 

 

Areas burned by moderate and high-severity wildfires in California have been gradually 

increasing alongside cyanobacteria alerts from 2008 to 2020 (Figure 1). The burned area 

remained relatively low and stable from 2008 to around 2015, with a noticeable increase 

starting around 2016 (Figure 1A). A significant spike in acres burned occurred in 2018, 

reaching a substantial peak in 2020. There were minimal areas burned in 2019, which 

was an above average wet year and had very few wildfires. The number of cyanobacteria 

alerts from 2008 to 2011 was relatively stable according to SRS data (Figure 1B). After a 

data gap from 2012 to 2016, there is a general increasing trend in alerts. From 2016 

onward, the alerts stabilize at a higher level compared to earlier years. 
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4.3.2 Statewide Cyanobacterial Trends and Alert Distribution 

 
Figure 4-2. Map of California showing the spatial distribution of lakes that are SRS 

resolvable and used in our study. Areas affected by wildfires are displayed in orange (low 

severity/grass burn) and red (moderate or high severity). 
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Areas of moderate and severe wildfires are concentrated mainly in the northern and 

central parts of the state, with notable patches along the Sierra Nevada and coastal 

mountain ranges. Almost all lakes are in close proximity (< 5 km) of wildfires of both 

lower and higher severities.  

 

Across our time series 22 lakes experienced a statistically significant trend in cyanoHAB 

alerts. Twenty one of the 22 lakes had an increasing trend, and only one lake, Camanche 

Reservoir, had a decreasing trend. While they were statistically significant, the trends for 

all lakes were minor and produced a Theil-Sen slope of 0, deeming them to be very 

minor. There is no clear spatial trend for lakes that show significant or insignificant 

changes. The results of our seasonal Kendall’s test including the 95% confidence interval 

for slope, Theil-Sen slope and Kendall’s tau can be found in our supplemental Table 4A-

1. 

 

 
Figure 4-3. The frequency of cyanobacteria alerts for two periods: 2008-2011 on the left 

(A) and 2016-2022 on the right (B). The size of the circles on the maps represents the 

percentage of time cyanobacteria alerts were issued. 

The frequency of cyanobacteria alerts in California's lakes has exhibited variability 

between 2008 to 2011 and 2016 to 2022 (Figure 3). Initially, from 2008 to 2011, alerts 

were generally less frequent, with 35 lakes showing no cyanobacteria levels above the 

WHO99 GV. By 2016 to 2022, however, there is a noticeable increase in both the 
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number and size of alerts, indicating more frequent and widespread cyanobacteria blooms 

across the state.  

 

The distribution of cyanobacteria alerts reveals different patterns for 2008 to 2011 versus 

2016 to 2023 (Figure 4). In the earlier time period, lakes with cyanobacteria alerts were 

primarily found in northern and central California. Lakes with blooms primarily 

experienced a cyanoHAB frequency less than 10% (Figure 4), meaning that these lakes 

generally had occasional blooms. In the later period, the spatial distribution of lakes 

containing blooms is greater, having now more alerts across California compared to the 

earlier period. During this later period, only eight lakes remained free of blooms, while 

one lake transitioned from having blooms in 2008 to 2011 to no blooms in 2016 to 2022.  

4.3.3 Comparing Cyanobacteria Levels and Frequency in Burned and Unburned 

Watersheds 

Table 4-1. The results of a Mann-Whitney/Wilcoxon test comparing cyanobacteria 

median levels and cyanobacteria alert frequencies between burned and unburned lakes 

across different time periods. The mean and median of the cyanobacteria cell counts for 

burned and unburned lakes across different time periods. The mean and median of the 

cyanobacteria cell counts for burned and unburned lakes are also displayed. 

Time 

Period 

Median Unburned 

(n of observations) 

Mean 

Unburned

  

Median  

Burned (n)  

Mean 

Burned  

W-

statistic 

P-

Value  

Lake-wide Median Cyanobacteria Cell Counts 

Full Time 

Series 

6310 (12759) 91167 6310 (28427) 83845 183833339 < 0.001 

2008 - 

2012 

6310 (9708) 54804 6310 (5633) 21773 28363645 < 0.001 

2016 - 

2022 

6310 (8038)  109524 6310 (17807) 112967 72219627 0.038 

Classified WHO99GV Cyanobacteria Alerts 

Full Time 

Series 

- 
 

- 
 

183390690 < 0.001 

2008 - 

2012 

- 
 

- 
 

28363645 < 0.001 

2016- 

2022 

- 
 

– 
 

71972382 0.174 

 

For the entire time series, the median cyanobacteria cell count was the same for lakes 

with burned watersheds as for those with unburned watersheds, while the mean count was 

lower in burned lakes, with a very low p-value indicating a significant difference between 
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the two groups. (Table 1). This pattern held for the 2008 to 2012 period, with cell counts 

remaining the same for both categories, a high W-statistic, and a very low p-value. The 

difference in the mean is the greatest for the time period, where the unburned is twice as 

high. However, in the 2016 to 2022 period, while the median cell count remained 

unchanged, the W-statistic was lower, and the p-value indicated a slight reduction in 

statistical significance. The mean for burned watersheds is now higher than those that 

were unburned, but the difference is not as large compared to the earlier period. 

 
Figure 4-4. The percentage of cyanoHAB alerts across our earlier time period (2008 to 

2012), later (2016 to 2022) and the entire time period for lakes with burned and unburned 

watersheds. 

Over the full time series, lakes without wildfire had a slightly higher percentage of 

cyanoHAB alerts compared to those with fire (Figure 5C). In the early period, lakes 

without fire had a higher percentage of cyanoHAB alerts compared to lakes with fire 

(Figure 5A). In the later period, the percentage of cyanoHAB alerts increased 

significantly for both, with both categories showing almost equal percentages (Figure 

5B).  
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4.3.4 Comparison of Cyanobacteria Presence Before and After Wildfire  

 
Figure 4-5. A visualization of the results of a Mann-Whitney/Wilcoxon test, with an 

alpha level of 0.05, comparing cyanobacteria alert frequencies before and after wildfires 

one year post-fire (A) and two years post-fire (B) for data from 2008 to 2012 and 2016 to 

2022. Lakes that are either significant or not significant that appear in only one map 

indication one or two years post-fire are because of insufficient data for the time period 

(i.e one year needs at least 40 weeks of data, and two years requires at least 60). 

The majority of lakes analyzed for differences in cyanobacteria alerts pre- and post-

wildfire showed no significant difference, however there were variations between the first 

and second years post-fire for those that did (Figure 5). Twenty-eight lakes experienced 

wildfires in their watersheds from 2008 to 2012 and 2016 to 2020, fitting our criteria to  

compare cyanobacteria alert frequencies before and after wildfires.  

In the first year post-fire, seven lakes showed a significant increase in cyanoHAB alerts, 

while three decreased. Two years post-fire, more lakes (compared to the first year post-

wildfire) experienced significant changes: eleven lakes had significant increases in alerts, 

and two had decreases. Despite these changes, non-significant differences still dominate 

the majority of lakes. Nine lakes shifted between significant and non-significant change 

in cyanoHAB alerts between both periods.  
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4.4 Discussion 

The primary objective of our study was to determine if wildfire impacts the frequency of 

cyanoHAB alerts in California lakes and reservoirs. The proximity of these expanding 

wildfires to lakes within the state (Figure 2) raises significant concern, warranting 

investigation into any potential relationship with algal blooms (California Coastkeeper 

Alliance, 2023; National Park Service, 2023). Our study found that lakes with wildfires in 

their watersheds have fewer cyanoHAB alerts (8.4%) than those that remain unburned 

(9.5%), although while statistically significant, the differences are relatively small. We 

also found that the most significant increases in cyanobacteria alerts occurred two years 

post-fire, compared to the first year. One year post-fire, significant changes in 

cyanobacteria alerts were primarily observed in the northern and southern regions of 

California. By two years post-fire, a greater number of sites exhibited significant 

increases in cyanoHAB alerts, with these sites now extending into the central region of 

the state. There are only three instances from the earlier time period, but all were deemed 

insignificant. The few observations are primarily from insufficient data that was needed 

to establish pre and post wildfire conditions, however there were also overall less wildfire 

during this period (Figure 1).  

 

We found a statistically significant increasing cyanoHAB alert trend in both 2008 to 2011 

and 2016 to 2022, however it was minor. Two previous studies measuring cyanoHAB 

spatial extent using MERIS for 2008 to 2012 (Urquhart et al., 2017) and OLCI for 2017 

to 2020 (Schaeffer et al., 2022) found that California lakes overall had little direction and 

strength in their Mann-Kendall trend test results. Both studies found similar results, 

despite our use of the lakewide median and their use of spatial extent. However, the time 

periods examined differ, and while they conducted a statewide comparison, we focused 

on individual lakes. When we viewed the statewide cumulative sum of total 

cyanobacteria alerts using the WHO99 GV, we saw that the range of values were similar 

separating 2008 to 2011 and 2016 to 2022 (Figure 1B) from each other, which is what 

Urquhart et al. (2017) and Schaeffer et al. (2022) are also respectively finding in their 

trend tests. Our lakes that show a strong increase over time (Figure 2) are likely due to a 

gradual increase from the missing five years of data.   

 

Overall, cyanobacteria alerts have been trending upward over the entire time series, 

driven by a substantial increase in alerts between the two periods studied. The differences 

in cyanoHAB alerts are less pronounced in the 2016 to 2022 period relative to the 2008 to 

2012 period. Concurrently, wildfires have also been on the rise. The state's wildfire 

season has extended, with fires occurring earlier in the spring and lasting later into the 

fall. Some of the most destructive and largest fires in California's history, such as the 

Camp Fire in 2018 and the August Complex Fire in 2020, occurred during our later half 

of the study (Cal Fire, 2022). Historically, when wildfires were less frequent, their 

suppressing effects on cyanoHABs might have been more pronounced. Alternatively, 

cyanoHABs may have primarily occurred in lakes with low fuel loads and specific 

locations, such as agricultural areas, that were less likely to burn. In the later period, as 

fires have become more intense, cyanoHABs have worsened statewide. This suggests that 

more intense fires could be contributing to the increase in cyanoHABs, potentially 



 

     

98 

reducing the difference between "burned" and "unburned" areas. Another explanation 

could be that cyanoHABs are now spreading into regions more susceptible to burning 

under the new fire regime. 

Our findings suggest that while some lakes might recover or stabilize relatively quickly 

post-fire, others may endure prolonged periods of elevated cyanobacteria levels. All sites 

with significantly decreasing cyanoHABs (Castaic, Frenchman, and Pyramid Lakes) 

demonstrated a notable shift to no significant change in cyanobacteria levels by the 

second year post-fire, indicating possible recovery. In contrast, some sites that initially 

experienced increases in cyanobacteria alerts the first year shifted to insignificant by the 

second year (Indian Tom Lake and Indian Valley Reservoir). All sites that showed signs 

of recovery were reservoirs but were spatially distributed across the state. The 

characteristics of the wildfire and antecedent lake conditions likely influence the lake's 

resiliency and recovery. Productive lakes, already rich in nutrients, might not experience 

increased algal growth after a fire, indicating a level of resilience. In contrast, 

oligotrophic lakes, which are typically low in nutrients, are more likely to undergo 

significant changes in response to nutrient inputs from fire runoff (Paul et al., 2022; 

Cunillera-Montcusi et al., 2019). This variability in response highlights the importance of 

understanding specific lake conditions to develop effective recovery strategies and 

enhance resilience to disturbances.  

Of the three sites that experienced a decrease, two (Castaic and Pyramid Lake) were in 

close proximity to each other in the Sierra Pelona Mountains in southern California 

(Figure 4A). This regional clustering may suggest that the impact of wildfires on 

cyanobacteria levels may be influenced by local environmental conditions and specific 

post-fire management practices. Because of the close proximity, these two lakes share 

near identical precipitation, temperature, and similar wildfire regimes which may explain 

why they both have identical results. Because of wildfires in 2020, several projects 

became listed as “high priority” regarding post-fire forest and watershed restoration in the 

Sierra Pelona Mountains. Projects included reducing invasive species in wildfire prone 

areas, reducing road sediment, improving water infrastructure, and maintenance of the 

existing chaparral and conifer plantations to help facilitate recovery (National Fish and 

Wildlife Foundation, 2021). The recovery from these sites may be a result from these 

management decisions, or perhaps some lakes might recover or stabilize relatively 

quickly post-fire, and others may endure prolonged periods of elevated cyanobacteria 

levels. 

Drought and wet years significantly impact the occurrence and severity of algal blooms. 

During droughts, reduced water flow and increased temperatures create stagnant 

conditions ideal for algal growth, exacerbated by concentrated nutrients from runoff 

(Gámez et al., 2019; de Barroso et al., 2018; Lehman et al., 2017; García-Prieto et al., 

2012). Conversely, wet years bring increased runoff and nutrient loading from rainfall 

and snowmelt, which can trigger blooms, although increased flow can sometimes dilute 

and flush out nutrients, reducing bloom severity (Michalak, 2016; Reichwaldt and 

Ghadouani 2012).  
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Over the past two decades, California has experienced notable wet years interspersed 

with severe droughts. Wet years such as 2005, 2010 to 2011, and 2016 to 2019 brought 

significant precipitation that replenished reservoirs, boosted groundwater supplies, and 

increased river flows (Parrett and Hunrichs, 2006). Conversely, drought years like 2007 

to 2009, 2012 to 2016, and 2020 to 2022 were marked by critically low precipitation, 

leading to severe water shortages, depleted reservoirs, and stressed ecosystems. The 2012 

to 2016 drought was particularly devastating, being one of the most prolonged and severe 

in California's history (Lund et al., 2018; Ullrich et al., 2018).  

 

Castaic, Frenchman, and Pyramid lakes experienced wildfires at the onset of the 2020 to 

2022 drought. The minimal precipitation during these years likely restricted the 

mobilization of nearby sediment and nutrients that would typically be more mobile. In 

contrast, Lake Elsinore, Big Bear Lake, and Indian Valley Reservoir, which saw 

significant increases in cyanoHAB alerts, had wildfires during the 2016 to 2019 wet 

period. The increased runoff from these wet years may have contributed to the heightened 

cyanoHAB activity. These climate extremes were not directly considered in our study, 

however these are likely contributing cyanoHAB factors that should be considered in the 

future.  

 

Cyanobacteria blooms are influenced by multiple factors beyond wildfires, including 

nutrient loading, water temperature, hydrology, light availability, and climate extremes. 

While wildfires can contribute to algal growth through nutrient enrichment and altered 

water chemistry, other environmental factors are equally crucial (Emelko et al., 2016; 

Cook and Holland, 2012; Olson et al., 2023). Even without wildfires, significant 

cyanobacteria blooms can occur if these conditions are met. Therefore, these variables 

should be considered when interpreting study results, highlighting a limitation in large-

scale studies. 

4.5 Conclusions 

We aimed to determine the relationship between wildfires and cyanoHABs in lakes 

across California as wildfires become more frequent and severe due to climate change. 

Overall, our findings highlight the complex interplay of factors driving changes in 

cyanoHAB alert frequencies in California's lakes. The observed reduction in the 

difference between burned and unburned lakes during 2016 to 2022, coupled with the 

general increase in bloom occurrences, emphasizes the need for continued research and 

monitoring to understand and mitigate the impacts of these environmental changes on 

water quality and public health. While most sites did not have a statistically significant 

increase in cyanobacteria alerts post-fire, those that did primarily showed increases, with 

some recovering by the second year. The persistence of significant changes two years 

post-fire emphasizes the lasting impact of wildfires on aquatic ecosystems, necessitating 

long-term monitoring and management strategies to mitigate adverse effects on water 

quality and public health. This variability underscores the complex interactions between 

wildfire effects and aquatic ecosystems, highlighting the necessity for region-specific 

studies to understand local dynamics better.  
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After a wildfire, management strategies that can protect water quality would be to 

implement erosion control measures, maintain riparian buffer zones, and manage nutrient 

levels to prevent algal blooms. Enhancing water treatment facilities to handle increased 

sediment and nutrient loads is crucial, along with conducting regular water quality 

monitoring to address issues promptly. Management done for Castaic and Pyramid Lake 

post-wildfire might be the reason why they recovered from previous cyanoHAB changes 

within two years. Public advisories are also important to inform the community about 

potential water quality risks and safe usage guidelines. These measures help mitigate 

wildfire impacts on water quality, safeguarding aquatic ecosystems and public health. 

Further studies are necessary to disentangle the specific contributions of wildfire activity, 

climate change, and land use changes to improve the understanding of the observed 

trends in cyanobacteria blooms. 

4.5 Appendix 

Table 4A-1. The results of the seasonal Mann-Kendall for cyanoHAB alerts across 76 

lakes in California from 2008 to 2012 and 2016 to 2023. 

Lake Name Tau Slope Intercept χ2 Z-Trend 

Lower 

Interval 

Upper 

Interval 

Big Bear Lake 0.19 0 0 NA 0.00 0 0 

Big Lagoon 0.02 0 0 NA 0.09 0 0 

Black Butte Lake 0.03 0 0 NA 0.31 0 0 

Bouquet Reservoir 0.00 0 0 NA 1.00 0 0 

Bowman Lake 0.05 0 0 NA 0.06 0 0 

Bucks Lake 0.00 0 0 NA 1.00 0 0 

Butt Valley Reservoir 0.02 0 0 NA 0.22 0 0 

Calaveras Reservoir 0.32 0.08 -294.1 0.07 0.00 0 0 

Camanche Reservoir -0.02 0 0 NA 0.16 0 0 

Camp Far West Reservoir 0.00 0 0 NA NA 0 0 

Castaic Lake 0.01 0 0 NA 0.78 0 0 

Cherry Lake 0.03 0 0 NA 0.08 0 0 

Clear Lake Reservoir 0.09 0 0 NA 0.00 0 0 

Clear Lake 0.26 0 -100.9 NA 0.00 0 0 

Courtright Reservoir 0.03 0 0 NA 0.25 0 0 

Diamond Valley Lake 0.21 0 0 NA 0.00 0 0 

Dodge Reservoir 0.04 0 0 NA 0.26 0 0 

Don Pedro Reservoir 0.00 0 0 NA 1.00 0 0 

Eagle Lake 0.03 0 0 NA 0.48 0 0 

Folsom Lake 0.05 0 0 NA 0.07 0 0 

French Meadows Reservoir 0.01 0 0 NA 0.64 0 0 

Frenchman Lake 0.00 0 0 NA 1.00 0 0 
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Goose Lake 0.05 0 0 NA 0.05 0 0 

Grant Lake 0.08 0 0 NA 0.05 0 0 

Hetch Hetchy Reservoir 0.00 0 0 NA 0.87 0 0 

Howard Prairie Lake 0.12 0 0 NA 0.01 0 0 

Indian Tom Lake 0.06 0 0 NA 0.01 0 0 

Indian Valley Reservoir 0.06 0 0 NA 0.07 0 0 

Isabella Lake 0.10 0 0 NA 0.03 0 0 

Jackson Meadows Reservoir 0.02 0 0 NA 0.40 0 0 

Lake Almanor 0.07 0 0 NA 0.00 0 0 

Lake Berryessa -0.01 0 0 NA 0.64 0 0 

Lake Crowley 0.10 0 0 NA 0.04 0 0 

Lake Davis 0.09 0 0 NA 0.02 0 0 

Lake Earl -0.12 0 0 NA 0.00 0 0 

Lake Eleanor 0.04 0 0 NA 0.07 0 0 

Lake Elsinore 0.30 0 4 0.70 0.00 0 0 

Lake Hennessey 0.06 0 0 0.80 0.17 0 0 

Lake Henshaw 0.27 0 0 0.81 0.00 0 0 

Lake Mathews 0.00 0 0 NA NA 0 0 

Lake Nacimiento 0.02 0 0 NA 0.41 0 0 

Lake Oroville 0.01 0 0 NA 0.27 0 0 

Lake Pillsbury 0.02 0 0 NA 0.75 0 0 

Lake San Antonio 0.03 0 0 NA 0.58 0 0 

Lake Shastina 0.03 0 0 NA 0.53 0 0 

Lake Success 0.04 0 0 NA 0.12 0 0 

Lake Thomas A Edison 0.01 0 0 NA 0.56 0 0.2 

Little Grass Valley 

Reservoir 0.03 0 0 NA 0.04 0 0 

Loon Lake 0.02 0 0 NA 1.00 0 0 

Lower Roberts Reservoir 0.00 0 0 NA 1.00 0 0 

Medicine Lake 0.29 0 0 NA 0.00 0 0 

Merle Collins Reservoir 0.01 0 0 NA 0.52 0 0 

Millerton Lake 0.05 0 0 NA 0.06 0 0 

Moon Lake 0.01 0 0 NA 0.52 0 0 

Mountain Meadows 

Reservoir 0.18 0 0 NA 0.00 0 0 

New Bullards Bar Reservoir 0.02 0 0 NA 0.29 0 0 

Pardee Reservoir 0.05 0 0 NA 0.03 0 0 

Perris Reservoir 0.21 0 0 NA 0.00 0 0 

Pine Flat Lake -0.02 0 0 NA 0.59 0 0 
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Pyramid Lake 0.08 0 0 NA 0.02 0 0 

Renner Lake -0.05 0 0 NA 0.24 0 0 

Russian River Reservoir 0.04 0 0 NA 0.05 0 0 

San Luis Reservoir 0.18 0 0 NA 0.00 0 0 

Scotts Flat Reservoir 0.05 0 0 NA 0.03 0 0 

Shasta Lake 0.00 0 0 NA NA 0 0 

Shaver Lake 0.00 0 0 NA NA 0 0 

Silva Flat Reservoir 0.02 0 0 NA 0.30 0 0 

Skinner Reservoir 0.05 0 0 NA 0.14 0 0 

Sweetwater Reservoir 0.27 0 0 NA 0.00 0 0 

Tinemaha Reservoir 0.05 0 0 NA 0.15 0 0 

Trinity Lake 0.00 0 0 NA NA 0 0 

Tule Lake 0.10 0 0 NA 0.03 0 0 

Turlock Lake 0.00 0 0 NA NA 0 0 

Union Valley Reservoir 0.00 0 0 NA NA 0 0 

Upper Klamath Lake 0.03 0 0 NA 0.47 0 0 

West Valley Reservoir -0.12 0 0 NA 0.00 0 0 

Whiskeytown Lake 0.05 0 0 NA 0.02 0 0.1 

Woodward Reservoir 0.00 0 0 NA NA 0 0 

Table 4A-1: The results of the seasonal Mann-Kendall for cyanoHAB alerts across 76 

lakes in California from 2008 to 2012 and 2016 to 2023.  
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Chapter 5: Conclusions 

Satellite remote sensing (SRS) is important for monitoring water quality, due to its ability 

to provide comprehensive, timely, and cost-effective data over large spatial scales. This 

technology fills significant temporal and spatial gaps left by traditional in-situ methods, 

enhancing the ability to manage and mitigate the impacts of cyanobacterial harmful algal 

blooms (cyanoHABs) on water resources and public health. The integration of SRS with 

existing monitoring frameworks offers a powerful tool to address the growing challenges 

posed by climate change on aquatic ecosystems. 

  

This dissertation highlights the effectiveness of SRS in monitoring cyanoHABs and 

supporting public health advisories across California's diverse lake environments. By 

integrating SRS with in-situ monitoring, the studies reveal significant regional variations 

in cyanoHAB frequency and emphasize the critical role of environmental factors such as 

climate, urbanization, and agricultural runoff. The findings also underscore the persistent 

impact of wildfires on aquatic ecosystems, demonstrating the need for sustained, adaptive 

management strategies to protect water quality and public health in the face of changing 

environmental conditions. 

  

Chapter 1 proves the effectiveness of using satellite remote sensing (SRS) to monitor 

cyanoHABs and for recreational health advisories in California. The research leverages 

chlorophyll-a (chl-a) as a proxy for cyanobacteria, aligning with updated WHO guidance 

values. Using Sentinel-2 (S2) and Sentinel-3 (S3) satellites, the study creates SRS-

derived chl-a and cyanobacteria and compares these findings with advisories issued by 

the California Department of Water Resources. The results show a high total agreement 

rate for S3 and variable rates for S2 depending on the algorithm, indicating that SRS can 

effectively complement traditional monitoring methods. The study underscores the 

potential of SRS to fill temporal and spatial data gaps, thereby enhancing public health 

protection through more comprehensive and timely monitoring of water quality in 

cyanobacteria-dominated lakes and reservoirs. 

  

Chapter 2 underscores the critical importance of combining satellite remote sensing 

(SRS) data with in-situ monitoring to effectively assess and manage cyanobacteria 

cyanoHABs across lakes in California. The increased spatial coverage provided by SRS 

ensures a more accurate representation of cyanobacteria distribution, enhancing overall 

monitoring and assessment of cyanoHABs. However, integrating in-situ data with SRS is 

crucial for better understanding toxicity rates. The spatial and temporal inconsistencies in 

cyanotoxin presence underscore the need for targeted, high-resolution monitoring 

strategies. The study also highlights the higher accuracy of point-based cyanotoxin 

monitoring over lake-wide summaries in detecting localized algal blooms and associated 

risks. Among the five study lakes, San Luis and Perris Reservoir had the highest 

cyanotoxin rates, with reasonable agreement (~70%) between point-based and lake-wide 

approaches. Lake Oroville and Castaic Lake had the lowest cyanotoxin alerts and the 

highest overall accuracy (OA), indicating SRS is more effective at lower cyanobacteria 

levels. Balanced accuracy (BA) versus OA shows that lake-wide approaches can 

underestimate variability and hotspots within a lake. The spatial and temporal 
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inconsistencies in cyanotoxin presence underscore the need for targeted, high-resolution 

monitoring strategies. In high-risk regions like Southern California, combining remote 

sensing data with traditional sampling can enhance monitoring precision and resource 

allocation. Identifying lakes with persistent high advisory levels allows for prioritizing 

these areas for intensive study and intervention. Combining satellite remote sensing 

(SRS) with in-situ data collection provides a robust framework for understanding 

cyanobacteria dynamics and mitigating their impacts. 

 

Chapter 3 has established a nuanced understanding of the relationship between wildfires 

and cyanoHABs in California lakes using SRS data from 2008 to 2022. The study found 

that while the majority of lakes showed no significant difference in cyanoHAB 

frequencies post-wildfire, those that did exhibit changes primarily demonstrated an 

increase in cyanoHAB activity, particularly within two years following a wildfire. This 

pattern suggests a persistent influence of wildfires on aquatic ecosystems, underscoring 

the need for sustained monitoring and management to mitigate adverse effects on water 

quality and public health. The observed variability in cyanoHAB responses among 

different lakes highlights the complexity of interactions between wildfire impacts and 

aquatic environments. Factors such as pre-existing nutrient levels, lake productivity, and 

specific local conditions significantly influence a lake's resilience and recovery post-

wildfire and should be considered for each site. Additionally, regional management 

practices, such as those implemented in Castaic and Pyramid Lakes, may have proven 

effective in mitigating post-wildfire impacts, suggesting that targeted interventions can 

enhance lake recovery. 

  

Given the increasing frequency and severity of wildfires due to climate change, this 

dissertation emphasizes the importance of integrated water management strategies. These 

strategies should include erosion control measures, maintenance of riparian buffer zones, 

and enhancements to water treatment facilities to handle increased sediment and nutrient 

loads. Regular water quality monitoring and public advisories are crucial to promptly 

address issues and inform communities about potential risks. Overall, this research 

underscores the critical role of SRS in advancing our understanding of environmental 

changes and their impacts on water quality. Continued research and adaptive 

management practices are essential to safeguard aquatic ecosystems and public health in 

the face of escalating wildfire activity. 
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