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Abstract

Scalable Gaussian process models for changepoint detection and spatio-temporal

predictions with large correlated data

by

Hanmo Li

Uncertainty generally exists in various research stages, including experimentation,

model formulation, input specification, parameter estimation, and predictions. There-

fore, quantifying the uncertainty through statistical inference is essential for different

disciplines, including physics, chemistry, biology, geography, ecology, epidemiology, and

power systems management. The Gaussian process (GP) model is a suitable choice for

predicting nonlinear relationships in different applications, due to the availability of un-

certainty assessment and statistical efficiency. However, its application to large-scale

datasets is limited by computational challenges, primarily because computing the inverse

covariance matrix and the determinant of the covariance matrix in the likelihood function

requires O(n3) operations, where n is the number of observations. To address this issue,

we develop fast GP models by utilizing the connection between GPs with Matérn kernels

of 1D input and the dynamic linear model, which enables the use of Kalman filter and

Rauch-Tung-Striebel smoother for theoretically reducing the computational complexity.

The connection enables us to develop fast algorithms for changepoint detection, predict-

ing spatio-temporal data or functional data with multi-dimensional inputs. We focus

on two main objectives for applications. First, motivated by assessing the COVID-19

pandemic since 2020, we introduce two new models for patient-level and regional-level

detection. The first model aims to detect changepoints in patients’ biomarker data effi-

ciently and identify the COVID-19 infection date for each patient in the dialysis facilities.
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The second model aims to detect the transmission dynamics for the COVID-19 pandemic

in more than 3,000 US counties and update the analysis on a weekly basis. The second

objective of the thesis is to develop efficient computation of the GP model for spatio-

temporal data and functional data with high-dimensional inputs. We develop fast algo-

rithms for latent factor processes with an orthogonal factor loading matrix, particularly

for scalable computations on large, incomplete lattice datasets. We further study the

GP models for predicting computer simulations of power systems with high-dimensional

inputs and outputs and outline a few future research goals.

Chapter 1 introduces the background of the GP model and the connection to the

dynamic linear model or linear state space model. We also review the Kalman filter and

Rauch-Tung-Striebel smoother for efficiently computing dynamic linear models. Chapters

2 and 3 focus on applying the GP model in COVID-19 research. Chapter 2 introduces the

sequential Kalman filter online changepoint detection (SKFCPD) algorithm for detecting

changes in temporally correlated data modeled by GP, which has linear computational

complexity at each time step without any approximation. One challenge is to include a

large number of the covariates in the model, while a large proportion of the covariates are

missing. We propose a two-step approach that integrates the classification methods with

the SKFCPD algorithm for fast and accurate detection of COVID-19 infection dates

based on patients’ biomarker data. Chapter 3 introduces a new mathematical model

that integrates the information of regional cases and death counts. By utilizing the GP

model for quantifying the uncertainties in predictions, our model can provide real-time,

robust estimation with uncertainty quantification of COVID-19 transmission dynamics

for over 3,000 U.S. counties. Chapter 4 proposes the Gaussian orthogonal latent factor

(GOLF) model for efficient computations on large correlated spatial, spatiotemporal, and

functional data. Chapter 5 concludes the previous chapters, explores the application of

the GP model on large-scale power systems, and discusses future research directions.
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Chapter 1

Introduction

Measurements from the modern world, such as time series, spatio-temporal and func-

tional data, often contain correlation. The probabilistic framework is a natural way of

modeling the correlation and assessing uncertainty for forward prediction and inverse

estimation. However, there are two grand challenges for statistical learning of correlated

data. First, as sample sizes increase, developing a method with high statistical learning

efficiency and low computational cost becomes challenging. The Gaussian Process (GP)

model is known for its statistical efficiency in learning nonlinear relationships in various

applications, including modeling spatially and spatio-temporally correlated data [1, 2, 3],

emulating expensive computer simulations [4, 5, 6], and modeling discrepancy function

for inverse estimation [7, 8, 9, 10]. Yet the computational bottleneck limits the GP

model’s application to large-scale data, as calculating the inverse and determinant of the

covariance matrix in the likelihood function takes O(n3) computational operations, where

n is the number of observations. This limitation of one-dimensional (1D) inputs can be

mitigated by connecting the GP with half-integer Matén covariance [11] to the dynamic

linear model (DLM) [12, 13] or linear state space model [14, 15]. The Kalman filter [16]

and Rauch-Tung-Striebel smoother [17], or the forward filtering and backward smooth-

1



Introduction Chapter 1

ing (FFBS) algorithm, can then be implemented to reduce the computational complexity

for problems with 1D inputs to O(n) operations without approximation. This thesis

develops new methods that extend these fast algorithms for online changepoint detec-

tion of correlated measurements, such as time sequences, and for large incomplete lattice

measurements with multiple dimensions for spatially and spatio-temporally correlated

data.

The second grand challenge comes from the large dimensionality of the input space

in some applications. For spatial or spatio-temporal data, the inputs usually have two

and three dimensions, respectively. However, in building fast statistical emulators for ex-

pensive computer simulations [4, 18, 19], the dimension of the input space can be large.

For instance, the inputs for emulating atomic forces and potential energy from molecular

simulation are often assumed to be the pairwise distance of atomic positions [20, 21, 22],

which can have thousands of dimensions even for a single molecule with tens of atoms. In

other scenarios, the input can be a function, such as the initial conditions and external

potential for developing a statistical surrogate model [23, 24, 25]. This thesis studies

another application in characterizing power system dynamics. The increasing prevalence

of new energy sources such as wind and solar power introduces more uncertainties across

various power system parameters. One such parameter is the rotor angles in genera-

tors. When the rotor angles surpass the physical upper limits, it escalates the overall

risk within the power system. The traditional approach to model this risk is through

differential and algebraic equations [26], where the inputs, including loads and photo-

voltaic devices (PVs), have more than 2000 dimensions for predicting a large number of

rotor angles for the Texas 2000-bus system [27, 28]. However, this traditional approach

is computationally expensive for large-scale power systems with such a high-dimensional

input space. Fortunately, for all these applications, the input coordinates are often not

independent as correlation exists across nearby input coordinates. This property sub-

2



Introduction Chapter 1

stantially reduces the input space and enables statistical models for precise and efficient

predictions.

This thesis is motivated by two sets of research goals. The first research goal focuses

on two applications in the context of the SARS-CoV-2 (COVID-19) outbreak. Since 2020,

this pandemic has led to millions of deaths in the U.S. alone. The two applications we

study, including (1) detecting the COVID-19 infection timing at the patient level and (2)

modeling COVID-19 local transmission dynamics at the county level are both vital issues

that could facilitate medical institutions and local governments to mitigate the pandemic.

In the first application, we focus on dialysis patients, as these patients typically are older

and in compromised health status, resulting in higher rates of COVID-19 infection and

mortality [29]. Additionally, these patients visit the dialysis clinics approximately three

times per week, where various biomarker measurements are routinely collected, thus

providing ample data for our research. In this study, we utilize a large dataset of daily

biomarker information for over 150,000 dialysis patients from January 2020 to March 2022

collected by Fresenius Medical Care. This dataset includes a wide range of biomarkers

such as body temperature, blood pressure, weight, respiration rate, pulse rate, oxygen

level, interdialytic weight gain, average blood flow rate, and average dialysis flow rate

[30, 31]. Previous studies on COVID-19 infection detection algorithms [32, 33, 30] in

patient-level longitudinal data rely on statistical learning algorithms such as random

forecast [34, 35] and XGBoost [36] of patients, and utilize a predetermined threshold

of infection probabilities to identify infections. The threshold of methods is held the

same for all patients and temporal correlation in the longitudinal data is not considered

in the modeling, which can be restrictive for detecting COVID-19, as noises from the

data can lead to abrupt changes in the prediction probabilities of infections and patients

with mild or moderate symptoms may have an increasing trend of probabilities that may

not exceed the threshold. To address this challenge, we develop new online changepoint

3



Introduction Chapter 1

detection algorithms that incorporate temporal patterns in the prediction probabilities.

Online changepoint detection algorithms aim to identify the time when the distribution

properties, such as mean, variance, or correlation, of a data sequence change, while the

data is being observed or collected sequentially. Integrating temporal correlations within

probability sequences has been considered in online changepoint detection studies but a

scalable computational algorithm remains to be a difficult task.

Several studies have attempted to integrate temporal correlation into online change-

point detection algorithms, utilizing methods such as piecewise polynomial regression

models [37], which, however, overlook within-segment temporal correlations. Other

strategies include detecting mean shifts in series with autocorrelated noise [38] and em-

ploying GP models with rank 1 updates [39], whereas the computational cost is still

high. To address this issue, we propose a GP-based online changepoint detection algo-

rithm in Chapter 2. Our proposed method develops a new approach, called the sequential

Kalman filter, to achieve efficient and accurate changepoint detections in temporally cor-

related data with linear computational complexity with respect to the sample size at

each time step. The second application is to evaluate the transmission dynamics of

the COVID-19 pandemic across over 3,000 U.S. counties every week. Researchers build

epidemiology compartmental models [40, 41, 42, 43, 44], stochastic agent-based models

[45, 46], branching processes [47], and network analysis [48] to monitor the COVID-19

transmission dynamics. However, most of them focus on states or counties in a short

time period, ignoring smaller ones with fewer populations and COVID-19 infection cases.

To address this issue, we develop a method that integrates the discretized SIRDC model

with the GP model in Chapter 3, enabling robust estimation and uncertainty quantifi-

cation of COVID-19 transmission dynamics across over 3,000 U.S. counties, leading to

precise forecast for counties with both large and small populations.

The second research goal of this thesis is to develop fast GP models for spatial data,

4



Introduction Chapter 1

spatio-temporal data, and functional data with high-dimensional inputs. Various stud-

ies aim to approximate GP models for massive data, including Vecchia approximation

[49, 50], inducing point approach [51], stochastic partial differential equation approach

[52, 53], hierarchical nearest neighbor methods [54], multi-resolution process [55], local

Gaussian process approach [56], periodic embedding [57, 58] and covariance tapering [59].

These approaches have limitations, such as the constraints of the number of neighbors

or induced points, and the dependence between the neighbors and prediction inputs. To

address this issue, we develop fast algorithms for latent factor processes with an orthog-

onal factor loading matrix in Chapter 4, particularly for scalable computations on large,

incomplete lattice datasets, which are usual for spatial datasets, such as satellite radar

interferograms [60, 61]. In this new approach, we found the posterior distributions of the

factor processes are independent if the basis is orthogonal and the prior factor processes

are independent. This key property enables the use of the Kalman filter to acceler-

ate the computation. Furthermore, for problems with high-dimensional input, reliable

predictions in the entire input space can be challenging. Fortunately, inputs are often

correlated in practice, which leads to small intrinsic input dimensions. This characteris-

tic offers possibilities for emulating the behavior of systems with high dimensional input

by statistical emulators. In this thesis, we explore the application of the parallel partial

Gaussian process model [62] for predicting computer simulations of power systems with

high-dimensional inputs and outputs in Section 5.1.

In the following sections of this chapter, we will provide a brief introduction to GP

models and its connection with dynamic linear models. Additionally, we will review the

Kalman filter for forecast computation without approximation.

5



Introduction Chapter 1

1.1 Gaussian Process Model

We denote y(x) ∈ R as a real-valued outcome with a p-dimensional real-valued input

x ∈ Rp. The Gaussian stochastic process (GaSP) or the Gaussian process (GP) model for

noisy outcome y(·) is denoted by y(·) ∼ GP(µ(·), σ2c(·, ·)+σ2
0), with a mean function µ(),

a variance parameter σ2, a correlation function c(·, ·) and a noise variance parameter σ2
0.

For a set of inputs {x1, ...,xn}, the marginal distribution of the corresponding outcome

vector follows a multivariate normal distribution [4]

(y (x1) , . . . , y (xn))
T | β, σ2, σ2

0,R ∼ MN
(
(µ (x1) , . . . , µ (xn))

T , σ2R+ σ2
0In

)
, (1.1)

where σ2 is the unknown variance parameter, R is the correlation matrix with the (i, j)-

th element represented by the correlation function c(xi,xj) and In is an identity matrix

with size n. It is common to model the mean µ(x) as linear combinations of the basis

functions,

µ(x) = h(x)β =

q∑
t=1

ht(x)βt, (1.2)

where h(x) = (h1(x), ..., hq(x)) is a vector of basis functions and β = (β1, ..., βq)
T is a

vector of unknown regression parameters for the basis function h(x).

There are two common ways correlation function c(·, ·), namely the isotropic correla-

tion and product correlation. An isotropic correlation function means that c(·, ·) is a func-

tion that depends on dij = ||xi − xj||, for any xi = (xi1, ..., xip)
T and xj = (xj1, ..., xjp)

T ,

where || · || is the Euclidean distance.

This isotropic assumption can be restrictive for describing the correlation in some

applications. For instance, some variables can have different units and the correlation

lengthscales can be different for each dimension of the inputs. The product correlation
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Introduction Chapter 1

function is often assumed for emulating computer model experiments [5],

c(xi,xj) =

p∏
l=1

cl(xil, xjl), (1.3)

where cl(·, ·) is the one-dimensional correlation function for the l-th coordinate of the

input vector. As we define the product correlation, the correlation matrix can be decom-

posed as follows,

R = R1 ◦R2 ◦ . . . ◦Rp, (1.4)

where Rl is the correlation matrix on the l-th coordinate of the input vector with the

(i, j)-th element determined by cl(xil, xjl) and ◦ denotes the Hadamard product.

Next, we discuss the commonly used correlation functions. The most frequently

used correlation function is the square exponential (SE) correlation with the roughness

parameter α = 2, which is also called Gaussian correlation, defined as

cl(xil, xjl) = exp

(
−
d2ijl
γl

)
, (1.5)

where γl is the range parameter on the l-th input dimension and dijl = |xil − xjl|. This

correlation function is infinitely mean square differentiable [63], meaning that the GP

with the SE correlation is very smooth. However, infinitely differentiable processes can be

overly smooth for some computer experiments and real datasets [64]. The SE correlation

is a special case of the power exponential correlation with the following definition,

cl(xil, xjl) = exp

(
−
dαijl
γl

)
, (1.6)

where the parameter α ∈ (0, 2]. Notably, when α < 2, the power exponential correlation

function is not once differentiable, resulting in a process that might be too rough for

7
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certain experiments and datasets.

Another common choice is to use Matérn correlation with the roughness parameter

α ∈ (0,+∞), which is defined as

cl(xil, xjl) =
1

2α−1Γ (α)

(
dijl
γl

)α

Kα

(
dijl
γl

)
, (1.7)

where Γ(·) is the gamma function and Kα(·) is the modified Bessel function of the second

kind. The Matérn correlation owns many appealing properties. Firstly, the Matérn

correlation is (⌈α⌉ − 1)-times mean square differentiable [63], which means we could

directly control the smoothness of the process by modifying the roughness parameter α.

When α goes to positive infinity, the Matérn correlation converges to the SE correlation.

Moreover, the Matérn correlation has the closed-form expression when the roughness

parameter α is half-integer, i.e. α = 2m−1
2

, where m ∈ N+. A common choice with the

Matérn correlation function is by setting the roughness parameter α = 1
2
, which is also

known as the exponential kernel,

cl (xil, xjl) = exp

(
−dijl

γl

)
. (1.8)

The range parameter γl determines the correlation between two inputs xil and xil. Specif-

ically, a larger value of γl results in a stronger correlation, and conversely, a smaller γl

leads to a weaker correlation. In the application, the roughness parameter α is usually

prespecified and the range parameter γl is estimated from the data.

Another common choice with the Matérn correlation function is by setting the rough-

ness parameter α = 5
2
, which has the following expression,

cl (xil, xjl) =

(
1 +

√
5dijl
γl

+
5d2ijl
3γ2

l

)
exp

(√
5dijl
γl

)
. (1.9)

8
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Next, we discuss parameter estimation in the GP model. For a GP model with a

Matérn correlation function and the roughness parameter α = 5
2
, based on Equations

(1.1) and (1.9), there are four sets of parameters to estimate, including the mean pa-

rameters β, signal variance parameter σ2, noise variance parameter σ2
0 and the range

parameters γ = {γ1, . . . , γp}. Bayesian inference is a natural way that considers the

uncertainty in parameter estimations. A common choice is the objective Bayesian in-

ference for parameter estimations, specifically utilizing the standard reference prior for

these parameters [65, 66] as follows,

πR(β, σ2) ∝ 1

σ2
. (1.10)

The likelihood function of a GP model on the outcome sequence y = (y(x1), ..., y(xn))
T ∈

Rn has the following expression,

p
(
y | β, σ2,γ, η

)
=
(
2πσ2

)−n
2 |K|−

1
2 exp

(
−(y −Hβ)TK−1(y −Hβ)

2σ2

)
(1.11)

where K = (R + ηIn) with the nugget parameter η =
σ2
0

σ2 defined as the ratio of noise

variance to signal variance, H = (h(x1), ...,h(xn))
T is a n-by-q basis function matrix.

The marginal distribution of the range parameters γ and nugget parameter η, p(y |

γ, η) ∝
∫
p (y | β, σ2,γ, η) πR(β, σ2)dβdσ2, is as follows,

p(y | γ, η) ∝ |K|−
1
2

∣∣HTK−1H
∣∣− 1

2
(
S2
)− (n−q)

2 (1.12)

where S2 = (y − Hβ̂)TK−1(y − Hβ̂) and β̂ =
(
HTK−1H

)−1
HTK−1y. Consequently,
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parameters γ and η can be estimated by maximizing the marginal likelihood,

(γ̂, η̂) = argmax
γ,η

{p(y | γ, η)} , (1.13)

where the numerical optimization is commonly conducted by the Quasi-Newton opti-

mization method [67, 68]. Furthermore, the robust estimation for the range and nugget

parameters through maximizing marginal posterior with objective prior can be achieved

by utilizing the robust GaSP emulator [69] and the jointly robust prior [70].

After obtaining the estimate of the range parameter γ and the noise variance to

variance ratio η, the predictive distribution of y(x∗), where x∗ is a new input, given

y and estimated parameters γ̂ and η̂, can be obtained by integrating out the mean

parameter β and the variance parameter σ2.

p(y (x∗) | y, γ̂, η̂) =
∫

p(y (x∗) | y,β, σ2, γ̂, η̂)πR(β, σ2)dβdσ2 (1.14)

Given the standard reference prior πR(β, σ2) ∝ 1
σ2 , the predictive distribution p(y (x∗) |

y, γ̂, η̂) follows a Student t-distribution with n− q degrees of freedom.

y (x∗) | y, γ̂, η̂ ∼ T
(
ŷ (x∗) , σ̂2c∗∗, n− q

)
, (1.15)

where

ŷ (x∗) = h (x∗) β̂ + rT (x∗)K−1(y −Hβ̂), (1.16)

σ̂2 =
1

(n− q)
(y −Hβ̂)TK−1(y −Hβ̂), (1.17)

10
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and

c∗∗ =c (x∗,x∗) + η̂ − rT (x∗)K−1r (x∗) +
(
h (x∗)− r (x∗)T K−1H

)
×
(
HTK−1H

)−1
(
h (x∗)− r (x∗)T K−1H

)T (1.18)

with β̂ =
(
HTK−1H

)−1
HTK−1y being the generalized least squares estimator for the

mean parameter β and r(x∗) = (c(x∗,x1), ..., c(x
∗,xn))

T is obtained by plugging in the

estimated range parameter γ̂. The predictive mean can be written as a weighted average

of the data or bases (see Corollary 1 in [71]), which is often used for predictions. An

advantage of the GP model lies in the uncertainty quantification of the predictions from

the predictive distribution in Equation (1.15).

However, calculating the predictive mean and variance in Equations (1.16) and (1.17)

or the likelihood function can be computationally expensive for a large number of obser-

vations. The main roadblock is the inversion of the correlation matrix K of size n, which

has a computational complexity of O(n3). To tackle this issue, we first introduce the

connection between the GP model having Matérn correlation with half-integer roughness

parameters and the Dynamic Linear Model. The Kalman filter approach can be used

to accelerate the computation of the likelihood function for problems with 1D inputs.

This approach reduces the complexity to linear time complexity O(n) with respect to

the sample size without any approximation. This connection will be used to develop new

algorithms for changepoint detection and GPs with multi-dimensional inputs.

11
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1.2 Connections between the Gaussian Process Model

and the Dynamic Linear Model

In this section, we build the connection between the GP model of one-dimensional

inputs: t = {t1, . . . , tn} with ti ≤ tj for i < j and the dynamic linear model (DLM). A

DLM has the following expression, for k = 1, ..., n,

y(tk) = µ(tk) + Fkθk + ϵk, ϵk ∼ N
(
0, σ2

0

)
,

θk = Gkθk−1 +wk, wk ∼ MN (0,Wk) ,

(1.19)

where µ(tk) is the mean parameter defined in Equation (1.2), θk is am-dimensional latent

state process with the initial state θ0 ∼ N (0,B0), Fk is a 1×m vector, B0, and Gk and

Wk are m×m matrices.

A GP model with a Matérn correlation function, as expressed in Equation (1.7)

and a half-integer roughness parameter α, can equivalently be represented through a

DLM [72, 11]. For instance, the Matérn correlation function with a roughness parameter

α = 0.5, also called the Exponential correlation function, follows

c(ti, tj) = exp

(
−dij

γ

)
, (1.20)

where dij = tj − ti for i < j and γ is the range parameter. The GP model defined in

Equation (1.1) with exponential correlation function in Equation (1.20) is equivalent to a

DLM in Equation (1.19) with Fk = 1, Gk = ρk, Wk = σ2 (1− ρ2k), ρk = exp
(
−dij

γ

)
, and

B0 = σ2. The Matérn with roughness parameter being 2.5, as another example, follows

c(ti, tj) =

(
1 +

√
5dij
γ

+
5d2ij
3γ2

)
exp

(
−
√
5dij
γ

)
. (1.21)

12
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As shown in [11, 73], the DLM in Equation (1.19) is equivalent to the GP model defined

in Equations (1.1) and (1.21), where λ =
√
5
γ

and dk = tk − tk−1,

Fk =

[
1 0 0

]
,

Gk = e−
λdk
2


λ2d2k + 2λ+ 2 2λd2k + 2dk d2k

−λ3d2k −2(λ2d2k − λdk − 1) 2− λd2k

λ4d2k − 2λ3dk 2(λ3d2k − 3λ2dk) λ2d2k − 4λdk + 2

 ,

Wk =
4σ2λ5

3


W k

1,1 W k
1,2 W k

1,3

W k
2,1 W k

2,2 W k
2,3

W k
3,1 W k

3,2 W k
3,3

 ,

with

W k
1,1 =

e−2λdk(3 + 6λdk + 6λ2d2k + 4λ3d3k + 2λ4d4k)− 3

−4λ5
,

W k
1,2 = W k

2,1 =
e−2λdk

2
,

W k
1,3 = W k

3,1 =
e−2λdk(1 + 2λdk + 2λ2d2k + 4λ3d3k − 2λ4d4k)− 1

4λ3
,

W k
2,2 =

e−2λdk(1 + 2λdk + 2λ2d2k − 4λ3d3k + 2λ4d4k)− 1

−4λ3
,

W k
2,3 = W k

3,2 =
e−2λdkd2k(4− 4λdk + λ2d2k)

2
,

W k
3,3 =

e−2λdk(−3 + 10λdk − 22λ2d2k + 12λ3d3k − 2λ4d4k) + 3

4λ
, and

B0 =


σ2 0 −σ2λ2/3

0 σ2λ2/3 0

−σ2λ2/3 0 σ2λ4

 .

Note that GP with the Matérn correlation function having α ≥ 3/2 is a differentiable,
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continuous time process, which is not often used in modeling time series, e.g. financial

time series are often assumed to be continuous but not differentiable. Thus, this connec-

tion extends the class of the DLM to be used for modeling time series in practice.

After connecting the GP model with the DLM, we could speed up the calculation of

the likelihood function of the GP model by leveraging the Kalman filter approach. The

computation complexity can be reduced from cubic to linear for univariate outcomes. In

the next section, we introduce the Kalman filter approach and its implementation in the

GP model.

1.3 The Kalman Filter

In this section, we briefly discuss the Kalman filter [16, 74], approach for all DLMs,

which contains the GP with half-integer Matérn covariance and 1D input. As shown in

[12, 13], the Kalman filter can be applied to compute the likelihood and the RTS smoother

can be used to make the predictions for the DLM with linear computational complexity.

The Kalman filter will be extended to construct the new sequential Kalman filter for

changepoint detection in Section 2. Specifically, the implementation of the Kalman filter

approach on the DLM in Equation (1.19) can be divided into three steps.

Lemma 1 (Kalman Filter on DLM) Denote y1:k = (y(t1), ..., y(tk))
T . For k = 1, . . . , n,

given θk−1 | y1:(k−1) ∼ MN (mk−1,Mk−1), we iteratively compute the distribution of θk

given y1:k by the following three steps, where the DLM is defined in Equation (1.19),

1. we compute the one-step-ahead predictive distribution of θk given y1:(k−1)

θk | y1:(k−1) ∼ MN (bk,Bk) , (1.22)

with bk = Gkmk−1 and Dk = GkMk−1G
T
k +Wk.
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2. Next, we compute the one-step-ahead predictive distribution of y(tk) given y1:(k−1)

below,

y(tk) | y1:(k−1) ∼ N (fk, Qk) , (1.23)

with fk = Fkbk, and Qk = FkBkF
T
k + σ2

0.

3. In the last step, we compute the filtering distribution of θk given y1:k, i.e.,

θk | y1:k ∼ MN (mk,Mk) , (1.24)

with mk = bk +BkF
T
kQ

−1
k (y(tk)− fk) and Mk = Bk− BkF

T
kQ

−1
k FkBk.

Next, we briefly discuss how to implement the Kalman filter in Lemma 1 to achieve

efficient computation of the likelihood for the GP model. As discussed in Section 1.1,

the main roadblock for computing the likelihood is to inverse the correlation matrix K,

which has O(n3) computational complexity. Denote K = LLT , where L is a lower trian-

gular matrix in the Cholesky decomposition of K. To efficiently compute the likelihood

function in Equation (1.11), we need to evaluate two terms, |K| and L−1y with low com-

putational complexity. Fortunately, with the Kalman filter, the one-step-ahead predictive

distribution y(tk) | y1:(k−1) ∼ N (fk, Qk) can be derived iteratively for k = 1, ..., n, where

each iteration only takes O(1) operation. As the likelihood function of y1:n is a product

of predictive probabilities, i.e. p(y1:n) = p (y(t1))
∏n

k=2 p
(
y(tk) | y1:(k−1)

)
, we could write

the likelihood function in this following form [75],

p
(
y1:n | σ2, σ2

0, γ
)
=

N∏
k=1

(2πQk)
− 1

2 exp

{
−

N∑
k=1

(y(tk)− fk)
2

2Qk

}
(1.25)

where the computation can be done in linear time O(n) rather than the cubic time

complexity. Further, we have the following expressions for the computationally expensive
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terms in the likelihood function,

|K| =
n∏

k=1

Qk, and L−1y =

(
y(t1)− f1√

Q1

, . . . ,
y(tn)− fn√

Qn

)T

. (1.26)

According to Lemma 1, the Kalman filter parameters f1, . . . , fn and Q1, . . . , Qn can be

sequentially computed with an overall computational complexity of O(n). This allows

us to compute the computationally expensive terms |K| and L−1y in O(n), enabling the

whole likelihood function of the GP model to be computed in a linear time.

Furthermore, we can obtain the predictive distribution of the parameter θt in the

DLM as introduced in Equation (1.19) with linear computational complexity using the

Rauch–Tung–Striebel (RTS) smoother [17]. The RTS smoother’s application to DLM

[12, 13] is defined as follows.

Lemma 2 (RTS smoother on DLM) Consider observations y1:n = (y(t1), . . . , y(tn)). If

the predictive distribution θk+1 | y1:n ∼ MN (sk+1,Sk+1), then

θk | y1:n ∼ MN (sk,Sk), for k = 1, . . . , n, (1.27)

where

sk = mk +MkG
T
k+1B

−1
k+1(sk+1 − bk+1)

Sk = Mk −MkG
T
k+1B

−1
k+1 (Bk+1 − Sk+1)B

−1
k+1Gk+1Mk

(1.28)

By applying the Kalman filter forward, as introduced in Lemma 1, to observations

y1:n, we can compute the distribution θn | y1:n with O(n) complexity. Subsequently, by

applying the RTS smoother backward from k = n to 1, as described in Lemma 2, we

obtain the predictive distributions θk | y1:n also in O(n).
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1.4 Challenges and Research Questions

The development of the statistical models in this thesis tackles three main problems:

scalable computation when the number of observations is large, robust estimation for a

small number of noisy observations, efficient predictions and uncertainty quantification

when the data has high-dimensional inputs and outputs.

The first challenge is illustrated by the dialysis patients’ biomarker data, collected

by Fresenius Kidney Care North America. This dataset includes daily treatment and

laboratory features of over 150,000 dialysis patients from January 2020 to March 2022.

Based on this dataset, we aim to develop an algorithm to detect COVID-19 infection

dates for each dialysis patient. Several studies have tried to detect COVID-19 infection

at the patient level using longitudinal data [32, 33, 30]. These models often calculate

prediction probabilities for COVID-19 infection and use a predetermined threshold to de-

termine infections, a method that overlooks the temporal patterns within the data. For

example, patients with mild or moderate symptoms of COVID-19 may show a gradual

increase in prediction probabilities, but the prediction probabilities might still fall below

the pre-specified threshold. Ignoring such a trend can lead to low sensitivity in detec-

tion. To address this issue, online changepoint detection algorithms could be applied to

capture the temporal patterns in the prediction probabilities. However, the challenge

remains in modeling temporal correlations in the probability sequences efficiently (see

Figures A.1 and A.2 of autocorrelation in Appendix A). Various studies have attempted

to integrate temporal correlation into changepoint detection algorithms. One approach

[37] employs a piecewise polynomial regression model to account for temporal correla-

tions across different segments, whereas it assumes independence within each temporal

segment. Another approach [38] focuses on detecting shifts in the mean within time series

affected by autocorrelated noise. Moreover, the GP model has been used for modeling
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temporal covariance between observations at each time point for changepoint detection

[39] whereas the computational cost is huge. However, none of the methods has enough

efficiency and flexibility to model the temporal correlations and capture various types of

changepoints.

Chapter 2 discusses a method that can efficiently detect various types of changepoints

in temporally correlated data. It uses the GP model to capture the temporal correlation

and leverages the sequential Kalman filter to achieve linear computation complexity at

each time step. Our simulated experiments demonstrate that this method outperforms

other online changepoint detection approaches in accurately detecting shifts in mean,

variance, or correlation within temporally correlated data. Moreover, we propose a new

way to integrate classification and changepoint detection approaches that improve the

detection delay and accuracy for detecting COVID-19 infection compared to other alter-

natives.

The second issue addressed in this thesis is to obtain robust computation for heteroge-

neous and noisy data. This issue is illustrated in the context of COVID-19 as well, where

we aim to estimate the heterogeneous progression of SARS-CoV-2 in over 3,000 U.S.

counties. The main challenge is to provide robust estimation and uncertainty quantifica-

tion of the COVID-19 transmission parameters for small counties, as the variability for

the COVID-19 infection cases and deaths is large due to the small number of observations

for these counties, particularly at the beginning of the epidemic. A wide range of models

has been applied to analyze the transmission dynamics of COVID-19. The epidemiology

compartmental models such as SIR, SEIR, SIRD, and their extensions [40, 41, 42, 43, 44],

stochastic agent based models [45, 46], branching processes [47], and network analysis

[48] have advanced our understanding of transmission rates and incubation period of

SARS-CoV-2, which are connected to the traffic flow and mobility during the COVID-19

outbreaks at different regions [76, 77]. The disease progression characteristics, such as
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the transmission rate, are often estimated based on the daily death toll [40, 43, 45, 46].

However, the focus has predominantly been on larger states and counties, leaving smaller

ones less studied.

Chapter 3 discussed a robust methodology that combines the discretized SIRDC

model with the GP model to accurately estimate and quantify the uncertainties of

COVID-19 transmission dynamics across U.S. counties, including smaller ones. Fur-

thermore, we propose a metric called the daily probability of contracting (PoC) SARS-

CoV-2 for a susceptible individual to quantify the risk of SARS-CoV-2 transmission in a

community. This work yields a dynamic map at the county level, aiding local officials in

formulating effective policies and informing the public about the daily risks of contracting

SARS-CoV-2.

The third issue discussed in this thesis is the computation challenge of the GP model

when the data has massive high-dimensional correlated output. Numerous studies have

been made to approximate a GP model for such datasets in recent studies, including, for

example, stochastic partial differential equation approach [52, 53], hierarchical nearest

neighbor methods [54], multi-resolution process [55], local Gaussian process approach

[56], periodic embedding [57, 58] and covariance tapering [59], which have obtained wide

attention in recent years. However, efficient computation without direct approximation

to the likelihood function remains less explored. In Chapter 4, we introduce a new

orthogonal factor process to model spatial and spatio-temporal data in incomplete lattice

without directly approximating the likelihood function. Additional approximation can

be applied to use a small number of factor processes to further reduce the computation.
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1.5 Outline

Chapter 2 focuses on efficiently and accurately detecting COVID-19 infection dates

by patients’ biomarker data. Traditional methods typically rely on data-driven models

with prespecified threshold values to identify the infection date, which leads to miss

detections for patients with mild symptoms. We can address this issue by integrating

the data-driven model with changepoint detection algorithms, as these algorithms could

track temporal trends in the data. One of the widely used methods is the Bayesian

Online changepoint detection (BOCPD) algorithm [78, 79], which is empirically shown

to be the most efficient method across various real-world datasets [80]. However, the

data are assumed to be independently distributed in BOCPD, which can be restrictive

to longitudinal biomarker data of patients. To overcome this issue, we introduce the

Sequential Kalman Filter for Online Changepoint Detection (SKFCPD) algorithm in

this chapter. This approach utilizes the GP model to account for temporal correlations

and incorporates the sequential Kalman filter approach to achieve linear computational

complexity at each time step. We evaluate the SKFCPD method’s speed and accuracy

in detecting infection dates using COVID-19 patients’ biomarker data compared to other

data-driven and changepoint detection methods.

In Chapter 3, we introduce an epidemic model that efficiently estimates the COVID-

19 daily transmission dynamics in real-time across more than 3,000 U.S. counties. This

model categorizes the population in each county into five groups: Susceptible, Infectious,

Resolving, Deceased, and Recovered (SIRDC). It offers robust daily COVID-19 infection

and death toll estimates in each county. Furthermore, the model offers a 21-day forecast

of the death toll and integrates the GP model to generate posterior confidence intervals

for this forecast. Additionally, a metric named the Probability of Contracting (PoC)

COVID-19 is introduced. This metric calculates the daily average probability that a
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healthy individual in any given county will contract COVID-19, providing crucial insight

into county-level COVID-19 transmission dynamics.

Chapter 4 introduces a GP model for large correlated spatial, spatiotemporal, and

functional lattice data. Although there is a vast literature on the efficient implementation

of the GP model on spatial data, most studies rely on the sparse assumption over the

correlation matrix, which could be unrealistic for highly correlated spatial data. To

address this, the chapter proposes a GP model with independent latent factor processes

and an orthogonal factor loading matrix. This design simplifies the decomposition of the

likelihood function, allowing for the application of the Kalman filter to each component,

thereby reducing computational complexity. Another advantage of this model is that it

can handle irregular missing values in the data, which is essential for fields like weather

forecasting or precipitation prediction, where satellite data frequently contains gaps. To

demonstrate the accuracy and efficacy of our model, we analyze real satellite data of

sea surface temperatures, comparing our GP model’s predictive accuracy with existing

models.

Chapter 5 concludes the works presented in the previous chapters and outlines future

research directions in three fields: 1) online changepoint detection methods, 2) epidemi-

ology compartmental model, and 3) GP models for data with massive output. In the area

of online changepoint detection, the SKFCPD method introduced in Chapter 2 could be

further extended to handle multidimensional datasets and more complex change dynam-

ics. To enhance the estimation accuracy of the epidemiology compartmental model, the

SIRDC model introduced in Chapter 3 could be extended to include more flexible pan-

demic parameters and integrate additional spatial information. To accelerate the com-

putation of GP models with multi-dimensional inputs, the model introduced in Chapter

4 has the potential to be applied to non-lattice data with irregular missingness. Another

important research direction involves modeling data with both massive high-dimensional
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output and inputs. In Chapter 5, we investigate the Partial Gaussian Process (PPGP)

model and its application to large-scale power systems and outline limitations and future

directions of the topics in Chapter 2-4.

22



Chapter 2

Sequential Kalman filter for fast

online changepoint detection in

longitudinal health records

In this chapter, we introduce the sequential Kalman filter, a computationally scalable

approach for online changepoint detection with temporally correlated data. The temporal

correlation was not considered in the Bayesian online changepoint detection approach

due to the large computational cost. Motivated by detecting COVID-19 infections for

dialysis patients from millions of daily health records with a large number of covariates,

we develop a scalable approach to detect multiple changepoints from correlated data by

sequentially stitching Kalman filters of subsequences to compute the joint distribution of

the observations, which has linear computational complexity with respect to the number

of observations between the last detected changepoint and the current observation at

each time point, without approximating the likelihood function. Compared to other

online changepoint detection methods, simulated experiments show that our approach is

more precise in detecting single or multiple changes in mean, variance, or correlation for
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temporally correlated data. Furthermore, we propose a new way to integrate classification

and changepoint detection approaches that improve the detection delay and accuracy for

detecting COVID-19 infection compared to other alternatives.

2.1 Introduction

It is crucial to identify shifts in distribution proprieties from time series or longitudinal

data, such as changes in mean, variance, and correlation, a process generally referred to

as changepoint detection. Changepoint detection has become a widely utilized technique

across various fields [81], including DNA copy number variants [82], financial data [83],

power systems [84], meteorology [85] and cellular processes [86], as a changepoint signals

a deviation from the baseline data-generating process.

In this work, we develop a computationally scalable and accurate approach to de-

tect changepoints in time-dependent outcomes. Our aim is to detect whether a patient

receiving dialysis treatment contracts severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2) or COVID-19. The dialysis patient data are collected by Fresenius Kid-

ney Care North America, which operates over 2,400 dialysis clinics in most US states and

provides treatment for approximately one-third of the US dialysis patients. The dataset

includes daily treatment and laboratory records for over 150,000 dialysis patients from

January 2020 to March 2022.

We highlight that the longitudinal detection scenario considered herein is challenging

as only around 0.4% of the observations are in the COVID-19 infection periods formally

defined in Section 2.4, whereas other studies [30, 87] consider the “cross-sectional” obser-

vations, which matches one PCR test record to a few negative records, inducing a data

set where 15%−20% of the records are COVID-19 positive, 30−50 times higher than our

setting which is closer to the real-world setting during the pandemic. The low positive
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rates in the longitudinal setting make the detection of COVID-19 infections more chal-

lenging. Our goal is to develop a new online changepoint detection method for identifying

changes from longitudinal health records with a large number of measurements from lab

tests, which are common in healthcare practice [88]. Various challenges exist for detecting

COVID-19 infection, including large irregular missingness of time-dependent laboratory

covariates of patients and temporal correlations in the probability sequences (see Figures

A.1 and A.2 of autocorrelation in Appendix A). To address these challenges, we propose

an accurate and scalable changepoint detection algorithm that can integrate the results

from state-of-the-art classification methods, such as XGBoost, and substantially improve

the performance of classification methods.

Our main interest lies in detecting changepoints as new data arrives sequentially, a

key aspect distinguishing online from offline changepoint detection scenarios [89, 90, 91,

83, 92, 93, 94]. One popular framework of online change detection is the Bayesian online

changepoint detection [78, 79], which was shown to have high accuracy compared to other

alternatives [80]. However, one limitation of the Bayesian online changepoint detection is

the assumption of mutual independence among observations, while correlations are com-

mon for temporal data. A few subsequent studies focus on detecting changepoints in the

data with temporal correlations. For example, the study in [39] utilizes a Gaussian pro-

cess to model temporal correlation within the subsequences separated by changepoints.

Although this approach reduces the computational complexity of detecting the change at

each time step from O(n4) to O(n3) computational operations by using rank 1 updates

[95] for n observations, the computational complexity is still prohibitively large. The

study in [37] models the temporal correlations across segments using piecewise polyno-

mial regression, assuming that correlations are Markov and observations within the same

segments are independent. The study in [38] models time series with autocorrelated noise

and detects mean changes through dynamic programming recursion that maximizes the
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penalized likelihood. These approaches do not provide a flexible class of models of the

temporal correlation between observations at each time point.

Our main contributions are twofold. First, we propose an efficient online changepoint

detection algorithm, applicable for all dynamical linear models commonly used for mod-

eling time sequences [12, 96]. The new algorithm is capable of sequentially detecting

multiple changepoints with computational complexity O(n′) at each time, where n′ is

the number of observations between the last detected changepoint and the current ob-

servation, making it significantly more efficient than the Gaussian process changepoint

detection algorithm [39]. We achieve this computational order by sequentially stitch-

ing Kalman filters of subsequences for computing likelihood and predictive distributions.

This approach is generally applicable to all dynamic linear models with equally or un-

equally spaced time points. Second, when data contain a massive number of observations

and high-dimensional covariates with a large proportion of missingness, it is challenging

to apply any existing changepoint detection method or state space model directly. Our

real application of detecting COVID-19 infection for dialysis patients is one such exam-

ple, where a large number of lab covariates are missing as patients do not take all lab

measurements in each of their visits. To address this challenge, we propose an integrated

approach. We first use supervised learning, such as XGBoost, to compute the posterior

probability1 of a time point being a changepoint for all patients. Conventional analysis

often proceeds by choosing a threshold for the posterior probability to make detection

decisions, which overlooks the changes in the longitudinal data that a changepoint de-

tection algorithm could capture. We apply our changepoint detection algorithm to each

patient to detect changes in classification probabilities. We found that the performance

was dramatically improved compared to a supervised learning approach alone. The ap-

1The posterior probabilities from the XGBoost model are calibrated by a sigmoid transformation to
ensure they correspond well with the COVID-19 positive rate in the real-world dataset.
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proach is general, as it’s adaptable to any statistical machine learning method providing

classification probabilities. Additionally, we provide SKFCPD, an R package for efficient

implementation of our algorithm, to be released on CRAN along with the publication of

this work.

This paper is structured as follows. Section 2.2.1 provides an overview of Bayesian

online changepoint detection. In Sections 2.2.2-2.2.3, we introduce the sequential Kalman

filter approach, an efficient online changepoint detection algorithm for temporally corre-

lated data, and illustrate the computational advantage over direct computation in Section

2.2.4. In Section 2.3, we demonstrate the advantage of our proposed approach using sim-

ulated data with shifts in mean, variance, and correlation. Section 2.4 introduces the

new approach that integrates classification methods with the new changepoint detection

approach for COVID-19 infection detection. Proofs of lemmas, theorems, and additional

numerical results are provided in the Appendix A.

2.2 Fast Online Changepoint Detection for Corre-

lated Data

2.2.1 Background: Bayesian Online Changepoint Detection

Let us consider the time series y1:n = (y1, . . . , yn)
T ∈ Rn for time points {t1, . . . , tn},

such that tj < ti for any 1 ≤ j < i ≤ n. We assume time segments separated by any

two changepoints are independent of each other, whereas data within each segment can

be temporally correlated. Each segment can have distinct distributions characterized by

different mean, variance, or correlation parameters.

We define Cn as the most recent changepoint at or before the current time point tn.

For instance, if Cn = t4, it indicates that t4 is the only changepoint in the time period

27



Sequential Kalman filter for fast online changepoint detection in longitudinal health records
Chapter 2

Figure 2.1: Panel a: value of the state Cn that shows the most recent changepoint
before or at the time tn for n = 1, . . . , 7. The time point t4, marked by a red dot, is
the only changepoint before t7. Panel b: the recursive process of computing the joint
distribution p(y1:n, Cn) from time tn−1 to tn+1 based on the Equation (2.1). The black
arrow means the latter probability can be sequentially computed from the former one.

[t4, tn]. As shown in Figure 2.1a, where time t4 is the only changepoint before time t7, Cn

shifts from t1 to t4 at time t4. We define run length, rn, as the length of the time interval

from the most recent changepoint to the current time point, calculated as rn = n−Cn+1.

The objective of online changepoint detection is to sequentially estimate the change-

point Cn upon receiving a new observation at the current time tn. A popular online

changepoint detection framework is the BOCPD method [78, 79], which has a few as-

sumptions.

Assumption 1 The segments partitioned by changepoints are mutually independent.

Assumption 2 The state on the current time point Cn, conditioning on the state of the

previous time point Cn−1, is independent of the observations of y1:(n−1).

Based on the second assumption, given the previous state Cn−1 = tj for 1 ≤ j ≤ n−1,

Cn can either be tn if tn is a changepoint, or remain as tj if tn is not a changepoint.

Thus, Cn is restricted to either tj or tn. Following the BOCPD framework, we define

the prior distribution of the conditional distribution of the most recent changepoint as
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p(Cn = ti | Cn−1 = tj), where it takes the value of 1−H(ti) if i = j, H(ti) if i = n and

is zero in all other cases. H(·) is the hazard function, measuring the probability that a

changepoint occurs at any time point.

In BOCPD, the hazard function is often defined as H(ti) =
1
λi
, where 1

λi
represents

the prior probability of time ti being a changepoint, typically held fixed in practice. For

applications such as detecting COVID-19 infection, a time-dependent hazard function

can be used to integrate local infection information.

We allow the observations to be mutually dependent within each segment of the

changepoints, which relaxes the additional assumption of independence between each

observation within one segment in [78]. This modification offers a more realistic modeling

for time series data, where observations are often correlated. Furthermore, Assumption 2

means information from the previous observations y1:(n−1) is contained in Cn−1, the latent

state indicating whether the previous time point is a changepoint. Based on Assumptions

1 and 2 from BOCPD, we compute the joint distribution of the state Cn = ti and the

observations y1:n by integrating out the previous state Cn−1 = tj,

p (y1:n, Cn = ti)

= p
(
yn | yi:(n−1), Cn = ti

)︸ ︷︷ ︸
predictive distribution

n−1∑
j=1

p (Cn = ti | Cn−1 = tj)︸ ︷︷ ︸
hazard

p
(
y1:(n−1), Cn−1 = tj

)

=


p
(
yn | yi:(n−1), Cn = ti

)
(1−H(ti)) p

(
y1:(n−1), Cn−1 = ti

)
, i < n,

p (yn | Cn = tn)H(tn)
∑n−1

j=1 p
(
y1:(n−1), Cn−1 = tj

)
, i = n,

(2.1)

where the derivation is given in Section A.2 of the appendix.

After obtaining the joint probability p(y1:n, Cn = ti) for i = 1, . . . , n, one can estimate

the state Ĉn by calculating the maximum a posteriori (MAP) estimate of the joint
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distribution [79],

Ĉn = argmax
t1≤ti≤tn

p(y1:n, Cn = ti). (2.2)

The probability of p(y1:n, Cn = ti) needs to be computed for all possible time points

ti, for i = 1, ..., n, to obtain the MAP of the changepoint upon receiving new data at

time tn. Figure 2.1b shows the recursive computational process for the joint probability

p(y1:n, Cn = ti) in Equation (2.1). At time tn, we can recursively compute the prob-

ability p(y1:n, Cn = ti) from the previous step p(y1:(n−1), Cn−1 = ti), where i < n, as

indicated by the solid black arrows. Furthermore, the probability p(y1:n, Cn = tn) can

be computed through probabilities of changepoints occurring at previous time points

{p(y1:(n−1), Cn−1 = tj)}n−1
j=1 and the marginal distribution of the current time point being

a changepoint p(yn | Cn = tn), as shown by the black dashed arrows in Figure 2.1b.

By considering different combinations of changepoints in the joint distribution p(y1:n, Cn),

the recursive formula in Equation (2.1) enables the algorithm to sequentially detect mul-

tiple changepoints. For problems with multiple changepoints, we may exclude the obser-

vations prior to the most recently detected changepoint to further reduce computational

complexity. Specifically, instead of summing over all time indices j from 1 to n − 1 to

compute the joint distribution in Equation (2.1), we can truncate the summation to the

range from tĵ to n− 1, where tĵ = Ĉn−1 denotes the most recently detected changepoint

at or before time tn−1. Note that the estimated most recent changepoint at (n − 1)th

time point tĵ = Ĉn−1 and tj = Cn−1 defined in Equation (2.1) can be different. This

approach is more efficient, as two subsequences separated by a changepoint are mutually

independent and their distributions can contain distinct parameters. Both simulated and

real data studies validate that this approach effectively reduces the computational cost

for detecting multiple changepoints without compromising accuracy.

The computation of the joint probability p(y1:n, Cn = ti) in Equation (2.1) demands
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an efficiently evaluation of prediction probabilities {p(yn | yi:(n−1), Cn = ti)}n−1
i=1 . To scal-

ably compute the joint distribution, [78] assumed the observations are independent and

identically distributed (i.i.d.) random variables with the exponential family of distribu-

tions. However, the i.i.d. assumption of observations may not hold for many real-world

datasets. To address temporal correlations in time sequences, [79] proposed a method

that utilizes the particle filter [97] to approximate the predictive distributions, which may

compromise accuracy due to the approximation of the likelihood and the choice of the

inducing inputs. To overcome these challenges, we propose a new approach for online

changepoint detection applicable for dynamic linear models to model temporally corre-

lated data, which efficiently computes the predictive distributions without approximating

the likelihood function.

2.2.2 Dynamic Linear Models for Online Changepoint Detec-

tion

Gaussian processes (GPs) have been used to model temporally correlated measure-

ments for online changepoint detection [39]. By Assumption 1, the GP model can have

different parameters across segments. The marginal distribution of the (m+1)-th segment

follows a multivariate normal distribution
((

y(tτm), . . . , y(tτm+1−1)
)T | µm, σ

2
m, γm, σ

2
0,m

)
∼

MN (µm, σ
2
mRτm+1−τm + σ2

0,mIτm+1−τm), where Rτm+1−τm is a (τm+1 − τm) × (τm+1 − τm)

correlation matrix having parameter γm, with τm being the time index of the mth change-

point, for m = 1, . . . ,M − 1, and when m = 0, we let τ0 = 1. For simplicity, we focus on

the time range from ti to tn, where ti is larger than the previously detected changepoint

Ĉn−1. The total number of observations within this segment is denoted by n′ = n− i+1.

The subscript m in the parameters (µm, σ
2
m, γm, σ

2
0,m) will be dropped to simplify the

notations.
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Directly calculating the likelihood and predictive distributions by a GP, however, can

be computationally expensive, as it requires computing inversion of the correlation matrix

Rn′ , which takes O(n′3) operations. The predictive distribution of the online changepoint

detection needs to be calculated numerous times, which further exacerbates the compu-

tational challenge. Here we model the temporally dependent observations by dynamic

linear models (DLMs) [12, 14, 98], a large class of models for scalable computation.

For simplicity, we denote yi+k−1 = y(ti+k−1), the real-valued observation at time

ti+k−1, which does not need to be equally spaced, for k = 1, . . . , n′. We consider a DLM

below,

yi+k−1 = µ+ Fkθk + ϵk, ϵk ∼ N
(
0, σ2

0

)
,

θk = Gkθk−1 +wk, wk ∼ MN (0,Wk) ,

(2.3)

where µ is the mean parameter, θk is a q-dimensional latent state process with the initial

state θ0 ∼ N (0,B0), Fk is a 1× q vector, B0, and Gk and Wk are q × q matrices.

As an example, a GP with a Matérn covariance function that contains half-integer

roughness parameters [64, 99] can be written as a DLM [11, 72]. For instance, the Matérn

covariance function with a roughness parameter being 0.5 follows

σ2c(t, t′) = σ2 exp

(
−|d|

γ

)
, (2.4)

where d = t−t′ and γ is the range parameter, for any t and t′. The GP with covariance in

(2.4) is equivalent to a DLM in Equation (2.3) with Fk = 1, Gk = ρk, Wk = σ2 (1− ρ2k),

ρk = exp
(
− |ti+k−1−ti+k−2|

γ

)
, and B0 = σ2.

The Matérn with roughness parameter being 2.5, as another example, follows

σ2c(t, t′) = σ2

(
1 +

√
5|d|
γ

+
5d2

3γ2

)
exp

(
−
√
5|d|
γ

)
. (2.5)
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The equivalent representation of a DLM is discussed in Section 1.2 of Chapter 1. We will

use GPs with the two covariance functions in Equations (2.4) and (2.5) for illustrative

purposes, but our approach is generally applicable to all DLMs, which includes a much

larger class of processes.

From Equation (2.1), to evaluate the joint distribution p (y1:n, Cn = ti) for the last

segment (ti, . . . , tn) where Cn = ti is the most recent changepoint prior to tn, we need

to efficiently compute the predictive distribution p
(
yn | yi:(n−1)

)
. For the computational

reason, we define the noise variance to signal variance ratio η =
σ2
0

σ2 , and the covariance

matrix of observations yi:n is given by

σ2Kn′ = σ2(Rn′ + ηIn′). (2.6)

After this transformation, the parameter set is given by Θ = {µ, σ2, γ, η}. In the follow-

ing, we present the direct computation of the predictive distribution p
(
yn | yi:(n−1)

)
.

Assuming the objective prior for the mean and variance parameter p(µ, σ2) ∝ 1
σ2 , the

predictive distribution p
(
yn | yi:(n−1), γ, η

)
, after integrating out (µ, σ2), follows,

p
(
yn | yi:(n−1), γ, η

)
=

p (yi:n | γ, η)
p
(
yi:(n−1) | γ, η

)
∝


Γ(n

′−1
2

)

Γ(n
′−2
2

)

(
|Kn′ |

|Kn′−1|

)−1/2
(

1T
n′K

−1
n′ 1n′

1T
n′−1

K−1
n′−1

1n′−1

)−1/2

exp (−S2
n′) , i < n− 1(

|Kn′ |
|Kn′−1|

)−1/2
(

1T
n′K

−1
n′ 1n′

1T
n′−1

K−1
n′−1

1n′−1

)−1/2 (
yT
(n−1):nMn′y(n−1):n

)−1/2

, i = n− 1

(2.7)

where S2
n′ =

(
n′−1
2

)
log
(
yT
i:nMn′yi:n

)
−
(
n′−2
2

)
log
(
yT
i:(n−1)Mn′−1yi:(n−1)

)
and Mn′ =

K−1
n′ − K−1

n′ 1n′
(
1T
n′K−1

n′ 1n′
)−1

1T
n′K−1

n′ . Note that when i = n − 1, there is not enough

information to simultaneously integrate out µ and σ2 for p(yn | yn−1). We develop a new

procedure for this problem. When i = n− 1, we first integrate out µ in the joint distri-
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bution using the prior probability π(µ) ∝ 1. Then, we integrate out σ2 in the predictive

distribution p(yn | yn−1) using the prior probability π(σ2) ∝ 1
σ2 . Through simulation and

real data analysis, we found that this procedure at i = n − 1 provides a stable evalu-

ation of the predictive distribution and avoids mistakenly detected changepoints. The

derivation of Equation (2.7) is given in Section A.3 of the appendix.

Directly applying Equation (2.7) to compute the predictive distribution requires

O (n′3) computational operations, due to matrix inversion and determinant calculation.

This makes the computation impractical as the predictive distribution must be com-

puted for all previous time points. In the following section, we develop the sequential

Kalman filter to improve the computational efficiency of the Equation (2.7) without any

approximation.

2.2.3 Sequential Kalman Filter for Fast Changepoint Detection

In this section, we introduce a fast algorithm, called sequential Kalman filter (SKF)

to reduce the complexity of computing p
(
yn | yi:(n−1), γ, η

)
from O(n′3) to O(1) with

n′ = n − i + 1, for each i = 1, . . . , n − 1. First, we discuss the Cholesky decomposition

to draw the connection between the predictive distribution and the Kalman filter (KF).

Denote the Cholesky decomposition of the correlation matrix as Kn′ = Ln′LT
n′ , where

Ln′ is an n′ × n′ lower triangular matrix. Consequently, the inverse correlation matrix

can be decomposed as K−1
n′ = UT

n′Un′ , where Un′ = L−1
n′ . As computing Cholesky

decomposition takes O(n′3) operations, we extend the KF in Lemma 3 and Theorem 1

to compute two n′-vectors un′ = Un′1n′ and vi,n′ = Un′yi:n, where un′ = (u1, . . . , un′)T

and vi,n′ = (vi,1, . . . , vi,n′)T are both n′-vectors. The proofs for Lemma 3 and Theorem 1

are given in Sections A.4 and A.5 of the appendix, respectively.

Lemma 3 For k = 1, . . . , n′, the kth element of un′ = Un′1n′ and vi,n′ = Un′yi:n can be
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sequentially computed as follows

uk =
1− fu

k√
Qu

k

, (2.8)

vi,k =
yi+k−1 − f v

i,k√
Qv

i,k

, (2.9)

where for k ≥ 2, we have fu
k = EY1:k

[Yk | Y1:(k−1) = 1k−1, γ, η] = guk (f
u
k−1, Q

u
k−1), Q

u
k =

VY1:k
[Yk | Y1:(k−1) = 1k−1, γ, η] = hu

k(Q
u
k−1), f

v
i,k = EY1:k

[Yk | Y1:(k−1) = yi:(i+k−2), γ, η] =

gvi,k
(
f v
i,k−1, Q

v
i,k−1

)
, and Qv

i,k = VY1:k
[Yk | Y1:(k−1) = yi:(i+k−2), γ, η] = hv

i,k(Q
v
i,k−1), with

Y1:n′ denotes a random output vector in a DLM with covariance σ2Kn′. The functions

guk (·), hu
k(·), gvi,k(·), and hv

i,k(·) are given in Equations (A.12)-(A.16) of the appendix.

In Lemma 3, the KF is iteratively applied for computing the parameters fu
k , Q

u
k , f

v
i,k,

and Qv
i,k from the parameters at the previous time point fu

k−1, Q
u
k−1, f

v
i,k−1, and Qv

i,k−1.

Once we obtain these parameters, uk and vi,k can be computed with O(1) operations for

each k = 1, . . . , n′ by using Equations (2.8) and (2.9), respectively. The derivation of

Lemma 3 is provided in Section A.4 of the appendix.

Theorem 1 After obtaining each term of un′ and vi,n′ from Equations (2.8) and (2.9),

the predictive distribution in Equation (2.7) can be computed below

p(yn | yi:(n−1), γ, η) ∝


Γ(n

′−1
2

)

Γ(n
′−2
2

)
(Qu

n′)
− 1

2

(
uT
n′un′

uT
n′−1

un′−1

)−1/2

exp (−S2
n′) , i < n− 1

(Qu
n′)

− 1
2

(
uT
n′un′

uT
n′−1

un′−1

)−1/2 (
yT
i:nMn′yi:n

)−1/2
, i = n− 1

(2.10)

where S2
n′ =

(
n′−1
2

)
log
(
yT
i:nMn′yi:n

)
−
(
n′−2
2

)
log
(
yT
i:(n−1)Mn′−1yi:(n−1)

)
and yT

i:nMn′yi:n =

vT
i,n′vi,n′ − (uT

n′un′)−1(vT
i,n′un′)2.

When a new observation yn is available at time tn, we apply Lemma 3 to update

the variables un′ and vi,n′ with O(1) operations, and compute the predictive distribution
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p(yn | yi:(n−1), γ, η) based on Equation (2.10), which is significantly faster than directly

computing the inversion of the correlation matrix in Equation (2.7).

As the estimation of range and nugget parameter (γ, η) typically does not have closed-

form expressions, we maximize the likelihood function over a set of training samples from

an initial or control period containing no changepoint:

(γ̂, η̂) = argmax
(γ,η)

p(yStr | γ, η), (2.11)

where Str is an index set of ntr time indices in the training time period. We employ the KF

to compute the likelihood function, which only requires O(ntr) operations [75]. We plug

the estimated range and nugget parameters into the SKF algorithm for online changepoint

detection, effectively capturing the temporal correlations in the data. It is important to

note that the mean and variance parameters in the SKF algorithm are integrated out

based on all available observations, which enables the algorithm to incorporate the latest

information for online changepoint detection. To avoid large computational costs, the

range parameters and nugget parameters were estimated using training sequences, similar

to the GPCPD approach. In Section 2.3, we empirically show that SKF can accurately

detect mean, variance, and correlation changes.

We summarize our approach in Algorithm 1 for detecting the most recent change-

point. First, we apply Theorem 1 multiple times to obtain the sequence of predictive

distributions, i.e., p(yn | yi:(n−1), γ, η) for i = 1, . . . , n − 1. Next, given the predictive

distributions, we compute the joint distribution p(y1:n, Cn = ti) using Equations (2.12)

and (2.13). Finally, we estimate Ĉn, the most recent changepoint before or at time tn,

by the MAP of the joint distribution, i.e., Ĉn = argmaxt1≤ti≤tn p(y1:n, Cn = ti).

We call the online changepoint detection approach in Algorithm 1 the sequential

Kalman filter (SKF) because in Step 2, we sequentially compute the predictive distribu-
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Algorithm 1 Sequential Kalman Filter algorithm for fast changepoint detection

Input: New observation yn, previously estimated changepoint time index ĵ, previous
parameters fu

n−1,Q
u
n−1, f

v
i,n−1 and Qv

i,n−1 for ĵ ≤ i ≤ n − 1 defined in by Lemma 3, the
joint distribution p(y1:(n−1), Cn−1 | γ̂, η̂), estimated nugget and range parameters (γ̂, η̂)

Output: The estimated most recent changepoint Ĉn, current parameters fu
n ,Q

u
n, f

v
i,n

and Qv
i,n for ĵ ≤ i ≤ n− 1 and the joint distribution p(y1:n, Cn | γ̂, η̂)

1. Update parameters through Kalman filter

We iteratively compute parameters
(
fu
n , Q

u
n, f

v
i,n, Q

v
i,n

)
from

(
fu
n−1, Q

u
n−1,

f v
i,n−1, Q

v
i,n−1

)
for ĵ ≤ i ≤ n− 1 by Lemma 3.

2. Compute predictive distributions

We sequentially compute the predictive distribution p(yn | yi:(n−1), γ̂, η̂) by param-

eters fu
n ,Q

u
n, f

v
i,n and Qv

i,n based on Equation (2.10), for ĵ ≤ i ≤ n− 1.

3. Update joint distributions

When tn is not a changepoint, we have Cn < tn. For ĵ ≤ i ≤ n− 1,

p(y1:n, Cn = ti | γ̂, η̂) = p(yn | yi:(n−1), γ̂, η̂) (1−H(ti)) p(y1:(n−1), Cn−1 = ti | γ̂, η̂).
(2.12)

When tn is a changepoint, we have Cn = tn. Then

p(y1:n, Cn = tn | γ̂, η̂) = p(yn | γ̂, η̂)H(tn)
n−1∑
j=ĵ

p(y1:(n−1), Cn−1 = tj | γ̂, η̂). (2.13)

4. Determine the most recent changepoint by

Ĉn = argmax
tĵ≤ti≤tn

p(y1:n, Cn = ti | γ̂, η̂). (2.14)
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Figure 2.2: The comparison of the computational cost between the SKF, BOCPD,
and GPCPD methods.

tion p(yn | yi:(n−1), γ, η) for i = 1, . . . , n−1 using the KF, and employ them for computing

the joint distributions in Equations (2.12) and (2.13) in Step 3. This sequential approach

iterates over different starting values of time index i by stitching different KFs together.

2.2.4 Computational Complexity

Let n denote the total number of observations. When there is no changepoint de-

tected before, the SKF algorithm requires O(n) operations at time tn by computing n−1

predictive distributions p(yn | yi:(n−1)) for i = 1, . . . , n − 1, each taking O(1) operation

according to Theorem 1. When there is at least one changepoint detected before, by

applying the truncation approach described in Section 2.2.1, we only need to compute

predictive distributions p(yn | yi:(n−1)) for i = Ĉn−1, . . . , n− 1, which reduce the compu-

tational complexity to O(n′), where n′ = n− Ĉn−1, and Ĉn−1 denotes the most recently

detected changepoint before the time tn−1. When there is no changepoint detected before,

we have n′ = n.

In Figure 2.2, we compare the computational time for three distinct methods as

the number of observations increases on a Windows 10 PC with two 3.00GHz i7-9700

CPUs. The computational cost of SKF is substantially smaller than GPCPD, as direct
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computation requires inversion of the correlation matrix. The fast computation enables

us to deploy the scalable SKF algorithm for real-world scenarios with a large number of

observations. On the other hand, the cost of SKF is similar to that of BOCPD, whereas

the temporal correlation is modeled in SKF but not in BOCPD. As temporal correlation

widely exists in real-world data sets, modeling the correlation can improve the accuracy of

the changepoint detection. More detailed comparisons with other methods are provided

in Section A.6 of the appendix.

2.3 Simulation Studies

This section compares different approaches for estimating single and multiple change-

points from temporally correlated data. We consider three types of changes: mean, vari-

ance, and correlation. For initial states before the changes, the data is sampled from a

Gaussian process with mean µ = 0, variance σ2 = 1, and nugget parameter η =
σ2
0

σ2 = 0.1.

We employ covariance functions from Equations (2.4) and (2.5) in simulations, setting

range parameters at γ = 12 and γ = 4, respectively. The parameters µ, σ, and γ can

vary under different change scenarios specified later. We compare the SKF approach with

the BOCPD approach and CUSUM algorithm [100] summarized in Section A.7 of the

appendix. For the SKF algorithm, the range and nugget parameters in the covariance

matrix are estimated by maximizing the marginal likelihood function in Equation (2.11)

for computing the predictive distributions. In Section A.8 of the appendix, we also com-

pare different approaches for the scenarios when a covariance function is misspecified,

and the conclusion is in line with the results herein.
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2.3.1 Single Changepoint

We first compare the performance of different approaches for time sequences with a

single changepoint. In this scenario, each method can report at most one changepoint

during the whole detection period and thus only the first detected changepoint will be

recorded. We apply two commonly used metrics for online changepoint detection algo-

rithms [101, 102] to evaluate the performance of each method: Average Detection Delay

(ADD) and Average Run Length (ARL). The ADD, defined as Eτ [(Γ− τ)+], where the

metric Γ represents the earliest time we detect a changepoint around the latent change-

point τ . ADD measures the average time lag between a changepoint occurrence and the

time of its first detection, which may be compared with the power of a statistical test in

hypothesis testing. A small value of the ADD indicates that the method is more power-

ful in detecting a latent changepoint. The ARL, defined as E∞ [Γ], measures the average

time of the first detected changepoint when there is no changepoint in the data, which

can be interpreted as the type-I error in hypothesis testing. We evaluate SKF, BOCPD,

and CUSUM using 100 random sampled time series, each with n = 100 observations.

The observations are equally spaced in time, where the first n0 = 50 observations serve

as the training samples. To ensure a fair comparison, we let the ARL be approximately

50 across all methods, through specifying the hazard parameter value in BOCPD or

SKF, and the threshold value for the CUSUM method, based on the time period with

no changepoint.

Figure 2.3 shows that SKF consistently outperforms BOCPD and CUSUM in all

tested scenarios, achieving the lowest ADD. In particular, when the change contains

a small mean shift, a variance or correlation shift, both CUSUM and BOCPD have a

large delay in detecting, whereas the SKF method has a relatively low detection delay

for all scenarios. The SKF performs better than other approaches as it captures the
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Figure 2.3: Violin plots comparing average detection delay for SKF, BOCPD, and
CUSUM methods for 100 simulations. The upper and lower panels show the detection
delay of each method when the data are simulated with the Matérn correlation with the
roughness parameter being 2.5 and exponential correlation, respectively. A method
with a low average detection delay is better. µ0, σ2

0, and γ0 represent pre-change
parameter values, while µ, σ2 and γ on the x-axis stand for post-change parameter
values.

temporal correlation from the observations. Furthermore, the computational complexity

of the SKF is similar to BOCPD, which is crucial for real-world applications with a large

number of samples.

Additionally, in Section A.8 of the appendix, we examine the SKF with a misspecified

covariance function. Figure A.3 demonstrates that even with the misspecified covariance,

the SKF performs comparably well to scenarios with the correct covariance, and still

outperforms the BOCPD. This is because a method having a misspecified covariance

with an estimated correlation length scale parameter is typically better than assuming

the independence between observations to approximate the temporal covariance in the

underlying data-generating process. This result reveals the robustness of the SKF for

changepoint detection, even when certain configurations deviate from the true data-

generating process.
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Figure 2.4: Violin plots of the covering metric (larger values are better) of the SKF,
BOCPD, and CUSUM methods for simulated data with multiple changepoints.

2.3.2 Multiple changepoint detection

In this section, we assess the performance of different algorithms to detect multiple

changepoints. We sample 100 time sequences, each containing n = 150 observations from

a GP having the Matérn covariance in Equation (2.5) for demonstration purposes. Each

time series have four changepoints at positions τ = {33, 66, 98, 130}. We investigate three

scenarios where the changes occur in mean, variance, and covariance range parameters.

In multiple changepoints scenarios, metrics like ADD and ARL are not suitable as

the number of detected and true changepoints may not be the same. Thus, we use the

covering metric [80, 103] that measures how well the detected changepoints align with

the true changepoints, defined in Section A.9 of the appendix. A method with a larger

value of the covering metric is better.

Panels a-c in Figure 2.4 show the average covering metric for SKF, BOCPD, and

CUSUM methods for the scenarios with the mean, variance, and correlation changes,

respectively. Both BOCPD and SKF approaches outperform the CUSUM method in

terms of the covering metric across all scenarios. This is because the CUSUM method

relies on a prespecified threshold of the test statistics written as a cumulative summa-

tion of information to determine whether the current time point is a changepoint, which
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Figure 2.5: The black curves in panel a give the temporally correlated outcomes with
4 mean changes. The black dashed lines indicate the true changepoint locations and
the red crosses give the estimated changepoints by SKF. Panel b shows the posterior
distribution of the most recent changepoints at each time point, with MAP estimates
graphed as red dots.

does not look back to find a changepoint in prior time points as BOCPD and SKF. In

contrast, the predictive distributions in BOCPD and SKF contain information from a

time period of previous subsequences, which enables the methods to detect a change-

point when information accumulates. Furthermore, the SKF method outperforms both

BOCPD and CUSUM methods in terms of the covering metric, as the temporal corre-

lations from the data are modeled in SKF, making SKF more accurate to approximate

the data-generating mechanism.

Panel a in Figure 2.5 graphs the detected changepoints by SKF and the true change-

point for a simulated case with the mean shift. Panel b gives the classification prob-

ability of the most recent changepoint at each time point. The estimated most recent

changepoints, marked by the red solid points, are the ones with the maximum posterior

probability over all possible values. A new changepoint is identified if the most recently

detected changepoint differs from the previously detected changepoint.
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2.4 SARS-CoV-2 Detection among Dialysis Patients

2.4.1 Data Description

This study analyzes daily treatment data from over 150,000 dialysis patients collected

by Fresenius Kidney Care between January 2020 and March 2022. Each patient visits

the clinics about three times per week, producing a large data set with millions of obser-

vations. For each clinic visit, the data includes features such as sitting blood pressure,

weight, temperature, respiration rate, pulse rate, oxygen level, interdialytic weight gain,

average blood flow rate, and average dialysis flow rate. The dataset contains 15 million

samples, with each patient owning around 94 samples on average, where only 0.4% of the

observations are labeled as COVID-19 positive. We give an example of the mechanism

of detection in Panel a Figure 2.6, where the COVID-19 positive window of a patient

contains a three-day incubation period [104, 105] and a seven-day infection period post

symptom onset [106]. A clinic visit is labeled as COVID-19 positive if it is within two

days prior to, or seven days following day 0, which is the day for a positive COVID-19

PCR test. We conducted the sensitivity analysis with different choices of COVID-19

positive period in Section A.11 of the appendix and the results remain similar.

2.4.2 Experimental Setup and Results

We focus on detecting COVID-19 infection for a large number of dialysis patients

in this section. Data-driven models have been extensively used for detecting COVID-19

infection dates in patient-level longitudinal data [30, 32, 33]. Most of these models gen-

erate prediction probabilities of COVID-19 infections, whereas a threshold is typically

used to identify infections, and the temporal pattern among the longitudinal data was

not modeled in these approaches. For example, some COVID-19 positive patients have
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Figure 2.6: In panel a, the orange area is the COVID-19 positive period spanning
from day -2 to day 7, where a patient has a positive COVID-19 PCR test at day 0.
If a patient is detected to be COVID-19 positive, the detected changepoint and the
subsequent seven days are marked as the predicted infection period, shown as the blue
area. The black curve in panel b shows the probability sequence of being COVID-19
positive estimated by XGBoost, and a value larger than the threshold value shown as
red dashed line is classified as COVID-19 positive. The blue dashed line marks the
changepoint detected by SKF, and the grey area represents the COVID-19 positive
period from day -2 to day 7.
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only mild to moderate symptoms, which may result in an increasing trend of the predic-

tion probabilities, but the prediction probabilities might still fall below the pre-specified

threshold. Ignoring such a trend can lead to low sensitivity in detection. We will ap-

ply changepoint detection methods to probability sequences of COVID-19 infections to

improve the detection performance.

We employed an integrated procedure to detect the changepoint from the COVID-

19 infection summarized in Algorithm 4 of the appendix. We first apply a data-driven

classification model to patients’ clinical data, here chosen as the XGBoost method [36],

which was previously found to be accurate in detecting COVID-19 among dialysis patients

[30, 87] compared to a few other classification methods. Second, we apply SKF to detect

the change in the daily prediction probabilities of COVID-19 infection from the XGBoost

approach. Furthermore, we developed an additional screening step to detect the onset of

an increasing subsequence in infection probabilities through a hypothesis test (Step 5 in

Algorithm 4), as typically the increase of the probability sequences of infection should be

detected. Once the detected changepoint passes this screening step, we mark the seven-

day period after the detected changepoint as COVID-19 positive [106]. The integrated

approach is generally applicable to detect changes from longitudinal data. Details of the

integrated approach can be found in Section A.10 of the appendix. In both BOCPD

and SKF methods, the hazard function was defined in proportion to the county-level

daily probability of contracting COVID-19 [107], enhancing detection accuracy by the

estimated daily transmission probability based on local infection and death counts.

A typical COVID-19 positive patient will have two changes during the infection pe-

riod, characterized by an increasing trend at the beginning and a decreasing trend at the

end of the infection probability. We aim to detect the first change, and such a detection

scheme is useful for the onset of other diseases based on longitudinal data. This means

the covering metric in Section 2.3.2 is not sensible. To better evaluate the effectiveness
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of detecting the infection, we use precision, recall, F1-score, and detection delay as our

performance metrics, which are defined below. The threshold value for the classifica-

tion probabilities from the XGBoost method is determined by maximizing the F1-score

across all patients in the test data, which is defined as the harmonic mean of precision

and recall: F1-score = 2 × precision×recall
(precision+recall)

, where precision = TP
TP+FP

is the ratio of the

true positives out of all the positive predictions, and recall = TP
TP+FN

is ratios of true

positive out of all the positively labeled samples, which quantifies the power of the algo-

rithm. The true positives (TP), false positives (FP), and false negatives (FN) are defined

as TP =
∑n∗

j=1 I{x̂j=1,xj=1}, FP =
∑n∗

j=1 I{x̂j=1,xi=0}, and FN =
∑n∗

j=1 I{x̂j=0,xj=1}, where

n∗ = n−n0 denotes the number of samples in the test data. I{·} is the indicator function,

xj are the actual COVID-19 labels and x̂j is the predictive COVID-19 labels. For statis-

tical learning models like XGBoost, the predicted label x̂j is assigned a value of 1 if tj

is within a seven-day window following the date when the predicted probability exceeds

the threshold value, and is set to 0 otherwise. For changepoint detection algorithms such

as SKF and BOCPD, x̂j is assigned the value of 1 if tj falls within a seven-day period

following a detected changepoint. The average detection delay is calculated as the aver-

age number of days from the start date of the COVID-19 positive period to the time a

changepoint within the positive period is first detected. A lower average detection delay

reflects a quicker response to the onset of changes. Furthermore, any detection made

after 2 weeks of day 0 is considered as not useful in the online detection, which is not

counted as a true positive, as they are too late to help. This threshold can be adjusted

for detecting other diseases.

Table 2.1 compares the performance of different approaches for detecting COVID-19

infection. Here the baseline positive data only constitutes around 0.4% of the total ob-

servations. This setting differs from a few other COVID-19 detection schemes where each

COVID-19 positive record is matched with a few negative samples [30, 87]. The practical
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Table 2.1: Out-of-sample comparisons of the classification methods and online change-
point detection methods, including CUSUM, BOCPD, and SKF on COVID-19 detec-
tion with the baseline positive rate of 0.4%.

Precision Recall F1-score Detection Delay
Logistic regression 0.055 0.141 0.079 1.56
Random forests 0.083 0.123 0.099 2.15

XGBoost 0.082 0.179 0.113 2.22
CUSUM 0.028 0.023 0.025 3.73
BOCPD 0.174 0.168 0.171 5.3
SKF 0.218 0.179 0.197 4.13

SKF with screening 0.232 0.190 0.209 2.82

scheme is closer to the longitudinal detection scheme employed herein. We first found

that changepoint detection algorithms, including BOCPD and SKF, perform better than

the classification methods, such as logistic regression, random forecast, and XGBoost.

This is because the change detection utilizes longitudinal information for identifying the

change for each patient, while the classification methods rely on a unified threshold of

probability sequences of being infected for all patients. Among the changepoint detec-

tion methods, the CUSUM algorithm is not as good as BOCPD and SKF. The good

performance of SKF and BOCPD is largely due to their ability to recursively inspect

whether each of the previous time points is a changepoint, in contrast to the CUSUM

method which can only determine whether the current time point is a changepoint. Sec-

ond, SKF outperforms BOCPD in both F1-score and detection delay. This advantage is

largely attributed to SKF’s ability to model temporal correlations, which helps reduce

false detection. Notably, SKF can detect the infection about one day faster than BOCPD

on average, which means the SKF requires less information to identify a COVID-19 in-

fection. Furthermore, incorporating the screening method, as detailed in Steps 6 and

7 of Algorithm 4 in the appendix, further enhances the F-1 score and reduces detec-

tion delay in SKF. This improvement aligns with our expectations, since the screening

method chooses changepoints related to an increasing subsequence, thereby improving
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Figure 2.7: Results of SKF on the probability sequences of 8 COVID-19 patients.
The red dashed line is the threshold value that maximizes the F1-score. The blue
dashed line shows the changepoint detected by SKF. The grey area is the period that
a patient is labeled as COVID-19-positive. Day 0 is the positive PCR test day.

the precision of COVID-19 detection.

Panel b in Figure 2.6 gives an example comparing the SKF detection with the XG-

Boost method. The probability sequences of COVID-19 infection from XGBoost, shown

as the black curve, consistently remain beneath the threshold value, indicated by the red

dashed line, suggesting that this patient is predicted as COVID-19 negative by XGBoost

for the entire period. The increasing trend of probability sequence during the infection

period, however, allows the SKF to successfully detect the changepoint from COVID-19

infection, indicated by the blue dashed line. Figure 2.7 gives further comparison between

the SKF and XGBoost for a group of 8 randomly selected COVID-19 positive patients.

Here we only show the plots of positive patients and there are around 74% of the pa-

tients who do not have a positive PCR test during the whole period. The SKF method

successfully identifies the COVID-19 positive period for 6 of these patients and misses

the COVID-19 infection for 2 patients. In comparison, the XGBoost method correctly

identifies the COVID-19 positive period for only 4 patients and misses the infection for
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4 patients. SKF may be preferred for this problem over a conventional classification ap-

proach as it can identify the probability subsequences with an increasing trend. Further-

more, the empirical autocorrelation of probability sequences of a few randomly selected

patients is plotted in Section A.1 of the appendix. The autocorrelation of the probability

sequences from the longitudinal data is modeled in SKF, which improves the detection

accuracy. More numerical comparisons of online changepoint detection approaches for

a few other real-world examples are provided in Section A.12 of the appendix, which

confirms competitive performance by the SKF approach.

50



Chapter 3

Robust estimation of SARS-CoV-2

epidemic in US counties

In Chapter 2, we focus on patient-level detection of COVID-19 infection timing using

patients’ daily biomarker data. The proposed detection algorithm incorporates spatial

information to describe the severity of COVID-19 transmission in specific regions as the

COVID-19 outbreak is asynchronous in US counties. However, the direct integration of

county-level COVID-19 confirmed case data into the detection algorithm could introduce

bias, as these figures often underestimate actual case numbers and can be unstable in

counties with small population sizes. Therefore, in Chapter 3, we propose a robust

and efficient approach to monitor the heterogeneous progression of SARS-CoV-2 in all

US counties having no less than 2 COVID-19 associated deaths and estimate the daily

probability of contracting (PoC) SARS-CoV-2 for each county. The PoC SARS-CoV-

2, representing the average daily probability that a susceptible individual in a specific

county will contract SARS-CoV-2, quantifies the community-level transmission risk and

is integrated into the detection algorithm in Chapter 2. Furthermore, based on the

approach proposed in this chapter, we found that shortening by 5% of the infectious
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period of SARS-CoV-2 can reduce around 39% (or 78K, 95% CI: [66K , 89K ]) of the

COVID-19 associated deaths in the US as of 20 September 2020. Our findings also

indicate that reducing infection and deaths by a shortened infectious period is more

pronounced for areas with an effective reproduction number close to 1, suggesting that

testing should be used along with other mitigation measures, such as social distancing

and facial mask-wearing, to reduce the transmission rate. Our deliverable includes a

dynamic county-level map for local officials to determine optimal policy responses and

for the public to better understand the risk of contracting SARS-CoV-2 on each day.

3.1 Introduction

The outbreak of the new coronavirus 2019 (COVID-19) has caused nearly 200,000

deaths in the US, and among those, there are 2,277 counties with no less than 2 asso-

ciated deaths as of 20 September 2020 [108]. The ongoing COVID-19 pandemic has led

to unprecedented non-pharmaceutical interventions (NPIs), including travel restrictions,

lockdowns, social distancing, facial masks wearing, and quarantine to reduce the spread of

SARS-CoV-2 in the US. The COVID-19 outbreak is prolonged and asynchronous across

regions. Thus it is critical to estimate the dynamics of COVID-19 epidemic to determine

appropriate protective measures before the availability of effective vaccines.

A non-negligible proportion of SARS-CoV-2 infectious individuals is asymptomatic or

have mild symptoms [109]. We term the individuals the active infectious individuals who

can transmit the disease to others but may not be diagnosed yet. Identifying the number

of active infectious individuals is crucial to monitor the transmission in a community.

Another important time-dependent quantity is the expected number of secondary cases

resulted from each active infectious individual, or effective reproduction number. In this

article, we estimate these two time-dependent quantities for all US counties with no less
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than 2 COVID-19 associated deaths as of 20 September 2020; the population of some

counties that falls within this category is even less than ten thousand. Furthermore,

based on these two time-dependent quantities, a more interpretable measure, called the

daily probability of contracting (PoC) SARS-CoV-2 for an individual at the county-level

was used to quantify the risk. This static risk factor with fixed transmission rates was

studied before [110]. Here we studied the dynamic transmission rate parameter, which

is estimated by the number of deaths, test positive rates and the number of confirmed

cases in a community. The risk factor can be extended to measure the risk of an event

with different sizes [111]. The fine-grain estimation of disease progression characteristics

allows the public to understand the risk of contracting COVID-19 on a daily basis.

Predictive mathematical models are useful for analyzing an epidemic to guide policy

responses [112]. The epidemiology compartmental models such as SIR, SEIR, SIRD, and

their extensions [40, 41, 42, 43, 44], stochastic agent based models [45, 46], branching

processes [47], and network analysis [48] have advanced our understanding of transmis-

sion rates and incubation period of SARS-CoV-2, which are connected to the traffic flow

and mobility during the COVID-19 outbreaks at different regions [76, 77]. The disease

progression characteristics, such as the transmission rate, are often estimated based on

the daily death toll [40, 43, 45, 46]. However, it is challenging to estimate the progression

of the epidemic in US counties with small population, because the number of daily ob-

served confirmed cases and COVID-19-related deaths is small. Meanwhile, using observed

laboratory-confirmed COVID-19 cases (henceforth, observed confirmed cases) might sig-

nificantly underestimate the population that have been infected with the SARS-CoV-2.

It was found in [113] that around 9.3% of the US individuals (or roughly 30 million) may

have contracted the COVID by July 2020 based on serology tests, whereas less than 4.8

million COVID-19 positive cases have been confirmed in the US before August 2020 [108].

Thus, it is important to estimate the number of individuals who contracted COVID-19
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but had not tested positive. The focus herein is on integrating COVID-19-related death

toll and test data to obtain a robust estimation of the disease progression characteristics

of COVID-19 at county and community levels.

One critical quantity to evaluate an infectious disease outbreak is the time-dependent

transmission rate, based on which one can compute the basic reproduction number and

the effective reproduction number of the disease. Various approaches were proposed to

estimate this parameter. The transmission rate was modeled as a decreasing function of

the time in [40], a function of NPIs in [45] and a geometric Brownian motion in [114]. Un-

like the outbreak in China or other countries in north-east Asia, transmission rates of the

COVID-19 progression in the US does not monotonically decrease due to the prolonged

duration of the outbreak, and it is challenging to determine a suitable parametric form

of this parameter in terms of time. In [43], the transmission rate parameter was related

to the initial values of infectious cases, resolving cases, and up to two derivatives of the

daily death toll. This method provides a flexible way to estimate the time-dependent

transmission rate from the death toll and its derivatives, yet unstable for counties with

moderate or small population sizes, as numerical estimation of the daily death toll and

its derivatives is often unstable.

In this work, we propose a robust approach of integrating test data and death toll to

estimate COVID-19 transmission characteristics by a Susceptible, Infectious, Resolving

(but not infectious), Deceased, and reCovered (SIRDC) model initially studied in [43].

We illustrate that the transition between different stages of disease progression in the

SIRDC model in part a of Figure 3.1. First, a part of the population is infected by active

infectious individuals each day, depending on the transmission rate parameter (βt). After

γ−1 days, an active infectious individual is expected to be no longer infectious, denoted

by the resolving compartment, meaning that this individual will not transmit COVID-19

to others as a result of hospitalization or self-quarantine. We term the average length
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Figure 3.1: a, The SIRDC model and the data used for analysis. b, 7-day death toll
forecast and 21-day death toll forecast against the held-out truth in 2,277 US counties
with no less than 2 deaths as of 20 September 2020. Each dot is a cumulative death
toll for one county at one held-out day. Counties from the same state are graphed
using the same color. The Pearson correlation coefficient (ρ) of the nation and the
weighted average of Pearson correlation coefficient for counties (ρcounty) are recorded.
c, 21-day death toll forecasts in 10 counties with largest population in Florida, where
the red line represents the observed death toll and blue line means the forecast. The
forecast starts from 21 September 2020, marked by the vertical black dash line. The
grey shadow area is the 95% confidence interval of the forecast. Numbers in the
parentheses right after the county name are population in million.
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Table 3.1: Policy summary
Background The transmission of SARS-CoV-2 is heterogeneous and

asynchronous in US counties. It is thus important to
assess the risk before lifting or replacing any mitiga-
tion measure in the community. We have developed
a novel approach to integrate test data and death toll
to estimate the probability of contracting COVID-19,
as well as the time-dependent transmission rate and
number of active infectious individuals at the county
level in the US.

Main findings and limitations National level order of protective measures reduces the
transmission rate and active number of infectious in-
dividuals for most US counties in April, whereas the
risk of contracting SARS-CoV-2 rebounded between
late June and early July, as the protective measures
were relaxed. We found that when the infectious pe-
riod of SARS-CoV-2 is shortened by 5% and 10%, the
number of deaths can be reduced from 199K to 120K
(95% CI: [109K, 132K ]) and 80K (95% CI: [72K, 89K])
as of 20 September 2020, respectively, when other pro-
tective measures were kept the same. The reduction
of the infectious period can be achieved by extra test-
ing in addition to ongoing protective measures. Our
model relies on the existing knowledge of the COVID-
19 and model assumptions. Other information, such as
demographic profiles, mobility, and serology test data,
can be used to calibrate the model parameters and as-
sumptions at the community level.

Policy implications Our model indicates that extra testings, along with
the current NPIs, can significantly reduce the number
of deaths associated with COVID-19. The estimated
probability of contracting COVID-19 can be used as
an interpretable risk factor to guide community policy
responses.
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Figure 3.2: a, The estimated probability of contracting SARS-CoV-2 at 1,856 counties
on 2020-04-20, and b, at 2,277 counties on 20 September 2020. The probability of
contracting SARS-CoV-2 is truncated at 10−6, whereas only 78 counties on 20 April
and 45 counties on 20 September are below this level, respectively.

of an active infectious individual the infectious period. A resolving case is expected to

be resolved (either recovered or deceased) after θ−1 days. The proportion of deaths from

the number of resolved cases is controlled by the fatality rate parameter δ.

Our approach has three innovations. First, we solve the compartmental models using

a midpoint rule with a step size of 1 day, as the confirmed cases and death toll are up-

dated daily in most US counties, and this is discussed in the method section. Second, we

combine test positive rates, confirmed cases and death toll to estimate the daily trans-

mission rate parameter. Our estimate of transmission rates and reproduction numbers is

robust and accurate to reproduce the number of the death toll and other compartments

for counties with medium to small population sizes (Figure 3.3 and 3.4). The simulated

studies in Figure 3.5 also suggest that our approach is more robust than the solution in

[43], as our solution does not require estimating derivatives of the daily death toll. Only

two parameters, the initial values of the number of active infectious individuals and the

number of resolving cases, need to be estimated numerically for each county. Then we can

solve the time-dependent transmission rates and all other compartments subsequently.

Since only two parameters are estimated for each county, our estimation rarely depends

on the initial values we choose for the optimization. Finally, we use a Gaussian process
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Figure 3.3: a, The estimated probability of contracting SARS-CoV-2 in Washington
state on 20 September 2020. b, the probability of contracting SARS-CoV-2 from 5
counties in Washington state with the largest PoC SARS-CoV-2 values on 20 Septem-
ber 2020 . c, the observed (dots) and fitted (solid line) cumulative death toll in the
5 counties in figure b from the same time period. d-f, The results in Texas that have
the same interpretation as a-c. Part e and f have different scales than part b and c,
respectively.
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Figure 3.4: a-c, Comparisons between the estimation COVID-19 progression char-
acteristics for Santa Barbara, CA as of 20 September 2020 by our algorithm 1 (blue
solid curves) and the method F&J [43] (red dash curves) . The shaded area represents
95% confidence intervals. The black solid curve in part c is the observed cumulative
death toll in Santa Barbara. d-f, Results for Imperial, CA as of 20 September 2020,
which have the same interpretation as a-c. The transmission rate estimated from the
method F&J is truncated to be within [0,10].

to model the residual between the observed death toll and that from the SIRDC model,

leading to more accurate predictions and proper uncertainty quantification. A summary

of the main findings, limitations, and policy implications are given in Table 3.1.

3.2 Data and Methods

In this section, we introduce the data and methods for this study. The main symbols

used in this section and their definitions are provided in Table 3.2.

Data. For day t at the jth county in the ith state of the U.S., we utilize three

datasets [108, 115] in this study: (1) coi,j(t), representing the county-level daily cumu-

lative observed confirmed COVID-19 cases; (2) doi,j(t), denoting the county-level daily

cumulative COVID-19 death toll; and (3) pi(t), which indicates the state-level daily

COVID-19 test positive rate, where i = 1, 2, . . . , k, j = 1, 2, . . . , ni with ni being the
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Figure 3.5: a-c, Simulated comparison with noise-free observations. The black cir-
cles are the solution of the ODEs of the SIRDC model via the default numerical
solver Isoda in the function ode in deSolve R package. The green solid and dash
curves are the numerical solutions from Runge–Kutta method with the 4th order
integration and step size being 1 and 0.1, respectively. The Blue solid curves are
the robust estimation from algorithm 1 and red dash curves are the estimation in
[43]. In the simulation with noise-free observations, we let time duration be T = 100
days, the population size N = 107, the initial values of 5 compartments chosen as
(S(1), I(1), R(1), D(1), C(1)) = (N − 2000, 1000, 1000, 0, 0) and the transmission rate

β(t) = exp
(
−0.7( 9

T−1(t− 1) + 1)
)
, for 1 ≤ t ≤ T . d-f, results of the simulation with

noisy observations, which have the same interpretation as a-c. In this simulation,

we set the transmission rate β(t) = exp
(
−0.7( 9

T−1(t− 1) + 1)
)
+ ϵ, for 1 ≤ t ≤ T

and ϵ ∼ N(0, 0.04), and the other parameters are held the same as in the noise-free
simulation. The transmission rates estimated from the method F&J are truncated to
be within [0,10]. The solution from our robust estimation approach, the Isoda and
the Runge–Kutta method with the 4th order and step size being 0.1 overlap for both
scenarios.
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Table 3.2: Main symbols and definitions in the Methods Section.
Symbol Definition
S(t) number of susceptible cases on day t
I(t) number of infectious cases which can transmit COVID-19 on day t
R(t) number of resolved cases which get infected but cannot transmit COVID-19 on day t
D(t) number of deceased cases on day t
M(t) number of recovered cases on day t
N number of population in a given area
β(t) transmission rate on day t
γ−1 average number of days an individual can transmit COVID-19
θ−1 average number of days for a case to get resolved
δ proportion of deceased cases, a.k.a. fatality rate
R0(t) basic reproduction number on day t
Reff (t) effective reproduction number on day t
P (t) average probability of contracting (PoC) SARS-CoV-2 on day t
p(t) state-level test positive rate on day t
do(t) cumulative number of observed death toll on day t
co(t) cumulative number of observed confirmed cases on day t
∆co(t) daily number of observed confirmed cases on day t
cu(t) cumulative number of unobserved confirmed cases on day t
α power parameter for estimating the number of susceptible cases
ω weight parameter for estimating the number of susceptible cases
z zero-mean Gaussian process

number of counties of the ith state considered in the analysis, and t = 1, . . . , Ti,j.

SIRDC compartmental models. The SIRDC model for the jth county in the ith

state in the US is described below:

Ṡi,j(t) =
−βi,j(t)Si,j(t)Ii,j(t)

Ni,j

,

İi,j(t) =
βi,j(t)Si,j(t)Ii,j(t)

Ni,j

− γIi,j(t),

Ṙi,j(t) = γIi,j(t)− θRi,j(t),

Ḋi,j(t) = δθRi,j(t),

Ṁi,j(t) = (1− δ)θRi,j(t),

(3.1)

where Si,j(t), Ii,j(t), Ri,j(t), Di,j(t) and Mi,j(t) denote the number of individuals at these

5 compartmental groups on day t, respectively, andNi,j denotes the number of individuals

in county j from state i. The time-dependent transmission rate parameter is denoted by
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βi,j(t) and the inverse of average number of days an infectious individual can transmit

the COVID-19 is denoted by γ. The inverse of the average number of dates for a case to

get resolved (i.e. deceased or recovered) is denoted by θ and the proportion of deceased

cases (i.e. death rate) is denoted by δ. The parameters (γ, θ, δ) were invariant over time

and held fixed in this study. Following [116], we assume the infectious period to be 5 days

on average, and a case is expected to resolve after 10 days. The average death rate is

assumed to be 0.66% [117]. Additional verification of these assumptions and sensitivity

analysis of these parameters are provided in the appendix.

To determine the characteristics of the SARS-CoV-2 epidemic at US counties, we

define the time-dependent effective reproduction number, i.e. the average number of

secondary cases per primary cases as Ri,j
eff (t) = Ri,j

0 (t)Si,j(t)/Ni,j, where the Ri,j
0 (t) =

βi,j(t)/γ denotes the basic reproduction number on day t. When Ri,j
eff (t) < 1, it means

that the number of the active infectious individuals will decrease (and vice versa, if

Ri,j
eff (t) > 1). The effective reproduction number was often used to quantify whether or

not the disease is under control [118]. However, the effective reproduction number does

not directly quantify risk of contracting SARS-COV-2 for a susceptible individual, as the

number of active infectious individuals in a region was not taken into consideration. We

compute the average probability of contracting (PoC) SARS-CoV-2, denoted as Pi,j(t) =

Ri,j
eff (t)Ii,j(t)γ/(Si,j(t)) = βi,j(t)Ii,j(t)/Ni,j, which quantifies the risk of a susceptible

individual in county j from state i to catch SARS-CoV-2 on day t. Here the risk is on

an average sense among all susceptible individuals in a region.

The most critical parameter of the SIRDC model is the transmission rate parameter,

βi,j(t), as a function of time, based on which we obtain the reproduction number on

day t. To estimate the time-dependent transmission rates for communities with small

population sizes, we derive a more robust estimation of the transmission rate of each

county based on the death toll and testing data, discussed below.

62



Robust estimation of SARS-CoV-2 epidemic in US counties Chapter 3

Closed-form expressions of the time-dependent transmission rates. Since

the observations such as death toll and confirmed cases are generally updated daily, we

solve the ordinary differential equations (ODEs) in the SIRDC model (Equation (3.1))

approximately by the midpoint rule of the integral with a step size of 1 day. For day

t ∈ N+, the approximation is described below:

Si,j(t+ 1)

Si,j(t)
.
= exp

{
−βi,j(t+ 0.5)

2Ni,j

(Ii,j(t) + Ii,j(t+ 1))

}
, (3.2)

Ii,j(t+ 1)

Ii,j(t)
.
= exp

{
βi,j(t+ 0.5)

2Ni,j

(Si,j(t) + Si,j(t+ 1))− γ

}
, (3.3)

Ri,j(t+ 1)−Ri,j(t)
.
= γ

Ii,j(t) + Ii,j(t+ 1)

2
− θ

Ri,j(t) +Ri,j(t+ 1)

2
, (3.4)

Di,j(t+ 1)−Di,j(t)
.
= δθ

Ri,j(t) +Ri,j(t+ 1)

2
, (3.5)

Mi,j(t+ 1)−Mi,j(t)
.
= (1− δ)θ

Ri,j(t) +Ri,j(t+ 1)

2
. (3.6)

Further by assuming the transmission rate parameter βi,j(t) is day-to-day invariant (i.e. a

step function with step size 1), based on Equations (3.2) and (3.3), we obtain βi,j(t+0.5)

from t = 1 to Ti,j − 1, iteratively, based on the sequence of susceptible individuals

{Si,j(t)}
Ti,j

t=1 and the initial number of active infectious individuals Ii,j(1) described in

algorithm 2.
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Algorithm 2 Iterative approach for estimating transmission rate βi,j(t+ 0.5).

Require: {Si,j(t)}
Ti,j

t=1, Ii,j(1)

Ensure: {βi,j(t+ 0.5)}Ti,j−1
t=1 , {Ii,j(t)}

Ti,j

t=1 S1 = Si,j(1) S2 = Si,j(2) I1 = Ii,j(1)

for t = 1 to (Ti,j − 1) do

βi,j (t+ 0.5) =
{
β : S2

S1
− exp

{
− βI1

2Ni,j
(1 + exp{ β

2Ni,j
(S1 + S2)− γ})

}
= 0
}

Ii,j(t+ 1) = I1 exp
{

βi,j(t+0.5)

2Ni,j
(S1 + S2)− γ

}
S1 = S2

S2 = Si,j(t+ 1)

I1 = Ii,j(t+ 1)

end for

After we get the number of active infective individuals (Ii,j(t)) on each day, sequences

of the resolving, deceased and recovered compartments can be solved subsequently fol-

lowing the same manner using Equations (3.4)-(3.6), after specifying their initial values.

Expressing the time-dependent transmission rate by the number of susceptive and infec-

tive cases is the key to integrating death toll and testing data for estimation.

In Extended Data Figure 1 and 2, we demonstrate that in order to solve the ODEs

in the SIRDC model, our approach is more accurate and robust than the method F&J

in [43] under both simulated and real scenarios. Other more accurate methods (such

as the Runge-Kutta method) can also solve the ODEs of SIRDC model, but the time-

dependent transmission rates can not easily be expressed as a function of the death toll

and the number of active infectious individuals as the way they are in our solution.

Estimation of the number of susceptible individuals. Note that we have

Si,j(t) + coi,j(t) + cui,j(t) = Ni,j for any t, where coi,j(t) and cui,j(t) are the number of

cumulative observed confirmed cases and unobserved confirmed cases, respectively. Es-

timating the number of susceptible individuals is equivalent to estimating the number
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of unobserved confirmed cases cui,j(t), because the number of observed confirmed cases

coi,j(t) and the population Ni,j are known. Here we combine them with the positive test

rates to estimate cui,j(t), as large positive test rates typically indicate a large number

of unobserved confirmed cases. We assume that the total number of confirmed cases is

equal to the observed confirmed cases, adjusted by the state-level test positive rate pi(t),

a power parameter αi and a weight parameter ωi, leading to the following formula of the

susceptible population:

Si,j(t) = Ni,j−coi,j(t)−cui,j(t) = Ni,j−
1

ωi,j

{
1{t≥2}

t∑
s=2

(pi(s))
αi∆coi,j(s) + (pi(1))

αicoi,j(1)

}
,

(3.7)

where ∆coi,j(t) is the observed daily confirmed cases on day t, for t = 1, 2, ..., Ti,j, i =

1, 2, ..., k and j = 1, 2, ..., ni. Since the positive test rates are only available at the

state level, the power parameter αi ∈ [0, 2] is estimated by the state-level observations.

According to Equation (3.7), the time-invariant weight ωi,j can be expressed below:

ωi,j =
(pi(1))

αicoi,j(1)

Ii,j(1) +Ri,j(1) +Di,j(1) +Mi,j(1)
, (3.8)

where Ii,j(1), Ri,j(1), Di,j(1) and Mi,j(1) are the number of active infectious, resolving,

deceased and recovered cases on day 1, respectively.

Estimation of initial values of infectious and resolving cases. We define day

1 of a county as the more recent date between 21 March 2020 and the date that the

county has 5 observed confirmed cases for the first time. Since all counties were at an

early stage of the epidemic on the starting day, we let the initial value of the death toll

Di,j(1) be the observed death toll on the day 1, and the initial value of the recovered

cases be 0. This assumption is not likely going to strongly influence our analysis, as the

number of recovered cases is only a negligible proportion of the susceptible individual on
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the starting day if not zero. The only parameters to estimate are the number of infectious

individuals Ii,j(1) and the number of resolving cases Ri,j(1) on the day 1 for county j

from state i, after the power parameter αi is estimated using the state-level observations

to minimize the same loss function below:

(Îi,j(1), R̂i,j(1)) = argmin

Ti,j∑
t=1

(
doi,j(t)−Di,j(t | Ii,j(1), Ri,j(1))

Ti,j − t+ 1

)2

, s.t.

0 ≤ Ii,j(1) +Ri,j(1) ≤ Ui,j, Ii,j(1) ≥ 0, and Ri,j(1) ≥ 0,

(3.9)

where the upper bound Ui,j is chosen to guarantee the estimated number of the susceptible

cases Si,j(t) to be larger than 0:

Ui,j = Ni,j

(pi(1))
αicoi,j(1)

1{Ti,j≥2}
∑Ti,j

s=2(pi(s))
αi∆coi,j(s) + (pi(1))αicoi,j(1)

− (Di,j(1) + Ci,j(1)),

for t = 1, 2, . . . , Ti,j.

After the initial values of infectious and resolving cases are estimated, we obtain the

estimation of the susceptible cases from Equation (3.7), and the infectious cases and

transmission rates on each date for each county from Algorithm 1. The resolving cases,

deaths, and recovered cases can be derived subsequently from Equations (3.4)-(3.6),

respectively. The estimated basic and effective reproduction rates can be derived by the

fitted time-dependent transmission rate, and the estimated probability of contracting

SARS-CoV-2 for an individual can be computed based on transmission rate and number

of infectious individuals for each county on each day.

Forecast and uncertainty assessment. Our method can also be used as a tool

for forecasting compartments (e.g., death toll), reproduction numbers, and the probabil-

ity of contracting SARS-CoV-2 at each county for a short period. We extrapolate the

transmission rate based on Gaussian processes implemented in RobustGaSP R package
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[119] with robust parameter estimation [69, 70]. Based on the extrapolated transmission

rates, the compartments can be solved iteratively based on Equations (3.2)-(3.6).

We also found that the forecast will generally be improved by modeling residuals

between observed deaths and modeled deaths by a zero-mean Gaussian process (GP).

One advantage of a GP model is the internal assessment of the uncertainty of the forecast

from the predictive distribution, which is of crucial importance. The aggregated model

that combines the SIRDC model and the GP model for county j from state i in the US

is described as follows.

doi,j(t) = Di,j(t) + zi,j(t) + ϵi,j,t, (3.10)

where doi,j(t) and Di,j(t) denote the observed death toll and estimated death toll via

the SIRDC model, respectively; The noise follows independently as a Gaussian dis-

tribution ϵi,j,t ∼ N(0, σ2
i,j,0) with variance parameter σ2

i,j,0. The latent temporal pro-

cess zi,j(t) is modeled by a zero-mean GP, meaning that for time points {1, 2, . . . , Ti,j},

zi,j = (zi,j(1), . . . , zi,j(Ti,j))
T follows a multivariate normal distribution:

zi,j ∼ MN (0, σ2
i,jRi,j),

where σ2
i,j is the variance parameter and the (l,m) entry of Ri,j is parameterized by

a correlation function ci,j(l,m) for 1 ≤ l,m ≤ Ti,j. We use the power exponential

correlation function:

ci,j(l,m) = exp

{
−
(
| l −m |

γi,j

)a}
,

where a is the roughness parameter fixed to be 1.9 as in other studies [18, 62], to avoid

possible singularity in inversion of the covariance matrix using the Gaussian correlation

(a = 2), and γi,j is a range parameter for each county estimated from the data. We

define the nugget parameter ηi,j = σ2
i,j,0/σ

2
i,j. The range parameter γi,j, and the nugget
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parameter ηi,j in Equation (3.10) are estimated based on the marginal posterior mode

estimation using the rgasp function in the package RobustGaSP available on CRAN [69].

Denote d0
i,j = (doi,j(1), ..., d

o
i,j(Ti,j))

TandDi,j = (Di,j(1), ..., Di,j(Ti,j))
T . After marginal-

izing out the variance parameter by the reference prior π(σ2
i,j) ∝ 1/σ2

i,j, for any t∗, the

predictive distribution of zi,j(t
∗), conditional on the observations, range parameter bi,j

and nugget parameter ηi,j, follows a non-central Student’s t-distribution with degrees of

freedom Ti,j [69]

zi,j (t
∗) | do

i,j,Di,j, γi,j, ηi,j ∼ T
(
ẑi,j (t

∗) , σ̂2
i,j c̃

∗
i,j, Ti,j

)
, (3.11)

where

ẑi,j (t
∗) =Di,j(t

∗) + rTi,j (t
∗)K−1

i,j (d
o
i,j −Di,j),

σ̂2
i,j =

(do
i,j −Di,j)

TK−1
i,j (d

o
i,j −Di,j)

Ti,j

,

c̃∗i,j =ci,j (t
∗, t∗) + ηi,j − rTi,j (t

∗)K−1
i,j ri,j (t

∗) ,

with Ki,j = Ri,j + ηi,jITi,j
, the (l,m)th term of Ri,j being ci,j(l,m) for 1 ≤ l,m ≤ Ti,j,

and ri,j(t
∗) = (ci,j(t

∗, 1), . . . , ci,j(t
∗, Ti,j))

T , by plugging in the estimated range parameter

γi,j and nugget ηi,j. The predictive mean ẑi,j(t
∗) for forecasting the death toll of the jth

county in the ith state at a future day t∗ and the predictive interval can be computed

based on the Student’s t distribution. An overview of the forecast algorithm and the

numerical comparison of different approaches in forecast is given in the appendix.

3.3 Results

We first verify our model performance by forecasting at the county level. The 7-

day and 21-day death projections for 2, 277 US counties using data by 20 September

2020, for instance, are close to the held-out test death toll in these counties, shown
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Figure 3.6: The 21-day forecast in 47 Florida counties with death toll no less than 2
as of 20 September 2020. The training period is from 21 March 2020 to 20 September
2020, whereas the forecast starts from 21 September 2020. The red curves are the
cumulative observed death toll from 21 September 2020 to 11 October 2020 and the
blue line indicates the forecast for the same period. The shaded area represents the
95% predictive intervals of the forecast for each analyzed county in Florida.
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Figure 3.7: The 21-day forecast in 50 California counties with death toll no less than 2
as of 20 September 2020. The training period is from 21 March 2020 to 20 September
2020, whereas the forecast starts from 21 September 2020. The red curves are the
cumulative observed death toll from 21 September 2020 to 11 October 2020 and the
blue line indicates the forecast for the same period. The shaded area represents the
95% predictive intervals of the forecast for each analyzed county in California.
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in part b and part c of Figure 3.1. The Pearson correlation coefficient (ρ) is larger

than 0.999 in 7-day and 21-day forecasts. We also calculate the weighted average of

the Pearson correlation coefficient for counties (ρcounty), which treats each county as a

different population and population size is used to compute the weighted average of the

Pearson correlation coefficient for counties. The 21-day forecast of each considered county

in Florida and California using observations by 20 September 2020 is provided in Figures

3.6 and 3.7, respectively. The death toll forecast based on our model is accurate for

most US counties, and around 95% of the held-out test data is covered by a nominal 95%

predictive interval (Table S1 in appendix), indicating that the uncertainty assessment

is accurate. To further test the predictive performance of our model, we use data by

1 December, 2020 to make 21-day and 90-day predictions of deaths in the 10 largest

counties in Florida and California. The forecast results are shown in Figures 3.8 and 3.9,

respectively. While this is a challenging scenario, as confirmed cases and deaths increase

dramatically across the US during the winter, we found that our 21-day predictions are

reasonably accurate for all 20 counties. Thus, our models can be used reliably for the

short-term projection of COVID-19 related deaths at the county level during different

periods of the epidemic. Furthermore, a 90-day accurate forecast of US counties before

the winter may be an almost impossible task, and indeed we underestimate death counts

for a few counties due to a rapid increase in death counts during the winter. On the

other hand, our model that fuses test data and death toll correctly projects the rapid

increase in death counts for most counties during the winter, even if death counts do not

increase dramatically during the training period.

Based on the robust estimation of transmission rates, we derived the county-level

estimation of daily PoC SARS-CoV-2. We classify the daily PoC SARS-CoV-2 in a

community into five levels listed in Table 3.3. On 20 September 2020, out of 2,277 US

counties, only 60 counties were at the controllable level and 311 counties were at the
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Figure 3.8: a, the 21-day death toll forecast in 10 counties with the largest popula-
tion in Florida. The training period is from 21 March 2020 to 30 November 2020,
whereas the forecast starts from 1 December 2020. The red curves are the cumulative
observed death toll and the blue line indicates the forecast from 1 December 2020 to
21 December 2020. The shaded area represents the 95% predictive intervals of the
forecast for each analyzed county in Florida. The numbers in the parentheses are the
populations in million for each county. b. the 21-day forecast in 10 counties with the
largest population in California. The interpretations are the same as a.

Table 3.3: Interpretation of the daily PoC SARS-CoV-2 in a community.
Daily PoC SARS-CoV-2 < 0.001% 0.001% to 0.01% 0.01% to 0.1% 0.1% to 1% > 1%
Risk controllable moderate alarming strongly alarming hazardous

moderate level, whereas 1906 counties were at the either alarming, strongly alarming,

or hazardous level. The daily PoC SARS-CoV-2 measures the average probability to

contract SARS-CoV-2 for a susceptible individual in a community, and the risk varies

from individuals to individuals. Nonetheless, the PoC SARS-CoV-2 is an interpretable

measure for public understanding of the average risk of contracting SARS-CoV-2 in a

community on a given day.

We graph the estimated PoC SARS-CoV-2 of an individual at US counties on 20 April

2020 and 20 September 2020 in Figure 3.2. On 20 April 2020, the PoC SARS-CoV-2 is
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Figure 3.9: a, the 90-day forecast in 10 counties with the largest population in Florida.
The training period is from 21 March 2020 to 30 November 2020, whereas the forecast
starts from 1 December 2020. The red curves are the cumulative observed death
toll and the blue line indicates the forecast from 1 December 2020 to 21 December
2020. The shaded area represents the 95% predictive intervals of the forecast for
each analyzed county in Florida. The numbers in the parentheses are the populations
in million for each county. b. the 90-day forecast in 10 counties with the largest
population in California. The interpretations are the same as a.

73



Robust estimation of SARS-CoV-2 epidemic in US counties Chapter 3

large in northeastern regions and some southern states such as Arizona, New Mexico,

and New Orleans. On 20 September 2020, the PoC SARS-CoV-2 is large in many inland

states, for instance, Montana, North Dakota, Mississippi, and Alabama. Although the

PoC SARS-CoV-2 on 20 September in northeastern regions is substantially lower than

that on 20 April, the PoC SARS-CoV-2 for an individual is large in most other states

on 20 September, suggesting that the relaxation of protective measures can lead to more

population contracting COVID-19, and consequently more deaths at a rate no slower

than that in late April.

Officials can use the daily PoC SARS-CoV-2 to determine whether the mitigation

policies can be lifted or replaced by other measures for different regions. The probability

of contracting COVID-19 in many counties in Texas on 20 September 2020, for example,

is larger than those in Washington (part (a) and (d) in Figure 3.3), indicating that Texas

should undertake more protective measures to reduce the risk. The nationwide lockdown

order and social distancing in spring effectively reduced the PoC SARS-CoV-2 in 4 out

of 5 counties in Washington, while the PoC SARS-CoV-2 of all counties increases in late

June and early July, as some of the nonpharmaceutical interventions (NPIs) were lifted

(part b in Figure 3.3). Part (c) shows that the model fits the death toll. With only two

parameters estimated numerically for each county, the fit is reasonably good for these

counties at a wide range of dates. In comparison, though the outbreak of 5 counties in

Texas started in early summer, the PoC SARS-CoV-2 in these Texas counties is much

higher than that in Washington counties on 20 September (part (e) in Figure 3.3). Our

model also fits the death toll of the counties in Texas relatively well (part (f) in Figure

3.3). The county-level estimation and forecast are updated regularly on the COVID-19

US dashboard: https://covid19-study.pstat.ucsb.edu/.

The effectiveness of protective measures were studied to reduce the transmission rate

[41, 42, 45, 46, 48, 116], whereas the efficacy of these measures depends on the reactions
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Figure 3.10: a-f, the simulated results of COVID-19 progression in Washington (the
first row) and in Texas (the second row) that have the same interpretation as a-f in
Figure 3 with the infection period changed from 5 days, to 4.75 days, whereas other
parameters are held the same.

from the public, which is likely to vary from region to region. Another simultaneous effort

to mitigate the spread of the COVID-19 outbreak is through testing and contact tracing,

which reduces the infectious period, and consequently, the number of active infectious

individuals. For Washington and Texas, we simulate the model output with infectious

period reduced by 5% (or equivalently 4.75 days in total), while the transmission rate

(βt in SIRDC model) is held the same. We found that the PoC SARS-CoV-2 is reduced

by 5 times for 12 counties out of 28 considered counties in Washington and 6 counties

out of 209 considered counties in Texas, as shown in the Figure 3.10. Furthermore,

when we reduce the infectious period by 10% (or equivalently 4.5 days in total), while

the transmission rate (βt in SIRDC model) is held the same, the PoC SARS-CoV-2 is

reduced by 5 times for 26 out of 28 counties in Washington and 146 out of 209 counties

in Texas, shown in Figure 3.11.

We graph the estimated effective reproduction number, the number of active infectious
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Figure 3.11: a-f, the simulated results of COVID-19 progression characteristics in
Washington (the first row) and in Texas (the second row) that have the same inter-
pretation as a-f in Figure 3 with the infection period changed from 5 days to 4.5 days,
whereas other parameters are held the same.

Figure 3.12: a, b, The estimate reproduction number and overall number of active
infective individuals in the US, including 50 states and Washington D.C., from 21
March 2020 to 20 September 2020 with infectious period assumed to be 5 days (blue),
4.75 days (green) and 4.5 days (red). c, The estimate overall death toll in the US. The
time period and interpretation of c are aligned with a and b, except that the black
dots in c stand for the observed death toll in the US.
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Figure 3.13: a, the 7-day averaged daily confirmed cases in the US from 21 March
2020 to 20 September 2020. b, the 7-day averaged test positive rate in the US from
21 March 2020 to 20 September 2020.

individuals, and the cumulative death toll in the US, along with the simulated values when

the average infectious period is reduced from 5 days to 4.75 days and 4.5 days in Figure

3.12. First, we found that mitigation measures in March effectively reduced the effective

reproduction number to below 1, whereas the value rebounded in summer after some of

these measures were relaxed in different regions. Consequently, the US has experienced

two waves of the outbreak in terms of the number of active infectious individuals (part

b in Figure 3.12). The high test positive rate at the beginning of the epidemic (part b

in Figure 3.13) indicates that a substantial number of active infectious individuals were

not diagnosed in April due to the lack of diagnostic tests. According to our estimates,

the peak of the first wave in April is larger than that of the second wave in July in terms

of the number of active infectious individuals, whereas the peak of the daily observed

confirmed cases in April is smaller than that of the second wave in July (part a in Figure

3.13).
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Second, the simulated results suggest that shortening infectious period of SARS-

CoV-2 by 5% and 10% can reduce the total deaths from 199K to 120K (95% CI: [109K,

132K]) and 80K (95% CI: [72K, 89K]), respectively, as of 20 September 2020, when other

protective measures were held as the same (part c in Figure 3.12). Note that since we

held the transmission rate parameter (βt) to be the same (a scenario where the public

adheres to the protective measure same as the reality), the effective reproduction number

barely changes (part a in Figure 3.12). However, the slightly shortened infectious periods

of SARS-CoV-2 can reduce the death toll substantially (part c in Figure 3.12), as the

number of active infectious individuals decreases (part b in Figure 3.12).

We found that a shortened infectious period substantially reduces the number of

active infectious individuals and fatalities in the second wave. However, the changes are

smaller in the first wave, since the effective reproduction number in the second wave

is smaller than that in the first wave (Figure 3.12). The county level estimation also

validates this point (Figures 3.10 and 3.11). This finding indicates that the efforts to

shorten the infectious period of SARS-CoV-2 should not replace the other protective

measures, such as social distancing and facial mask-wearing to reduce the transmission

rate.

Diagnostic tests can be used to shorten the length of the infectious period of an active

infectious individual. Drastically reducing the infectious period may not be possible

without contact tracing, which is challenging when there is a large number of active

infective cases. Reducing the infectious period by around 5%, in comparison, may be

achieved by periodically diagnostic tests every 20 days for each susceptible individual.

More frequent testing or contact tracing may be needed to achieve this goal, as the

infection is most likely to happen between days 2 and 6 after exposure due to the high viral

load of SARS-CoV-2 [120]. Another efficient way is to test susceptible individuals with a

high risk of contracting or spreading SARS-CoV-2, such as individuals with more daily
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contacts or have contacts with vulnerable populations, e.g., workers from senior living

facilities. Our estimation of the PoC SARS-CoV-2 can be used as a response to develop

regression models using covariates including demographic information and mobility to

elicit personalized risk of contracting SARS-CoV-2 for susceptible individuals.

Finally, efforts on reducing the length of the infectious period should not replace other

protective measures for reducing transmission rates of SARS-CoV-2, as the number of

active infectious individuals and death toll can be effectively reduced only if the effective

reproduction number is not substantially larger than 1.
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Gaussian orthogonal latent factor

processes for large incomplete

matrices of correlated data

In this chapter, we propose the Gaussian orthogonal latent factor (GOLF) processes,

designed for the accurate modeling and prediction of extensive correlated datasets. The

approach involves decomposing the likelihood function of a Gaussian random field into

densities at orthogonal components, utilizing the continuous-time Kalman filter for effi-

cient likelihood function computation without approximations. The method ensures the

independence of the posterior distribution of factor processes, arising from the orthogo-

nal nature of the factor loading matrix and the prior independence of the latent factor

processes. For large-scale datasets, a flexible mean modeling approach is proposed, along

with a solution for identifiability issues in parameter sampling. This method’s effective-

ness is validated through both simulated and real data applications.
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4.1 Introduction

Large spatial, spatio-temporal, and functional data are commonly used in various

studies, including geological hazard quantification, engineering, and medical imaging, to

facilitate scientific discoveries. Many data sets are observed on incomplete matrices with

missing values due to the limitation of the technique or computational cost.

Gaussian processes (GPs) are widely used for modeling correlated data [2, 121]. Com-

puting the likelihood function from a GP model, however, generally takes O(N3
o ) oper-

ations in finding the inverse and determinant of the covariance matrix, where No is the

number of observations. The computational bottleneck prevents modeling a large corre-

lated data set by GPs directly. Tremendous efforts have been made to approximate a GP

model in recent studies, including, for example, stochastic partial differential equation

approach [52, 53], hierarchical nearest neighbor methods [54], multi-resolution process

[55], local Gaussian process approach [56], periodic embedding [57, 58] and covariance

tapering [59], which have obtained wide attention in recent years. Compared to a large

number of studies on approximating GPs, less progress has been made in efficiently com-

puting the likelihood function without approximation.

In this work, we propose a flexible and computationally feasible approach to model

large incomplete matrix observations of correlated data, called Gaussian orthogonal la-

tent factor (GOLF) processes. Bayesian inference was derived to assess the uncertainty

in parameter estimation and predictions. GPs with product covariance functions on lat-

tice observations or semiparametric latent factor models [4, 7, 122] can be represented as

full-rank GOLF processes, which permit much smaller computational costs than directly

computing the likelihood function and making predictions. Further reducing the compu-

tational cost can be achieved by low-rank GOLF processes, where the computational cost

is similar to the order of principal component analysis. See Section 4.3.3 for a detailed
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discussion of the computational complexity of the GOLF model in different scenarios.

We highlight a few contributions of this work. We first show that for GPs with

product covariance functions or semiparametric latent factor models, if the latent fac-

tor loading matrix is orthogonal, prior independence of latent factor processes implies

posterior independence of factor processes. The new finding allows one to decompose

the likelihood function of lattice data into a product of densities of projected output,

which greatly reduces the computational complexity. Separate continuous-time Kalman

filters can be applied to compute the posterior distributions of factor processes at lower

dimensional inputs in parallel, which has linear computational operations with respect to

the number of observations. Second, as a large number of observations provide rich infor-

mation, we introduce a flexible way to model the mean function and derive the marginal

posterior distribution of the linear coefficients, to solve identifiability issues in posterior

sampling. Furthermore, compared with the maximum marginal likelihood estimation

of factor loadings derived in [123], our approach is applicable to model observations on

incomplete lattice. Finally, we developed Bayesian inference for uncertainty assessment,

which is critically important for inverse problems in applications [7, 6].

The purpose of this work is twofold. First, we aim to develop a pipeline of com-

putationally efficient methods of modeling correlated data with multi-dimensional input

without approximating the likelihood function. The properties of GOLF processes de-

rived in this work are useful for developing an efficient approximation algorithm for

scenarios with multi-dimensional input variables. Besides, the nonseparable covariance

and coordinate-specific mean coefficients proposed in this work provide flexible choices

for models of local information. Second, we primarily focus on applications based on a

stack of images in this work, which includes inverse problems by satellite radar inter-

ferograms [60], and estimating dynamic information from microscopic videos [124]. Our

approach allows for efficient Bayesian inference in a large sample scenario.
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The rest of the chapter is organized as follows. In Section 4.2.1, we introduce the

GOLF model with an emphasis on the orthogonal decomposition of the likelihood func-

tion and posterior independence of latent factor processes. The flexible mean function,

spatial latent factor loading matrix, and kernel functions are discussed in Section 4.2.2-

4.2.4, respectively. We introduce the Markov Chain Monte Carlo (MCMC) algorithm

and discuss the computational complexity in Section 4.3.1. In Section 4.3.2, we intro-

duce the continuous-time Kalman filter in computing the likelihood function with linear

computational complexity. Section 4.4 compares our approach with other alternatives,

and numerical results for comparing these approaches are presented in Section 4.5-4.6.

Proofs of lemmas and theorems are given in the Appendix.

4.2 Gaussian Orthogonal Latent Factor Processes

4.2.1 Orthogonal Decomposition and Posterior Independence

Let ys(x) = (ys1(x), ..., ysn1
(x))T be an n1 × 1 vector of observations at coordinates

s =: (s1, ..., sn1)
T with si ∈ Rp1 for i = 1, ..., n1 and input x ∈ Rp2 . For spatially correlated

data, for instance, s and x denote the latitude and longitude, respectively, and in spatio-

temporal models, the spatial coordinates and time points can be defined as s and x,

respectively.

Consider the latent factor model:

ys(x) = ms(x) +Asz(x) + ϵ, (4.1)

where As = [a1, ..., ad] is a n1×d factor loading matrix and z(x) = (z1(x), ..., zd(x))
T is a

d-dimensional factor processes with d ≤ n1, ϵ ∼ N (0, σ2
0In1) being independent Gaussian

noises. The mean function ms(x) = (ms1(x), ...,msn1
(x))T is typically modeled via a
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linear trend of regressors, which will be discussed in Section 4.2.2.

As data are typically positively correlated at two nearby inputs, we assume zl(·) inde-

pendently follows a zero-mean Gaussian process (GP), meaning that for any {x1, ...,xn2},

ZT
l = (Zl(x1), ..., Zl(xn2))

T is a multivariate normal distribution:

(ZT
l | Σl) ∼ N (0,Σl) (4.2)

where the (i, j)th entry of the covariance matrix is σ2
l cl(xi,xj) with kernel function cl(·, ·)

and variance parameter σ2
l , for l = 1, ..., d. Here we assume independence between the

factor processes a priori . A detailed comparison between our approach and other related

approaches is discussed in Section 4.4.

Note that only the d-dimensional linear subspace of factor loadings As can be iden-

tified if not further specification of factor loading matrix As is made, as the model in

Equation (4.1) is unchanged if the pair (As, z(x)) is replaced by (AsG,G−1z(x)) for

any invertible matrix G. Besides, the computation could be challenging when the num-

ber of factors or input parameters is large. Thus, we assume that the column of As is

orthonormal.

Assumption 3

AT
s As = Id. (4.3)

Assumption 3 may be replaced by AT
s As = Λ, where Λ is a diagonal matrix. Since

we estimate variance parameters σ2 = (σ2
1, ..., σ

2
d)

T of latent factor processes by data,

diagonal terms of Λ are redundant. Thus we proceed with the Assumption 3.

Let us first assume we have an n1×n2 matrix of observations Y = [ys(x1), ...,ys(xn2)]

at inputs {x1, ...,xn2}, and then we extend our method to incomplete matrix observations
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in the Section 4.3. Denote B the regression parameters in the n1×n2 mean matrix M =

(ms(x1), ...,ms(xn2)). Denote Θ = (As,B,σ2,γ), which contains the factor loadings,

mean parameters, variance parameters and range parameters in the kernel functions.

Further let AF = [As,Ac] = [a1, a2, ..., an1 ], where Ac is an n1 × (n1 − d) matrix of

the orthogonal complement of As. Assumption 3 allows us to decompose the marginal

likelihood (after integrating out the random factor Z) into a product of multivariate

normal densities of the outcomes at the projected coordinates:

p(Y | Θ) =
d∏

l=1

PN (ỹl;0, Σ̃l)

n1∏
l=d+1

PN (ỹl;0, σ
2
0In1), (4.4)

where ỹl = (Y−M)Tal for l = 1, ..., d, and ỹl = (Y−M)Tal with al being the (l− d)th

column of Ac for l = d+1, ..., n1, Σ̃l = Σl+σ2
0In2 and PN (· ;µ,Σ) denotes the density of

the multivariate normal distribution with mean µ and covariance matrix Σ. In practice,

note that we can avoid computing Ac by using the identity AsA
T
s +AcA

T
c = In1 . The

derivation of Equation (4.4) derivation is given in Section C.1.2 of the appendix.

The orthogonal factor loading matrix in Assumption 3 and prior independence of

factor processes lead to the posterior independence of the factor processes, introduced in

the following corollary.

Corollary 1 For model in Equation (4.1) with Assumption 3:

1. The covariance of the posterior marginal distributions of any two factor processes

is zero: Cov[ZT
l ,Z

T
m | Y,Θ] = 0n2×n2, where l = 1, ..., d, m = 1, ..., d and l ̸= m.

2. For l = 1, ..., d, the posterior distribution (ZT
l | Y,Θ) follows a multivariate normal

distribution

ZT
l | Y,Θ ∼ N (µZl

, ΣZl
) , (4.5)

where µZl
= ΣlΣ̃

−1
l ỹl and ΣZl

= Σl −ΣlΣ̃
−1
l Σl with Σ̃l = Σl + σ2

0In2.
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We call the latent factor processes in Equation (4.1) with Assumption 3 Gaussian or-

thogonal latent factor (GOLF) processes, because of orthogonal decomposition of the

likelihood function and posterior independence between two factor processes. The main

idea is to decompose the likelihood of GP models with multi-dimensional inputs by a

product of densities with low dimension input and to utilize the continuous-time Kalman

filter for fast computation. As we will see in Section 4.3, these two properties dramatically

ease the computational burden.

4.2.2 Flexible Mean Function and Marginalization

The mean function ms(·) plays an important role in modeling and predicting cor-

related data. Computer models (such as the numerical solution of partial differential

equations), for example, can be included as a part of the mean in an inverse problem [7].

Here for simplicity, we use only a linear basis function of s and x, whereas additional

terms may be included in the mean if available.

In a GP model, the regression coefficients are often assumed to be the same across one

basis function. For instance, the mean function may be modeled as ms(x) = h1(s)b1,0,

or ms(x) = h2(x)b2,0, where h1(s) and h2(x) are a set of 1 × q1 and 1 × q2 mean basis

functions with b1,0 and b2,0 being q1 × 1 and q2 × 1 regression coefficients, respectively.

The regression coefficients b1,0, for example, are shared across each x.

The shared regression coefficients may be a restrictive assumption when data sets are

large. Consider, for instance, the temperature data set used in [125], where the temper-

ature values are shown in Figure 4.5. In Figure 4.1, we graph the fitted linear regression

coefficients using latitudes or longitudes as regressors. The estimated regression coeffi-

cients are not the same across latitude or longitude. A natural extension of modeling

the mean function, therefore, is to allow the mean parameters at each row or column
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Figure 4.1: Estimated linear coefficients for temperature observations in [125]. In the
left panel, the dots are the estimated coefficients in a linear regression of observations
at each longitude separately using latitudes as regressors. The estimated linear co-
efficients for the observations at each latitude are graphed in the right panel, where
longitudes are used as regressors.

Individual mean msi(xj) M coefficients B
Linear trend of s h1(si)b1,j H1B1 B1

Linear trend of x h2(xj)b2,i (H2B2)
T B2

Mixed linear trend h1(si)b1,j + h2(xj)b2,i H1B1 + (H2B2)
T [B1,B2]

Table 4.1: Summary of the mean function studied in this work. In the third col-
umn, H1 = (hT

1 (s1), ...,h
T
1 (sn1))

T and H2 = (hT
2 (x1), ...,h

T
2 (xn2))

T are n1 × q1 and
n2 × q2 mean basis matrices, respectively. Regression coefficients are denoted as
B1 = (b1,1, ....,b1,n2) and B2 = (b2,1, ....,b2,n1) for the basis function h1(·) and h2(·),
respectively.

of the observations to be different, e.g. msi(xj) = h1(si)b1,j, or msi(xj) = h2(xj)b2,i,

for i = 1, ..., n1 and j = 1, ..., n2. Some choices of the individual mean functions are

summarized in Table 4.1.

The mean function may be specified based on model interpretation or exploratory data

analysis. Models with different regression coefficients across different types of coordinates

are more suitable to model a large number of observations, as they are more flexible to

capture the trend.

To implement full Bayesian inference of the parameters, one may sample from the

posterior distribution of regression parameters p(B | Θ−B,Y,Z). However, we found a

severe identifiability problem between the mean M and AZ, when the regression coeffi-
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cients B are sampled from the full posterior distribution. This is because the likelihood

function of the mean parameters is flat when data are very correlated. Consequently,

the absolute values of the entries of these two matrices can be both big, making the

MCMC algorithm very unstable. To alleviate the identifiability problem, we first inte-

grate out factors and sample regression parameters from the marginal posterior distribu-

tion p(B | Θ−B,Y). The marginal posterior distributions of the regression parameters

are given in the following Theorem 2 and Theorem 3.

Theorem 2 1. (Row regression coefficients). Assume M = H1B1 and the objective

prior π(B1) ∝ 1 for B1. After marginalizing out the factor Z, the posterior samples

of B1 from p(B1 | Y,Θ−B1) can be obtained by

B1 = B̂1 + (HT
1H1)

−1HT
1AsB̃

T
1,0,s + σ0(H

T
1H1)

−1HT
1 (In1 −AsA

T
s )Z0,1 (4.6)

where B̂1 = (HT
1H1)

−1HT
1Y, B̃1,0,s is an n2 × d matrix with the lth column inde-

pendently sampled from N (0, Σ̃l) for l = 1, ..., d, and Z0,1 is an n1×n2 matrix with

each entry independently sampled from the standard normal distribution.

2. (Column regression coefficients). Assume M = (H2B2)
T and the objective prior

π(B2) ∝ 1 for the regression parameters B2. After marginalizing out the factor Z,

the posterior samples of B2 from p(B2 | Y,Θ−B2) can be obtained by

B2 = B̂2 + B̃2,0,sA
T
s + σ0LH2Z0,2(In1 −AsA

T
s ), (4.7)

where B̂2 =
∑d

l=1(H
T
2 Σ̃

−1
l H2)

−1HT
2 Σ̃

−1
l YTala

T
l + (HT

2H2)
−1HT

2Y
T (In1 − AsA

T
s )

and B̃2,0,s is a q2 × d matrix with the lth column independently sampled from

N (0, (HT
2 Σ̃

−1
l H2)

−1) for l = 1, ..., d. LH2 is a q2 × q2 matrix such that LH2L
T
H2

=

(HT
2H2)

−1 and Z0,2 is a q2×n1 matrix with each entry independently sampled from
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the standard normal distribution.

When both the row regression coefficients and column regression coefficients are in

the model, we found that M1 = H1B1 and M2 = (H2B2)
T are not identifiable, if we

sample B1 and B2 from the full conditional distribution. To avoid this problem, we first

marginalizing out B2 and Z to sample B1 and then we condition B1 to sample B2.

Theorem 3 Assume M = H1B1 + (H2B2)
T and let the objective prior π(B1,B2) ∝ 1

for the regression parameters B1 and B2.

1. After marginalizing out Z and B2, the marginal posterior sample of B1 from p(B1 |

Y,Θ−B1,−B2) can be obtained by

B1 = B̂1 + (HT
1H1)

−1HT
1AsB̃

T
1,Q + σ0(H

T
1H1)

−1HT
1 (In1 −AsA

T
s )Z0,1P0, (4.8)

where B̂1 = (HT
1H1)

−1HT
1Y, B̃1,Q is an n2 × d matrix with the lth column in-

dependently sampled from N (0,Q1,l), with Q1,l = PlΣ̃
−1
l Pl where Pl = In2 −

H2(H
T
2 Σ̃

−1
l H2)

−1HT
2 Σ̃

−1
l for l = 1, ..., d. Z0,1 is an n1 × n2 matrix with each

entry independently sampled from standard normal distribution and P0 = (In2 −

H2(H
T
2H2)

−1HT
2 ).

2. Posterior samples of B2 from p(B2 | YB1 ,Θ−B2) can be obtained through equation

(4.7) by replacing Y by Y −H1B1.

In Theorem 2 and Theorem 3, the marginal posterior distribution of the regression

coefficients depends on the n1 × d factor loading matrix, but not the complement of the

factor loading matrix (Ac). Since we do not need to compute Ac, the most computa-

tionally intensive terms are those containing the covariance matrix Σl and its inverse.

Fortunately, each term can be computed with linear complexity with respect to n2 instead

of n3
2 when the Matérn covariance is used, discussed in Section 4.3.2.
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4.2.3 Spatial Latent Factor Loading Matrix

This section discusses a model of the latent factor loading matrix As that satisfies

the orthogonal constraint in Equation (4.3). As output values are marginally correlated

at two inputs sa and sb, a natural choice is to let As be the eigenvectors corresponding to

the largest d eigenvalues in the eigendecomposition of the correlation matrix Rs, where

the (i, j)th entry is specified by a kernel function cs(si, sj), for 1 ≤ i, j ≤ n1. We give a

few examples of models that can be written as special cases of the GOLF model when

the As is specified as eigenvectors of Rs. For simplicity, we assume the mean is zero. The

first and second classes of models are the GP models with separable covariance functions

of input with two dimensions and three dimensions, respectively.

Example 1 (Spatial model with separable covariance) Consider a spatial model

of Y at a regular n1×n2 lattice, where the (i, j)th input is (si, xj) with si and xj denoting

the ith latitude coordinate and jth longitude coordinate, respectively. Assume the covari-

ance of the spatial process is separable, meaning that Y ∼ N (0, σ2Rs ⊗ Rx + σ2
0In1n2),

where the (l1,m1) term of Rs is parameterized by the kernel function cs(sl1 , sm1) and

the (l2,m2) term of Rx is cx(xl2 , xm2) for 1 ≤ l1,m1 ≤ n1 and 1 ≤ l2,m2 ≤ n2. Let

Rs = UsΛsU
T
s , where Us is a matrix of eigenvectors and Λs is a diagonal matrix of

eigenvalues of Rs with the lth diagonal term λl. The density of this spatial model is

equivalent to the model in Equation (4.1) with As = Us, Σl = σ2λlRx and d = n1.

Example 2 (Spatio-temporal model with separable covariance) Consider a spatio-

temporal model of Y at n1,1 × n1,2 × n2 lattice, where the (i, j, k)th input is (s1,i, s2,j, xk),

with s1,i and s2,j denoting the ith latitude coordinate and jth longitude coordinate, respec-

tively, and xk denoting the kth time point. Let n1 = n1,1 × n1,2. Assume the covariance

of the spatio-temporal process is separable, meaning that Y ∼ N (0, σ2Rs1 ⊗Rs2 ⊗Rx +

σ2
0In1×n2) with the (li,mi)th term of Rsi parameterized by the kernel function cs(sli , smi

)
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with 1 ≤ li,mi ≤ n1,i for i = 1, 2, and the (l3,m3)th term of Rx being cx(xl3 , sm3) with

1 ≤ l3,m3 ≤ n2. Let Rsi = UiΛiU
T
i where Ui is a matrix of eigenvectors and Λi is

a diagonal matrix of eigenvalues λli for 1 ≤ li ≤ n1,i and i = 1, 2. The density of this

spatio-temporal model is equivalent to the model in Equation (4.1) with As = U1 ⊗U2,

Σl = σ2λl1λl2Rx with 1 ≤ li,mi ≤ n1,i for i = 1, 2, l = l1 + (l2 − 1)n1,2 and d = n1.

The separable covariance is widely used in emulating and calibrating computationally

expensive computer models with scalar output [4] and vector output [126, 127], whereas

the isotropic covariance, i.e., the covariance as a function of Euclidean distance of inputs,

is used more often in modeling spatially correlated data [1]. Some anisotropic kernels,

such as the geometrically anisotropic kernel, were studied in [128] for modeling spatially

correlated observations. Note that the covariance of GOLF processes in Equation (4.1)

is not separable in general, as the variance and kernel parameters of each factor process

zl(·) can be different. Different kernel parameters make the model more flexible, as the

factor processes corresponding to large eigenvalues are often found to be smoother than

the ones corresponding to small eigenvalues. Separable covariance may be restrictive in

this regard as factor processes are assumed to have the same kernel and parameters.

Computing the likelihood of GP with separable covariance on a complete n×n lattice

data generally takes O(N3/2) operations through eigen-decomposition of sub covariance

matrices. This work generalizes this approach to nonseparable covariance for both com-

plete and incomplete lattice observations. One can further reduce the computational

complexity by selecting d eigenvectors corresponding to the d largest eigenvectors from

the eigendecomposition of the correlation matrix Rs. The proportion of summation of

the d largest eigenvalues over the summation of total eigenvalues shall be chosen as large

as possible to allow the model to explain the most variability of the signal [8]. We found

that using more factors than the truth typically will not incur a large reduction of predic-
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tive accuracy, whereas using a much smaller number of factors than the truth will cause

a large predictive error (Example 4 in simulated studies). Thus one should be cautious

about using a very small number of factors.

4.2.4 Kernel Functions

We first discuss the kernel function for the factor process Zl(·), l = 1, ..., d. We

assume a product kernel between the inputs [4], i.e. for any input xa = (xa1, ..., xap2)

and xb = (xb1, ..., xbp2), cl(xa,xb) =
∏p2

i=1 cl,i(|xai−xbi|), where cl,i(·) is a kernel of the lth

coordinate of the input for l = 1, ..., d and i = 1, ..., p2.

We focus on Matérn covariance [99] as kernel function cl,i(·) in this work to model.

Each kernel contains positive roughness parameter αl,i and a nonnegative range parameter

γl,i for l = 1, ..., d and i = 1, ..., p2. The roughness parameter of the Matérn kernel controls

the smoothness of the process. When αl,i =
1
2
, the Matérn kernel becomes the exponential

kernel: cl,i(|xai − xbi|) = exp(−|xai − xbi|/γl,i), and when αl,i → ∞, the Matérn kernel

becomes the Gaussian kernel: cl,i(|xai−xbi|) = exp(−|xai−xbi|2/(2γ2
l,i)). The half-integer

Matérn kernel (i.e. (2αl,i +1)/2 ∈ N) has a closed form expression. When αl,i = 5/2, for

example, the Matérn kernel is

cl,i(|xai − xbi|) =

(
1 +

√
5|xai − xbi|

γl,i
+

5|xai − xbi|2

3γ2
l,i

)
exp

(
−
√
5|xai − xbi|

γl,i

)
, (4.9)

for l = 1, ..., d and i = 1, ..., p2.

In constructing GOLF processes, we decompose the density of the GP model with

multi-dimensional input into a product of the orthogonal components with lower-dimensional

input. This is because the likelihood and the predictive distribution of a GP model with

a half-integer Matérn covariance can be computed through linear operations with re-

spect to the sample size by the continuous-time Kalman filter [129] when p2 = 1. The
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computational advantage will be discussed in Section 4.3.2.

For the factor loading matrix, we let As be the first d eigenvectors of Rs. The kernel

functions for Rs can be chosen similarly as the kernel for the latent factor processes.

Without the loss of generality, we assume Rs is parameterized by a product kernel with

the range parameters γ0, and the Matérn kernel being used for each coordinate of s.

4.3 Posterior Sampling for GOLF Processes

4.3.1 A Markov Chain Monte Carlo Approach

In many applications, the observations contain missing values. DenoteYo
v andYu

v the

vectors of observed data and missing data in matrix Y with size No and Nu, respectively.

Directly computing the likelihood includes calculating the inverse and determinant of

an No × No covariance matrix, which has computational operations O(N3
o ) in general,

making it infeasible for large number of observations. Here we discuss a computationally

feasible way for the GOLF model when observations are from incomplete matrices.

We start with a set of initial values at the locations with missing observations. Denote

Y
(t)
v = vec(Y(t)) = [(Yo

v)
T , (Y

u,(t)
v )T ]T an N -vector, where Yo

v and Y
u,(t)
v are vectors of

observations and samples at the missing locations in the tth iteration, t = 1, ..., T . First,

we use a Metropolis algorithm to sample Θ(t+1) from the marginal posterior distribution

p(Θ | Y(t)), where the marginal density is given in Equation (4.4). In the second step, we

sample Z
(t+1)
l from p(Z

(t+1)
l | Y(t),Θ(t+1)) by Equation (4.5) for l = 1, ..., d, and then we

generate Y(t+1) = A(t+1)Z(t+1) +E(t+1), where E(t+1) is an n1 × n2 matrix of white noise

with variance σ
(t+1)
0 and A(t+1) is a n1 × d matrix of the d eigenvectors corresponding to

the d largest eigenvalues from the eigendecomposition of the correlation matrix Rs in the

(t+1)th iteration. We can obtain Y
u,(t+1)
v by the last Nu terms in Y

(t+1)
v , for t = 1, ..., T .
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Note that the observed data Yo
v is never changed.

For computational reasons, we define the nugget parameter in each kernel (i.e. the

inverse of the signal variance to the noise variance ratio parameter) ηl = σ2
0/σ

2
l for

l = 1, 2, ..., d, and the inverse range parameter βl,i = 1/γl,i, where i = 1, ..., p1 when l = 0,

and i = 1, ..., p2 when l ≥ 1. The transformed parameters Θ̃ contain the mean parameters

B, inverse range parameters β = (β0, ...,βd), nugget parameters η = (η1, ..., ηd) of the

factor processes and the variance of the noise σ2
0.

For mean and noise variance parameters, we use an objective prior πR(B, σ2
0) ∝

1/σ2
0. We assume the jointly robust (JR) prior for the kernel parameters: πJR(βl, ηl) ∝

(
∑p2

i=1(kl,2βl,i + ηl))
cl,1 exp(−kl,3

∑p2
i=1(kl,1βl,i + ηl)) with default parameters kl,1 = 1/2−

p2, kl,2 = 1/2, and kl,3 being the average distance between the lth coordinate of two

inputs for l = 1, ..., d [70]. Note here kl,1 = 1/2 − p2 is the default parameter for the

MCMC algorithm, whereas this prior parameter is different if one maximizes the marginal

posterior distribution. The jointly robust prior is equivalent to the inverse gamma prior

when the input dimension is one without a nugget parameter. The inverse gamma prior

is assumed for each coordinate of β0 with shape and rate parameter being −1/2 and

1, respectively. The JR prior can alleviate the potential numerical problem when the

estimated range and nugget parameters are close to the boundary of the parameter

space, as the density of the JR prior is close to zero at these scenarios. As the sample

size is large, the bias inserted from the prior is small.

The MCMC algorithm of the GOLF model is given in Algorithm 3. In step (1) to step

(4) of Algorithm 3, we marginalize out the factor processes to compute the posterior dis-

tribution of the parameters. This is critically important as we found severe identifiability

problems between the mean matrix M and AZ if the parameters are sampled from the

full conditional distributions. Moreover, after marginalizing out the factor processes, the

covariance matrix of the distribution PN (ỹl;0, Σ̃l) in Equation (4.4) contains a nugget
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Algorithm 3 MCMC algorithm when the kernel parameters are different

(1) For l = 1, ..., d, sample (β
(t+1)
l , η

(t+1)
l ) from p(βl, ηl | ỹ(t)

l ).

(2) Sample β
(t)
0 from p(β

(t)
0 | Y(t),β

(t+1)
1:d ,η

(t+1)
1:d ,B(t)).

(3) Sample σ
(t+1)
0 from p(σ

(t+1)
0 | Y(t),β(t+1),η(t+1),B(t)).

(4) Sample B(t+1) from p(B(t+1) | Y(t),β(t+1),η(t+1)). Update the mean matrix M(t+1)

and the projected observations ỹ
(t)
l = (Y −M(t+1))Tal.

(5) For l = 1, ..., d, sample Z
(t+1)
l from p(Z

(t+1)
l | ỹ(t)

l ,β(t+1),η(t+1)) by Corollary 1 and

sample Y(t+1) by the model in Equation (4.1). Update Y
u,(t+1)
v by the last Nu terms in

Y
(t+1)
v and let ỹ

(t+1)
l = (Y(t+1) −M(t+1))Tal.

(6) Update the posterior p(β
(t+1)
l , η

(t+1)
l | ỹ(t+1)

l ) and go back to (1) when t < T .

term, which makes the computation stable.

The Algorithm 3 can be easily modified for different scenarios. When the factor

processes have the same covariance matrix, we can combine step (1) and step (2) to

sample the shared kernel and nugget parameter. Step (4) may be skipped if one has

zero-mean or modified if one has the shared regression coefficients in the model.

Denote Σl = LlL
T
l where Ll is a lower triangular matrix in the Cholesky decomposi-

tion of Σl. We need to efficiently compute the terms |Σ̃l|, L−1
l vl, Llvl for any real-valued

vector vl := (vl,1, ..., vl,n2)
T and sample (Z

(t+1)
l )T from p((Z

(t+1)
l )T | ỹ(t)

l ,β(t+1),η(t+1))

for l = 1, ..., d. Direct computation of the Cholesky decomposition of Σl requires O(n3
2)

computational operations for each l = 1, ..., d. Luckily, for Matérn covariance with a half-

integer roughness parameter and one-dimensional input, computing any of these terms

only takes O(n2) operations without approximation.

4.3.2 Continuous-time Kalman Filter

We briefly review the continuous-time Kalman filter algorithm and the connection

between the Gaussian Markov random field and GP with Matérn covariance. The spectral

density of the Matérn covariance with the half-integer roughness parameter was shown to

be the same as a continuous-time autoregressive process defined as a stochastic differential
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equation (SDE) [130]. Suppose the observations are ỹl = (ỹ1,1, ..., ỹl,n2)
T . For j = 1, ..., n2

and l = 1, ..., d, starting from the initial state θl(s0) ∼ MN(0,Wl(s0)), the solution of

the SDE follows [11]:

ỹl,j = Fθl(xj) + ϵl,j,

θl(xj) = Gl(xj−1)θl(xj−1) +wl(xj),

(4.10)

where wl(xj) ∼ N (0,Wl(sj)), ϵl,j is an independent white noise for l = 1, ..., d and

j = 1, ..., n2. For the Matérn kernel with a half-integer roughness parameter, the terms

Gl(xj), Wl(xj), and F can be expressed explicitly as a function of |xj − xj−1| and

the range parameter of the kernel. Thus, the forward filtering and backward smoothing

algorithm (FFBS) can be applied to compute the likelihood and to make predictions with

linear computational operations of the number of observations (see e.g. Chapter 4 in [12]

and Chapter 2 in [13] for the FFBS algorithm). The likelihood function and predictive

distribution of a GP model having the Matérn kernel with roughness parameters being

1/2 and 5/2 through the FFBS algorithm are implemented in FastGaSP package available

at CRAN. The computational complexity of the FFBS algorithm is only O(n2), with n2

being the number of observations.

We briefly discuss how to apply the FFBS algorithm to compute terms L−1
l ỹl and

|Σ̃l| needed in Algorithm 3, for l = 1, ..., d. In the FFBS algorithm, the one-step-ahead

predictive distribution (ỹl,j | ỹl,1:j−1) ∼ N (fl(xj), Ql(xj)) can be derived iteratively for

j = 1, ..., n2 and for each l = 1, ..., d. Closed form expressions of fl(xj) and Ql(xj) for the

Matérn covariance in Equation (4.9) are given in [73]. For l = 1, ..., d, we have following

expressions for the computational expensive terms in the likelihood function:

|Σ̃l| =
n2∏
j=1

Ql(xj), and L−1
l ỹl =

(
ỹl,1 − fl,1√

Ql(x1)
, ...,

ỹl,1 − fl,n2√
Ql(xn2)

)T

.
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We use the backward sampling algorithm [13] to sample θl,n2 from p(θl,n2 | ỹ
(t)
l ,β(t+1),η(t+1))

and θl,j from p(θl,j | ỹ(t)
l , θl,j+1,β

(t+1),η(t+1)) sequentially, for j = n2 − 1, ..., 1. Posterior

samples ZT
l = (zl(x1), ..., zl(xn2))

T can be obtained by the first entry of the posterior

sample θl,j from the backward sampling algorithm, for j = 1, ..., n2. Furthermore, for

any n2 × 1 real vector vl, we have Llvl = (fl,1 +
√

Ql(x1)vl,1, ..., fl,n2 +
√
Ql(xn2)vl,n2)

T

for l = 1, ..., d and j = 1, ..., n2.

4.3.3 Computational Complexity

Denote p = p1 × p2 the total dimension of the inputs (s,x) and suppose the obser-

vational matrix is n1 × n2 with irregular missing values, where n1 ≤ n2 and N = n1n2.

We discuss the computational complexity for three scenarios with p = 2 (e.g. spatially

correlated data), p = 3 (e.g. spatio-temporal data), and p > 3 (e.g. functional data).

When p = 2, the computational complexity of the GOLF model with the half-integer

Matérn kernel is O(Nd). First, we compute the first d eigenvectors of Σs to obtain As,

which has O(n2
1d) operations (see e.g. Chapter 4.5.5 in [131]). Second, computing the

marginal likelihood and sampling the factor processes by the FFBS algorithm only cost

O(n2d) operations. The largest computational order is from the matrix multiplication

ỸT = (Y −M)TAs, which is at the order of O(Nd).

For p = 3, we let As = As1 ⊗ As2 , where As1 and As2 are the first d1 and d2

eigenvectors of n1,1 × n1,1 matrix Σs1 and n1,2 × n1,2 matrix Σs2 , respectively, with

n1,1 × n1,2 = n1 and Σs1 ⊗ Σs2 = Σs. Without the loss of generality, assume d1 ≤ d2

and n1 ≤ n2. Let the total number of factor processes be d = d1d2. The computational

order of the GOLF model with a half-integer Matérn covariance function is O(n1n2dmax)

where dmax is the maximum of d1 and d2 (noting this is smaller than O(n1n2d)). To see

this, computing the eigendecomposition of Σs1 and Σs2 requires O(d1n
2
1,1) and O(d2n

2
1,2)
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operations, respectively. Second, using the FFBS algorithm to compute the marginal

likelihood and to sample factor processes costs O(dn2) operations. At last, we do NOT

directly compute YTAs as its computation operations are O(Nd). Instead, we first write

the observations as an n2 × n1,2 × n1,1 array YT
ar, where the (i, j, k)th entry being the

outcome at (s1,i, s2,j, xk). Then we do a 3-mode matrix product followed by a 2-mode

matrix product ỸT
ar×3As1×2As2 [132], which has the computation operations O(n2n1d1)

and O(n2n1,2d), respectively. Finally we concatenate the second and third dimensions of

ỸT
ar to obtain the n2 × d matrix ỸT .

For the case when p > 3, there might be two scenarios. In the first scenario, the

data are observed in an n1,1 × n1,2 × ...× n1,k × n2 tensor with irregular missing values,

where n1,1 × n1,2 × ... × n1,k = n1. In this scenario, the computation will be Ndmax,

where dmax is the maximum of d1, ..., dk with similar deduction for the case with p = 3.

In the second scenario, we have p2 > 1. Examples include emulating a computationally

expensive computer output with multivariate output [66, 126]. In this case, the Kalman

filter algorithm may not be applied, so the additional computational order is O(n3
2), when

the covariance of the factor process is the same. If the covariance is not the same, we

need to additionally compute the inverse of covariance matrices of d multivariate normal

distributions, which is at the order of O(dn3
2).

In sum, when data are from incomplete matrices or arrays, the computation in each

step of MCMC algorithm is O(Nd) for p2 = 2 or O(Ndmax) for p2 > 2, which is much

better than O(N3
o ) from directly inverting the covariance matrices. Besides, a few steps in

the MCMC algorithm can be computed in parallel, such as FFBS algorithm to compute

the product of d marginal densities of projected output and the matrix multiplication

ỸT = (Y −M)TAs, to further reduce the computational complexity.
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4.4 Comparison and Connection with Other Related

Models

GOLF processes are closely connected to a wide range of approaches on approximating

GPs for modeling large correlated data. Model (4.1) is a linear model of coregionaliza-

tion (LMC) [133], where the factor loading matrix is parameterized by input variables.

Another widely used model for multivariate functional data is the semiparametric la-

tent factor model (SLFM) [122], where the factor loading matrix can be estimated by

the principal component analysis (PCA) [8]. However, the linear subspace estimated by

PCA is equivalent to the maximum marginal likelihood estimator (MMLE) with indepen-

dent factors ([134]), whereas the latent factors at different input variables are assumed

to be correlated. The MMLE of factor loadings with correlated factors was derived in

[123], called the generalized probabilistic principal component analysis (GPPCA). Our

approach has two distinctions. First, our approach applies to observations with irregular

missing values, whereas the observations are required to be matrices in GPPCA. Second,

both inputs s and x are used for estimation, whereas only the input in latent processes

is used in GPPCA and predictions can be more accurate.

To overcome the computational bottleneck of GPs, we project observations on or-

thogonal coordinates in a GOLF model, as the complexity of computing the likelihood

of GPs with Matérn covariances with one dimension input is fast by the continuous-time

Kalman Filter.

The computational complexity can be further reduced by only using factor processes

with large eigenvalues. The reduced rank approach is used widely in modeling correlated

data. For instance, the predictive process by a set of pre-specified knots was studied in

[135], and the multiresolution local bisqaure functions were used in [136]. Limitations of

the reduced-rank method are studied in [137]. Note that even for the full rank covariance,
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the computational order of GOLF is much less than O(N3
o ). The primary goal is not to

propose a reduced rank model herein, but to reduce the computational complexity of a

GP model with a full-rank, flexible covariance function through orthogonal projections.

Many other approximation methods for GPs follow the framework of Vecchia’s ap-

proximation [49, 50]. Vecchia’s approximation is a broad framework that assumes the

sparsity of the inverse of Cholesky decomposition of the covariance matrix of the latent

processes, where the key is on selecting the order of the latent variables and imposing

sensible conditional independence assumptions between variables. GOLF processes with

Matérn kernel is closely related to Vecchia’s approximation, in the sense that the model

can be written as a vector autoregressive model with orthogonal factor loading matrix.

Our way of computing likelihood and predictions based on the FFBS algorithm is exact,

rather than an approximation to the likelihood function. We compare our approach with

a few other methods that fall into the framework of Vecchia’s approximation in Section

4.6.1.

4.5 Simulated Studies

We discuss two simulated examples in this section. We first study a simulated example

with a small sample size to study the predictive performance and parameter inference

between GOLF processes and the exact GP model by directly computing the inversion

and determinant of the covariance matrix in the likelihood function. In the second

simulated example, we generate observations from separable and nonseparable models to

study the predictive performance of GOLF processes with a different number of factors,

and with the same or different kernel parameters. For both examples, we implement

J = 100 experiments in each scenario, and we generate T = 5, 000 MCMC samples for

each method with the first 20% of the samples used as the burn-in samples.
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Denote y∗i,j the ith held-out data in the jth simulated experiment in each scenario,

for i = 1, ..., n∗ and j = 1, ..., J . Let ŷ∗ij and CIij(95%) be the predictive mean and 95%

predictive credible interval of the ith held-out data at the jth experiment, respectively.

For both simulated examples, we record the root mean square error, the percentage of

held-out observations percentage covered in the 95% predictive interval, and the average

length of the 95% predictive interval of the jth experiment (LCIj(95%)):

RMSEj =

√∑N∗

i=1(ŷ
∗
ij − y∗ij)

2

N∗ , (4.11)

PCIj(95%) =
1

N∗

N∗∑
i=1

1{y∗ij ∈ CIij(95%)} , (4.12)

LCIj(95%) =
1

N∗

N∗∑
i=1

length{CIij(95%)} , (4.13)

for j = 1, ..., J . We compute average values of these three quantities over J = 100

simulations to evaluate each approach. A precise method should have a small average

RMSE, PCI(95%) close to the 95% nominal level, and short predictive interval lengths.

Here we only consider the pairwise interval of responses at each coordinate as outputs

are univariate on spatial or spatio-temporal domain. Simultaneous credible interval can

be used for applications with multivariate responses [138].

Example 3 (GOLF processes and exact GP model) Data are sampled from a zero-

mean separable GP model with two-dimensional inputs at a 25×25 regular lattice in [0, 1]2.

Two missing patterns are considered, where the data are missing at random in the first

case, and a disk in the centroid of the lattice is missing in the second case.

We assume a small sample size in Example 3 because of the computational burden by

the exact Gaussian process model. We use the unit-variance covariance matrix parame-

terized by the exponential kernel and the Matérn kernel with the roughness parameter
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Missing value GOLF Exact GP model Difference
Kernel Percentage Pattern RMSE PCI(95%) LCI(95%) RMSE PCI(95%) LCI(95%) ∆RMSE ∆L ∆U

Matérn
50% random 0.106 0.954 0.425 0.106 0.952 0.423 0.002 0.006 0.006
20% random 0.103 0.952 0.410 0.103 0.952 0.411 0.001 0.007 0.007
20% disk 0.108 0.909 0.430 0.108 0.913 0.431 0.005 0.008 0.009

Exp
50% random 0.129 0.955 0.518 0.128 0.953 0.513 0.005 0.009 0.008
20% random 0.120 0.947 0.472 0.120 0.948 0.471 0.003 0.009 0.009
20% disk 0.156 0.941 0.602 0.154 0.946 0.605 0.013 0.019 0.019

Table 4.2: Comparison between the exact GP model and GOLF pro-
cesses. J = 100 simulated experiments are conducted for each scenario.
∆RMSE= 1

J

∑J
j=1∆RMSEj measures the average L2 distance by the two methods,

where ∆RMSEj = ( 1
N∗
∑N∗

i=1(ŷ
∗
ij,GOLF − ŷ∗ij,GP )

2)1/2 with ŷ∗ij,GOLF and ŷ∗ij,GP de-
note the predictive mean by GOLF processes and exact GP model, respectively. ∆L
and ∆U measure the average absolute difference between the lower bound and upper
bound of 95% predictive intervals of the GOLF processes and the exact GP model,
respectively.

being 2.5 in Equation (4.9) to generate the data. The range parameters of Matérn kernel

are chosen as γ0 = 1 and γ1 = ... = γd = 1/3. The range parameters of the exponential

kernel are chosen to be γ0 = 4 and γ1 = ... = γd = 1. All the range parameters, the

variance of the kernel, and noise are estimated by each method based on the MCMC

algorithm.

We compare GOLF processes and the exact GP model where the inverse and de-

terminant of the covariance matrix are directly computed. Both models use the same

prior and proposal distribution in the MCMC algorithm to sample the kernel param-

eters. Table 4.2 gives the predictive performance of both methods for three scenarios,

where 50% and 20% of the output are missing at random in the first two scenarios, and

approximately 20% of the output is missing in a disk in the centroid of the lattice in the

third scenario. Graphs of the observed data, full data, predictions, and trace plots of the

posterior samples in one simulation are given in the appendix.

As shown in Table 4.2, both methods have accurate predictions and uncertainty as-

sessment for all scenarios. Out-of-sample RMSE for predicting the held out observations

is close to 0.1, the standard deviation of the noise. The 95% predictive confidence in-
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Figure 4.2: The histogram of posterior samples of the logarithm of the inverse range
parameters and nugget parameters in one simulation of Example 3, where the data are
generated using the Matérn kernel in (4.9) with 50% of the values missing at random.

tervals cover around 95% of the held-out observations, and the average length of the

predictive confidence interval is small. Predictions of both methods are more precise for

the cases when the data are missing at random than the ones when a disk of output is

missing in the centroid of the lattice, as the estimated correlation between the held-out

test output and nearby observations are relatively accurate.

For Example 3, note that GOLF processes and the exact GP model are the same

with two different computational strategies. For GOLF processes, we sample the missing

values to use the fast computational strategy, whereas the inverse and determinant of

the covariance matrix are computed in the exact GP model directly. Therefore, the two

different strategies have significantly different computational operations. The computa-

tional operations of GOLF processes is O(Nd) with N = n1 ×n2 (d = n1 in Example 3),

whereas the computational operations of the exact GP model is O(N3
o ), where No is the

number of observations. Thus, GOLF processes are computationally feasible for a large

data set. On the other hand, the difference in predictions and uncertainty assessment

between the exact GP model and GOLF is small (last three columns in Table 4.2), since

we do not make any approximation in computing GOLF processes.

Figure 4.2 shows the histogram of the 4000 after burn-in posterior samples from the
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GOLF processes and exact GP model in one simulation of Example 3. The posterior

samples of the two methods are close to each other. The difference becomes even smaller

when we increase the number of MCMC samples.

Example 4 (GOLF processes: different factor numbers & kernel parameters)

The data are sampled from two scenarios with two-dimensional inputs being a 100× 100

lattice in [0, 1]2. In the first scenario, the range parameters of the kernel of each factor

process are the same, whereas these parameters are chosen to be different in the second

scenario. In both scenarios, a disk of output in the centroid of the lattice is masked out

for testing, corresponding to approximately 20% of the total number of data. We use

d = 30 (low-rank) and d = 100 (full-rank) factors to generate the data. We test GOLF

processes with a different number of factors, same or different range parameters.

In Example 4, the factor processes are assumed to have the Matérn kernel in Equation

(4.9) and unit variance. The kernel parameter is shared in the first scenario, where

γ0 = 1/4 and γl = 1/2, and in the second scenario γ0 = 1/3 and γl = 1/l, for l = 1, ..., d.

We estimate these parameters through the posterior samples from the MCMC algorithm.

Predictive performance of different approaches for data simulated by d = 30 latent

processes are graphed in Figure 4.3. In the first row of the panels, since data are simulated

by GOLF processes with different kernel parameters, nonseparable GOLF processes have

smaller predictive RMSE and a shorter interval that covers almost 95% of the data. In

the second row of the panels, GOLF processes with the same kernel parameter seem

to be slightly better, as the true factor process has the same kernel parameter. The

difference between the two methods in the second row is smaller, as the GOLF model

with a separable kernel is a special case of the one with different kernel parameters.

From Figure 4.3, we found that when we use d = 20 factor processes or more, the

predictive results seem to be similar, as the data are simulated using d = 30 factor

104



Gaussian orthogonal latent factor processes for large incomplete matrices of correlated data
Chapter 4

Figure 4.3: The predictive performance of GOLF process with d = 5, 10, 20, 30, 40 and
50 factors for Example 4. in the first row of panels, kernel parameters are different
in simulating the data, whereas the parameters are the same in for simulation in the
second row of panels. Blue curves and red curves denote the GOLF processes with
the different kernel parameters and the same kernel parameter, respectively. In the
left panels, the solid curves denote the RMSE for predicting the (noisy) observations,
and the dashed curve denotes the RMSE for predicting the mean of the observations.
The proportions of observations covered in the 95% predictive interval and the av-
erage length of the predictive interval are graphed in the middle and right panels,
respectively.
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Figure 4.4: The left figure shows the observed data in one simulation of Example 4,
where a disk of observations is missing. The middle figure contains the mean of the
data and the right figure is the prediction from GOLF process.

processes. The way of selecting the number of factors is currently ad-hoc. One may

select the number of factors to ensure a large proportion of the variance explained by the

sum of the eigenvalues of the correlation matrix Rs. This simulation suggests that using

more factors may be better in prediction than using very few factors.

In Figure 4.4, we graph the simulated observations, simulated mean, and the predic-

tion from the GOLF model with d = 30 in one simulation. Predictions look reasonably

accurate. Results when the data are generated by a full rank kernel (d = 100) are

provided in Figure C.3 of the appendix. Results are very similar to Figure 4.3.

4.6 Real Applications

4.6.1 Predicting Large Spatial Data on an Incomplete Lattice

We compare GOLF processes with different approaches on predicting the missing

temperature values in [125]. This data set contains daytime land surface temperatures

on August 4, 2016, at 300×500 spatial grids with the latitude and longitude ranging from

34.30 to 37.07, and from -95.91 to -91.28, respectively. The complete data set consists
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Methods RMSE PCI(95%) LCI(95%) Run time (mins)
FRK 3.16 0.77 6.09 3.53
Gapfill 1.86 0.35 1.44 6.98
GOLF 1.46 0.92 4.95 48.6
LAGP 2.07 0.84 5.70 3.76
LatticeKrig 1.68 0.963 6.58 214.25
MRA 1.85 0.92 5.54 4.99
NNGP 1.64 0.95 5.84 1.14
Partition 1.80 0.82 4.56 827.37
SPDE 1.55 0.97 7.87 34.8

Table 4.3: Comparison for the dataset in [125]. The standard deviation of observa-
tions is 4.07. For each method, we compute RMSE, PCI(95%) and LCI(95%) defined
in Equations (4.11)-(4.13). A satisfying method should have small RMSE and small
LCI(95%) and PCI(95%) closed to be 95% nominal level. We compare the fixed rank
kriging (FRK) ([136]), the Gapfill method ([139]), GOLF processes, the local approx-
imate Gaussian processes (LAGP) ([56]), the lattice kriging (LatticeKrig) ([140]), the
multiresolution approximation (MRA) ([55]), the nearest neighbor Gaussian processes
(NNGP) ([54]), the spatial partitioning (Partition) ([141]), and stochastic partial dif-
ferential equations (SPDE) ([52]).

of 148,309 observations with 1, 791 missing values due to cloud cover. The training data

(plotted in the left panel in Figure 4.1) consists of 105,569 observations, whereas 42,740

observations were held out as the test data. Training observations and full observations

are graphed in the upper panel in Figure 4.5.

We define GOLF processes on this dataset with s being latitude and x being longitude.

Since areas with higher latitude typically have lower temperature on average, we assume

a mean parameter for each latitude value, i.e. M = (H2B2)
T , where H2 = 1n2 and B2 =

(b2,1, ..., b2,n1)
T . We let d = n1/2 and use exponential kernels with distinct variances and

range parameters sampled from the marginal posterior distribution for GOLF processes.

We compute M = 6000 posterior samples where the first 20% were used as the burn-in

samples. Results of longer MCMC chains and different initial values of the parameters

are given in the appendix.

In [125], 12 groups of researchers across the globe implemented their methods to
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predict missing temperature values for competition. Among this cohort of researchers are

authors that conjured up some of the most popular methods for large spatially correlated

data. Other than GOLF processes, we implement 8 of 12 approaches based on the code

provided in [125]. We could not implement the other 4 approaches due to memory

limitation of the computing facility or unavailability of the code. All computations are

operated on a 3.60GHz 8 cores Intel i9 processor with 32 GB of RAM on a macOS Mojave

operating system.

The predictive performance of different approaches is recorded in Table 4.3. Most of

the results are consistent with what is shown in [125], whereas small differences remain

for those requiring random starts or stochastic algorithms. E.g., 5 implementation of the

SPDE method gives different RMSE ranging from 1.55 to 1.88. Besides, running time of

some methods are slightly different. For SPDE and LatticeKrig, for instance, it takes 35

mins and 214 mins to run in our system, respectively, whereas it takes 138 mins and 78

mins to run in [125], respectively.

We acknowledge that held-out observations were not released in [125], adding difficulty

for model specification. The good performance of the GOLF model may be explained

by two reasons. First, different mean parameters are assumed at each latitude, which is

more flexible to capture information from a large number of observations. Second, we

assume different range and variance parameters of the factor processes, which are more

flexible than the separable or isotropic kernel functions.

The 95% predictive interval of the GOLF model is the shortest, and it covers around

92% of the held out test data, as shown in Table 4.3. In appendix, we provide diagnostic

plots of the fitted values from the GOLF model and predictive performance based on

several configurations, including 40, 000 MCMC samples and different initial parameters.

The predictive performance of the GOLF model at different configurations is similar.

Besides, the computational time of GOLF per one MCMC iteration is around 0.49s for
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Figure 4.5: The top panels show the observed temperature and full temperature,
respectively, where the gray area contains unobservable points. The bottom panel are
the predictions from two methods, GOLF and SPDE, respectively.

this example, which is comparable to NNGP (0.53s) and faster than MRA (3.29s) for

one iteration. The posterior sampling obtained here provided uncertainty quantification

of model parameters, whereas most of the methods provided in Table 4.3 only provide

a point estimator of the parameters. Future works are needed to reduce the number of

iterations in GOLF to achieve a similar level of predictive accuracy.

The predictive mean of the GOLF processes and SPDE are graphed in the middle

panel and right panel in Figure 4.5, respectively. Predictions from the GOLF processes

are more accurate for predicting temperatures in areas with high latitude, possibly due

to flexible mean parameters estimated from data. Both methods seem to be slightly

oversmoothing. Yet predicting the missing values of this data set is challenging, as the

observations are missing in spatial blocks. Both methods seem precise in prediction.
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4.6.2 Analysis of Large Spatio-temporal Dataset

We consider the monthly gridded temperature anomalies from U.S. National Oceanic

and Atmospheric Administration (NOAA) 1. The data set contains the average air and

marine temperate anomalies at 5 degrees longitude-latitude grids with respect to 1981-

2010 base period. R code and examples to load NOAA gridded data can be found in

[142]. We compare the predictive performance using the data from Jan 1999 to Dec 2018.

For each month, we observe the temperature anomalies at n1 = 36×28 spatial grids with

longitude ranging from 182.5 to 357.5 and with latitude ranging from -62.5 to 72.5,

respectively. There are 11, 122 missing data, leaving the total number of observations to

be 230, 798. We held out 50% randomly sampled temperature anomalies as the missing

data, and the rest 50% is used as training data (i.e., n = n∗ = 115, 399). Predicting the

missing values in this scenario is more difficult than the example in [123], where the data

are missing in a set of locations over the same months.

We fit the GOLF processes with the covariance of each spatial coordinate modeled

by the Matérn covariance, and the factors processes are defined on the temporal input

with different kernel parameters. Due to computational limitation, we let the number

of factors be d = 0.752n1 = 567 and assume the factor loadings to be a Kronecker

product of the first three-quarters of the eigenvectors of the sub-covariance matrices for

longitude and latitude. Although we have a large number of factors, the computational

complexity is O(Ndmax) with dmax = 0.75× 36 = 48 rather than O(Nd1d2) by the mode

multiplication of tensor (see Section 4.3.3 for the discussion). We assume the coefficients

of the intercept and linear coefficients are different at each location, i.e. M = (H2B2)
T

whereH2 = [1n2 ,x], with x being 240 months and B2 being a matrix of 2×n1 coefficients.

We use M = 3000 MCMC samples with the first 20% as the burn-in samples, as posterior

1ftp://ftp.ncdc.noaa.gov/pub/data/noaaglobaltemp/operational
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Methods RMSE PCI(95%) LCI(95%) Run time (mins)
FRK 0.846 0.967 3.92 29.4
GOLF 0.325 0.942 1.08 43.9
LAGP 0.695 0.951 1.80 6.18
Spatial model 1 0.365 0.928 2.09 26.5
Spatial model 2 0.348 0.928 2.02 42.7

Table 4.4: Predictive performance of different approaches for the NOAA monthly
gridded temperature dataset. The standard deviation of the outcomes in this dataset
is 0.940. Results of the FRK, GOLF, and LAGP are given in the first to the third
rows. For the results in the fourth and fifth rows, spatial models were fitted using
the RobustGaSP package with one initial value and two initial values of the range and
nugget parameters for finding their marginal posterior mode, respectively.

samples converge at a small number of iterations in this example.

In Table 4.4, we compare the GOLF processes with a few other spatial and spatio-

temporal methods for the NOAA dataset. We fit two spatial models separately for each

month using the RobustGaSP package available on CRAN. Also implemented are FRK

and LAGP based on their packages [143, 144].

As shown in Table 4.4, GOLF processes have the smallest predictive RMSE and the

shortest predictive interval that covers around 94% of the held-out output. Since the

temporal input is not used, it is not surprising that the RMSE and the length of the

predictive interval of the two spatial models are larger than the ones by GOLF processes.

If we include the temporal inputs, the computation cost is too large for inverting the

covariance matrix directly. FRK and LAGP also seem to have a larger predictive error,

though both the spatial and temporal inputs are used in these methods.

Predictions from GOLF processes are more accurate due to three reasons. First,

we can compute the model with a large number of factors efficiently, and no further

approximation of the likelihood function is required. Second, mean and trend parameters

at each location are different, making the model flexible to capture the dynamic trend of

temperature values at different locations. Finally, Latent factor processes have different
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Figure 4.6: Full temperature anomalies in Jan 2018, predictions by the GOLF model
and the spatial model by RobustGaSP package are shown in left, middle and right
panels, respectively.

kernel parameters that fit diverse smoothness levels of projected observations.

In Figure 4.6, we graph the full temperature anomalies in Jan 2018, predictions from

the GOLF and spatial GP model by RobustGaSP package. 50% of the observation in the

left panel are held out for testing. Both models seem to be accurate. Since the temporal

coordinate is used in prediction, the predictive error by GOLF processes is smaller.
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Conclusions and Future Research

Directions

In Chapter 2, we introduce the Sequential Kalman Filter (SKF) for online changepoint

detection for data with temporal correlations. The temporal correlation between each

time point is modeled in SKF and the computational cost is dramatically reduced without

approximating the likelihood function. Furthermore, we developed a new approach that

integrates high-dimensional covariates and massive outcomes for detecting COVID-19

infection from a large longitudinal dataset of dialysis patients, overcoming the challenge

of modeling massive longitudinal covariates with a large proportion of missingness. The

new approach substantially improves detection accuracy compared to conventional clas-

sification and other online changepoint detection approaches.

Chapter 3 introduces a real-time epidemic model that tracks daily COVID-19 trans-

mission across over 3,000 U.S. counties. It offers both short-term and long-term death toll

predictions, while the uncertainties in the predictions are quantified by the GP model.

The model also estimates the Probability of Contracting (PoC) COVID-19, reflecting

the daily average infection risk for a healthy individual at the county level. Our analysis
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suggests that effective strategies aiming at shortening the infectious period significantly

reduce infections and deaths, particularly in areas with an effective reproduction num-

ber close to 1. This underscores the need for integrating testing with other measures

like social distancing and mask-wearing to decrease transmission rates. Additionally, we

have created a dynamic county-level map, a valuable tool for local officials to formulate

appropriate policies for the public to better assess daily COVID-19 risk.

In Chapter 4, we introduce the GOLF processes as a computationally feasible ap-

proach to model large incomplete lattice observations. For GPs with a product covari-

ance function or LMC with orthogonal latent factor loadings, there are two intriguing

properties. First, the likelihood can be decomposed into a product of multivariate nor-

mal densities. Second, the prior independence of factor processes leads to the posterior

independence of factor processes. These two properties allow one to reduce the com-

putational burden of GPs on incomplete lattice observations without approximating the

likelihood function. Further computational reduction can be made by reducing the num-

ber of factors as well. Besides, we have introduced a flexible way to model the mean

function and the closed-form marginal likelihood is derived to alleviate the identifiability

issue. Moreover, we have developed an MCMC algorithm for Bayesian inference for large

incomplete matrices of spatial and spatio-temporal data.

Another key direction not covered in previous chapters is to quantify the uncertainty

for massive data with high dimensional input. As the dimensions of input variables

increase, a substantial amount of data is needed to fill the large parameter space to ob-

tain accurate predictions and reliable uncertainty quantification. In practice, however,

input variables of concern can be highly correlated, which leads to small intrinsic dimen-

sions for the input. This characteristic offers possibilities for employing surrogate models

to approximate the behavior of such systems for problems of high dimensional input.

Here we discuss a surrogate modeling approach based on the Parallel Partial Gaussian
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Process (PPGP) model introduced in [62], for problems with a high-dimensional input.

The PPGP assumes outputs at each coordinate to have different mean and variance pa-

rameters, whereas the correlation parameters are shared across each output coordinate.

Despite its simplicity, PPGP has shown remarkable performance in various fields, in-

cluding quantifying volcanic hazard [62, 60], emulating expensive molecular simulations

[22, 145], and power system simulations [28], often outperforms more complex alterna-

tives. In the following section, we will discuss the ideas behind the PPGP model and its

application within the context of power systems.

5.1 Parallel Partial Gaussian Process model for com-

puter model emulation with high-dimensional in-

puts

In this section, we discuss the application of the PPGP model on data with high-

dimensional input, using large-scale power systems as an example. The integration of

renewable energy sources and highly flexible demands has introduced significant uncer-

tainties into power system operations [146], challenging traditional methods for tran-

sient stability analysis that do not accommodate these uncertainties, leading to potential

overestimation of system risks [147]. We first introduce the simulation models and then

discuss the PPGP emulator for predicting the simulation with high-dimensional inputs

and outputs.
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5.1.1 Power System Dynamic Modeling

Generally, power system dynamics are governed by the following differential and

algebraic equations (DAEs) [26]:

ẋ = f(x,y,u, ξ), (5.1a)

0 = g(x,y, ξ), (5.1b)

where x denotes the state variables, such as rotor angles and speeds and y represents the

algebraic variables, such as voltage magnitudes and phase angles; ξ collects all the uncer-

tain resources, including flexible loads and intermittent renewable generations. Equation

(5.1a) consists of differential equations that represent the controls and dynamics of syn-

chronous generators and loads. Equation (5.1b) refers to algebraic equations regarding

network and static components. By utilizing the structural-preserve approach, Equation

(5.1) can be reformulated into the following differential equations:

ẋ = f(x, g−1(x, ξ),u, ξ), (5.2)

where the algebraic variables y is represented by g−1(x, ξ). This can be further linearized

following the Euler-based explicit scheme:

x(t) = x(t− 1) + ∆t× f(x(t− 1), g−1(x(t− 1), ξ),u, ξ), (5.3)

where ∆t is the time step in the simulation process. For time domain simulation, the

desired state variables are obtained step-by-step. To investigate the impact of uncer-

tain resources on dynamic responses, the relationship between ξ and state variables are
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rewritten into the following compact form:

x = M(ξ, t), (5.4)

where in this paper ξ refers to uncertainties from loads and PVs and x contains rotor

angle; M represents the simulator for dynamic responses. In the case that the uncertain

input is unchanged during the dynamic simulation process (ξ ≡ ξ0), the rotor angle at

each time point can be viewed as a function of the initial condition, which means:

xt = Mt−1(xt−1, ξ0) = Mt−1(Mt−2 · · ·M0(x0, ξ0)), (5.5)

Combining Equations (5.2)-(5.5), we build a surrogate model with the output being rotor

angles over the whole simulation time.

5.1.2 PPGP Emulator for Large-scale Probabilistic TSA

We develop surrogate models to emulate the simulator in Equation (5.4) by learning

the dynamic responses at many time points and rotor angles as in Equation (5.5) to

accelerate the computation. For each input ξ = [ξ1, . . . , ξp], the output rotor angle is

a T × ng matrix xmat(ξ) with (t, g) entry being xt,g(ξ) for time points t = 1, ..., T

and rotor g = 1, ..., ng. We vectorize the rotor angle swing matrix to define a Tng-

dimensional vector x(ξ) = Vec[xmat(ξ)] for any given input ξ. In our numerical study,

the dimensions of output and inputs on the Texas 2000-bus system [27] are s = T ×ng =

120 × 282 = 33, 840 and p = 2, 352, respectively, which are both large. To address

the computational challenge of emulating functions with both large input and output

dimensions, we extend the PPGP surrogate model [62] to emulate the simulator M that

produces a high dimensional rotor angle swing vector for each input. Here we sample
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the input from distributions that mimic the real applications. Typical input distribution

for power system simulations includes copula [148], which contains correlations between

each input coordinate. This is intrinsically different from the traditional “space-filling”

designs, such as the Latin hypercube design, as the aim is not to fill the entire input region

but a subregion that represents the real scenarios. This choice is critical to approximate

practical scenarios and reduce the high-dimensional input space that is not easily filled

by the Latin hypercube design. Second, we use an isotropic kernel for faster and more

robust optimization in high-dimensional input spaces, as opposed to the product kernel

used in [62].

The system response for dynamic systems is time-dependent, leading to the evolution

of statistics as a function of time. As a result, the PPGP emulator at each of the ith

output xi(ξ), for i=1, ..., s, assumes distinct mean parameter µi and variance parameter

σ2
i , which makes it flexible to capture variability in different rotors. On the other hand,

the covariance parameters between two functions are assumed to be shared across each

output in PPGP for computational purposes. Furthermore, we also include a small noise

parameter to account for small numerical solution errors. Putting together, for the ith

output rotor angle swing from Equation (5.4), the PPGP model follows

xi(ξ) = Mi(ξ) + ϵi, (5.6)

where ϵi is a Gaussian noise with variance σ2
i η and Mi(ξ) follows a stationary Gaussian

process with mean µi and covariance σ2
i c(ξ, ξ

′; γ) with kernel range parameter γ and

variance parameter σ2
i . Integrating out the latent Gaussian process Mi(ξ), any marginal

distribution of the ith output at any set of inputs {ξ1, ..., ξn} follows a multivariate
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normal (MN) distribution

(xi(ξ1), ..., xi(ξn))
T | µi, σ

2
i , η,R ∼ MN (µi1n, σ

2
i (R+ ηIn)), (5.7)

where σ2
iR is a covariance matrix with the (j, j′)th entry being σ2

iRj,j′ = σ2
i c(ξj, ξj′ ; γ)

and In is an n× n identity matrix. Here σ2
i c(ξ, ξ

′; γ) denotes a covariance function with

the variance parameter σ2
i and kernel parameter γ. As the input dimension (p) is large,

we use an isotropic kernel, meaning the covariance matrix is a function of the inputs’

Euclidean distance d = ||ξ − ξ′|| for any inputs ξ and ξ′ and Matérn covariance with

roughness parameters α = 2.5 in Equation (1.9).

The total number of parameters contain mean parameters µ=(µ1, ..., µs)
T , variance

parameters σ2=(σ2
1, ..., σ

2
s)

T , range and nugget parameter (γ, η). We assume an objective

prior distribution of the parameters [62]:

π(µ1, . . . , µs, σ
2
1, . . . , σ

2
s , γ, η) ∝

π(γ, η)∏s
i=1 σ

2
i

, (5.8)

where π(γ, η) denotes the prior for the range and nugget parameters, which will be

discussed soon.

Assume we have n simulation runs on design inputs {ξ1, ..., ξn} which produces n× s

output matrix xD = [xD
1 , ...,x

D
s ], where xD

i = [xi(ξ1), . . . , xi(ξn)]
T , for i = 1, ..., s. The

key is that the large number of mean and variance parameters can be integrated out

explicitly. Given a set of the range and nugget parameters, the predictive distribution of

the ith output for any new test input ξ∗ follows:

p(xi (ξ
∗) | xD, γ, η) =

∫
p(xi (ξ

∗) | xD,µ,σ2, γ, η)dµdσ2, (5.9)

and the resulting predictive distribution of the left-hand side follows a t-distribution with
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n− 1 degrees of freedom:

xi (ξ
∗) | xD, γ, η ∼ T

(
x̂i (ξ

∗) , σ̂2
i c

∗∗, n− 1
)
, (5.10)

where the predictive mean and scale parameters follow

x̂i (ξ
∗) = µ̂i + rT (ξ∗)K−1

(
xD
i − µ̂i1n

)
, (5.11)

σ̂2
i =

1

n− 1

(
xD
i − µ̂i1n

)T
K−1

(
xD
i − µ̂i1n

)
, (5.12)

c∗∗ = 1 + η − rT (ξ∗)K−1r (ξ∗)

+
(
1T
nK

−11n

)−1 (
1− 1T

nK
−1r (ξ∗)

)2
, (5.13)

with K = R + ηIn and µ̂i=
(
1T
nK

−11n

)−1
1T
nK

−1xD
i being the generalized least squares

estimator for µi, for i = 1, ..., s, 1n = (1, . . . , 1)T being an n-dimensional vector of ones

and r (ξ∗)=(c (d∗1; γ) , . . . , c (d
∗
n; γ))

T with d∗j = ||ξ∗ − ξj|| for j = 1, ..., n.

The only two parameters that require numerical optimization are the range and nugget

parameters (γ, η). Directly estimating these parameters by the maximum likelihood

estimator could lead to unstable estimation, as the correlation matrix becomes close

to an identity matrix and an all-one matrix [69]. A way to avoid this problem is to

transform the range parameter to inverse range parameter β = 1/γ, and estimate (β, η)

by the maximum marginal posterior mode estimation with a jointly robust prior [70]:

(β̂, η̂) = argmax
β,η

log(p(xD|β, η)πJR(β, η)). (5.14)

Here p(xD | β, η) is the marginal likelihood of (β, η) after integrating out the mean and
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variance parameters, which has a closed form expression [62]:

p(xD | β, η) ∝ |K|−
s
2 |1T

nK
−11n|−

s
2

s∏
i=1

(S2
i )

−n−1
2 , (5.15)

where S2
i = (xD

i )
TQxD

i with Q = K−1P and P = In − 1n

(
1T
nK

−11n

)−1
1T
nK

−1, and

πJR(β, η) is a jointly robust (JR) prior:

πJR(β, η) ∝ (Cβ + η)a exp (−bCβ + η) , (5.16)

where a > −2, b > 0 and C > 0 are prior parameters. The default choice of a, b and

C are discussed in [70]. The JR prior has a closed-form expression and approximates

the reference prior [69], which helps avoid unstable estimation from the maximum profile

likelihood and maximum marginal likelihood estimation. The low-storage quasi-Newton

optimization method (L-BFGS) [67] is used for numerical estimation of the range and

nugget parameters in Equation (5.14). After parameter estimation, we can compute

the predictive distribution for predicting the responses of any new input using Equation

(5.10).

5.1.3 Numerical Results

The proposed PPGP method for probabilistic TSA is verified on the Texas 2000-bus

system [27]. The synchronous generators are modeled as the two-axis model according

to [149]. A three-phase fault is applied at but 793 at 0.5s and is cleared after 5 cycles

by opening the line 793-823. The inputs consist of uncertain loads and renewable gen-

erations. For verification purposes, the synthetic dataset is obtained where loads are

assumed to follow Gaussian distribution and PVs are modeled by Beta distribution and

wind generations follow Weibull distribution. The correlation between input variables
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Figure 5.1: Diagram of the Texas 2000-bus system [27].

is characterized by copula [148]. Rotor angles of all generators are used as outputs for

transient stability analysis.

We compare four methods: LHS, Many SGP (MSGP), SGP, and the proposed PPGP

approaches. The benchmark result is obtained by MC simulation based on 105 samples.

The mean absolute percentage error (MAPE) is utilized for measuring the overall model

error:

eM =
1

T

1

ng

∑
T

∑
ng

∣∣∣∣x− x̂

x

∣∣∣∣× 100%, (5.17)

where T represents the number of simulation time points and ng is the number of gen-

erators; x and x̂ represent the true and estimated dynamic responses, respectively. Ad-

ditionally, the MAPE of the mean and variance of rotor angle swings are also used as

error indices for risk assessment, denoted as eµ and eσ2 . All simulations are conducted

using MATLAB on Intel Core i5-12400 with a performance-core base frequency of 2.50

GHz. The CPU evaluation (testing) time is the average CPU time of 10 runs on 10,000

samples.
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Figure 5.2: The upper and lower bounds of rotor angle δ40−1 in the 2000-bus system.

Figure 5.3: An example of the true dynamic response simulation and PPGP approxi-
mation with a 95% confidence interval.

Validation on the 2000-bus System

In this subsection, all the methods are tested on the Texas-2000 bus system that

contains 1411 loads and 282 generators as shown in Equation (5.1). A total number

of 471 PV farms and 470 wind generations are added into the system (as active power

injections), yielding an input vector with 2352 variables. The number of simulation time

points is 120 as the simulation lasts 6 seconds with time interval ∆t=0.05s. Along with

282 generators, the total number of outputs s reaches 33,840. For illustration purposes,
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Figure 5.4: True and estimated variances of δ40−1 from different methods for the
2000-bus system.

Table 5.1: Performance Evaluation for Different Methods on the 2000-bus System.

Method
MAPE CPU Time (s)

eM(%) eµ(×10−2%) eσ2(%) Train Test

MC — — — — 18589.82
LHS — 3.73 2.89 — 5838.16
MSGP 4.88 3.98 17.09 11870.39 5297.86
SGP 1.32 5.41 3.81 6074.37 3157.92
PPGP 0.53 4.12 2.22 939.63 399.56

the angle of generator 40 with respect to reference generator 1 is chosen for demonstration.

For LHS, 3,000 samples are used. MSGP and PPGP methods are trained based on 1,000

samples. For SGP, the training dataset is designed as 1,000 samples with 100 inducing

points. Matérn kernel with roughness parameter α = 5/2 is utilized for all GP-based

methods.

Figure 5.2 shows how the rotor angle swing is affected by the uncertain resources with

upper and lower bounds calculated using the 3σ rule and the variation of trajectories that

arises from different initial conditions. Figure 5.3 illustrates an example of the response

curve of one rotor over all time points with a held-out input. The out-of-sample prediction

by PPGP, shown by the orange dashed curve, is accurate and the uncertainty of the
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prediction can be quantified by the predictive intervals shown as the shaded area. The

predictive intervals cover most of the held-out observations. Furthermore, the estimated

variance by the PP-GP is closer to the true variance than alternative methods, such as

SGP and MSGP, demonstrated in Figure 5.4.

As shown in Table 5.1, the proposed PPGP has the smallest MAPE of the overall

model error, eM(%), compared with MSGP and SGP. It also requires less computational

time than the other two methods. In comparison, the eM(%) by MSGP is an order of

magnitude larger than the one by PPGP. This is because the MSGP is not as stable as

PPGP, since MSGP requires training s separate emulators and the parameters in each

emulator need to be numerically optimized. The model performance might be improved

with more samples introduced, but the cost of computation will also increase cubically fast

to the number of observations, as MSGP has O(n3s) computational complexity. For the

SGP method, the result seems closer to the true trajectory but it fails to approximate

the overall shape of the true curve. SGP is able to utilize more samples due to the

usage of inducing points, but the improvement of model performance by the increase of

sample number will diminish rapidly as computational accuracy is hindered by the fixed

number of inducing points. Increasing the number of inducing points may improve the

performance but the computational complexity will also rapidly increase.

The model efficiency is represented by CPU time for model evaluation on 10,000

samples, i.e., CPU time of testing in Table 5.1. As a sampling method, the computa-

tional cost of LHS is linearly proportional to the number of samples involved. The time

cost for MSGP evaluation is much larger than LHS, not to mention the time for train-

ing. By means of inducing points and variational inference, SGP manages to achieve

faster evaluation time. Nevertheless, the efficiency improvement is not significant enough

considering the loss of precision for forecasting dynamic responses. The PPGP has the

smallest computational cost and overall predictive error. Even if the dimension of input
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(d = 2, 352) and the dimension of the output (s=33, 840) are both large and the overall

predictive error (eM(%)) by PPGP is less than 1%. This is because the mean and vari-

ance parameters in PPGP can be explicitly integrated out in calculating the predictive

distribution in Equation (5.10), and the kernel parameters are assumed to be shared

across different output coordinates. Increasing the number of observations can improve

the predictive accuracy of PPGP, and the approximation methods, such as the ICML

technique introduced before, can be used to further reduce the computational cost of

PPGP.

5.2 Limitations and future directions for online change-

point detection method

In this section, we outline several limitations and future directions for the SKFCPD

approach proposed in Chapter 2. This approach effectively models temporal correlations

in the data, enabling the detection of changes in mean and variance for time series with

a large number of observations. However, the SKFCPD method has its limitations that

need further exploration.

• First, the SKFCPD is unable to model cross-dimension correlations for multidi-

mensional data. While principal component analysis was used before the CUSUM

algorithm for changepoint detection of multivariate time series [150], coherent sta-

tistical models that consider temporal correlation, such as vector autoregressive

models [96] and latent factor processes [151], may be appealing to extend the scal-

able changepoint detection approach to multidimensional data.

• Second, while the SKFCPD method can detect various types of changes, it cannot

distinguish them. Introducing a hypothesis testing step after detecting a change-
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point, as shown in Algorithm 4, could help distinguish specific change types. Ad-

ditionally, techniques like penalized likelihood methods [152] or Bayesian methods

that offer posterior odds for change types, hold promise for enabling the change-

point detection algorithm to identify the types of changes.

• Furthermore, SKFCPD is not specifically designed to detect the COVID-19 infec-

tion timing. Letting the SKFCPD focus on detecting the typical type of changes

and potential timings in COVID-19 patients could further improve the detection

performance. This could be achieved by incorporating the prior information into

the algorithm, as seen in [153].

Beyond these limitations, further exploration could include (1) conducting distributed

inference that maintains efficiency without requiring comprehensive patient information

from various clinics or hospitals [154], where the modeling of temporal correlation from

observations has often been neglected, and (2) studying shrinkage estimators to induce

sparsity in the state space model, as seen in estimating Granger causality [155], to enhance

efficient noise modeling and scalable estimation of dynamic changes.

5.3 Limitations and future directions for the epi-

demiology compartmental model

In this section, we list several limitations and future directions for the epidemiol-

ogy compartmental model we developed in Chapter 3 that can robustly and efficiently

estimate the COVID-19 transmission dynamics for over 3,000 U.S. counties.

• First, our findings are based on the available knowledge and model assumptions,

as with all other studies. One critical parameter is the death rate, assumed to be
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0.66% on average [117], whereas this parameter can vary across regions due to the

demographic profile of the population and available medical resources. The studies

of the prevalence of SARS-CoV-2 antibodies based on serology tests [113] can be

used to determine the size of the population who have contracted SARS-CoV-2,

and thus provides estimates on the death rate, as the death toll is observed.

• Second, we assume the infected population can develop immunity since recovery

for a few months, which is commonly used in other models. The exact duration of

immunity post-infection, however, remains unverified scientifically.

• Third, we assume that the number of susceptible individuals and, consequently, the

number of individuals who have contracted SARS-CoV-2 can be written as a func-

tion of the number of observed confirmed cases and test positive rates, calibrated

based on the death toll. More information such as the proportion of population

adhere to the mitigation measures, mobility, and demographic profile can be used

to improve the estimation of susceptible individuals in a region.

Beyond these limitations, our results can be used to mitigate the ongoing pandemic

of SARS-COV-2 and other infectious disease outbreaks in the future. The estimated

daily PoC SARS-CoV-2 at the county level, for example, is an interpretable measure to

understand the risk of contracting COVID-19 on a daily basis and a surveillance marker

to determine appropriate policy responses. Besides, Our method can be extended for

vaccination [44]. Finally, further studies of this measure relative to different mobility,

demographic information, and social-economic status can provide more precise guidance

for local officials to protect vulnerable populations from contracting SARS-CoV-2.
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5.4 Limitations and future directions for GP model

on data with massive output

In this section, we present several limitations and future directions for the GOLF

model proposed in Chapter 4. The GOLF model achieves fast computations by decom-

posing the likelihood function using orthogonal latent factor loadings and independent

factor processes. However, improvements can be made to address some limitations of the

GOLF model.

• First, the GOLF model assumes observations on a lattice, accommodating poten-

tial missing values. However, real-world datasets often display more complex and

irregular arrangements, deviating from a perfect lattice structure. To extend the

GOLF model’s applicability to a wider range of data structures, exploring approx-

imation methods for handling correlated data in non-lattice formats is essential.

A promising direction is integrating Nearest Neighbor Gaussian Process (NNGP)

approaches [54], known for their robustness in modeling spatially correlated data ef-

ficiently and scalably. Integrating NNGP with the GOLF model could significantly

enhance its adaptability to complex real-world datasets.

• Second, determining the optimal number of factors in the GOLF model remains

challenging, and reducing the number of factors can potentially improve computa-

tional efficiency. Techniques like Sparse PCA [156] could be valuable in developing

systematic factor selection methods.

• Furthermore, direct marginalization of factor processes through an elementwise

representation of GPs could further reduce computation times, especially when

drawing numerous posterior samples.
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Appendix of Chapter 2

A.1 Temporal Correlations in COVID-19 Patient Data

Figure A.1 shows autocorrelation function (ACF) and partial ACF [157] in the prob-

ability sequences of four COVID-19 patients, and the averages among all patients are

shown in Figure A.2. We found that positive lag temporal correlations are common

in longitudinal measurements of dialysis patients. The temporal correlation is modeled

in SKF, enabling detection of the changepoint more quickly and precisely than other

methods, such as BOCPD and CUSUM as shown in Table 2.1.
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Figure A.1: ACF and partial ACF for the predictive probability sequences of four
dialysis patients in Section 2.1.
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Figure A.2: Average ACF and Partial ACF for the predictive probability sequences
of all dialysis patients.

A.2 Derivation of Equation (2.1)

We show the derivation of Equation (2.1) for BOCPD. At the nth time point, the

joint distribution of measurements and most recent changepoint Cn can be derived below

p (y1:n, Cn = ti)

=
n−1∑
j=1

p (y1:n, Cn = ti, Cn−1 = tj)

=
n−1∑
j=1

p(yn, Cn = ti | y1:(n−1), Cn−1 = tj)p(y1:(n−1), Cn−1 = tj)

=
n−1∑
j=1

p(yn | y1:(n−1), Cn−1 = tj, Cn = ti)p(Cn = ti | Cn−1 = tj,y1:(n−1))p(y1:(n−1), Cn−1 = tj)

= p
(
yn | yi:(n−1), Cn = ti

)︸ ︷︷ ︸
predictive distribution

n−1∑
j=1

p (Cn = ti | Cn−1 = tj)︸ ︷︷ ︸
hazard

p
(
y1:(n−1), Cn−1 = tj

)

=


p
(
yn | yi:(n−1), Cn = ti

)
(1−H(ti)) p

(
y1:(n−1), Cn−1 = ti

)
, i < n,

p (yn | Cn = tn)H(tn)
∑n−1

j=1 p
(
y1:(n−1), Cn−1 = tj

)
, i = n,

where the first three equations directly follow from the conditional probability equation.

The fourth equation is based on Assumptions 1 and 2. First, given the most recent
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changepoint Cn = ti, the observations before and after time ti are independent. i.e.,

(y1:i−1 ⊥⊥ yi:n) | Cn = ti. This leads to the expression p(yn | y1:(n−1), Cn−1 = tj, Cn =

ti) = p(yn | yi:(n−1), Cn = ti). Second, the time point of the most recent changepoint

at the nth time Cn, conditioned on the most recent changepoint at the (n − 1)th time

Cn−1, is independent of the previous observations y1:(n−1), resulting in the expression

p(Cn = ti | Cn−1 = tj,y1:(n−1)) = p(Cn = ti | Cn−1 = tj).

Two scenarios are considered in the last equation. First, when i < n, the most recent

changepoint Cn = ti is prior to time tn, indicating that time tn is not a changepoint. By

the definition of hazard function in Section 2.2.1, the summation over j from 1 to n− 1

in the fourth equation is reduced to j = i in the fifth equation when i < n. Second,

when i = n, meaning that tn is a changepoint, Cn−1 = tj could take any values from t1

to tn−1. Consequently, the summation over p(y1:(n−1), Cn−1 = tj) in the fourth equation

still holds in the fifth equation when i = n.

A.3 Derivation of Equation (2.7)

We show the derivation of Equation (2.7). Denote the observations from times ti to

tn as yi:n = (yi, . . . , yn)
T . n′ = n − i + 1 represents the total number of observations

from ti to tn. We assume that all observations in yi:n are from the same time segment

and follow the GP model with the same mean parameter µ and variance parameter σ2.

Denote the parameter set as Θ = (µ, σ2, γ, η). Given an objective prior for µ and σ2

such that π(µ, σ2) ∝ 1
σ2 , the likelihood function for yi:n, with µ and σ2 integrated out,

133



Appendix of Chapter 2 Chapter A

has the following form for any i < n− 1.

p(yi:n | γ, η) =
∫

p (yi:n | Θ) π(µ, σ2)dµdσ2

∝ (2π)−
n′
2 |Kn′ |−

1
2

×
∫ (

σ2
)−n′

2
−1

exp

(
− 1

2σ2
(yi:n − µ1n′)TK−1

n′ (yi:n − µ1n′)

)
dµdσ2

∝ (2π)−
n′
2 |Kn′ |−

1
2

∫ (
σ2
)−n′

2
−1

exp

(
− 1

2σ2
yT
i:nMn′yi:n

)
× exp

(
− 1

2σ2

(
µ−

(
1T
n′K−1

n′ 1n′
)−1

1T
n′K−1

n′ yi:n

)T
1T
n′K−1

n′ 1n′

×
(
µ−

(
1T
n′K−1

n′ 1n′
)−1

1T
n′K−1

n′ yi:n

))
dµdσ2

∝ (2π)−
n′−1

2 |Kn′ |−
1
2

(
1T
n′K−1

n′ 1n′
)− 1

2

×
∫ (

σ2
)−n′−1

2
−1

exp

(
− 1

2σ2
yT
i:nMn′yi:n

)
dσ2

∝
(π
2

)−n′−1
2

τ

(
n′ − 1

2

)
|Kn′|−

1
2

(
1T
n′K−1

n′ 1n′
)− 1

2
(
yT
i:nMn′yi:n

)−n′−1
2 , (A.1)

where

Mn′ = K−1
n′ −K−1

n′ 1n′
(
1T
n′K−1

n′ 1n′
)−1

1T
n′K−1

n′ .

Therefore, for any i < n− 1, given the likelihood function for yi:n in Equation (A.1),

the predictive distribution of yn given yi:(n−1) can be derived as follows.

p(yn | yi:(n−1), γ, η) =
p(yi:n | γ, η)

p(yi:(n−1) | γ, η)

∝
Γ
(
n′−1
2

)
Γ
(
n′−2
2

) ( |Kn′|
|Kn′−1|

)−1/2
( ∣∣1T

n′K−1
n′ 1n′

∣∣∣∣1T
n′−1K

−1
n′−11n′−1

∣∣
)−1/2

exp
(
−S2

n′

)
(A.2)

where S2
n′ =

(
n′−1
2

)
log
(
yT
i:nMn′yi:n

)
−
(
n′−2
2

)
log
(
yT
i:(n−1)Mn′−1yi:(n−1)

)
.

However, when i = n − 1, the predictive distribution of yn given yn−1 can’t be com-
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puted by Equation (A.2).This is due to the fact that n′, representing the number of

observations between time ti and tn, is equal to 2, which results in the divergent Gamma

function Γ(n
′−2
2

) = Γ(0). In this case, we need to separately integrate out the parameters

µ and σ2 in order to compute the predictive distribution p(yn | yn−1, γ, η). First, we

integrate out µ with prior distribution π(µ) ∝ 1 in the joint distribution follows

p(yi:n | σ2, γ, η) =

∫
p (yi:n | Θ) π(µ)dµ

∝ (2π)−
n′
2 |Kn′ |−

1
2

×
∫ (

σ2
)−n′

2 exp

(
− 1

2σ2
(yi:n − µ1n′)TK−1

n′ (yi:n − µ1n′)

)
dµ

∝ (2π)−
n′
2 |Kn′ |−

1
2

∫ (
σ2
)−n′

2 exp

(
− 1

2σ2
yT
i:nMn′yi:n

)
× exp

(
− 1

2σ2

(
µ−

(
1T
n′K−1

n′ 1n′
)−1

1T
n′K−1

n′ yi:n

)T
1T
n′K−1

n′ 1n′

×
(
µ−

(
1T
n′K−1

n′ 1n′
)−1

1T
n′K−1

n′ yi:n

))
dµ

∝
(
2πσ2

)−n′−1
2 |Kn′ |−

1
2

(
1T
n′K−1

n′ 1n′
)− 1

2 exp

(
− 1

2σ2
yT
i:nMn′yi:n

)
.

(A.3)

And the predictive distribution, when i = n− 1, after integrating out µ, is as follows.

p(yn | yi:(n−1), σ
2, γ, η) = p(yn | yn−1, σ

2, γ, η) =
p(y(n−1):n | σ2, γ, η)

p(yn−1 | σ2, γ, η)
.

∝
(
σ2
)− 1

2

(
|Kn′|
|Kn′−1|

)−1/2
( ∣∣1T

n′K−1
n′ 1n′

∣∣∣∣1T
n′−1K

−1
n′−11n′−1

∣∣
)−1/2

exp

(
− 1

2σ2
yT
i:nMn′yi:n

)
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Then, we integrate out the parameter σ2 with the prior distribution π(σ2) ∝ 1
σ2 .

p(yn | yn−1, γ, η) =

∫
p(yn | yn−1, σ

2, γ, η)π(σ2)dσ2

∝
∫ (

σ2
)−3/2

(
|Kn′ |
|Kn′−1|

)−1/2
(

1T
n′K−1

n′ 1n′

1T
n′−1K

−1
n′−11n′−1

)−1/2

× exp

(
− 1

2σ2

(
yT
(n−1):nMn′y(n−1):n

))
dσ2

∝
(

|Kn′ |
|Kn′−1|

)−1/2
(

1T
n′K−1

n′ 1n′

1T
n′−1K

−1
n′−11n′−1

)−1/2 (
yT
(n−1):nMn′y(n−1):n

)−1/2
. (A.4)

Combining Equations (A.2) and (A.4), we have for i from 1 to n− 1,

p
(
yn | yi:(n−1), γ, η

)
=

p (yi:n | γ, η)
p
(
yi:(n−1) | γ, η

)
∝


Γ(n

′−1
2

)

Γ(n
′−2
2

)

(
|Kn′ |

|Kn′−1|

)−1/2
(

1T
n′K

−1
n′ 1n′

1T
n′−1

K−1
n′−1

1n′−1

)−1/2

exp (−S2
n′) , i < n− 1(

|Kn′ |
|Kn′−1|

)−1/2
(

1T
n′K

−1
n′ 1n′

1T
n′−1

K−1
n′−1

1n′−1

)−1/2 (
yT
(n−1):nMn′y(n−1):n

)−1/2

, i = n− 1

where S2
n′ =

(
n′−1
2

)
log
(
yT
i:nMn′yi:n

)
−
(
n′−2
2

)
log
(
yT
i:(n−1)Mn′−1yi:(n−1)

)
and Mn′ =

K−1
n′ −K−1

n′ 1n′
(
1T
n′K−1

n′ 1n′
)−1

1T
n′K−1

n′ .

A.4 Proof of Lemma 3

Proof: Let the observations Y1:n′ = (Y1, . . . , Yn′)T follow a multivariate normal

distribution with correlation matrix Kn′ , i.e.

Y1:n′ ∼ MN (0,Kn′). (A.5)
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The likelihood function of Y1:n′ can be decomposed as follows.

l(Y1:n′ ;Kn′) = (2π)−
n′
2 |Kn′ |−

1
2 exp

(
−1

2
YT

1:n′K−1
n′ Y1:n′

)
= (2π)−

n′
2 |Kn′ |−

1
2 exp

(
1

2
YT

1:n′UT
n′Un′Y1:n′

)
= (2π)−

n′
2 |Kn′ |−

1
2 exp

(
1

2

n′∑
k=1

(Un′Y1:n′)2k

)
, (A.6)

where (·)k represents the k-th element in the vector. The second equation is a result

of applying the Cholesky decomposition on the correlation matrix, where Kn′ = Ln′LT
n′ .

Here, Ln′ is a lower triangular matrix. Consequently, we have K−1
n′ = UT

n′Un′ , with

Un′ = L−1
n′ .

Next, we show that the likelihood function l(Y1:n′ ;Kn′) in Equation (A.6) is a function

of the Kalman filter parameters in Lemma 1. Based on Equation (1.23), the predictive

distribution of Yk given Y1:(k−1) for k = 2, . . . , n′ takes the following form.

p(Yk | Y1:(k−1)) ∼ N (fk, Qk), (A.7)

where fk, and Qk are scalar Kalman filter parameters that can be computed in time

complexity O(1) iteratively. We will discuss the details of this computation later in this

section. When k = 1, based on Equation (1.23), we have p(Y1) ∼ N (f1, Q1), where f1 = 0

and Q1 = F1D1F
T
1 +η. Therefore, the likelihood function of Y1:n′ from the Kalman filter
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follows.

l(Y1:n′ ;Kn′) = p(Y1)
n′∏
k=2

p(Yk | Y1:(k−1))

=
n′∏
k=1

(2π)−
1
2Q

− 1
2

k exp

(
−1

2

(Yk − fk)
2

Qk

)

= (2π)−
n′
2

n′∏
k=1

Q
− 1

2
k exp

(
−1

2

n′∑
k=1

(Yk − fk)
2

Qk

)
, (A.8)

where the first equation is formulated using conditional probability, and the second equa-

tion is from Equation (A.7). Since Equations (A.6) and (A.8) are equivalent for any

n′ > 0, terms in Equation (A.6) can be replaced by the Kalman Filter parameters in

Equation (A.8), i.e.

|Kn′|−
1
2 =

n′∏
k=1

Q
− 1

2
k and (A.9)

(Un′Y1:n′)k =
Yk − fk

Q
1
2
k

for any 1 ≤ k ≤ n′ (A.10)

We denote un′ = Un′1n′ = (u1, . . . , un′)T and vi,n′ = Un′yi:n = (vi,1, . . . , vi,n′)T .

By substituting Y1:n′ in Equation (A.10) with 1n′ and yi:n, respectively, we have for

k = 1, . . . , n′,

uk = (Un′1n′)k =
1− fu

k√
Qu

k

,

vi,k = (Un′yi:n)k =
yi+k−1 − f v

i,k√
Qv

i,k

,

(A.11)

where fu
k and Qu

k are the Kalman filter parameters when Y1:n′ = 1n′ in Equation (1.23),

and f v
i,k and Qv

i,k are the Kalman filter parameters when Y1:n′ = yi:n.

Next, we discuss in detail the sequential computation process of Kalman filter pa-

rameters fu
k , Q

u
k , f

v
i,k and Qv

i,k for k = 1, . . . , n′. Based on Lemma 1, for the vector un′ ,
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given the matrics Fu
k−1, G

u
k−1, d

u
k−1 and Du

k−1 at the (k− 1)-th step and the matrics Fu
k ,

Gu
k and Wu

k at the k-th step, we have the updating equations below when k ≥ 2

fu
k = EY1:k

[Yk | Y1:(k−1) = 1k−1, γ, η]

= Fu
kd

u
k

= Fu
kG

u
km

u
k−1

= Fu
kG

u
kd

u
k−1 + Fu

kG
u
kD

u
k−1(F

u
k−1)

T 1− fu
k−1

Qu
k−1

= guk (f
u
k−1, Q

u
k−1), and (A.12)

Qu
k = VY1:k

[Yk | Y1:(k−1) = 1k−1, γ, η]

= Fu
kD

u
k(F

u
k)

T + σ2
0

= Fu
kG

u
kB

u
k−1(F

u
kG

u
k)

T + Fu
kW

u
k(F

u
k)

T + η

= βu
1,k + βu

2,k

1

Qu
k−1

= hu
k(Q

u
k−1), (A.13)

where βu
1,k = Fu

kG
u
kD

u
k−1(F

u
kG

u
k)

T +Fu
kW

u
k(F

u
k)

T + η and βu
2,k = −

(
Fu

kG
u
kD

u
k−1(F

u
k−1)

T
)2
.

For k = 1, the initialization of fu
1 and Qu

1 from Equation (1.23) follows

fu
1 = 0

Qu
1 = Fu

1D
u
1(F

u
1)

T + η.

(A.14)

Similarly, for the vector vi,n′ , given the matrics Fv
i,k−1, G

v
i,k−1, d

v
i,k−1 and Dv

i,k−1 at

the (k − 1)-th step and the matrics Fv
i,k, G

v
i,k and Wv

i,k at the k-th step, we have the

following updating equations for k ≥ 2.
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f v
i,k = EY1:k

[Yk | Y1:(k−1) = yi:(i+k−2), γ, η]

= Fv
i,kd

v
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= Fv
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v
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= Fv
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v
i,k−1 + Fv
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v
i,k−1(F

v
i,k−1)

T
yi+k−2 − f v

i,k−1

Qv
i,k−1

= gvi,k(f
v
i,k−1, Q

v
i,k−1), and (A.15)

Qv
i,k = VY1:k

[Yk | Y1:(k−1) = yi:(i+k−2), γ, η]

= Fv
i,kD

v
i,k(F

v
i,k)

T + σ2
0

= Fv
i,kG

v
i,k(F

v
i,kG

v
i,kB

v
i,k−1)

T + Fv
i,kW

v
i,k(F

v
i,k)

T + σ2
0

= βv
1,i,k + βv

2,i,k

1

Qv
i,k−1

= hv
i,k(Q

v
i,k−1), (A.16)

where βv
1,i,k = Fv

i,kG
v
i,kD

v
i,k−1(F

v
i,kG

v
i,k)

T + Fv
i,kW

v
i,k(F

v
i,k)

T + σ2
0 and βv

2,i,k = −(Fv
i,kG

v
i,k

Dv
i,k−1(F

v
i,k−1)

T )2. For k = 1, the initialization of fu
1 and Qu

1 from Equation (1.23) follows

f v
i,1 = 0,

Qv
i,1 = Fv

i,1D
v
i,1(F

v
i,1)

T + η.

(A.17)

A.5 Proof of Theorem 1

Proof:
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The fast computation of the predictive distribution p
(
yn | yi:(n−1), γ, η

)
can be achieved

by sequential Kalman filter. By applying the Cholesky decomposition on the correla-

tion matrix Kn′ , we have Kn′ = Ln′LT
n′ , where Ln′ is a lower triangular matrix, and

K−1
n′ = UT

n′Un′ with Un′ = L−1
n′ . Then, by denoting un′ = Un′1n′ = (u1, . . . , un′)T and

vi,n′ = Un′yi:n = (vi,1, . . . , vi,n′)T , we have the following equations.

1T
n′K−1

n′ 1n′ = 1T
n′UT

n′Un′1n′ = uT
n′un′ ,

yT
i:nK

−1
n′ yi:n = yT

i:nU
T
n′Un′yi:n = vT

i,n′vi,n′ ,

yT
i:nK

−1
n′ 1n′ = yT

i:nU
T
n′Un′1n′ = vT

i,n′un′ ,

|Kn′ |
|Kn′−1|

=
Πn′

k=1Q
u
k

Πn′−1
k=1 Q

u
k

= Qu
n′ ,

(A.18)

where the last equation is derived based on Equation (A.9).

Given the Equation (A.18), the predictive distribution p
(
yn | yi:(n−1), γ, η

)
in Equa-

tion (2.7) can be represented using the two vectors un′ and vi,n′ . For i < n − 1, we

have

p
(
yn | yi:(n−1), γ, η

)
∝

Γ
(
n′−1
2

)
Γ
(
n′−2
2

) ( |Kn′|
|Kn′−1|

)−1/2
( ∣∣1T

n′K−1
n′ 1n′

∣∣∣∣1T
n′−1K

−1
n′−11n′−1

∣∣
)−1/2 (

yT
i:nMn′yi:n

)−n′−1
2(

yT
i:(n−1)Mn′−1yi:(n−1)

)−n′−2
2

∝
Γ
(
n′−1
2

)
Γ
(
n′−2
2

) ( |Kn′|
|Kn′−1|

)−1/2
(

|1T
n′K−1

n′ 1n′ |
|1T

n′−1K
−1
n′−11n′−1|

)−1/2
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×
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i:nK
−1
n′ 1n′

(
1T
n′K−1

n′ 1n′
)−1

1T
n′K−1

n′ yi:n

)−n′−1
2

(
yT
i:(n−1)K

−1
n′−1yi:(n−1) − yT

i:(n−1)K
−1
n′−11n′−1

(
1T
n′−1K

−1
n′−11n′−1

)−1
1T
n′−1K

−1
n′−1yi:(n−1)

)−n′−2
2

∝
Γ
(
n′−1
2

)
Γ
(
n′−2
2

)(Qu
n′)−1/2

(
uT
n′un′

uT
n′−1un′−1

)−1/2

×

(
vT
i,n′vi,n′ − vT

i,n′un′
(
uT
n′un′

)−1
uT
n′vi,n′

)−n′−1
2

(
vT
i,n′−1vi,n′−1 − vT

i,n′−1un′−1

(
uT
n′−1un′−1

)−1
uT
n′−1vi,n′−1

)−n′−2
2

∝
Γ
(
n′−1
2

)
Γ
(
n′−2
2

) (Qu
n′)

−1/2

(
uT
n′un′

uT
n′−1un′−1

)−1/2

exp
(
−S2

n′

)
,

where S2
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(
n′−1
2

)
log
(
yT
i:nMn′yi:n

)
−
(
n′−2
2

)
log
(
yT
i:(n−1)Mn′−1yi:(n−1)

)
, and yT

i:nMn′yi:n =

vT
i,n′vi,n′ −

(
uT
n′un′

)−1 (
vT
i,n′un′

)2
. The third proportion is derived based on Equation

(A.18). For i = n− 1, similarly we have

p(yn | yi:(n−1), γ, η)

∝
(

|Kn′|
|Kn′−1|

)−1/2
( ∣∣1T

n′K−1
n′ 1n′

∣∣∣∣1T
n′−1K

−1
n′−11n′−1
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yT
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)− 1
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∝ (Qu
n′)

− 1
2

(
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n′un′

uT
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yT
i:nMn′yi:n

)−1/2
.

The main advantage of expressing the predictive distribution p
(
yn | yi:(n−1), γ, η

)
in

terms of vectors un′ and vi,n′ is the reduction of computational complexity. Based on

Equation (A.11), vectors un′ and vi,n′ can be sequentially updated from un′−1 and vi,n′−1

with only O(1) operations. Consequently, when written as functions of un′ and vi,n′ , the

predictive distribution p
(
yn | yi:(n−1), γ, η

)
can also be sequentially computed in O(1)

operations.
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Table A.1: Comparisons of time complexity between SKF and other online change-
point detection methods for detecting the most recent changepoint when there are n
observations.

Method
Computational
complexity

Temporal correlation
Allow detecting
variance change

Cumulative sum chart
[100]

O(1) No No

Bayesian online changepoint detection
[78, 79]

O(n) No Yes

Bayesian analysis with dependence
across regimes

[37]
O(n)

Dependence
across segments

No

Detecting abrupt changes
[38]

O(n)
Dependence from

autocorrelated noise
No

Gaussian process
changepoint detection

[39]
O(n3)

Dependence
within segments

Yes

SKF O(n′)
Dependence

within segments
Yes

A.6 Comparison and Connection with Other Models

We compare various online changepoint detection methods in Table A.1. For instance,

the cumulative sum (CUSUM) chart [100, 150] and BOCPD methods do not consider

temporal correlation in the data. To address this issue, [37] introduces a piecewise poly-

nomial regression model that considers temporal correlations between segments, yet this

method doesn’t model the temporal correlation within each segment, an aspect our ap-

proach effectively handles. Additionally, [38] specifically targets detecting mean shifts in

time series with autocorrelated noise. However, our proposed approach can detect both

mean and variance shifts, making it a more flexible solution for changepoint detection.

The GPCPD method [39] models correlation between observations at each time point,

whereas it has a large computational cost. In comparison, the computational complexity

of SKF scales linearly to the number of observations between the most recent change-

points and the previous changepoint in the SKF algorithm. Furthermore, the mean and

variance are efficiently integrated out in SKF based on the most recent observations,
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which makes it particularly suitable for online changepoint detection.

Other techniques to reduce computational complexity include rank 1 update [95],

which has higher computational complexity than SKF. Another approach to reduce the

computational complexity is to factorizing the semi-separable covariance matrix in a

backward recursive algorithm [158]. The SKF has two advantages over this approach.

First, we integrate out mean and variance parameters in SKF, which is crucial for comput-

ing the predictive distribution based on the latest information for changepoint detection.

Secondly, the SKF algorithm is applicable to all dynamical linear models that go beyond

the Gaussian process with a Matérn kernel.

A.7 The CUSUM Algorithm

The cumulative sum (CUSUM) control chart is an online changepoint detection algo-

rithm [100]. Denote y1, . . . , yn as observations from time t1 to tn. We define y∗j =
yj−ȳ1:j
σ̂1:j

as standardized observations for j = 1, . . . , n, where the ȳ1:j and σ̂1:j are the sample mean

and standard deviation for all the observations until time tj, respectively. A changepoint

is detected at time tn if either of the two CUSUM statistics conditions are met, i.e.,

S+
n > h or S−

n < −h, (A.19)

where

S+
n = max(0, S+

n−1 + y∗n −Kn),

S−
n = −max(0, S−

n−1 − y∗n +Kn),

(A.20)

are the upper and lower CUSUM statistics at time tn, respectively. The parameters

Kn and h control the sensitivity of the CUSUM method to detect the changepoints.

Specifically, the parameter Kn is the deviation between the normalized observations y∗n
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and the standardized mean zero that we wish to detect. For example, Kn = 0.5 indicates

that the mean shift we aim to detect for the normalized observations y∗n is at least

0.5. Similarly, the parameter h controls the distance between the CUSUM statistics and

the baseline zero we want to detect. In both simulations and real data analysis, we tune

parameters Kn and h to control type-I errors during training. Once set, these parameters

remain constant when identifying change points on testing samples.

A.8 Simulation Studies with Misspecified Configu-

rations

To test the robustness of the SKF method, we perform simulated studies under mis-

specified conditions, using data from a GP model having a Matérn covariance function

with roughness parameter being 2.5 while employing an Exponential correlation in the

SKF algorithm for changepoint detection. For comparison, we also implemented the

BOCPD and CUSUMmethods, using the configurations from Section 2.3.1. This involves

considering three types of changes, including changes in mean, variance, and correlation.

For each configuration, 100 simulation experiments are conducted. In each of these, 100

observations are generated, with the initial 50 serving as training samples. The true

changepoint is set at time 75, and we record the average detection delay for all methods.

Figure A.3 shows the average detection delay for the misspecified SKF method, the

BOCPD method, and the CUSUM method. Notably, even when misspecified, the SKF

method consistently outperforms the other methods with a lower average detection delay.

The better performance of the SKF method, even with a misspecified correlation function,

can likely be attributed to its ability to recognize and capture temporal correlations within

the data. This ability enables the SKF method to avoid detecting false changepoints
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Figure A.3: Violin plots comparing average detection delay for SKF, BOCPD, and
CUSUM methods for 100 simulations. The data are simulated with the Matérn corre-
lation and the roughness parameter being 2.5, while we use misspecified Exponential
correlation in the SKF method to detect changepoints. A method with a low average
detection delay is better. µ0, σ

2
0 and γ0 represent pre-change parameter values, while

µ, σ2 and γ on the x-axis stand for post-change parameter values.

from large fluctuations caused by these temporal correlations, thereby reducing false

detections. In contrast, methods such as BOCPD and CUSUM are not able to account for

these temporal correlations, potentially leading to a higher rate of false positives. Given

that we maintained a consistent type-I error rate across all methods during training,

BOCPD and CUSUM required larger hazard parameters due to their increased sensitivity

to false positives, resulting in higher average detection delays compared to SKF.

A.9 Definition of the Covering Metric

Define the ordered set of latent true changepoints as τ = {τ1, . . . , τm1}, where τi takes

values in time indices 1, . . . , n and τi < τj for i < j. This ordered set τ induces a partition

G, separating the interval [t1, tn] into m1 + 1 disjoint sets A = {A1, . . . ,Am1+1}. The

ordered set of detected changepoints is denoted as τ̂ = {τ̂1, . . . , τ̂m2}, where m2 may not

be the same as m1. The partition induces by τ̂ is denoted as G ′, with the corresponding

disjoint set represented as A′ =
{
A′

1, . . . ,A′
m2+1

}
. The covering metric between two
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partitions is defined as:

C(G,G ′) =
1

n

m1+1∑
i=1

|Ai| max
1≤j≤m2+1

J(Ai,A′
j), (A.21)

where |Ai| represents the number of observations in Ai, and J(Ai,A′
j) =

|Ai∩A′
j|

|Ai∪A′
j|

is the

Jaccard index.

A.10 An Integrated Algorithm to Detect the COVID-

19 Infection

Algorithm 4 An integrated algorithm to detect COVID-19 infection

Require: Logit transformation of classification probabilities {yt}nt=1 from a classification
model, such as XGBoost.

Ensure: A set of detected changepoints τ̂ .
1: Estimate the range parameter and nugget parameter (γ̂, η̂) by maximizing the

marginal likelihood across all the patients using n0 training time points, after in-
tegrating out the distinct mean and variance parameters for each patient.

2: Apply SKF in Algorithm 1 using n0 training time points to control the type-I error
to be 0.4%, the baseline COVID-19 positive proportion.

3: for j in (n0 + 1) : n of each patient do
4: Run Algorithm 1 on the observations y(n0+1):j to obtain Ĉj, the most recently

detected changepoint before or at time tj.

5: When the detected changepoint Ĉj is within seven days before the current time

tj, i.e. tj − Ĉj ≤ 7, we test the following hypothesis to identify the increasing
subsequence:

H0 : µ1 = µ2 vs Ha : µ1 < µ2,

where µ1 and µ2 are the mean of the subsequences y(n0+1):(Ĉj−1) and yĈj :j
. When

the test statistics in Equation (A.25) of appendix fall into a rejection region, we add
the value of Ĉj to the changepoint set τ̂ and mark the 7-day period following the

changepoint Ĉj, i.e. t ∈ [Ĉj, Ĉj + 7], as COVID-19 positive for this patient.
6: end for

An integrated procedure to detect the changepoint from the COVID-19 infection is
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summarized in Algorithm 4. We first apply a data-driven classification model to patients’

clinical data, here chosen as the XGBoost method [36], which was previously found to be

accurate in detecting COVID-19 among dialysis patients [30, 87] compared to a few other

statistical learning algorithms. In principle, our changepoint detection method can be

applied along with any statistical learning method that gives classification probabilities.

We also implemented other statistical learning methods, such as logistic regression and

random forests [35], for baseline comparisons. All methods were trained on longitudinal

data from 20% of randomly selected patients, encompassing four million observations.

For all approaches, we apply the logit transformation to the probability sequences for

mapping the outcomes to the real line. We found that the estimated probabilities of

infection are rarely 0 or 1. To prevent numerical errors in the logit transformation, one

may replace 0 and 1 with the smallest and largest estimated probabilities within (0,1),

respectively.

Second, we apply SKF to detect the change in the daily prediction probabilities of

COVID-19 infection from a classification approach, chosen to be XGBoost herein. For

demonstration purposes, we compared different approaches for patients with n > 150

samples, where the first n0 = 100 samples, labeled as COVID-19 negative, are used as

training data to estimate the parameters in changepoint detection approaches, and the

remaining samples are used as testing data to evaluate the detection performance. We

use an exponential covariance in Equation (2.4) with the shared range and nugget param-

eters across patients estimated by maximizing the likelihood of all patients in the training

data set, which can improve estimation stability [62]. The mean and variance parame-

ters for different patients and segments are allowed to be distinct, and these parameters

are integrated out when computing marginal likelihood and predictive distributions. The

distinct mean and variance parameters are flexible for modeling longitudinal observations

from a large number of patients.
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For both BOCPD and SKF, we utilized the county-level daily Probability of Contract-

ing (PoC) COVID-19 [107] for specifying the hazard function, which is used to control the

type I error, described in Step 2 in Algorithm 4. The time-dependent PoC quantifies the

average daily COVID-19 transmission probability at the county level among susceptible

individuals base on the daily infection and death counts. We found that specifying the

hazard function proportional to PoC improves the detection accuracy with a constant

hazard function.

Furthermore, we developed an additional screening step to detect the onset of an

increasing subsequence in infection probabilities through a hypothesis test (Step 5 in

Algorithm 4), as typically the increase of the probability sequences of infection should

be detected. Once the detected changepoint passes this screening step, we mark the

seven-day period after the detected changepoint as COVID-19 positive [106].

The integrated approach is generally applicable to detect changes from longitudinal

data.

Next, we show the derivation of the test statistic in Step 5 of Algorithm 4. Denote the

test dataset from time tn0+1 to tj as yn0+1:j, where tn0+1 is the start time of the testing

samples and j ≥ n0 + 1. At the time tj, if the estimated most recent changepoint Ĉj

satisfies that Ĉj > n0 + 1 and |tj − Ĉj| ≤ 7, we test the following hypothesis to identify

if Ĉj is a valid changepoint, meaning that the subsequences around Ĉj, i.e. yn0+1:Ĉj−1

and yĈj :j
, have an increasing trend. We assume that yn0+1:Ĉj−1 ∼ MN (µ11, σ

2Kn′
1
) and

yĈj :j
∼ MN (µ21, σ

2Kn′
2
), where n′

1 = Ĉj−n0−1, n′
2 = j− Ĉj+1, and test the following

hypothesis.

H0 : µ1 = µ2 vs Ha : µ1 < µ2.
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The generalized least square estimators for the mean parameters are as follows.

µ̂1 =
(
1T K̂−1

n′
1
1
)−1

1T K̂−1
n′
1
y(n0+1):(Ĉj−1),

µ̂2 =
(
1T K̂−1

n′
2
1
)−1

1T K̂−1
n′
2
yĈj :j

,

where the correlation matrices K̂n′
1
and K̂n′

2
are determined using range and nugget

parameters γ̂ and η̂ estimated from the training samples y1:n0 .

Under the null hypothesis, we have

µ̂2 − µ̂1 ∼ MN (µ∗, (σ∗)2), (A.22)

where

µ∗ = E[µ̂2]− E[µ̂1] = µ2 − µ1 = 0,

(σ∗)2 = V[µ̂1] + V[µ̂2]

= σ2

((
1T K̂−1

n′
1
1
)−1

+
(
1T K̂−1

n′
2
1
)−1
)
. (A.23)

Therefore the test statistic has the following form when we assume the variance σ2 and

the correlation matrix K1 and K2 are known.

z =
µ̂2 − µ̂1 − µ∗√

(σ∗)2
=

µ̂2 − µ̂1√
σ2

((
1T K̂−1

n′
1
1
)−1

+
(
1T K̂−1

n′
2
1
)−1
) , (A.24)

Under the null hypothesis, z ∼ N (0, 1). In the real data analysis, we estimate the

parameters, including the variance σ2, the range parameter γ, and nugget parameter η in

the correlation matrix K̂n′
1
and K̂n′

2
, from the training data. Therefore, by plugging the

parameters estimated from the training data into the test statistic z in Equation (A.24),
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we get the following test statistic.

z =
µ̂2 − µ̂1√

σ̂2

((
1T K̂−1

n′
1
1
)−1

+
(
1T K̂−1

n′
2
1
)−1
) , (A.25)

where

σ̂2 =
1

n− 1
(y1:n0 − 1µ̂0)

T K̂−1
n0

(y1:n0 − 1µ̂0) ,

µ̂0 =
(
1T K̂−1

n0
1
)−1

1T K̂−1
n0
y1:n0

The range and nugget parameters (γ̂, η̂) are plugged into correlation matrices to obtain

K̂n′
1
and K̂n′

2
. As the sample size in the training period is large, we approximate the

threshold of the test statistic by normal approximation. We assume normal approxi-

mation for the threshold of the test statistic z when comparing the means of two long

subsequences, y(n0+1):(Ĉj−1) and yĈj :j
. The robustness of our approach is maintained by

the hazard parameter in the SKF method, ensuring Type I error control irrespective of

the threshold choice.

A.11 Sensitivity Analysis

We show the sensitivity analysis on the definition of the COVID-19 positive period.

In the COVID-19 analysis described in Section 2.4, we defined the positive period from

day -2 to day 7, with day 0 being the date the patient received a COVID-19 PCR test.

This choice was driven by the average incubation period of COVID-19 infection, which is

approximately 3 days [104, 105] before symptoms onset. However, this incubation period

may vary among patients.
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Table A.2: Comparisons of the statistical learning methods and online changepoint
detection methods, including CUSUM, BOCPD, and SKF on COVID-19 patient pre-
dictions with the baseline positive rate of 0.4%. The COVID-19 positive period starts
on day -4.

Precision Recall F1-score Detection Delay
Logistic Regression 0.055 0.133 0.077 1.538
Random Forest 0.087 0.125 0.087 2.086

XGBoost 0.082 0.179 0.113 1.799
CUSUM 0.032 0.020 0.025 3.142
BOCPD 0.200 0.154 0.174 4.856
SKF 0.268 0.145 0.188 3.886

SKF with screening 0.231 0.164 0.192 2.395

In this sensitivity analysis, we expanded the definition of the COVID-19 positive

period to be from day -4 to day 7. The results of this analysis are shown in Table

A.2. Notably, the comparative performance of the SKF and BOCPD methods remains

consistent with our findings in Section 2.4. Specifically, the SKF and BOCPD methods

continue to outperform all the statistical learning methods and the CUSUM method

in terms of the F1-score. It could be attributed to their ability to utilize retrospective

information through the recursive computation of the predictive distribution at each time

step, as described in Equation (2.7). Furthermore, consistent with the conclusion we

draw from Table 2.1, the SKF method displayed a lower detection delay and a higher F1-

score than the BOCPD method, which can be attributed to SKF’s ability to capture the

temporal correlations within time segments. These findings suggest that the performance

of the changepoint methods is not sensitive to the specific choice of the start date for the

COVID-19-positive period.
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Table A.3: Covering metric comparison for SKF, BOCPD and CUSUM. The highest
values in each row are in bold type.

Dataset SKF BOCPD CUSUM
brent spot 0.602 0.383 0.535
businv 0.814 0.471 0.510

construction 0.719 0.398 0.506
iceland tourism 0.624 0.685 0.617
jfk passengers 0.843 0.847 0.687
lga passengers 0.591 0.456 0.496

quality control 4 0.561 0.552 0.442
seatbelts 0.585 0.635 0.573

A.12 More Numerical Comparisons on Real-world

Datasets

In this section, we apply the SKF method and other classic online change point detec-

tion methods on a set of benchmark datasets in [80], which includes 37 time series from

various domains with ground truth change points annotated by five human annotators.

We select eight datasets with a relatively large number of observations and relatively

strong temporal correlations to compare our SKF method with other changepoint detec-

tion methods. The training data is created from the initial 50 observations of each series,

ensuring no changepoints are present. The distribution parameters for SKF and BOCPD

are estimated by maximizing the likelihood function on the training data. The hazard

parameters for all three changepoint methods are selected so that there is no changepoint

detected on the training data. All estimated parameters are then applied to the test data

to detect changepoints. As each time series may contain multiple changepoints, we utilize

the covering metric defined in Section (2.3.2) to evaluate the performance of the CPD

methods. Although all the real datasets are already collected at the time of testing, we

apply the SKF as though data points are observed sequentially.

Table A.3 shows the covering metric of the SKF and other CPD methods on the
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eight real datasets. The SKF method has the best covering metric in five out of eight

datasets, indicating its capability of detecting changepoints on temporally correlated

data. We highlight the functionality of the SKF method by discussing the businv dataset.

This dataset, sourced from the U.S. Census Bureau, contains the monthly total business

inventories in U.S. dollars from 1992 to 2019. It tracks the combined value of goods

held by manufacturers, wholesalers, and retailers each month, serving as an important

indicator of the health of the supply chain. Five human annotators in [80] identified seven

distinct actual change points within this data, which fall into two categories: (1) dot-com

crush: changepoints in 2002 marks the end of the dot-com bubble; (2) financial crisis:

the remaining change points in 2008 indicate the decline in total business inventories

caused by the financial crisis.

We fitted a GP model on data from 1992 to 1996 to estimate the variance parameter

σ2, range parameter γ, and nugget parameter η. With these estimations, we employed the

SKF method in the following years to detect the changepoints. The estimated change-

points, shown as red crossings in panel a of Figure A.4, match well with the actual

changepoints related to the two major events, the dot-com crash, and the financial crisis.

Further, panel b of this figure shows the posterior distribution of the most recent change-

points, with the red dashed line indicating the location of the changepoints at each time.

Regarding the results in Table A.3, the SKF on the business inventory dataset outper-

forms the BOCPD and CUSUM methods for the covering metric, which can be attributed

to the model of temporal correlation in the SKF method which was not considered in

BOCPD and CUSUM models.
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Figure A.4: The outputs of SKF on the US monthly total business inventory data from
1992 to 2019. Panel a shows the monthly total business inventory data. The actual
changepoints are marked by the black dashed lines. The estimated changepoints by
SKF are marked by the red crossings. Panel b displays the posterior probability
matrix of the most recent changepoints. The red dashed curve gives the estimated
most recent changepoints with the maximum a posterior (MAP) estimator at each
time step.
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Appendix of Chapter 3

This appendix contains two parts. In the first part, We discuss the details of model

parameter specification and conduct a sensitivity analysis. The forecast algorithm and

numerical comparison of different approaches are introduced in the second part.

B.1 Model parameter specification and sensitivity

analysis

We discuss the choice of the model parameters and their sensitivity analysis. The

following parameters of the SIRDC model were specified based on previous studies.

• The death rate or the infection fatality ratio (δ) that measures the proportion of

death among all infected individuals. We assume δ = 0.66% following [117].

• The inverse of the number of days an infectious individual can transmit the COVID-

19 (γ). The average time of a COVID-19 patient to transmit disease is assumed

to be 5 days in [116], indicating that γ = 0.2. Another evidence comes from the

study of the incubation period. The latent period (exposed but not contagious)
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for COVID-19 is found to be 3.69 days on average [109] and the mean incubation

period (time from infection to onset of symptoms) is 5.2 days [159], meaning that

the infectious period is around 1.5 days before the onset of symptom. The diagnostic

test could take less than one day to up to a week. We thus assume 3.5 days to get

the result of a diagnostic test on average. The total infectious period is around 5

days.

• The inverse of the number of dates for resolving case to get resolved (θ). Accord-

ing to the CDC report [160], for mild and moderate symptom, the replication-

competent virus has not been recovered after 10 days following symptom onset,

indicating the individuals remains infectious no longer than 10 days after symptom

onset. The infectious period could be as long as 20 days for patients with more se-

vere illness from COVID-19 infection. Since a majority of the COVID-19 infections

are mild to moderate, we assume the infectious period to be 13.5 days, and after

reducing 3.5 days from onset of the symptom to become resolving (after quaran-

tine or hospitalization), it takes around 10 days for a resolving case to resolved on

average.

We conduct a sensitivity analysis to examine the change of the estimation in 4 different

configurations.

• (Configuration 1) (γ, θ, δ) = (0.2, 0.1, 0.0066), the default parameter set.

• (Configuration 2) (γ, θ, δ) = (0.14, 0.1, 0.0066). The average length of infectious

period changes from 5 days to 1
0.14

≈ 7 days, whereas other parameters are held

unchanged.

• (Configuration 3) (γ, θ, δ) = (0.2, 0.067, 0.0066). The average length of resolving

period changes from 10 days to 1
0.067

= 15 days, whereas other parameters are held
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unchanged.

• (Configuration 4) (γ, θ, δ) = (0.2, 0.1, 0.0075). The infection fatality ratio changes

from 0.66% to 0.75%, whereas other parameters are held unchanged.

Figure B.1: sensitivity analysis for 4 configurations of the SIRDC model parameters.
Part a-d shows the estimated effective reproduction number, PoC SARS-CoV-2, the
number of active infectious individuals, and cumulative death toll, respectively.

After specifying the parameters (γ, θ, δ), the transmission rate β(t) can be obtained

from algorithm 1. Figure B.1 gives result of the sensitivity analysis. First, we found the

estimated death toll for 4 scenarios is almost the same (part d in Figure B.1). Extending

the infectious period from 5 to 7 days (Configuration 2) increases the number of active

infectious individuals and effective reproduction number shown in part a and part c

in Figure B.1, respectively. Consequently, the peak of average daily PoC SARS-CoV-2

slightly increases in the first wave, whereas the scale of increase is smaller than the change

in the effective reproduction number and active infectious individuals. The average daily

PoC SARS-CoV-2 has almost no change in other periods, indicating that the length of the
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average infectious period has almost no influence of our estimation on PoC SARS-CoV-2

for most of the days.

Second, when the average length of the resolving period changes from 10 to 15 days,

the peak of PoC SARS-CoV-2, effective reproduction number, and the number of active

infectious individuals increases in the first wave, whereas these quantities remain largely

unchanged for the rest of the days (part a-c in Figure B.1). The result indicates that the

average length of the resolving period also barely affects the estimated characteristics of

COVID-19 progression for most of the days.

When the death rate increases from 0.66% to 0.75%, the effective reproduction number

seems to have almost no change (part a in Figure B.1), whereas the PoC SARS-CoV-2

and the number of active infectious individuals (figure B.1 part b-c) both reduce. This

is because when the death rates increase, the estimated number of individuals infected

decreases, as the death toll is observed (and thus fixed). The death rate is a key parameter

to calibrate, and studies of the prevalence of SARS-CoV-2 antibodies based on serology

tests [113] can be used to estimate the death rate in each state.

In conclusion, parameter values of the average lengths of the infectious period and

the resolving period barely change the COVID-19 progression characteristics for most of

the days, including the fitted death toll. On the other hand, we found that the number

of active infectious individuals and the daily PoC SARS-CoV-2 depend critically on the

death rate parameter. Further studies of prevalence would be useful for estimating the

death rate parameter in different regions.
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Algorithm 5 Ensemble forecast and uncertainty assessment.

Require: coi,j, Di,j, pi, c
o
i , and Di.

Ensure: Estimates of county-level epidemiological compartments β̂i,j, Ŝi,j, Îi,j, R̂i,j,

Ĉi,j, forecast D̂∗
i,j, where D̂∗

i,j :=
(
D̂i,j(Ti,j + 1), . . . , D̂i,j(Ti,j + T ∗)

)T
, and the un-

certainty assessment of the compartments.

Step 1 Conduct a three-parameter constrained optimization treating state-level
power parameter αi unknown to minimize the loss function in equation (9)
using pi, c

o
i and Di.

Step 2 For each county, set initial values Ii,j(1) = Ri,j(1) = 1, 000, Ci,j(1) = 0 and
Di,j(1) to be the observed death toll on day 1. Find the optimized values of
Ii,j(1) and Ri,j(1) to minimize equation (9).

Step 3 Simulate S = 500 samples of the observed confirmed cases sampled from
the predictive distribution of a GP model of the observed confirmed cases. For
each sample, obtain the other compartments and time-dependent transmission
rate by equation (1)-(5) and algorithm 1 using the estimate of the initial values.

Step 4 Extrapolate the time-dependent transmission rate parameters from a GP
model for each sample and obtain S = 500 samples of the output death toll of
the SIRDC at the forecast period.

Step 5 Sample the residuals from the predictive distribution in Equation (11) in
the main manuscript at the forecast period and obtain S = 500 samples of the
ensemble forecast for the death toll. Compute the mean for forecast and 95%
predictive interval to quantify uncertainty of forecast.
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B.2 Algorithm of Forecast and Numerical Compari-

son

An overview of our algorithm for forecast and uncertainty assessment is given in

algorithm 5, where inputs are the county-level observed cumulative number of confirmed

cases coi,j = (coi,j(1), ..., c
o
i,j(Ti,j))

T , the county-level observed cumulative death toll Di,j,

the state-level test positive rate pi = (pi(1), ..., pi(Ti))
T , state-level confirmed cases coi =

(coi (1), ..., c
o
i (Ti))

T and state-level death toll Di = (Di(1), ..., Di(Ti))
T .

To evaluate the performance of different approaches, we implement 7-day and 21-

day forecasts on 2,277 US counties with a training period from 21 March 2020 to 20

September 2020, and with the forecast period starting from 21 September 2020. To

compare the prediction performance of different methods, we computed the rooted mean

square error (RMSE), the proportion of the observations covered in the 95% predictive

interval (PCI(95%)) and length of the 95% confidence interval (LCI(95%)), defined as

follows:

RMSE =

√√√√∑k
i=1

∑ni

j=1

∑
s∈t∗(D̂i,j(s)−Di,j(s))2∑k

i=1 niT ∗

PCI(95%) =
1∑k

i=1 niT ∗

k∑
i=1

ni∑
j=1

∑
s∈t∗

1{Di,j(s)∈CIi,j,s(95%)}

LCI(95%) =
1∑k

i=1 niT ∗

k∑
i=1

ni∑
j=1

∑
s∈t∗

length{CIi,j,s(95%)}

where t∗ := (Ti,j+1, . . . , Ti,j+T ∗), T ∗ = 7 and T ∗ = 21 for the 7-day forecast and 21-day

forecast, respectively. A model with small RMSE, PCI(95%) close to the nominal 95%

and small LCI(95%) is precise for forecast and uncertainty assessment.

A comparison between our approach and the other three approaches is recorded in
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Prediction period Method RMSE PCI(95%) LCI(95%)

7 days

SIRDC+GP 3.04 95.06% 23.05
SIRDC 4.12 / /

GP without linear trend 3.18 91.29% 4.82
GP with linear trend 4.36 88.28% 5.51

21 days

SIRDC+GP 6.81 93.46% 28.37
SIRDC 7.79 / /

GP without linear trend 7.20 92.14% 11.74
GP with linear trend 11.93 76.94% 10.18

Table B.1: 7-day and 21-day forecast in 2,277 US counties with training period from 21
March 2020 to 20 September 2020 and with prediction period starting from 21 Septem-
ber 2020. Four methods are compared. Our proposed approach that combines the
SIRDC model and a zero-mean GP to model the residuals is denoted as SIRDC+GP.
Second, the death forecast by SIRDC model is denoted as SIRDC, which contains
Steps 1 and 2 in the algorithm 5 and provides point projection of the death toll.
Third, a GP with a constant mean function is denoted as GP without linear trend,
which equivalently replaces the SIRDC model of a constant mean parameter estimated
by the data for each county. The fourth model, denoted as GP with linear trend, is
the same as the third method, except that the mean of GP contains a constant mean
and a linear trend of time with two linear coefficient parameters estimated from the
data. The best method under each criterion is highlighted.

Table B.1. Our approach (denoted in SIRDC+GP) has the lowest RMSE among 4

methods considered herein. Approximately 95% of the held-out death toll are covered

by the 95% predictive interval by our approach, indicating our uncertainty assessment is

accurate. Although other approaches produce a shorter length of the predictive interval,

the number of held-out observations in the 95% predictive interval is smaller than ours.

Therefore, combining the SIRDC model and GP for modeling the residuals may improve

the predictive accuracy for forecasting COVID-19 associated death toll at US counties,

compared to the one using the SIRDC model or the GP model alone.
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Appendix of Chapter 4

This appendix contains three sections. The proof of Section 4.2 is given in Section C.1.

The additional numerical results for the simulated studies and real applications are given

in Section C.2 and Section C.3, respectively.

C.1 Proofs for Section 4.2

C.1.1 Auxiliary facts

1. Let A and B be matrices,

(A⊗B)T = (AT ⊗BT );

further assuming A and B are invertible,

(A⊗B)−1 = A−1 ⊗B−1.
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2. Let A, B, C and D be the matrices such that the products AC and BD are

matrices,

(A⊗B)(C⊗D) = (AC)⊗ (BD).

3. For matrices A, B and C,

(CT ⊗A)vec(B) = vec(ABC);

further assuming ATB is a matrix,

tr(ATB) = vec(A)Tvec(B).

4. For any invertible n× n matrix C,

|C+AB| = |C||In +BC−1A|.

C.1.2 Proofs for Section 4.2.1

The following denotation are used in the proof: Y−M = Y−M, Yv,−M = vec(Y−M),

Zvt = vec(ZT ) and Av = [In ⊗ a1, ..., In ⊗ ad]. Let Σv be an nd × nd matrix where the

lth diagonal block is Σl. Denote etr(.) = exp(tr(.)).
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Proof of Equation (4.4): Denote CY = (2πσ2
0)

−nk
2

∏d
l=1 |Σl/σ

2
0 + Ik|−1/2

. Directly

marginalizing out Z, one has

p(Y | Θ)

=CY exp

−
YT

v,−M

(
Ink −

∑d
l=1(σ

2
0Σ

−1
l + In)

−1 ⊗ (ala
T
l )
)
Yv,−M

2σ2
0


=CY exp

(
−
YT

v,−MYv,−M −YT
v,−M

∑d
l=1 vec(ala

T
l Yv,−M(σ2

0Σ
−1
l + In)

−1)

2σ2
0

)

=CY etr

(
−
YT

−MY−M −
∑d

l=1 ỹlỹ
T
l (σ

2
0Σ

−1
l + In)

−1

2σ2
0

)

=CY exp

(
−
∑d

l=1 ỹ
T
l (Σl/σ

2
0 + In)

−1ỹl +
∑n1

l=d+1 ỹ
T
l ỹl

2σ2
0

)
,

where the first equation is based on Lemma 1 and the Woodbury matrix identity (to

compute the normalizing constant CY ); the second and third equations are from fact

3; the fourth equation is from Woodbury matrix identity. The Equation (4.4) follows

immediately.

□

Proof of Corollary 1: The proof is implied by the proof of Theorem 4 in [123]. For

completeness of this article, we include the proof below.

From Equation (4.1) and Equation (4.2), we have

p(Zvt | Y,Θ) ∝ exp

(
(Yv,−M −AvZvt)

T (Yv,−M −AvZvt)

2σ2
0

)
exp

(
−1

2
ZT

vtΣ
−1
v Zvt

)
∝ exp

{
−1

2
(Zvt − µZvt)

T

(
AT

vAv

σ2
0

+Σ−1
v

)
(Zvt − µZvt)

}
,
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where µZvt = (AT
vAv + σ2

0Σ
−1
v )−1AT

vYv,−M . Note AT
vAv = Ind, from which we have

Zvt | Y,Θ ∼ MN

(
µZvt ,

(
1

σ2
0

In1n2 +Σ−1
v

)−1
)
. (C.1)

Based on vectorization, one has

µZvt =


(
σ2
0Σ

−1
1 + In

)−1 ⊗ aT
1

...(
σ2
0Σ

−1
d + In

)−1 ⊗ aT
d

 vec(Y) =


vec
(
aT
1Y−M

(
σ2
0Σ

−1
1 + In

)−1
)

...

vec
(
aT
dY−M

(
σ2
0Σ

−1
d + In

)−1
)


= vec


aT
1Y−M

(
σ2
0Σ

−1
1 + In

)−1

...

aT
dY−M

(
σ2
0Σ

−1
d + In

)−1


T

. (C.2)

Note that the covariance matrix of µZvt is a block diagonal matrix. The results follow

by Equation (C.2) and the Woodbury matrix identity.

□

C.1.3 Proofs for Section 4.2.2

Note AF = [As,Ac] = [a1, a2, ..., an1 ], where Ac is an n1 × (n1 − d) matrix of the

orthogonal complement of As. We need the following lemma to prove Theorem 2.

Lemma 4 After marginalizing out the factors Z, we have the marginal posterior distri-

bution of the transformed regression coefficients,

1. (Marginal distribution of transformed row regression coefficients). Assume M =

H1B1 and the objective prior π(B1) ∝ 1 for B1. Let B̃1 = [b̃1,1, ..., b̃1,n1 ] =

BT
1H

T
1AF be an n2 × n1 matrix of transformed coefficients. Assume the marginal
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posterior distribution of B̃1 follows

p(B̃1 | Y,Θ−B1) =
d∏

l=1

PN (b̃1,l; ỹl, Σ̃l)

n1∏
l=d+1

PN (b̃1,l; ỹl, σ
2
0In2), (C.3)

where ỹl is defined in equation (4.4) and Σ̃l is defined in corollary 1. Then we can

sample (B1 | Y,Θ−B1) by (HT
1H1)

−1HT
1AF B̃

T
1 , where B̃T

1 are sampled from the

p(B̃1 | Y,Θ−B1) in equation (C.3).

2. (Marginal distribution of transformed column regression coefficients). Assume M =

(H2B2)
T and the objective prior π(B2) ∝ 1 for the regression parameters B2. Let

B̃2 = [b̃2,1, ..., b̃2,n1 ] = B2AF be a q2 × n1 matrix. The marginal posterior distribu-

tion of B̃2 follows

p(B̃2 | Y,Θ−B2) =

n1∏
l=1

PN (b̃2,l;µb̃2,l
,Σb̃2,l

), (C.4)

where µb̃2,l
= (HT

2 Σ̃
−1
l H2)

−1HT
2 Σ̃

−1
l ỹl and Σb̃2,l

= (HT
2 Σ̃

−1
l H2)

−1 for l = 1, ..., d;

µb̃2,l
= (HT

2H2)
−1HT

2 ỹl and Σb̃2,l
= σ2

0(H
T
2H2)

−1 for l = d+ 1, ..., n1.

Proof of Lemma 4:

1. (Marginal distribution of transformed row regression coefficients).

Denote (Baug
1 ) = [BT

1 , B̃1,(q1+1):n1 ]
T , where B̃1,(q1+1):n1 are the last n1 − q1 columns

of B̃1. Denote ptrans(B1 | Y,Θ−B1) and ptrans(B
aug
1 | Y,Θ−B1) the transformed

marginal posterior distribution of B1 and Baug
1 derived by transforming p(B̃1 |
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Y,Θ−B1) in Equation (C.3). We have

ptrans(B1 | Y,Θ−B1) ∝ ptrans(B
aug
1 | Y,Θ−B1) = p(B̃1 | Y,Θ−B1)

∣∣∣∣∣ dB̃1

dBaug
1

∣∣∣∣∣
∝ exp

{
−1

2

d∑
l=1

(b̃1,l − ỹl)
T Σ̃−1

l (b̃1,l − ỹl)−
1

2σ2
0

n1∑
l=d+1

(b̃1,l − ỹl)
T (b̃1,l − ỹl)

}

∝ exp

{
−1

2

d∑
l=1

aT
l (Y −H1B1)Σ̃

−1
l (Y −H1B1)

Tal

− 1

2σ2
0

n1∑
l=d+1

aT
l (Y −H1B1)(Y −H1B1)

Tal

}
,

where the last line is the same as the posterior distribution of B1 based on the

marginal likelihood in Equation (4.4) and the prior distribution π(B1) ∝ 1. Thus if

one sample B̃1 from Equation (C.3), one can obtain the sample for (B1 | Y,Θ−B1)

through (HT
1H1)

−1HT
1AF B̃

T
1 .

2. (Marginal distribution of transformed column regression coefficients).

Since π(B2) ∝ 1 is a Jeffreys prior, and B̃2 is a linear transformation of B2 with

the same dimension, we have π(B̃2) ∝ 1.

Based on the marginal likelihood in Equation (4.4) and the prior distribution, the

posterior distribution of B̃2 follows:

p(B̃2 | Y,Θ−B2)

∝ exp

{
−1

2

d∑
l=1

aT
l (Y −BT

2H
T
2 )Σ̃

−1
l (Y −BT

2H
T
2 )

Tal

− 1

2σ2
0

n1∑
l=d+1

aT
l (Y −BT

2H
T
2 )(Y −BT

2H
T
2 )

Tal

}
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∝ exp

{
−1

2

d∑
l=1

(ỹl −H2b̃2,l)
T Σ̃−1

l (ỹl −H2b̃2,l)

− 1

2σ2
0

n1∑
l=d+1

(ỹl −H2b̃2,l)
T (ỹl −H2b̃2,l)

}

∝ exp

{
−1

2

d∑
l=1

(
b̃2,l − µb̃2,l

)T
HT

2 Σ̃
−1
l H2

(
b̃2,l − µb̃2,l

)
− 1

2σ2
0

n1∑
l=d+1

(
b̃2,l − µb̃2,l

)T
HT

2H2

(
b̃2,l − µb̃2,l

)}
,

from which Equation (C.4) follows.

□

We are ready to prove Theorem 2.

Proof of Theorem 2: After marginalizing out Z, we have

1. (Row regression coefficients).

From Lemma 4, the posterior mean of (B̃1 | Y,Θ−B1) is YTAF , where AF :=

[As,Ac]. We denote the centered B̃1 by B̃1,0 = [B̃1,0,s, B̃1,0,c] = B̃1−YTAF , where

B̃1,0,s is the first d columns of B̃1,0 and B̃1,0,c is the last (n1 − d) columns of B̃1,0.

Let b̃1,0,l be the l-th column of B̃1,0. Then the posterior mean of (B1 | Y,Θ−B1)

can be calculated below

B̂1 = E(B1 | Y,Θ−B1) = E
(
(HT

1H1)
−1HT

1AF B̃
T
1 | Y,Θ−B1

)
= (HT

1H1)
−1HT

1AFA
T
FY = (HT

1H1)
−1HT

1Y

Note B1 = (HT
1H1)

−1HT
1AF B̃

T
1 , one has

B1 − B̂1 = (HT
1H1)

−1HT
1AF (B̃1,0)

T = (HT
1H1)

−1HT
1

(
AsB̃

T
1,0,s +AcB̃

T
1,0,c

)
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where B̃1,0,s is a n2 × d matrix with the lth column independently sampled from

N (0, Σ̃l) for l = 1, ..., d. For the distribution of AcB̃
T
1,0,c, using part 1 of Lemma 4,

we have

p(AcB̃
T
1,0,c | Y,Θ−B1) ∝ exp

{
− 1

2σ2
0

tr
(
AT

c B̃1,0,cB̃
T
1,0,cAc

)}
∝ exp

{
− 1

2σ2
0

tr
(
(I−AsA

T
s )B̃1,0,cB̃

T
1,0,c

)}
.

Thus we can sample AcB̃
T
1,0,c by σ0(I−AsA

T
s )Z0,1, where Z0,1 is an n1×n2 matrix

with each entry independently sampled from standard normal distribution. The

results soon follow.

2. (Column regression coefficients).

We first compute the posterior mean of (B2 | Y,Θ−B2) below

B̂2 = E(B2 | Y,Θ−B2) = E(B̃2A
T
F | Y,Θ−B2)

=
d∑

l=1

(HT
2 Σ̃

−1
l H2)

−1HT
2 Σ̃

−1
l YTala

T
l + (HT

2H2)
−1HT

2Y
T (In1 −AsA

T
s )

We denote the centered B̃2 by B̃2,0 = [B̃2,0,s, B̃2,0,c]. We have

B2 − B̂2 =B̃2,0A
T
F = B̃2,0,sA

T
s + B̃2,0,cA

T
c

where B̃2,0,s is a q2 × d matrix with the lth column independently sampled from
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N (0, (HT
2 Σ̃

−1
l H2)

−1) for l = 1, ..., d. For the distribution of B̃2,0,cA
T
c , we have

p(B̃2,0,cA
T
c | Y,Θ−B2) ∝exp

{
− 1

2σ2
0

tr
(
AcA

T
c B̃2,0,cH

T
2H2B̃

T
2,0,c

)}
∝exp

{
− 1

2σ2
0

tr
(
(I−AsA

T
s )B̃2,0,cH

T
2H2B̃

T
2,0,c

)}
.

Thus we can sample B̃2,0,cA
T
c by σ0(In1 − AsA

T
s )Z

T
0,2L

T
H2
, where LH2 is a q2 × q2

matrix such that LH2L
T
H2

= (HT
2H2)

−1 and Z0,2 is a q2×n1 matrix with each entry

independently sampled from standard normal distribution.

□

Lemma 5 Assume M = H1B1 + (H2B2)
T and let the objective prior π(B1,B2) ∝ 1

for the regression parameters B1 and B2. Denote B̃1 = [b̃1,1, ..., b̃1,n1 ] = BT
1H

T
1AF and

B̃2 = [b̃2,1, ..., b̃2,n1 ] = B2AF .

1. After marginalizing out Z and B1, assume the marginal posterior distribution of

B̃1 follows

p(B̃1 | Y,Θ−B1,−B2) =

n1∏
l=1

PN (b̃1,l; ỹl,Q1,l). (C.5)

where Q1,l = PT
l (Σ̃l)

−1Pl where Pl = I −H2(H
T
2 Σ̃

−1
l H2)

−1HT
2 Σ̃

−1
l for l = 1, ..., d

and Q1,l = σ2
0P0 with P0 = (I−H2(H

T
2H2)

−1HT
2 ) for l = d+1, ..., n1. The sample

(B1 | Y,Θ−B1,−B2) can be obtained by (HT
1H1)

−1HT
1AF B̃

T
1 , where B̃1 sampled from

the p(B̃1 | Y,Θ−B1,−B2) in Equation (C.5).

2. After marginalizing out Z and conditional on B1, the marginal posterior distribution

of B̃2 follows Equation in (C.4) by replacing ỹl by ỹl,B1 = (Y − H1B1)
Tal for

l = 1, ..., d.

171



Appendix of Chapter 4 Chapter C

Proof of Lemma 5: Denote Y0 = Y −H1B1 −BT
2H

T
2 . Define G = [g1,g2, ...,gn1 ] =

(Y −H1B1)
TAF . That is, gl = (Y −H1B1)

Tal.

First we have the joint posterior distribution (B1,B2 | Y,Θ−B1,−B2)

p(B1,B2 | Y,Θ−B1,−B2)

∝ exp

{
−1

2

d∑
l=1

aT
l Y

T
0 Σ̃

−1
l Y0al −

1

2σ2
0

n1∑
l=d+1

aT
l Y

T
0 Y0al

}

∝ exp
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2
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1

2σ2
0

n1∑
l=d+1

(gl −H2b̃2,l)
T (gl −H2b̃2,l)

}
,

where b̃2,l is a transformation of B2 defined in part 2 in Lemma 4.

After integrating out b̃2,l from p(B1,B2 | Y,Θ−B1,−B2) for l = 1, 2..., n1, one has

p(B1 | Y,Θ−B1,−B2)

∝ exp

{
−
∑d

l=1(gl −H2b̂2,l)
T Σ̃−1

l (gl −H2b̂2,l)

2
−
∑n1
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Where

b̂2,l =


(HT

2 Σ̃
−1
l H2)

−1HT
c Σ̃

−1
l gl l = 1, 2, ..., d

(HT
2H2)

−1HT
2 gl l = d+ 1, ..., n1

Denote Baug
1 = [BT

1 , B̃1,(q1+1):n1 ]
T , where B̃1,(q1+1):n1 is the last n1− q1 columns of B̃1.

Denote the marginal posterior distribution ptrans(B
T
1 | Y,Θ−B1,−B2 and ptrans(B

aug
1 |
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Y,Θ−B1,−B2 derived by the transformation of p(B̃1 | Y,Θ−B1,−B2) . One has

ptrans(B
T
1 | Y,Θ−B1,−B2)

∝p(Baug
1 | Y,Θ−B1,−B2)

=p(B̃1 | Y,Θ−B1,−B2)

∣∣∣∣∣ dB̃1

dBaug
1

∣∣∣∣∣
∝ exp

{
−
∑n1

l=1 g
T
l Q1,lgl

2

}

Because Q1,l is idempotent, i.e. Q1,lQ1,l = Q1,l, the Moore–Penrose inverse of Q1,l is

Q1,l itself. Therefore for l = 1, ..., d, b̃1,l | Y,Θ−B1,−B2 ∼ M(ỹl, Q1,l), from which the

part 1 follows. Part 2 follows Lemma 4.

□

We are ready to prove Theorem 3.

Proof of Theorem 3: By Lemma 5, the posterior mean of B̃1 | Y,Θ−B1,−B2 is Y
TAF ,

where AF := [As,Ac]. We denote the centered B̃1 by B̃1,0 = [B̃1,Q, B̃1,0,c] = B̃1−YTAF ,

where B̃1,Q is the first d columns of B̃1,0 and B̃1,0,c is the next (n1 − d) columns of B̃1,0.

Then the posterior mean of B1 | Y,Θ−B1,−B2 can be calculated below

B̂1 = E (B1 | Y,Θ−B1,−B2) = E
(
(HT

1H1)
−1HT

1AF B̃
T
1 | Y,Θ−B1,−B2

)
= (HT

1H1)
−1HT

1AFA
T
FY = (HT

1H1)
−1HT

1Y

Note B1 = (HT
1H1)

−1HT
1AF B̃

T
1 , one has

173



Appendix of Chapter 4 Chapter C

Figure C.1: The simulated data with full observations, disk missing pattern and
missing-at-random pattern with 50% of the missing values are graphed in the left,
middle and right panels, respectively.

B1 − B̂1 = (HT
1H1)

−1HT
1AF (B̃1,0)

T = (HT
1H1)

−1HT
1 (As(B̃1,Q)

T +Ac(B̃1,0,c)
T )

where by Lemma 5, B̃1,Q is an n2 × d matrix with the lth column independently

sampled from N (0,Q1,l) for l = 1, ..., d. For the distribution of AcB̃
T
1,0,c, using part 1 of

Lemma 5, we have

p(AcB̃
T
1,0,c|Y,Θ−B1,−B2)

∝ exp

{
1

2σ2
0

tr
(
AcA

T
c B̃1,0,cP0(B̃1,0,c)

T
)}

∝ exp

{
− 1

2σ2
0

tr
(
(I−AsA

T
s )B̃1,0,cP0(B̃1,0,c)

T
)}

.

Thus we can sample marginal posterior distribution of AcB̃
T
1,0,c by σ0(I−AsA

T
s )Z0,1P0,

where Z0,1 is an n1 × n2 matrix with each entry independently sampled from standard

normal distribution. The results soon follow.

□
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Figure C.2: Trace plots of the posterior samples of the parameters in the exact GP
model and the GOLF processes for the simulated data in figure C.1.

C.2 Additional Results of Simulated Studies in Sec-

tion 4.5

We provide additional results for the simulated studies in Example 3 in Figure C.1

and Figure C.2. We graph the simulated data set with full observations, disk missing

pattern and missing-at-random pattern with 50% of the missing values in Figure C.1.

The posterior samples of the logarithm of the inverse range parameter of factor loading

matrix, the nugget parameter and the inverse range parameter of the factors are graphed

from the upper to lower panels in Figure C.2, respectively. The posterior samples of

parameters in the exact GP model and GOLF processes are similar to each other.
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Figure C.3: The predictive performance of GOLF process with d = 5, 10, 20, 30, 40, 50
and 100 factors for Example 4, when the true number of factor is dreal = 100 in gener-
ating the data. The nonseparable kernel with distinct kernel parameters is assumed to
generate the data in the first row of panels, and separable kernel with the same kernel
parameter of each factor process is used for simulation in the second row of panels.
The blue curves and red curves denote the performance by the GOLF processes with
the different kernel parameters and the same kernel parameter, respectively. In the
left panels, the solid curves denote the RMSE for predicting the (noisy) observations,
and the dashed curve denote the RMSE for predicting the mean of the observations.
The proportions of observations covered in the 95% predictive interval and the av-
erage length of the predictive interval are graphed in the middle and right panels,
respectively.
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C.3 Additional Results for Real Applications in Sec-

tion 4.6.1

In this section, we include additional results for GOLF processes predicting the miss-

ing values of the temperature data set discussed in [125]. We show the details of 5

different configurations of GOLF processes, where the result reported in the main body

of the article is the configuration 1. For all the configurations, the proportion of the

burn-in samples is 20%. We use the normal distribution centered on the previous values

as the proposal distribution of the logarithm of the inverse range parameters and loga-

rithm of the nugget parameters. For the logarithm of the inverse range parameters of the

factor loading matrix, the standard deviation of the proposal distribution is 40/n1. For

the logarithm of the inverse range parameters and the nugget parameters of the factor

processes, the standard deviation of the posterior distribution is set to be 40/n2.

sample size system initial Y ∗
v,i initial log(β0) initial log(βl)

Conf. 1 6000 Mac mean at each latitude 3 0
Conf. 2 6000 Win mean at each latitude 3 0
Conf. 3 40000 Mac mean at each latitude 3 0
Conf. 4 40000 Mac overall mean + noise 3 0
Conf. 5 40000 Mac mean at each latitude Unif[-1,1] Unif[-1,1]

Table C.1: Detailed settings of 5 different configurations of GOLF processes for the
data set in [125]. The number of samples and the computing system are shown in the
second column and third column, respectively. The choice of the initial values of the
missing data is given in the fourth column, using either the mean of the observations
at each latitude or overall mean of the observations with a small random Gaussian
noise (with standard deviation being 0.1 times of the standard deviation of the ob-
servations). The initial values of the logarithm of the inverse range parameters are
either chosen to be a fixed value or randomly sampled from the uniform distribution,
shown in column 5-6.

The details of 5 configurations are given in Table C.1. The predictive RMSE, PCI(95%)

and LCI(95%) of the 5 configurations are given in Table C.2. The predictive RMSE is

similar for all 5 configurations. Increasing the posterior sample size seems to slightly
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Methods RMSE PCI(95%) LCI(95%)
Configuration 1 1.46 0.92 4.95
Configuration 2 1.50 0.91 4.92
Configuration 3 1.44 0.94 7.70
Configuration 4 1.48 0.94 7.75
Configuration 5 1.51 0.93 5.16

Table C.2: Predictive performance of 5 different implementations for the data set in [125].

increase the proportion of the samples contained in the 95% predictive interval.

Figure C.4: Diagnostic plots of the GOLF processes for the data set in [125].

The fitted values from the GOLF processes in configuration 1 against the residuals

and the normal Q-Q plot are graphed in left panel and the right panel in Figure C.4,

respectively. The Q-Q plot indicates the fitted values are slightly left-skewed and slightly

under-dispersed.
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