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Modeling vocabulary growth in autistic and non-autistic children
Eileen K. Haebig

Department of Communication Sciences and Disorders

Stanley H. West
Department of Psychology

Christopher R. Cox
Department of Psychology

Louisiana State University
Baton Rouge, LA 70803 USA

Abstract

We assessed the goodness of fit of three models of vocabulary
growth, with varying sensitivity to the structure of the environ-
ment and the learner’s internal state, to estimated vocabulary
growth trajectories in autistic and non-autistic children. We
first computed word-level acquisition norms that indicate the
vocabulary size at which individual words tend to be learned
by each group. We then evaluated how well network growth
models based on natural language co-occurrence structure and
word associations account for variance in the autistic and non-
autistic acquisition norms. In addition to replicating key obser-
vations from prior work and observing that the growth models
explained similar amounts of variance in each group, we found
that autistic vocabulary growth also exhibits growth consistent
with “the lure of the associates” model. Thus, both groups
leverage semantic structure in the learning environment for vo-
cabulary development, but autistic vocabulary growth is also
strongly influenced by existing vocabulary knowledge.
Keywords: autism; vocabulary growth; network modeling

Introduction
Children on the autism spectrum have core features of re-
stricted interests and repetitive behaviors and have challenges
with social communication (Association, 2013). Although
not a diagnostic criterion, the majority of autistic children
have delays in early vocabulary development (Charman et al.,
2003; Ellis Weismer & Kover, 2015; Luyster et al., 2007).
In fact, it is estimated that the average age of autistic chil-
dren producing their first words is 23 months, which is ap-
proximately 11 months later than typically developing infants
(Mayo et al., 2013). These early language delays are signifi-
cant because language skills are predictive of child and adult
outcomes in autistic individuals (Anderson et al., 2009; Hed-
vall et al., 2015; LeGrand et al., 2021). Given this importance
of early language, a great deal of research has been dedicated
to characterizing the vocabulary abilities of autistic children.
The current study aims to apply a semantic network model-
ing approach to not only characterize lexical acquisition of
young autistic children at the word level, but to identify key
insights into the learning mechanisms that drive vocabulary
development in autistic children.

Autistic children’s early vocabulary
development

Although the late onset and slow progression of vocabulary
has been well-documented in young autistic children, the cur-
rent literature provides scarce insight into when individual

words tend to enter an autistic child’s vocabulary. Haebig
et al. (2021) reported the ten most frequently reported words
produced by minimally speaking autistic children. Nine of
them are also among the top ten most frequently reported
words in a vocabulary matched group of non-autistic chil-
dren, indicating that autistic children broadly learn the same
first words that non-autistic children learn. Although this is
interesting, it provides only a small glimpse into the order of
word learning at the earliest point in the acquisition process.

In contrast, the WordBank public repository (Frank et al.,
2017), which is a data repository that contains word-level
data from the MacAurthur-Bates Communicative Develop-
ment Inventory (Fenson et al., 2007) for over 12,000 toddlers
who speak American English—and several tens of thousands
of toddlers who speak other languages—contains sufficient
word-level data to derive reliable age of acquisition (AoA)
data. Compared to adults reflecting on their own childhood
to estimate the age when they learned specific words (Kuper-
man et al., 2012), parents reporting on the current abilities of
their child are more time-sensitive and objective data for esti-
mating AoA (Łuniewska et al., 2016; Smolík & Filip, 2022).

Modeling vocabulary growth as a network
Why would vocabulary norms be useful for understanding
autistic vocabulary development? Network growth modeling
(Hills et al., 2009; Steyvers & Tenenbaum, 2005) allows for
a detailed study of the semantic structure of a child’s vocab-
ulary and its relationships to the semantic environment they
are developing within (Jiménez & Hills, 2022; Wojcik, 2018).
Analyzing a vocabulary as a network of semantic associations
provides insight both into its conceptual organization and into
mechanisms contributing to its growth. Three models of net-
work growth have been explored:

1. Preferential attachment (Steyvers & Tenenbaum, 2005):
unknown words that are associated with known words with
the most connections to other known words are more likely
to be acquired. This emphasizes the structure of the child’s
current vocabulary in guiding growth.

2. Preferential acquisition (Hills et al., 2009): unknown
words with the most connections to other words—both
known and unknown—are more likely to be acquired. This
ignores the structure of the child’s vocabulary; only the en-
vironment matters.
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3. Lure of the associates (Hills et al., 2009): unknown words
with the most connections to known words are more likely
to be acquired. This emphasizes the associations at the in-
tersection of what is known and unknown but ignores struc-
ture more generally.

Hills et al. (2009) observed that preferential acquisition
and lure of the associates, but not preferential attachment,
explained significant variance in vocabulary growth in typ-
ically developing children, with preferential acquisition be-
ing the best predictor. Importantly, a model including lure
of the associates as a predictor could be improved by adding
preferential acquisition, but not vice versa. More recently,
Jiménez and Hills (2022) examined vocabulary growth mod-
els for non-autistic children with typical language develop-
ment and those who were late talkers. In the analyses, they in-
cluded data from receptive and expressive vocabulary knowl-
edge indexed by AoA. They found that vocabulary growth in
both groups was most consistent with growth by preferential
acquisition relative to the other models. No previous study
has applied semantic network modeling to examine vocabu-
lary learning in autistic children, presumably because AoA
norms do not exist for this group.

Vocabulary size of acquisition
Any attempt to construct vocabulary growth trajectories for
autistic children confronts a fundamental problem. Compared
to non-autistic children with typically developing language,
autistic children are far more heterogenous and achieve lan-
guage milestones at a wide range of ages. The assumption of
AoA is that there is a typical age at which words are acquired,
but age is not a reliable indicator of any given autistic child’s
level of language development.

This does not mean that characterizing the typical vo-
cabulary growth of autistic children is impossible or ill ad-
vised. Rather than estimating the probability of producing
each word as a function of age to obtain an expected AoA,
these probabilities can be estimated as a function of vocabu-
lary size to obtain a vocabulary size of acquisition (VSOA)
for each word. VSOA estimates can then be used in place
of AoA to describe the most common trajectory of language
development, whenever that development begins and the rate
at which it proceeds. By selecting non-autistic children to
closely match the distribution of vocabulary sizes in the autis-
tic sample, VSOA can facilitate comparisons of vocabulary
composition in units of development that are aligned across
groups.

Current study
Current models of vocabulary development highlight the im-
portance of semantic structure—both the structure of the lex-
icosemantic environment that the child is developing in, and
the structure of the child’s own vocabulary relative to that
environment. Thus, the trajectory of vocabulary growth in
autism may contain valuable information about how they per-
ceive and relate to the structure of their environment. Di-

vergence from non-autistic growth trajectories, reflected in
different patterns of alignment with models of vocabulary
growth, may imply cognitive differences relevant to word ac-
quisition. The current study assesses the goodness of fit of
three models of vocabulary growth, each differing in its sen-
sitivity to the structure of the environment and the learner’s
internal state, to estimated vocabulary growth trajectories,
measured in intervals of VSOA, over words appearing on
the McArthur-Bates Communicative Development Inventory
(CDI; Fenson et al., 2007) separately for autistic and non-
autistic children.

Methods
Vocabulary data
Word-level data that were measured using the McArthur-
Bates Communicative Development Inventory (CDI; Fenson
et al., 2007) were analyzed for the current study. The CDI is
a vocabulary checklist for caregivers to complete to report a
child’s expressive vocabulary. Though the CDI was intended
for and has normative data for children aged 8 to 30 months,
it is appropriate to use with older children with language de-
lays and disorders (Fenson et al., 2007). As such, clinicians
and researchers frequently use the CDI to characterize vocab-
ulary knowledge in autistic children (e.g., Arunachalam et al.,
2022; Charman et al., 2003; Luyster et al., 2007).

The CDI data were gathered from two databases: the Na-
tional Database for Autism Research (NDAR; National Insti-
tute of Mental Health; Payakachat et al., 2016) and Word-
Bank public repository (Frank et al., 2017). NDAR con-
tains data from multiple studies, each with different proto-
cols. There is variability in the data that is available for each
child, and some children participated multiple times at differ-
ent ages. We included all children with a confirmed autism
diagnosis—typically a record of the gold-standard Autism
Diagnostic Observation Schedule (Lord et al., 2012) with
documentation of an autism spectrum classification—and at
least one time point of data with word-level CDI data for the
child. This resulted in data from 250 autistic children and 472
unique CDI data entries. The average number of unique CDI
data entries that the autistic group contributed was 1.89.

Data from the non-autistic group came from the WordBank
American English data (Frank et al., 2017). WordBank is
comprised of item-level CDI data from young children who
have participated in various studies and who are thought to
have typical development. We attempted to ensure that the
children in our non-autistic sample are all developing lan-
guage typically by excluding children who scored below the
15th percentile according to the CDI normative data (Fenson
et al., 2007). We analyzed 1,416 unique CDI data entries from
WordBank.

Generation of acquisition norms
Normative vocabulary size of acquisition (VSOA) scores for
autistic and non-autistic children were estimated using logis-
tic regression following an established protocol for estimating
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AoA (Goodman et al., 2008). The probability of each word
existing in a child’s vocabulary is estimated as a function of
vocabulary size, group, and their interaction. The vocabulary
size at which the model for a word predicts a probability of
.5 for each group is the word’s expected VSOA. It is the vo-
cabulary size at which roughly half of the group is expected
to produce the word. As such, common first words (e.g.,
mommy, daddy, ball, bye) that tend to have young AoAs will
have small VSOAs and words that typically have older AoAs
will have large VSOAs. Out of 680 words on the CDI, we
obtained VSOAs for 661 words.

Language environment and features
It is well-established that children learn language through ex-
posure to the language that they are learning (Hart & Ris-
ley, 1995). Furthermore, the structure—including the seman-
tic structure—of the language input that children receive is
linked to vocabulary developmental trajectories (Hills et al.,
2009; Jiménez & Hills, 2022). Therefore, to test theories
of vocabulary learning, well-established data that estimate
the semantic relationships among early-acquired words are
needed.

Free association norms provide one perspective on the re-
lationships among words and have been found to predict
lexical growth in typically developing toddlers (Hills et al.,
2009). Natural language co-occurrence statistics provide a
different, complementary perspective on these relationships.
The Child Language Data Exchange system (CHILDES;
MacWhinney, 2000) provides multiple corpora containing
transcripts of child-adult verbal interactions that have been
used estimate word co-occurrence structure in especially rel-
evant contexts (e.g., Jiménez & Hills, 2022). The current
study leverages both natural language co-occurrence structure
from CHILDES corpora and a recently validated and pub-
licly available child-oriented word association database (Cox
& Haebig, 2023) to estimate separate directed networks of
word associations.

Additionally, psycholinguistic features such as word fre-
quency and phonological complexity influence word learn-
ing in young children with typical and atypical develop-
ment (Kover & Ellis Weismer, 2014; Schneider et al., 2015).
Therefore, we fit a baseline model that included the follow-
ing psycholinguistic variables: number of phonemes, word
frequency (derived from the CHILDES corpus; Bååth, 2010),
and phonotactic probability and phonological neighborhood
density (estimated using the Vitevitch and Luce (2004, 2016)
calculator).

Network definitions
The CHILDES natural language network was defined by
sliding a five-word window over the sequence of words in
each processed transcript1 involving a 3 – 60-month-old child

1Processing involved regularizing spelling, tokenizing phrases
(e.g., “thank you”, “go potty”), flagging proper nouns and non-
words (e.g., babbling, invented words), and reducing morphosyn-
tactic variability (lemmatization) over 4.5 million tokens.

and an adult caretaker. Windows span utterances but not
transcripts. The directional relationships between the earli-
est word in the window to the four that follow were tabu-
lated. The resulting asymmetric co-occurrence matrix was
subset to include just the 581 words on the CDI for which
we had VSOA, estimated non-autistic AoA ≤ 30 (the oldest
typically-developing child for which the CDI is validated for
use) and that are not homonyms, idiosyncratic proper nouns
( “babysitter’s name”, “child’s own name”, “pet’s name” ) or
the four short phrases ( “give me five!”, “gonna get you!”,
“so big!”, “this little piggy” ). An unweighted, directed edge
(connection) was drawn between each pair of nodes (words)
if the receiving node followed the sending node at least once
in the corpus to form the natural language network.

This yields a very dense network (≈ 40% of possible edges
exist), but increasing this threshold created subnetworks with
no paths between them. Despite the density, this natural lan-
guage network explains substantial variance in typical vocab-
ulary development in 16- to 30-month-olds (Cox & Haebig,
2023).

The word association network was derived from child-
oriented word associations cued by all CDI items (except
the four phrases and idiosyncratic proper nouns mentioned
above; Cox & Haebig, 2023). Referencing responses to
the 581 cue words described above, an unweighted, directed
edge was drawn between each pair nodes if the receiving (re-
sponse) node was generated in response to the sending (cue)
node at least once. This yields a single sparse network (≈ 4%
of possible edges exist) with paths between all nodes. These
child-oriented responses explain more variance in typical vo-
cabulary development in 16- to 30-month-olds than uncon-
strained responses, and explained substantial variance left un-
explained by the natural language network (Cox & Haebig,
2023).

Growth values
The three growth models can each be implemented as a func-
tion that takes two arguments: 1) a network defining associ-
ations among the set of words that can be learned and 2) a
list containing a subset of those words (i.e., those that exist in
the vocabulary). Each function returns a growth value for ev-
ery word not in the vocabulary. An unknown word’s growth
value is defined by each growth model as:

1. Preferential attachment: the average indegree of the known
words it is associated with.

2. Preferential acquisition: its own indegree in the context of
the full network, irrespective of what words are known.

3. Lure of the associates: the number of known words that are
associated with it.

Note that indegree refers to the number of edges that are
directed toward a node. Words assigned large values by a
growth model should be more likely to be acquired, if that
model accurately characterizes vocabulary growth.
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Comparing autistic and non-autistic vocabulary
growth trajectories
Relative to the patterns of vocabulary growth characterized
in ostensibly neurotypical children, autistic children may be
found to differ in at least three ways. First, we may observe
poorer model fits to the autistic vocabularies in general, with
no evidence of superior fits. This would imply that their
vocabulary growth is less influenced by semantic structure.
Second, we may observe similar model fits overall between
groups, with a different profile of fits across models. This
would imply that autistic children are sensitive to different
aspects of the semantic environment or utilize that informa-
tion differently. Third, we may observe superior model fits to
the autistic vocabularies by one or more models. Note that be-
ing more or less in line with a particular growth model is not
indicative of “better” or more efficient learning, and it would
not be inconsistent for autistic children to be more influenced
by the semantic environment while language delayed.

We first grouped the full set of 581 words, W ,
into N = 31 intervals according to their VSOA: Π =
{(−∞,20],(20,40] . . .(600,∞]}. We will refer to the sets of
known words accumulated over interval steps as Ψk, k ∈ 1..N,
where Ψ1 = Π1, Ψ2 = Π1 ∪ Π2, Ψ3 = Π1 ∪ Π2 ∪ Π3, etc.
The corresponding sets of unknown words will be denoted
Ωk = W \Ψk, where \ is the operator for taking the differ-
ence of two sets. The model begins by “knowing” all words
in Ψ1, and growth values can be estimated for all words in Ω1
within the networks of word associations and child-directed
speech. Growth values derived from each network are stan-
dardized to have zero mean and unit variance, then stored.
This procedure is repeated for Ω1 . . .ΩN . The result is a ma-
trix, X , where rows correspond to Ω1∪·· ·∪ΩN and each col-
umn contains growth values derived from a particular growth
model applied to a particular network. We then add columns
to X that contain the psycholinguistic baseline variables that
characterize the word represented in each row.

The probability of learning each unknown word in Ωk, here
interpretted as a subset of rows in X that correspond to a
selection of unknown words as defined above, is estimated
based on a ratio of strengths:

py =
exp(βy⊤)

∑x∈Ωk
exp(βx⊤)

, y ∈ Ωk, Ωk ⊂ X (1)

Which variables are included in X is manipulated to deter-
mine the significance of including or excluding growth val-
ues from each of the three growth models; baseline mod-
els will include only the psycholinguistic baseline variables.
Simply put, the model estimates the probability of acquiring
unknown word y ∈ Ωk as the weighted sum of the evidence
for acquiring word y, exp(βy⊤), divided by the sum total of
evidence over all unknown words x ∈ Ωk, ∑x exp(βx⊤). The
weights in β are tuned to minimize the negative log likelihood
of the model using the stats::optim function in R (R Core
Team, 2024), where log likelihood is defined as the sum of
log-transformed probabilities for words that are learned:

logθ(β) =
N

∑
k

∑
y∈∆

log py, ∆ = Ωk \Ωk+1 (2)

In Equation 2, ∆ denotes the set difference between the
words that are currently unknown and the words that will re-
main unknown after the words in Πk+1 are acquired (i.e., the
words that are expected to be learned in the next vocabulary
growth step).

Nested models can be compared using a likelihood-ratio
test—the difference of log likelihoods follows a χ2 distribu-
tion. In equations 3 and 4, θ0 and θ1 denote the likelihood of
the restricted and full models in the nested pair, respectively:

−2(logθ1 − logθ0)∼ χ
2 (3)

We compute the Bayesian Information Criterion (BIC) as-
sociated with the addition of variables over a restricted model
as follows, where p is the total number of model parameters
and n is the total number of datapoints the model is trained
on:

BIC = 2log(θ1 −θ0)− p logn (4)

Using this modeling framework, we first fit a model at-
tempting to predict vocabulary growth using just the psy-
cholinguistic baseline variables: number of phonemes, word
frequency (derived from the CHILDES corpus; Bååth, 2010),
and phonotactic probability and phonological neighborhood
density estimated using the calculator provided by Vitevitch
and Luce (2004, 2016). Next, models are fit that also in-
clude the growth values derived from each growth model in
turn (both those derived from the natural language network
and the word association network, cf. Cox & Haebig, 2023).
These are compared to the psycholinguistic baseline model.
Finally, using each of these models including growth values
from one growth model as a baseline, we fit a set of models
including growth values from one additional growth model.
This allows us to test whether growth models explain unique
variance relative to each other and the psycholinguistic base-
line. All models are fit to autistic and non-autistic vocabular-
ies separately.

Results
VSOA findings

When examining non-autistic VSOAs, words with early
AoAs are found to have small VSOAs and non-autistic VSOA
scores correlate strongly with AoA (Kendall’s τb = .91, n =
598). Autistic VSOA scores are much less correlated with
non-autistic AoA estimates (Kendall’s τb = .64, n = 598),
indicating that the order in which autistic and non-autistic
children learn words diverge. Though the VSOAs for most
words were similar between groups (median absolute differ-
ence = 53 words), there were also many words with large
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Table 1: Differences in VSOA for individual words

Word Autistic Non-autistic Difference

Skate 202 554 -352
This little piggy 107 411 -304
Paint 113 409 -303
Hide 143 383 -240
Brother 254 473 -219
Cut 198 414 -216
Pour 246 458 -212

Daddy 453 1 452
Mommy 320 1 319
Have 645 402 243
Home 416 182 234
Bib 487 255 232
Peek-a-boo 337 110 227
Baby 253 38 215

Note. The 14 individual words with the largest differences in
VSOA. Words autistic children tend to learn earlier in vocabu-
lary development are presented above the midline. “Pet’s name”
and “child’s own name” also have significantly higher VSOAs in
autistic children, but we excluded proper nouns from this table.

VSOA differences in both directions.2 Table 1 provides ex-
amples of words that had larger VSOAs for autistic children
relative to non-autistic children (i.e., words that autistic chil-
dren tend to learn later in vocabulary development) and words
that had had smaller VSOAs for autistic children relative to
non-autistic children (i.e., words that autistic children tend to
learn earlier in vocabulary development).

Growth model comparisons
Our second aim was to use each group’s word-level VSOA
data to test whether the three growth models (preferential at-
tachment, preferential acquisition, and lure of the associates)
predicted vocabulary growth within each group. Note that
growth values derived from child-oriented word associations
and child-directed speech (CHILDES) are always included
together for a given growth model. Thus, all nested model
comparisons have two degrees of freedom.

We first replicated and extended earlier work (Cox & Hae-
big, 2023; Hills et al., 2009) by demonstrating that prefer-
ential acquisition and lure of the associates, but not prefer-
ential attachment, predict non-autistic vocabulary growth be-
yond the psycholinguistic baseline model when defining ex-
pected vocabulary compositions with VSOA intervals rather
than AoA (Table 2, bottom panel, θ0 = Baseline). The same
pattern was also found using the autistic VSOA data (Table

2Bonferroni corrected confidence intervals were bootstrapped
(100,000 repetitions) around the VSOA group difference for each
word. This indicates 146 statistically reliable differences, with 80
words acquired in smaller vocabularies by autistic children. This
statistical analysis is imperfect; words typically among the first to
be produced or rarely produced even by children with large vocabu-
laries will have VSOAs outside the observable range with enormous
standard errors. E.g., “mommy” and “daddy” have massive, reliable
group differences but are not identified by this analysis.

Table 2: Nested model comparisons.

Autistic children
θ0 θ1 χ2 BIC p

Baseline Att. 3.00 −9.72 .224
Baseline Acq. 72.61 59.89 <.001
Baseline LOA 41.54 28.82 <.001
Acq. Acq.+LOA 14.88 2.16 .001
LOA LOA+Acq. 45.95 33.23 <.001

Non-autistic children
θ0 θ1 χ2 BIC p

Baseline Att. 1.63 −11.06 .444
Baseline Acq. 77.05 64.36 <.001
Baseline LOA 41.45 28.77 <.001
Acq. Acq.+LOA 3.23 −9.46 .199
LOA LOA+Acq. 38.83 26.14 <.001

Note. All model comparisons are on two degrees of freedom. Base-
line models include only psycholinguistic baseline variables (see
Methods). Att.: Preferential Attachment; Acq.: preferential acquisi-
tion; LOA: lure of the associates.

2, top panel, θ0 = Baseline). These findings indicate that the
structure of the semantic environment (preferential acquisi-
tion) and the child’s existing vocabulary knowledge (lure of
the associates) influence vocabulary growth in both groups.
Because preferential attachment was not predictive of growth
in either group, it is excluded from subsequent analyses.

We next consider whether the variance explained by lure
of the associates is distinct from that explained by preferen-
tial acquisition in each group. For non-autistic children, pref-
erential acquisition explains a significant amount of variance
that is not explained by lure of the associates (χ2(2) = 38.83,
p < .001), but not vice versa (χ2(2) = 3.23, n.s.). How-
ever, for autistic children, both model comparisons are signif-
icant: preferential acquisition explains a significant amount
of variance that is not explained by lure of the associates
(χ2(2) = 45.95, p < .001) and lure of the associates explains
a significant amount of variance not explained by preferen-
tial acquisition (χ2(2) = 14.88, p = .001). Therefore, non-
autistic children are predominantly influenced by the struc-
ture of the environment when acquiring their first words,
while autistic children are additionally influenced by their ex-
isting vocabulary knowledge.

Discussion
The current study provides novel information about early vo-
cabulary growth in autistic and non-autistic children. First,
we developed a method to calculate word-level acquisition
norms for each group. Up to this point, AoA data were
available for non-autistic children but could not be gener-
ated for autistic children because of the wide heterogeneity
in autistic children’s expressive spoken vocabulary develop-
ment. As such, the ages at which an autistic child is reported
to produce an individual word varies widely. This is partic-
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ularly true when including children across the language en-
dowment spectrum, principally minimally speaking autistic
children. The VSOA estimates that we developed can be used
to compare vocabulary composition in units of vocabulary
size development rather than development in chronological
age, which allows for alignment across groups. These word-
level VSOA data will be useful for numerous studies focusing
on vocabulary development and learning and this technique
could support the study of groups that may experience differ-
ing levels of developmental delays.

The second contribution of the current study is the test-
ing of vocabulary growth models. The current study repli-
cated findings of previous growth model comparisons that
used AoA data. As with previous work with non-autistic chil-
dren that originally used AoA data to examine vocabulary tra-
jectories, the current analyses of the non-autistic VSOA data
revealed that the preferential acquisition model added signif-
icant explained variance above and beyond the lure of the as-
sociates model of vocabulary growth (Cox & Haebig, 2023;
Hills et al., 2009). Additionally, our results replicated pre-
vious findings that both the lure of the associates model and
the preferential acquisition model explain variance above and
beyond psycholinguistic variables, while the preferential at-
tachment model does not. This finding now extends to autistic
vocabulary growth models.

Moreover, when considering structure from the child-
oriented word associations and child-directed speech
(CHILDES) together, the preferential acquisition growth
model explains unique variance that the lure of the associates
model does not in the vocabulary growth trajectories of
both groups. This is further evidence that both autistic and
non-autistic children are sensitive to the structure within
their language environment. Though language input is
associated with language growth in young autistic children
(Haebig et al., 2013; Siller & Sigman, 2008; Walton &
Ingersoll, 2015), researchers have suggested that the ability
to learn from linguistic input may differ between autistic
and non-autistic children (Arunachalam & Luyster, 2018).
The current findings suggest that autistic children are able
to process semantic statistics in their environment and
leverage it to support word learning. This finding aligns with
statistical learning studies that report that autistic children
are sensitive to other types of statistical regularities within
their input (e.g., phonotactic probabilities; Mayo & Eigsti,
2012; Obeid et al., 2016). Notably, intact statistical learning
of phonotactic probabilities has been found in both autistic
children who have typical structural language abilities and
autistic children who have structural language impairments
(Haebig et al., 2017).

Surprisingly, the current study found that autistic children
may differ from non-autistic children by being more influ-
enced by their existing vocabulary knowledge when learning
new words. The lure of the associates growth model only ex-
plained variance not redundant with preferential acquisition
when modeling autistic vocabulary growth. Although the se-

mantic structure of the learning environment influences word
learning, autistic children’s existing vocabulary knowledge
also appears to lure in new words to the lexicon. Future re-
search will investigate whether potential learning bias can be
observed in experimentally controlled settings, and whether
it is a feature of autism or moderated by age (Kalish et al.,
2015). This may require observing novel learning experi-
ences in an age matched sample.

We estimated autistic VSOAs from aggregate data. While
this is consistent with the way AoA is obtained for the non-
autistic population, aggregation may obscure important vari-
ability that will be important for understanding language
learning differences within the autistic population. Neverthe-
less, leveraging the large sample available from NDAR re-
vealed reliable differences between groups at the resolution
of individual words on the CDI. Without such a database,
it would have been infeasible to compute VSOA for autistic
children. Future studies should examine whether longitudi-
nal data of child-level vocabulary sizes associated to individ-
ual words and certain child characteristics that are associated
with autism (e.g., restricted interests) are associated with this
novel finding.

Currently, there are limited data that point to the theo-
ries that explain how autistic children sample and learn from
the input from their environment (Arunachalam & Luyster,
2016). The present study contributes important insight into
learning theories that are associated with autistic vocabulary
development. This work extends other studies that have ex-
amined these learning theories in the context of delayed vo-
cabulary development that is not associated with autism (i.e.,
late talkers, Jiménez & Hills, 2022). Given the importance
of autistic children’s existing expressive vocabulary knowl-
edge for subsequent vocabulary growth, future work should
consider leveraging vocabulary comprehension data from the
CDI-Words and Gestures form to examine how word knowl-
edge within the comprehension domain may influence the tra-
jectory of expressive vocabulary growth (see Jiménez & Hills,
2022 for a late talker application). This would be particularly
interesting given that the receptive-expressive gap is smaller
in young autistic children (e.g., Charman et al., 2003; David-
son & Ellis Weismer, 2017; Luyster et al., 2007).

Conclusion
Our novel technique of deriving VSOA estimates aligns well
with existing AoA estimates from non-autistic toddlers and
is able to be extended to autistic children. These VSOA esti-
mates allow for insightful analyses to examine word learning
that have not previously been feasible. The current study also
examined theory-driven vocabulary growth models, replicat-
ing previous non-autistic vocabulary growth findings and re-
vealing novel insights into autistic vocabulary growth. Autis-
tic children are biased to learn words that are well connected
in their learning environment like non-autistic children; how-
ever, word learning is further enhanced by autistic children’s
existing word knowledge.
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Chiat, S., de Abreu, P. E., et al. (2016). Ratings of age of
acquisition of 299 words across 25 languages: Is there a
cross-linguistic order of words? Behavior Research Meth-
ods, 48, 1154–1177.

Luyster, R., Lopez, K., & Lord, C. (2007). Characterizing
communicative development in children referred for autism
spectrum disorders using the macarthur-bates communica-
tive development inventory (CDI). Journal of Child Lan-
guage, 34(3), 623–654.

MacWhinney, B. (2000). The childes project: Tools for ana-
lyzing talk: Transcription format and programs. Lawrence
Erlbaum Associates Publishers.

Mayo, J., Chlebowski, C., Fein, D. A., & Eigsti, I.-M. (2013).
Age of first words predicts cognitive ability and adaptive
skills in children with asd. Journal of Autism and Develop-
mental Disorders, 43, 253–264.

Mayo, J., & Eigsti, I.-M. (2012). Brief report: A compari-
son of statistical learning in school-aged children with high
functioning autism and typically developing peers. Journal
of Autism and Developmental Disorders, 42, 2476–2485.

Obeid, R., Brooks, P. J., Powers, K. L., Gillespie-Lynch, K.,
& Lum, J. A. (2016). Statistical learning in specific lan-
guage impairment and autism spectrum disorder: A meta-
analysis. Frontiers in Psychology, 7, 205557.

Payakachat, N., Tilford, J. M., & Ungar, W. J. (2016). Na-
tional database for autism research (ndar): Big data oppor-
tunities for health services research and health technology
assessment. PharmacoEconomics, 34(2), 127–138.

R Core Team. (2024). R: A language and environment for sta-
tistical computing. R Foundation for Statistical Computing.
Vienna, Austria.

Schneider, R. M., Yurovsky, D., & Frank, M. (2015). Large-
scale investigations of variability in children’s first words.
Proceedings of the Cognitive Science Society, 2110–2115.

Siller, M., & Sigman, M. (2008). Modeling longitudinal
change in the language abilities of children with autism:
Parent behaviors and child characteristics as predictors of
change. Developmental psychology, 44(6), 1691.

Smolík, F., & Filip, M. (2022). Corpus-based age of word
acquisition: Does it support the validity of adult age-of-
acquisition ratings? PLoS ONE, 17(5), e0268504.

Steyvers, M., & Tenenbaum, J. B. (2005). The large-scale
structure of semantic networks: Statistical analyses and a
model of semantic growth. Cognitive Science, 29(1), 41–
78.

Vitevitch, M. S., & Luce, P. A. (2004). A web-based in-
terface to calculate phonotactic probability for words and
nonwords in english. Behavior Research Methods, Instru-
ments, & Computers, 36(3), 481–487.

Vitevitch, M. S., & Luce, P. A. (2016). Phonological neigh-
borhood effects in spoken word perception and production.
Annual Review of Linguistics, 2, 75–94.

Walton, K. M., & Ingersoll, B. R. (2015). The influence of
maternal language responsiveness on the expressive speech
production of children with autism spectrum disorders: A
microanalysis of mother–child play interactions. Autism,
19(4), 421–432.

Wojcik, E. H. (2018). The development of lexical–semantic
networks in infants and toddlers. Child Development Per-
spectives, 12(1), 34–38.

1567




