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Expensive instruments and complicated data processing are often required to discriminate solvents with similar structures and
properties. Colorimetric sensors with high selectivity, low cost, and good portability are highly desirable to simplify such
detection tasks. Herein, we report the fabrication of a photonic crystal sensor based on the self-assembled resorcinol
formaldehyde (RF) hollow spheres to realize colorimetric sensing of polar solvents, including homologs and isomers based on
the saturated diffusion time. The diffusion of solvent molecules through the photonic crystal film exhibits a unique three-step
diffusion profile accompanied by a dynamic color change, as determined by the physicochemical properties of the solvent
molecules and their interactions with the polymer shells, making it possible to accurately identify the solvent type based on the
dynamic reflection spectra or visual perception. With its superior selectivity and sensitivity, this single-component colorimetric
sensor represents a straightforward tool for convenient solvent detection and identification.

1. Introduction

Monitoring chemicals and organic pollutants has become
very important in areas such as the food industry, agricul-
ture, and environment protection. There is an increasing
demand for developing novel sensors with high sensitivity,
low cost, and good portability. Materials based on photonic
crystals (PCs) are highly attractive for this purpose because
their optical properties are determined by their nanoscale
periodic arrangement and dielectric environment, which
change in response to many physical and chemical external
stimuli. In addition to sensing [1–8], they are also useful
for a broad range of applications, including printing
[9–13], anticounterfeiting [14–16], display units [17–20],
photocatalysis [21–23], and solar energy harvesting [24,
25]. In particular, they have been extensively explored as
active components in sensors by offering simple optical

and visual means to determine physicochemical parameters
of various analytes [26, 27].

Generally, photonic sensors detect the optical signals
associated with the changes in refractive index and lattice
constant of PCs upon their exposure to solvents and gases
[28, 29]. They often feature an inverse opal structure, or they
are fabricated using hollow spheres or porous materials
because a large volume fraction of cavities can greatly
increase the effective refractive index, thereby improving
sensitivity [30–33]. An additional benefit of using porous
structures is that it can increase the specific surface area,
which improves the analyte adsorption and allows the sensor
to distinguish between molecules of close similarities, such
as isomers [31]. Dynamic reflection spectra (DRS) have
recently been proposed to distinguish solvents with similar
structures during their diffusion through photonic materials
[34–36]. Swellable materials with specific interactions with
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analytes are used to drive distinct optical responses deter-
mined by the swelling behavior, refractive index change, and
diffusion rate [37, 38]. However, this method still requires a
spectrometer and sophisticated data processing, and consider-
able efforts are required to read out the signals from the DRS
patterns. Practical applications highly prefer colorimetric sen-
sors that can discriminate solvents with similar structures by
visual inspection or digital-camera color imaging system.

In this work, we report the development of a photonic
crystal sensor based on self-assembled resorcinol-
formaldehyde (RF) hollow spheres for visual detection of sol-
vents according to their saturated diffusion time. The RF hol-
low spheres hold the key to successful solvent detection by
enabling a unique three-step diffusion profile, including sol-
vent infiltration to the interparticle voids, swelling of the poly-
mer shell, and filling of the cavity inside the RF shells. Both in
situ monitoring and theoretical simulation suggest that shell
swelling is the rate-determining step. The distinct changes in
the structural color associated with the diffusion steps make
it convenient to track the molecular diffusion process and
visually identify the saturated diffusion time. The saturated
diffusion time is determined not only by the physicochemical
property of the solvent molecules but also by their interaction
with the RF shell, making this photonic sensor highly selective
and sensitive. The promise of these photonic sensors in prac-
tical applications has been demonstrated by qualitative identi-
fication of polar solvents and quantitative determination of
water and methanol concentration in alcoholic systems.

2. Results and Discussion

The photonic sensors were prepared by etching silica from the
preassembled SiO2@RF photonic crystals (Figure 1(a), S1).
Monodispersed SiO2 spheres were first synthesized through
a sol-gel process and then coated with an RF shell [39]. The
resulting SiO2@RF core-shell spheres were assembled into liq-
uid PCs through a supersaturation-induced precipitation pro-
cess [40]. Typically, a highly concentrated suspension of
monodispersed SiO2@RF particles (30 vol%) in ethylene glycol
(EG) was spread on a PET film pretreated withO2 plasma. The
liquid film was allowed to sit without disturbance at room
temperature for 10 minutes to form metastable colloidal
microcrystals. After drying at 90°C for 30 minutes, it became
a solid film showing green structural color. Finally, removing
the silica cores by HF etching produced a PC film composed
of highly ordered hollow RF spheres (Figures 1(b) and 1(c)),
accompanied by a blue shift of reflection peak from 532nm
to 445nm (Figure 1(d)). The resultant film displayed a uni-
form purple structural color. The hollow RF spheres of a typ-
ical sample were further characterized by TEM imaging,
showing a diameter of 185nm and shell thickness of 15nm.
The size and shell thickness of hollow spheres can be readily
tuned by the sizes of SiO2 cores and the concentration of
RF precursors used during the coating process. Here, we syn-
thesized hollow spheres with different diameters (210, 245,
and 275nm) while maintaining the thickness of the RF shells
at ~15nm (Figures 1(e)–1(g), Figure S2). Accordingly,
assembling such hollow spheres produced purple, green,
and orange PC films, as shown in the insets.

The PC film exhibits an interesting three-step color
change upon contact with solvents (Figure 2(a), Video S1).
In the first step, the application of ethanol to the PC film
led to an immediate color change from purple to bright blue
(within a second), as observed in the dark-field optical
microscope (Figure 2(b)). It is interpreted as the quick sol-
vent infiltration to the interstices of the hollow spheres,
increasing the average refractive index and redshifting the
reflection (Figure 2(c)). In the second step, the PC film grad-
ually changed from blue to bright green in the following sev-
eral tens of seconds, attributed to the swelling of the RF
shells by the solvent and the accompanied size increase. In
the third step, the PC film turned dark green within a few
seconds with a significant drop in brightness, indicating that
the solvent diffused through the outer shell and filled the
interior of the hollow spheres. In addition, the coordinates
in the Lab color space of the ethanol diffusion process were
continually measured to provide direct chroma information.
The lightness (L ∗) of the PC film also exhibited three stages,
and a sharp decrease of lightness in the last filling step was
observed, making it convenient for tracking diffusion by
naked eyes (Figure S3). Moreover, the film could recover to
its original purple after drying and still showed a good
solvent response after 20 wetting and drying cycles,
proving the high reversibility of the photonic response
(Figure 2(d)).

The three-step diffusion process was further confirmed
by measuring DRS. As shown in Figures 3(a) and 3(b), in a
typical response to ethanol, a series of reflection spectra were
continuously recorded upon the addition of ethanol to the
film, forming a 3D surface map with time (t), reflection
wavelength (λ), and the intensity (R) as x-, y-, and z-axis,
respectively. It can be further plotted as a surface contour
map by converting the reflection intensity into color signals.
According to the change of reflection intensity and shift of
reflection wavelength during the diffusion process, we could
clearly identify the three steps of solvent diffusion, consistent
with the direct observations in the optical microscope
(Figures 3(c) and 3(d)). In the infiltration step (t0 ⟶ t1),
the reflection redshifted from 440 nm to 494nm within one
second, accompanied by a significant enhancement of the
reflection intensity, caused by the increase of effective refrac-
tive index and the increase of refractive index contrast
between the particle interstices and the cavities within shells.
In the swelling step (t1 ⟶ t2), the reflection slightly red-
shifted in 45 seconds and maintained a relatively high inten-
sity, which came from the swelling of the polymer shells of
hollow spheres. In the final step (t2 ⟶ t3), the reflection
intensity dropped sharply from 36% to 8% and finally
reached an equilibrium value, corresponding to the solvent’s
penetration and filling of the hollow spheres. As a result, the
decrease of RI contrast leads to a significant decrease in the
brightness of the structural color. Finally, the time for satu-
rated solvent diffusion (t3) could be determined from the
DRS patterns, also by visual inspection due to the significant
change in the structural color and brightness in the last step.

The swelling of the RF shell was identified as the rate-
determining step in the entire solvent diffusion process, as
confirmed by comparing the diffusion profiles and the
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corresponding DRS patterns when the solvents wet the films
made from RF shells of different crosslinking degrees by
aging at 70°C for varying periods [41]. As shown in
Figures 3(e)–3(h) and Figure S4, when the heating time
increased from 1min to 60min, the time for swelling (t2‐t1)
increased from 4 s to 220 s, and the saturated diffusion
time (t3) extended from 12 s to 248 s, consistent with the
increased crosslinking of the polymer shells. However,
both the first infiltration step and the last filling step were
relatively quick with little time difference for different
films. The overall solvent diffusion was dominated by the
swelling step, which is, therefore, the rate-determining
process. In addition, PC films assembled from different RF
shell thicknesses (17.5 nm, 23 nm, and 29nm) were utilized
to illustrate the rate-determining step. As shown in
Figure S5, the saturated diffusion time of ethanol in PC
films increased from 61 s to 96 s as the RF shell thickness
increased from 17.5 nm to 29nm. The increase in diffusion
time was mainly caused by extending the second swelling
step, further confirming that the swelling step is the rate-
determining step.

To gain insight into the swelling process, we conducted a
finite element simulation to study the solvent diffusion
behavior through the RF polymer shells. Here, we used a
combination of diffusion and polymer elastic models to
describe the diffusion of a marker solvent, DMSO, in hollow
spheres. The simulation is based on two assumptions: (i) the
swelling of the polymer shell takes place along with the sol-
vent diffusion, and (ii) the swelling and diffusion terminate
as the inner and outer RF shells reach equal and saturated
solvent concentration, and then, the solvent penetrates the
shell into the cavity of the hollow sphere. As shown in
Figure 4(a), the solvent gradually diffuses from the outmost
layer to the inner layer until it is distributed in the entire
RF shell and reaches the saturated concentration. At the
same time, the RF shell shows an apparent swelling behavior
with the shell expanding until a new equilibrium state is
reached due to the decreasing integral stress of the sphere
(Figure 4(b)). The simulated particle diameter increases with
the swelling of the RF shell, leading to a shift in the calcu-
lated reflection wavelength. Consistent with the experimen-
tal results (Figure S6), the simulation suggests that the
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Figure 1: Fabrication of hollow RF sphere photonic crystals. (a) Scheme illustrating the fabrication process of photonic crystals consisting of
hollow RF spheres. (b, c) SEM images of PC film of hollow RF spheres: cross-section (b) and top-view (c). (d) Reflectance spectra of PC films
before and after removing silica. (e–g) TEM images of hollow RF spheres with diameters of 210 nm (e), 245 nm (f), and 275 nm (g). The
insets are dark-field optical microscopy images of the corresponding PCs.
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diffusion of solvent molecules in the PC film can be precisely
tracked by recording the DRS patterns or visual inspection.
Since the swelling is the rate-determining step and is
tightly related to the properties of polymer network and
solvents, the saturated diffusion time (t3) obtained from
the optical tracking of a specific solvent diffusion in the PC
film can be used as the primary parameter to characterize
the solvent molecules.

The ability to track the dynamic diffusion process
enables the further development of a photonic solvent sensor
that can distinguish polar solvents based on the saturated
diffusion time. We investigated several solvent properties,
such as dielectric constant, molecular size, and viscosity on
the saturated diffusion time (Figure 5). First, the diffusion
behaviors of alcohol homologs were investigated, exhibiting
distinct DRS patterns as shown in Figures 5(a)–5(d). The
entire diffusion of methanol, ethanol, 1-propanol, and 1-

butanol took 1 s, 50 s, 421 s, and 3600 s, suggesting that the
alcohols with smaller sizes and larger dielectric constants
may diffuse faster in the PC films. In addition, viscosity
greatly influences solvent diffusion. For example, the diffu-
sion time of DEG (1192 s) is much larger than that of meth-
anol because of its higher viscosity (35.7mPa·s) than the
latter (0.595mPa·s), although their dielectric constants are
close (31.7 for DEG vs. 31.2 for methanol). Similarly, the
slower diffusion of EG than acetonitrile can also be attrib-
uted to EG’s higher viscosity. Therefore, the significant dif-
ference in the diffusion time of different solvents makes
their colorimetric discrimination possible.

While the DRS patterns could provide rich informa-
tion for discriminating solvents, visual sensing is more
favorable in practical applications, which is possible by
taking a series of digital photos instead of spectra to
record the diffusion process of polar solvents in PC films.
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Figure 2: Typical three-step diffusion process of solvents. (a) Scheme illustrating the three-step diffusion of solvents in the hollow-sphere
PCs. (b, c) Dark-field optical microscopy images (b) and corresponding reflectance spectra (c) during ethanol diffusion in the PC film. (d)
Changes of reflection wavelength in response to repeated infiltration with ethanol and then drying for 20 cycles.
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As shown in Figure 6(a), the PC films immediately turned
from purple to bright blue in all cases. In the final stage of
diffusion, the PC films’ structural color brightness and sat-
uration decreased significantly, turning to dark green or
dark red in a relatively short period. In contrast to other
solvents, the PC film exposed to DMSO appeared dark
orange at the final state due to DMSO’s higher refractive
index and stronger swelling ability to the RF shell. Thanks
to the color and brightness change of the photonic films,
the saturation time of solvent diffusion could be readily
determined by naked eyes (Video S3). The saturation time
of methanol, ethanol, 1-propanol, and 1-butanol was 1 s,
52 s, 7min, and 59min, respectively, close to the results

obtained from the DRS patterns. More alcohol homo-
logues from C5 to C8 (1-pentanol, 1-hexanol, 1-heptanol,
and 1-octanol) could also be distinguished by the naked
eyes. Here, the analytes were mixed with methanol in the
proportion of 1 : 1 to speed up the measurement process.
As shown in Figure S7, a longer carbon chain corresponds
to a longer saturated diffusion time. It is worth noting that
the visual detection of ethanol homologs is difficult to
achieve in traditional PCs composed of solid particles. In
addition, the saturated diffusion times of other polar
solvents such as EG, DEG, and DMSO can also be obtained
using this method, consistent well with previous results,
further verifying the accuracy and feasibility of the visual
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solvent sensing. The unique combination of dynamic color
response, reversibility, high selectivity, and easy reading
makes the photonic solvent sensor suitable for practical
applications.

The high selectivity of the novel PC films strongly relies
on the difference in the diffusion coefficient of the solvents.
According to the Vrentas–Duda free-volume theory, the dif-
fusion of solvents in polymer could be described by solvent
self-diffusion coefficient (D1) and mutual diffusion coeffi-
cient (D). The latter can be expressed by equation (1), where
φs is the volume fraction of solvent and χ is the Flory-
Huggins interaction parameter. Characterizing the interac-
tion of the polymer and solvent molecules, χ can be calcu-
lated by equation (2), where Vs is the molar volume of the
solvent molecule and δs and δp are the solubility parameters
of solvent and polymer, respectively [42–44].

D =D1 1 − φsð Þ2 1 − 2χφsð Þ, ð1Þ

χ = Vs

RT
δs − δp
� �2 + 0:35: ð2Þ

Generally, the self-diffusion coefficient is related to the
solvent molecules’ viscosity, size, rigidity, configuration,
and other parameters. A solvent with lower viscosity and

smaller molecular size has a faster diffusion rate in a polymer.
Therefore, water and methanol with small kinetic diameters
induce the fastest response. The Flory-Huggins theory also
suggests that the interaction between solvent and polymer
greatly influences diffusion. When the solvent and polymer
have similar solubility parameters, the solvent shows a stron-
ger swelling ability to the polymer [21]. If the volume change
due to swelling is neglected, the wavelength shift of the sec-
ond diffusion step calculated by only considering the refrac-
tive index change is always smaller than the experimental
results. Such a disagreement demonstrates the solvents’
important contribution to the photonic response by swelling
the RF shells (Table S2). Since DMSO has a close solubility
parameter to RF, it exhibits the strongest swelling ability to
RF polymer among all the tested solvents. In summary, the
diffusion behavior of solvent in a polymer is determined by
the combined effect of several parameters, including the
solvent’s physicochemical properties and the solvent-
polymer interaction. These multidimensional parameters
allow for differentiating solvents and endow the photonic
sensor with higher selectivity.

We further demonstrate the effectiveness of the photonic
sensor in distinguishing isomers with subtle differences in
configuration, viscosity, and polarity, first using butanol
isomers as examples, including 1-butanol, 2-butanol, iso-
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butanol, and tert-butanol. It took a relatively long time for
butanol isomers to swell the polymer shell due to their rel-
atively long chain and weak interaction with RF polymer.
Their saturation time by visual detection increased in the
order of n-butanol, iso-butanol, 2-butanol, and tert-
butanol. As shown in Figure 6(b), the film with 1-butanol
turned dark green after 60 minutes, while it took 80
minutes for iso-butanol to complete the diffusion process.
In contrast, the structural color of PC film with tert-
butanol remained almost constant after 80 minutes, indicat-
ing the slowest diffusion rate of all. As for propanol iso-
mers, the saturation time of 1-propanol and 2-propanol
was 530 s and 920 s, respectively. We can see that the PC
film with 1-propanol turned dark green while the film with
2-propanol still maintained bright blue after 9 minutes
(Figure 6(c)). Moreover, 1,4-butanediol and 1,3-butanediol
could also be visually detected based on the significant dif-
ference in the diffusion process (Figure S7). The high
sensitivity and directly visible optical properties make this

method suitable for isomer detection, which is difficult to
achieve by traditional sensors. Figure 6(d) summarizes the
PC film’s wavelength shift and saturation time in response
to typical polar solvents, providing criteria for photonic
solvent sensing.

In addition to the qualitative identification of polar sol-
vents, the PC films also allow quantitative determination of
component concentration in a mixed solvent. As a demon-
stration, we tested the diffusion behavior of ethanol-water
and ethanol-methanol systems in the PC films. For extend-
ing the diffusion process, the PC films were pretreated at
70°C for 24h. Figure 7(a) shows an exponential decline in
saturation time as water content increased from 0% to
10%, which was highly desirable for sensing small amounts
of water. When the volume fraction of water was as low as
0.5%, its diffusion time dropped to 342 s from 380 s for pure
ethanol. The insets are the close-ups of the volume fraction
range of water from 50% to 100%, indicating the possibility
of water sensing over the entire range. Similarly, this sensor
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also allows visual detection of methanol in ethanol-methanol
mixtures (Figure 7(b)). In the propanol-water and propanol-
methanol mixtures, the saturation time declined more
sharply in the low water or methanol regime, indicating high
sensing precision and sensitivity (Figures 7(c) and 7(d)).
With the flexibility for visual determination and the possi-
bility of extending their applications to other mixtures, the
current photonic sensor can be used as test strips, providing
a convenient and attractive alternative to the complex tradi-
tional water/methanol sensing methods such as Karl-Fischer
titration and GC.

3. Conclusion

A new type of photonic sensor has been developed using
hollow-sphere-based photonic crystals to distinguish sol-
vents with similar properties and structures by determining
the saturated diffusion time. The diffusion of solvents in
the PC films composing hollow spheres with swellable
polymer shells can be divided into three steps: infiltration
of solvents to interstices between hollow spheres, swelling
of the polymer shells, and filling of the hollow cavities.
An advantageous feature worth highlighting is that the dif-
fusion of solvent molecules can be tracked in real time by
recording DRS patterns or visual perception to monitor
the dynamic structural color changes. The combination of
multiple factors, including the physicochemical properties

of analytes and the distinct analyte-polymer interactions,
determines their unique diffusion profiles, bestowing the
photonic sensor with superior selectivity and sensitivity.
As a result, solvents with similar structures and properties
such as homologs and even isomers can be precisely distin-
guished by naked-eye observation. Without relying on
expensive instruments and complex data analysis, this low-
cost, easy-to-read photonic sensor has broad application
prospects for environmental monitoring, anticounterfeiting,
and quantitative alcohol analysis.

4. Materials and Methods

4.1. Materials. Tetraethylorthosilicate (TEOS, 98%), aqueous
ammonia (28%), dimethyl sulfoxide (DMSO, 99%), acetoni-
trile (81.0-82.0%), methanol (99.5%), and formaldehyde
aqueous solution (37-40%) were purchased from Sinopharm
Chemical Reagent Co., Ltd. PVP (Mw = 10000), resorcinol
(99%), ethylene glycerol (EG, 99%), diethylene glycerol
(DEG, 99%), n-butanol (99.5%), 2-butanol (99%), tert-
butanol (99.5%), and iso-butanol (99%) were purchased
from Aladdin Co., Ltd. Ethanol (99.9%) and 2-propanol
(99.9%) were purchased from J&K Co., Ltd. All chemicals
were used directly as received without further purification.

4.2. Synthesis of SiO2 Colloidal Particles. Firstly, SiO2 nano-
particles with a diameter of 185nm were synthesized by a
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Figure 7: Quantitative determination of component concentration. The saturated diffusion time of various solvent mixtures in PC films: (a)
ethanol and water, (b) ethanol and methanol, (c) 1-propanol and water, and (d) 1-propanol and methanol. The insets are the close-ups of
the plots for the volume fraction between 0.5 and 1. The PC films were predried for 24 h at 70°C.
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modified Stöber method. Typically, ethanol (100mL), H2O
(7mL), and NH3∙H2O (4mL) were mixed and stirred for
15 minutes. Then, TEOS (8mL) was quickly injected into
the solution and allowed to react for 3 hours. The SiO2 par-
ticles were collected by centrifugation, washed with ethanol
three times, and finally dispersed in 10ml of H2O.

4.3. Synthesis of SiO2@RF Core-Shell Particles. The surface of
SiO2 particles was modified with PVP before RF coating.
The as-prepared SiO2 suspension (1mL) was dispersed in
PVP solution (Mn = 10000, 5mg/mL) and kept under stir-
ring for 6 h. Then, the PVP modified particles were sepa-
rated by centrifugation and redispersed in 28mL of water
containing 30mg of resorcinol, 42μL of formaldehyde, and
100μL of diluted ammonia (2.8wt% in water). The solution
was then heated up to 60°C for 2 h and boiled at 100°C for
2 h. The particles were centrifuged and washed with water
three times.

4.4. Fabrication of Hollow RF Sphere Photonic Crystals.
SiO2@RF particles (0.03 cm3) dispersed in ethanol (1mL)
were firstly mixed with EG (0.07mL) to form a homoge-
neous suspension. After being heated at 90°C for 2 h, the sus-
pension was concentrated, and the final volume fraction of
SiO2@RF was 30%. Then, the liquid precursor was spread
on a plastic film, which was treated in advance with plasma.
The liquid film was placed under room temperature for 20
minutes without disturbance to form liquid photonic crys-
tals. Subsequently, solid SiO2@RF photonic crystal film was
obtained by drying the liquid film under 70°C for 30
minutes. The as-prepared film was then immersed in HF
solution (2%) for 10 minutes to etch the SiO2 cores. The
resultant hollow RF sphere photonic crystals exhibited
bright purple color.

4.5. Characterizations. The dynamic reflection spectra were
continuously recorded using an Ocean Optics HR 2000CG-
UV-NIR spectrometer. A standard reference aluminum mir-
ror was used as a 100% reflection reference, and the reflec-
tance spectra were measured relative to the standard
reference. The morphologies of hollow spheres were charac-
terized by an FEI Tecnai G2 F30 transmission electron
microscope (TEM). The microstructures of the photonic
crystals were characterized by a Hitachi S4800 scanning elec-
tron microscope (SEM). The optical microscopy images were
taken using an Olympus BXFM reflection-type microscope
in dark-field mode. The finite element simulation was car-
ried out using COMSOL Multiphysics.
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SiO2@RF colloidal particles. Figure S2: larger scale TEM
images of hollow RF spheres with diameters of (a) 210 nm,
(b) 245nm, and (c) 275nm. Figure S3: the lightness coordi-
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