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ABSTRACT OF THE DISSERTATION

Essays in Asset Pricing

by

Junxiong Gao

Doctor of Philosophy in Management

University of California San Diego, 2023

Professor Rossen Valkanov, Chair
Professor Jun Liu, Co-Chair

This dissertation comprises three papers examining questions in asset pricing,

investigating the implications of new asset pricing theories on the cross-section and

time series of asset prices. The papers are as follows:

Chapter 1 studies how the fat-tailed distribution of US firm size generates extra

risk premiums compared to the classical theory. The author refers to this fat tail as

”granularity” and shows that it breaks the diversification of idiosyncratic risks assumed

by arbitrage pricing theory (APT) to imply factor models. In the cross-section, large

firms have higher idiosyncratic risk premiums than small firms despite having a lower

xii



level of risk. This finding explains the negative relation between idiosyncratic risk and

risk premium, known as the ”idiosyncratic risk premium puzzle.” On aggregate, the

level of granularity, measured by the Pareto distribution, explains market expected

returns since it determines the under-diversification of idiosyncratic risk.

Chapter 2 (joint work with Rossen Valkanov and Yan Xu) investigates the joint

dynamics and predictability of asset returns for the equity, treasury, and foreign asset

investment sectors, utilizing their respective valuation ratios constructed from their

intertemporal budget constraints. We propose a new framework that enforces an

aggregate accounting identity of the three sectors using a constrained estimation by the

GMM method, which accounts for the cyclical movement of the whole economy. Our

key finding shows that the government surplus-to-debt ratio negatively predicts the risk

premium in the equity and foreign asset investment sectors. Our results suggest that

incorporating data from all three sectors and imposing aggregate budget constraints can

help to better identify how the fiscal policy adjustment channel propagates throughout

the economy.

Chapter 3 presents a model for modeling the correlation dynamics of stock

returns using a conditional factor model. In this model, the employment of factors

helps to reduce the estimation dimension by presenting the asset returns’ covariance

matrix as a quadratic function of the conditional covariance with factors. The factor

structure allows for a closed-form solution for the inverse and determinant of the

covariance matrix, which is convenient for computing the likelihood function and

allocating a minimum variance portfolio. The model accurately fits the realized

correlation among S&P 500 stocks computed from 5-minute data. It also generates

out-of-sample minimum variance portfolios with a higher information ratio.
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Chapter 1

Granular Asset Pricing

1



1.1 Introduction

According to the arbitrage pricing theory (APT), only a few common factors in

asset returns are tied to risk premiums, while idiosyncratic risks, as the ”residuals”

relative to these factors, are diversified away. This classical view is widely accepted in

asset pricing theory as it implies a tested factor structure in expected returns. However,

this may not hold true as the diversification of idiosyncratic risks does not always

occur in practice. The diversification assumption requires a thin-tailed distribution of

firm size, meaning that no firm is large enough for its firm-specific shocks to have a

systematic impact and be tied to the risk premium.

Contrary to the assumption of diversification, I have found evidence of firms

that are significantly larger than others in the US stock market, with high weights

in the market portfolio and a fat-tailed distribution of stock market values. I refer

to this phenomenon as the stock market granularity and theoretically show it breaks

the diversification of idiosyncratic risks in the market portfolio.1 Furthermore, large

firms have their idiosyncratic risks less diversified than small firms and have more risk

premiums tied to idiosyncratic risks.

The evidence of stock market granularity is striking and persistent over time. In

2020, the ten largest firms accounted for over a quarter of the total US stock market

value as shown in Figure 1.1. In addition, I listed the ten largest firms over decades

from the 1940s to the 2010s in Table 1.1 to show a level of granularity similar to

Figure 1.1 over time.2 Although the list of these large firms varies as production

technology evolves, they constantly have dominantly large market weights and break

1The stock market granularity is consistent with the fat-tailed distribution of firms’ fundamental
values documented in the literature (number of employees in Axtell (2001), sales as a proxy of production
value in Gabaix (2011), etc.) For my paper, measuring granularity in the stock market is natural since it
shows how firm-specific shocks can have systematic impacts by generating fluctuations in the market
portfolio.

2Specifically, I compute the average market weight of all firms available in each decade from the
1940s to 2010s.

2



the diversification of idiosyncratic risks. Therefore, I develop a theoretical framework

to study how the granular channel of under-diversified idiosyncratic risks affects asset

prices.

The first contribution of this paper is to demonstrate that granularity breaks

the diversification of idiosyncratic risks assumed in APT theory and generates an

idiosyncratic risk premium in expected returns in addition to the factor risk premiums.

The intuition behind this result is based on the classical view in APT theory that there

are two types of risks in asset returns: factors, which are the common components of

asset returns that drive the strong correlation among assets, and idiosyncratic risks,

which are firm-specific and have a weak correlation. I incorporate granularity into this

risk structure and use a competitive equilibrium approach (see Dybvig (1983), Grinblatt

and Titman (1983), Connor and Korajczyk (1995)), where a representative agent holds

the market portfolio. With granularity, both these two types of risks are tied to the risk

premium since they all affect the wealth fluctuation of the representative investor, but

they have different economic meanings and empirical patterns.

The second contribution of this paper is to provide a novel and simple-to-test

relation between idiosyncratic risk and expected returns in the cross-section. The

size-adjusted idiosyncratic risk (product of an asset’s market weight and variance of

idiosyncratic shock) positively explains the expected returns, with various factors and

characteristics controlled. With granularity, large firms have market weights signifi-

cantly higher than small firms and therefore have more idiosyncratic risk premiums.

This granular channel of risk compensation in expected return is ignored by the factor

models that assume diversification of idiosyncratic risks and is empirically different

from a factor risk premium, which is proportional to the factor risk exposure (”beta”).

Specifically, a factor driven by size states the opposite of my results, such that small

firms have high factor risk premiums due to high exposure to the factor risk.

Furthermore, my result of using the product of market weight and variance of

3



idiosyncratic shock (Ivar hereafter) reconciles tests in the literature that use Ivar only to

explain how idiosyncratic risks affect asset returns. As a leading example, it explains

the ”idiosyncratic risk premium puzzle” (IRP hereafter) that high Ivar firms have low

risk-compensation in expected returns in the cross-section, investigated in Ang et al.

(2006) and Ang et al. (2009).3 Small firms have high levels of Ivar due to an inverse

relation between the firm size and the level of risk. When the granularity is significant,

the size difference among firms is substantial such that large firms account for most of

the market valuation, as shown in Figure 1.1 and small firms have negligible market

weights. Consequently, firms with high idiosyncratic risks tend to have negligible

idiosyncratic risk premiums due to low impacts on the market. Conversely, firms with

low idiosyncratic risks are large firms with high idiosyncratic risk premiums due to

high market weights. I find that the granular explanation of IRP is robust to measuring

Ivar by various factor models and works within groups of firms separated by size.

The third contribution of my analysis is to test the aggregate impact of gran-

ularity on market returns. Tests in literature (see Campbell et al. (2001), Goyal and

Santa-Clara (2003), Bali et al. (2005)) measure the aggregate level of idiosyncratic risk

and use it to explain the aggregate variation of the stock market using a time-series

approach. As a separate channel, with the level of idiosyncratic risks controlled, a

high level of granularity implies less diversified idiosyncratic risk and hence should

increase the aggregate expected returns of the market portfolio. I measure the level of

granularity by a Pareto distribution and find this measure explains the time variation of

market risk premium, especially in longer time horizons, controlling for the measures

of idiosyncratic risks in the cited papers and additional predictors surveyed in Welch

and Goyal (2008).

Specifically, I fit the fat-tailed distribution of firms’ market values with the

3Hou and Loh (2016) gives a thorough survey of explanations in published papers for this puzzling
negative risk-return relation and concludes that none of them is sufficiently satisfying.
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Pareto distribution, which is frequently used in macroeconomic literature (see Gabaix

(2011)). It describes the fat tail parsimoniously with a single parameter, the Pareto

coefficient ζ. In my time-series tests, ζ measures the level of granularity and determines

the magnitude of idiosyncratic risks under-diversified to affect expected returns. When

ζ is small (ζ < 2), the distribution has a fat tail, such that there are large firms with

non-negligible market weight, and their idiosyncratic shocks generate size-related

abnormal returns, or ”alpha” relative to APT factors. Granularity becomes smaller as ζ

increases, and my analytical framework reverts to the conventional APT factor model

when ζ > 2. In this way, a thin-tail distribution of firm size invokes the law of large

numbers and diversifies idiosyncratic shocks sufficiently to have a negligible impact

on expected returns.

Related Literature

The paper relates to the massive amount of APT literature starting from Ross

(1976), which is one of the major topics in asset pricing research (see Chamberlain

and Rothschild (1983), Chamberlain (1983), Dybvig (1983), Connor and Korajczyk

(1986), Connor and Korajczyk (1993), Huberman (2005)). I take the definition of

diversification, factors, and idiosyncratic risk from Chamberlain and Rothschild (1983),

and Chamberlain (1983). Based on these definitions, I show how granularity breaks the

diversification and link it to the risk premium. Independently, there has been exciting

research to better identify the factors based on the APT framework and improve the

associating tests (see Feng et al. (2020), Kelly et al. (2020), Giglio et al. (2021) Giglio

and Xiu (2021),Giglio et al. (2022)).

The advantage of applying the APT framework is to set factor and idiosyncratic

risk as two independent components in asset returns. The independence is attractive

for the empirical test since it ensures the exogenous condition in estimating the

factor model by linear regressions. Alternative factor framework may not ensure this

advantage for the empirical test yet give similar risk-return relation to what’s derived
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in this paper. For example, Byun and Schmidt (2020) argue that the granularity induces

an endogenous relationship between the value-weighted returns and idiosyncratic

shocks of large firms, potentially biasing the estimates of the CAPM risk exposure

(”beta”) of large firms. Gabaix and Koijen (2020) develop a ”granular instrumental

variable” to solve a similar endogenous bias issue in identifying supply and demand

elasticity in a granular market.

My research relates to economic literature that studies the impact of large firms

on aggregate fluctuation, e.g., Gabaix (2011), Acemoglu et al. (2012), Acemoglu et al.

(2015). From the macroeconomic perspective, they measure firm size by fundamental

values such as production value and the number of employees. To study the asset

pricing implication, I measure firm size by weight account in the market portfolio and

link it to the classical diversification assumption employed by factor models. Another

inspiring paper that studies the asset pricing implication of a fat-tailed distribution is

Kelly and Jiang (2014), which measures the tail distribution of asset returns instead of

firm size.

My analysis also relates to those studies that examine the relationship between

asset prices and idiosyncratic risks, such as Campbell et al. (2001), Xu and Malkiel

(2003), Goyal and Santa-Clara (2003) and Herskovic et al. (2016). Specifically, I reconcile

the idiosyncratic puzzle posited by Ang et al. (2006) and Ang et al. (2009). Hou and

Loh (2016) surveyed the existing explanations in the literature and found none of

them is sufficiently convincing. My analysis contributes to this strand of literature by

highlighting how any cross-sectional test relating to idiosyncratic risks must account

for the size-related exposure caused by market granularity.
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1.2 Granular APT

My theoretical framework is a granular APT model, which is a combination

of using APT risk structure4 to define idiosyncratic and factor risks and granularity

in the market portfolio quantified by a Pareto distribution. The Pareto distribution

brings tractability to capture the stylized facts shown in Figure 1.1 and Table 1.1: Large

firms have non-negligible weights in the market and hence breaks the diversification

of idiosyncratic risks.

I apply a competitive equilibrium approach (see Dybvig (1983), Grinblatt and

Titman (1983), Connor and Korajczyk (1995)) to derive how idiosyncratic risks are tied

to risk premium. Specifically, a representative investor holds the market portfolio to

maximize its utility by allocating the weights in the market. Notably, many other APT

papers do not need to specify the preference nor a competitive equilibrium but only

need to assume no-arbitrage and a well-diversified market portfolio since their goal

is only to derive a factor model of expected returns by showing the ”pricing errors”

relative to factors is negligible instead of to show an economic origin of the pricing

errors. My framework explicitly links the risk premium unexplained by factors to

un-diversified idiosyncratic risks, which is a function of an asset’s market weight and

level of idiosyncratic risks. Therefore, it illustrates how the impact of idiosyncratic

risks changes as the market portfolio composition and firm size distribution.

As the benchmark case, I show that a thin-tailed distribution of firm size implies

a well-diversified market portfolio. In consequence, an investor who holds the market

portfolio is only exposed to factor risks that drive the common co-movement among

asset returns, and the impact of idiosyncratic risks is ruled out.

On the other hand, this theoretical framework allows me to study the expected

4Since most of the APT material is known, I leave out the cluster of citations here. The primary
reference of this subsection is Connor and Korajczyk (1995), Chamberlain and Rothschild (1983),
Chamberlain (1983)

7



returns in an equilibrium where the distribution of market values is granular, and

a representative investor chooses to hold an un-diversified market portfolio. To

justify this portfolio allocation, large firms must have high risk premiums tied to their

idiosyncratic risks.

I only present the necessary components here and attach the APT derivations in

the Appendix Section A.1. There are n assets in the market; each asset return is ri:

ri = E[ri] +
k

∑
s=1

βi,s fs + ϵi; (1.1)

E[ϵi| f ] = 0,∀i. (1.2)

There are k common factors fs, s = 1...k with factor loadings βi,s. The idiosyncratic

shocks ϵi are independent of factors, treated as the ”residual” or ”firm-specific shock”

of each asset return. A representative investor holds a portfolio described by the

weights {wi}, i = 1...n such that ∑n
i wi = 1 and maximize the expectation of a constant

absolute risk aversion (CARA) utility based on the portfolio return u(∑n
i wiri). Under

this classic APT setup, the expected returns are determined by the shocks of the pricing

kernel, which is approximated by

−γ(
n

∑
i

wi
(

βi,s fs + ϵi
)
).

γ is the risk aversion coefficient of the CARA utility. The shocks of the pricing kernel

are proportional to shocks of the aggregate portfolio return ∑n
i wiri, which contains the

weighted average of f and ϵ. An asset’s expected return is determined by its covariance

with the shocks of the pricing kernel. As a result, an asset’s risk premium is a constant

risk-free rate µ0 plus a linear span of factor risk premiums µs, s = 1...k and a granular

term determined by wi and ϵi:
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E[ri] = µ0 +
k

∑
s=1

βi,sµs + γCOV(ϵi,
n

∑
i

wiϵi). (1.3)

γ is the risk aversion coefficient of the utility. µs is the risk premium tied to factor fs

and βi,s, s = 1...k are the asset’s exposures to each factor. µ0 is a constant equal to the

expected return of a zero factor exposure portfolio.

The granular shocks, ∑n
i wiϵi, are equal to the sum of firm-specific shocks and

are weighted by each asset’s relative weight in the market wi. As a part of the pricing

kernel, ∑n
i wiϵi drives the expected return of an asset in (1.3) by its covariance with

the idiosyncratic components of the asset’s return ϵi. Additionally, it also explains the

market expected return E[rm] such that E[rm] = E[∑n
i wiri] and equals to:

E[rm] = µ0 +
n

∑
i

wi

(
k

∑
s=1

βi,sµs

)
+ γVAR(

n

∑
i

wiϵi). (1.4)

Intuitively, if there are no large firms in the market such that all wi are close

to zero, then the impact of idiosyncratic risks is diversified away due to the weak

correlation among ϵi such that

lim
n→∞

n

∑
i=1

wiϵi → 0.

In other words, the impact of idiosyncratic risks converges to zero as the number

of assets n approach infinity. In practice, a finite but large n is a good proxy of the

limiting case and implies a negligible idiosyncratic risk premium in (1.3) and (1.4)

when idiosyncratic shocks are diversified away.

APT models illustrate this intuition formally by making the diversification

assumption of wi. In Section 1.2.1, I introduce the diversification assumption in APT

and link it to the firm size distribution. As a theoretical result, I show that a thin-tailed

distribution induces diversification in wi. On the opposite, I quantify the level of
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granularity by a Pareto distribution and show it breaks the diversification and makes

the idiosyncratic shocks ∑n
i=1 wiϵi priced in terms of risk premium in Section 1.2.2. I

then discuss the asset pricing implications of my theoretical results to emphasize the

importance of granularity in asset pricing tests in Section 1.2.3.

1.2.1 APT, diversification, and thin tail distribution

The APT models make assumptions about the distribution of wi to rule out the

idiosyncratic risk’s impact on expected returns as in (1.3) and (1.4). Specifically, the

APT models decompose asset returns into factors and idiosyncratic components by

the covariance matrix. Let the covariance matrix of ϵi be Σϵϵϵ and ρi(Σϵϵϵ), i = 1...n be the

eigenvalues of it, sorted in descending order. The idiosyncratic shocks ϵi are weakly

correlated such that the covariance matrix among them has bounded eigenvalues as

n → ∞:

lim
n→∞

ρi(Σϵϵϵ) ≤ C,∀i.

On the opposite, the common factors fi are the principal components of asset returns

that have a strong correlation with sufficiently many assets such that the eigenvalues

of factor covariance approach infinite as n → ∞.

Based on this definition, all the APT papers (including but not limited to my

main references Ross (1976), Chamberlain (1983), Chamberlain (1983), Dybvig (1983),

Connor and Korajczyk (1995)) assume the same diversification condition to rule out

the impact of idiosyncratic shocks on expected returns. They assume that the market

portfolio {wi}, i = 1...n is well-diversified, such that

lim
n→∞∑w2

i = 0. (1.5)

This definition of diversification implies no firm size dispersion as the number of assets
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approaches infinity. It is trivial to observe that with the diversification assumption, all

the assets would have negligible weight in a market with sufficiently many assets. I

formalize this argument in the following lemma:

Lemma 1. If the market is well-diversified such that

lim
n→∞∑w2

i = 0.

then all the firms must have their market weight converge to zero as n → ∞:

lim
n→∞

wi = 0,∀i.

The negligible market weight of an asset, implied by the diversification assumption,

makes its idiosyncratic risk fail to impact expected returns. Intuitively, with diversifi-

cation, idiosyncratic shocks have a negligible impact on the pricing kernel due to the

weak correlation. In consequence, the idiosyncratic risk terms COV(ϵi,∑n
i wiϵi) in ex-

pected returns, as derived in (1.3), converge to zero as the number of assets approaches

infinity. In contrast, common factors in the asset covariance are not diversified away

and explain the expected return in a linear structure as shown in the following lemma:

Lemma 2. Suppose the market portfolio is well-diversified such that limn→∞ ∑ w2
i = 0 and

the risk structure among asset returns follow an APT model in (1.1) such that the covariance

matrix among ϵi has bounded eigenvalues as n → ∞:

lim
n→∞

ρi(Σϵϵϵ) ≤ C,∀i.

In that case, the expected returns have a linear factor structure as n → ∞:

lim
n→∞

E[ri] = µ0 +
k

∑
s=1

βi,sµs,
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where µs, s = 1...k is the risk premium tied to each factor and βi,s is the asset i’s exposure to

factors.

In the Appendix Section A.1, I give a proof of Lemma 2, which describes the classic

APT result: With diversification, the expected return of each asset converges to a linear

function of the pervasive factors among asset returns. This simple and elegant structure

is probably one of the most important results in asset pricing research. Empirical

works in the literature take the finite but sufficiently many assets observed in data

as a good proxy of the theoretical results of n → ∞. The fundamental assumption

behind this is that the diversification measure ∑ w2
i converges to zero at a fast speed

so that even with a finite n, the impact of idiosyncratic risk is negligible. Based on

this assumption, researchers place a massive amount of effort into determining the

correct number of factors k as the number of assets n approaches infinity and, more

importantly, on identifying the pervasive factors fs, s = 1...k and the associating risk

premiums µs, s = 1...k.

I show that the measure of diversification ∑ w2
i relies on firm size distribution.

Moreover, a thin-tailed distribution of firm size induces the diversification assumed in

(1.5). Since the market weight wi is scaled by the total market value to make ∑n
i wi = 1,

I work on the un-scaled firm size Xi distribution instead. I assume firms’ market

values Xi are independent and follow the same distribution. The weight in the market

portfolio is

wi = Xi/
n

∑
i=1

Xi.

The diversification measure depends on the mean and variance of Xi such that:

lim
n→∞∑w2

i = lim
n→∞∑

(Xi)
2

(∑ Xi)2 = lim
n→∞

1
n

1/n ∑(Xi)
2

(1/n ∑ Xi)2 . (1.6)
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A thin-tailed distribution of X has finite mean and variance, which invokes the

Law of Large numbers (LLN hereafter) to meet the diversification condition assumed

by APT in (1.5). I formalize this argument in the following lemma:

Lemma 3. The distribution of market value Xi has a thin tail if its first and second moments

are finite as the number of firms approaches infinity. A market portfolio with the thin tail

distribution defined is well-diversified since:

lim
n→∞∑w2

i = lim
n→∞

1
n

E[(Xi)
2]

E[Xi]2
= 0.

Lemma 3 reveals that the converge rate of the diversification measure ∑ w2
i is 1/n. A

thin-tailed firm size distribution implies a well-diversified market portfolio in (1.5) and

further the linear factor model. With a thin-tailed distribution, no firm-specific shock

matters for the pricing kernel since every asset has negligible weight in the market.

Therefore, only pervasive factors in the covariance drive the risk premium regardless

of the portfolio composition, as concluded in APT models.

1.2.2 Pareto distribution and violation of APT

In contrast to the classic case assumed by APT models, when firm size distribu-

tion has a fat tail, the probability of extreme values is non-trivial, and the diversification

assumption of APT models does not hold. The large firms that populate the fat tail

have a dominant size. Hence their market weights would not converge to zero when n

approaches infinity. In addition, the presence of these extremely large firms makes the

first and second moments of Xi explode to infinity. Hence the diversification measure

∑ w2
i does not converge to zero. Conceivably, the violation of APT raises a granularity

effect in the expected returns in the format of COV(ϵi,∑n
i wiϵi) as derived. These

violations, even in a finite but large n economy, are crucial and cannot be ignored in

the empirical works.
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I quantify this granular channel of expected returns by fitting the distribution of

firms’ market value Xi using Pareto distribution and measure the level of granularity

by the Pareto coefficient ζ. The Pareto distribution has a survival function equal to:

P(Xi > x) =
(

x
xm

)−ξ

, x > xm. (1.7)

A firm’s portfolio weight wi is the market value divided by the total value in the

portfolio Xi/ ∑i Xi as mentioned. The elegance of a Pareto distribution is that it

parsimoniously describes the level of a fat tail by a single parameter ξ > 0. The Pareto

coefficient ξ determines how fast the probability of a firm’s size larger than a threshold

xm decreases as x approaches infinity. Therefore, a high Pareto coefficient ξ implies

a low level of granularity. When ξ > 2, the distribution has a thin tail: The first and

second moments of X are finite such that the diversification in (1.6) holds. Specifically,

the i moments of X are:

E[Xi] = ∞,ζ ≤ i;

=
ζxi

m
ζ − i

,ζ > i.
(1.8)

A small ξ < 2 implies a high probability of firms with extremely large values in the

distribution and means a high level of the fat tail. As a result, the moments of firm size

explode to infinity, and the sample average of Xi and X2
i in (1.6) does not converge to

a finite value.

Similar to ζ measured by firm fundamentals (Axtell (2001), Gabaix (1999), Gabaix

(2011), Gabaix and Ibragimov (2011)), I found ζ estimated from stock market value

is around 1, , which suggests a significant level of fat tail. In Appendix Section A.3,

I estimate the value of ζ using the firm size each month and find the estimation of

Pareto distribution also fits the firm size in data well. Therefore, I use the Pareto

14



distribution to drive violations of the APT models, which induces testable asset pricing

implications. For simplicity, I focus on the fat tail case that ζ < 2.

Pareto distribution and large firms

Given the heuristic argument that large values would dominate the size variation

of wi, large firms in a fat-tailed distribution of size would account for a significant

fraction of the total market value. I illustrate this phenomenon by firstly solving

the market weight of the maximum firm size in a sample of i.i.d Pareto distribution

Xmax = max{X1,...,n}. The maximum market weight wmax equals

wmax = Xmax/
n

∑
i=1

Xi.

In the thin-tailed case, the probability of extreme values converge to zero at a fast

speed as n increases. As a result, Xmax increases with n slowly as the largest value

of a random draw from the Pareto distribution with n assets. On the other hand,

the numerator ∑n
i=1 Xi converges to nE[X] and drives the market weight wmax to be

negligible as n increases. When the fat tail is significant (ζ <2), the Xmax becomes

dominant and increases with n at a fast rate to make wmax significant. I formalize the

result in the following lemma:

Lemma 4. If the firm size Xi follows an i.i.d Pareto distribution defined in (1.7) and ζ <

2,, then the maximum value Xmax = max{X1,...,n} would have its market weight wmax =

Xmax/ ∑n
i=1 Xi converge to

lim
n→∞

wmax = Xmax/
n

∑
i=1

Xi =



Fζ

Yζ + 1
ξ < 1

lim
n→∞

Fζ

Yζ + logn
ξ = 1

lim
n→∞

Fζ

Yζ + n1−1/ζ E[X]
ξ > 1

(1.9)
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Fζ is a random variable following the Frechet distribution with cumulative density function

e−x−ζ
, x > 0. Yζ is a random variable following a stable distribution with the shape parameter

equals ζ.

I show proof for Lemma 4 in the Appendix Section A.2. I give heuristic

explanations here to highlight the role of the fat tail in generating non-negligible

market weights. With the fat tail, the scale of extreme values increases with n such that

its appearance probability is around 1/n (the largest firm). Specifically, the extremely

large values such that Xi > an, which is defined by

an = inf{x : P(Xi > x) ≤ n−1} = n1/ξ .

The largest firm value Xmax is random depending on the realization, yet it has a scale

around an = n1/ζ . Intuitively, I show that Xmax/an converges to a random variable Fζ

with Frechet distribution (an implication of the Fisher–Tippett–Gnedenko theorem, see

Gnedenko (1943)), which is also a fat-tail distribution. In other words, the extreme

values increase with n at the rate of n1/ζ and can be presented as n1/ζ times a random

variable Fζ . Similarly, the convergence of ∑ Xi is stated by a ”stable law” (see Durrett

(2019), Theorem 3.8.2.) such that ∑ Xi/an converges to a stable distribution Yζ > 0,

which also have a fat tail with shape parameter ζ.

Combining the convergence of Xmax and ∑ Xi gives the results in Lemma 4.

When 1 < ζ < 2, the first moment of X is finite and ∑ Xi converges to n1/ζYζ + nE[X],

which scale as n since n1/ζ < n. Consequently, large firms with a scale of n1/ζ would

have their market weight converge to zero at a rate of n1/ζ−1. When the tail is heavy

(ζ < 1), large values around n1/ζ would dominate the variation of ∑ Xi such that both

the Xmax and ∑ Xi increases with n at the same rate. Consequently, the market weight

of the largest firm wmax does not converge to zero but converges to a positive random

variable Fζ

Yζ+1 . The case when ζ = 1 is simply a limiting scenario of ζ > 1 such that the
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rate of wmax converging to zero is 1/ logn.

I verify the results in Lemma 4 using simulation of the Pareto distribution to see

how wmax changes with n in Figure 1.2. In the first subplot, ζ = 0.9 < 1, the wmax does

not converge to zero even when n = 106, yet it fluctuates as a random variable with

non-negligible magnitude depending on the realization of Xmax. When ζ = 1.5, the

wmax also fluctuate as Xmax, but converge to zero at the rate of n1/ζ−1 as fitted by the

red dash line. As another example, I also simulate the thin tail case ζ = 2.5. With thin

tail, ∑ Xi simply converges to nE[X] by LLN, and the maximum value Xmax can also

be presented by n1/ζ Fζ . Consequently, the wmax converges to zero faster, as implied by

my theoretical results, and the magnitude is negligible (around 0.1 percent).

Since ζ is estimated to be around 1, Lemma 4 states a violation of APT that there

are large firms with non-negligible weight in the market portfolio. When ζ < 1, the

market weight of the largest firm converges to a positive random variable independent

of n. It could be several percent as in Figure 1.1, or even more than 80 percent as in

the simulation results shown by Figure 1.2. In a finite economy with n assets, the

significant magnitude of wmax exists even when ζ > 1 since the convergence rate n1/ζ−1

is slow, which is a weak version of APT violation in a finite economy. For example, let

n = 105 and ζ = 1.1. Under this case, the deterministic term of n in wmax is calibrated

to be:

1
n1−1/ζ E[X]

= n1/ζ−1 ζ − 1
ζ

= n1/1.1−1 1.1 − 1
1.1

≈ 0.03,

which matches with the magnitude in Figure 1.1. The convergence rate of diversifica-

tion is around n−1/10 instead of 1/n = 1/10000. In addition, the results for wmax hold

for the few largest firms. The k largest firm Xk would have a magnitude such that,

P(Xk > x) ≈ k/n
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and scale as n1/ζk−1/ζ = ank−1/ζ . In other words, the second-largest firm would have

a market weight such that

w2 ≈ wmax ∗ 2−1/1.1.

Similarly, the largest ten firms would have their summed market weight approximately

equal wmax ∗ ∑10
k=1 k−1/1.1 ≈ 3.2 ∗ wmax. Using the same example as in Figure 1.1, the

largest firm has roughly 6 percent of the market weight, and this calibration suggests

the summed weight of the ten largest firms is approximately equal to 20 percent. In

other words, the fat tail distribution, in a finite but large n economy, generates large

market weights of individual assets. This result is consistent with the feature of data

and cannot be ignored in the empirical tests. This granular effect violates the APT

assumption and must make the idiosyncratic risks of these large firms explain the

expected return considerably. As a comparison of the maximum result, I derive the

limiting convergence of Xmin = min{X1,...,n} in Appendix Section A.2 to illustrate how

fast small firms in the Pareto distribution would have their market converge to zero.

The minimum weight of a small firm wmin converges to zero at a rate faster than 1/n,

which indicates that small firms do not violate the APT assumption.

The violation of APT models does not only appear in the cross-section such

that there are large wi. On aggregate, the fat tail breaks the diversification assumption

that limn→∞ ∑ w2
i = 0 as well. Using the Pareto distribution, I derive the limit of the

diversification measure ∑ w2
i . Similar to the infinite value of the ∑ Xi for the first

moment, the fat tail also breaks the LLN convergence of the ∑ X2
i . As a result, the

convergence rate of w2
i starts to decrease as the level of granularity increases, instead

of being 1/n shown in Lemma 3.
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Pareto distribution and failure of diversification

I derive the limit of the diversification measure limn→∞ ∑ w2
i in the following

lemma:

Lemma 5. If the firm size Xi follows an i.i.d Pareto distribution defined in (1.7) and ζ < 2,

then the convergence in equation (1.6) is determined by ζ as follows.

lim
n→∞∑w2

i =



Yζ/2

(Yζ)2 ζ < 1

lim
n→∞

Yζ/2

(Yζ + logn)2 ζ = 1

lim
n→∞

Yζ/2

(Yζ + n1−1/ζ E[X])2 ζ > 1

(1.10)

Yζ is a random variable following a stable distribution with the shape parameter equals ζ.

Similarly, Yζ/2 follows the stable distribution with shape parameter ζ/2.

The derivation of Lemma 5 is in Appendix Section A.2. The heuristic explanation of

Lemma 5 is simply an application of the ”stable law .” Recall that,

lim
n→∞∑w2

i = lim
n→∞

1
n

1/n ∑(Xi)
2

(1/n ∑ Xi)2 .

The convergence of ∑ w2
i hence depends on the convergence the sample average of Xi

and X2
i . The convergence of 1/n ∑ Xi used in the last section is given by the stable

law. The convergence of 1/n ∑ X2
i is solved similarly since X2

i also follows a Pareto

distribution with the tail parameter ζ/2.

I verify the results in Lemma 5 using simulation of the Pareto distribution to see

how ∑ w2
i changes with n in Figure 1.3. In the first subplot, ζ = 0.9 < 1, the ∑ w2

i does

not converge to zero even when n = 106, yet it fluctuates as a random variable with

non-negligible magnitude depending on the realization of large firms. When ζ = 1.5,

the ∑ w2
i also fluctuates as the appearance of large values but converges to zero at the
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rate of n2/ζ−2 as fitted by the red dash line. Intuitively, the convergence rate of ∑ w2
i is

simply the square power of n1/ζ−1, as the convergence rate of wmax. For the thin tail

case, both the first and second moments of Xi are finite, and the LLN holds. Therefore,

in the last subplot (ζ = 2.5), the ∑ w2
i converges to zero at the rate of 1/n as fitted by

the red dashed line. Furthermore, the random realization of large values does not

affect the convergence of ∑ w2
i due to the LLN.

Lemma 5 suggests the constant failure of the diversification assumption in APT

models. When ζ < 1, the diversification measure ∑ w2
i converges to a positive random

variable independent of n. As shown in Figure 1.3, this large variation of ∑ w2
i is driven

by the large values of Xi. In a finite economy with n assets, the significant magnitude

of ∑ w2
i exists even when ζ > 1 since the convergence rate n2/ζ−2 is slow, which is a

weak version of APT violation in a finite economy. Using the same example, let n = 105

and ζ = 1.1. Under this case, 2/ζ − 2 ≈−0.2 and the convergence rate of diversification

is roughly n−1/5 = 1/10 instead of 1/n = 1/10000. Therefore, the granularity of firm

size must also have a strong impact on the aggregate market fluctuation in a finite n

economy.

In summary, I quantify the level of granularity by a Pareto distribution and show

how a fat-tailed distribution violates the APT assumption. Precisely, the employment

of Pareto distribution quantifies two violations of APT assumption in the market

portfolio composition. In cross-section, Large firms have non-negligible market weights

limn→∞ wi ̸= 0. On aggregate, the firm size variation is non-trivial, which breaks the

diversification of APT such that limn→∞ ∑ w2
i ̸= 0. In addition, these two results hold

well in a finite economy with sufficiently many assets, as observed in the data. These

two results give immediate asset pricing implications, making idiosyncratic risk explain

the expected returns in cross-section and aggregate.
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1.2.3 Asset pricing implications of granularity

I now combine the results from the Pareto distribution with the asset pricing

equations in (1.3) and (1.4) to produce testable results for expected returns. As

discussed in the last section, my derivations when n → ∞ are also well approximated

by the results when n is sufficiently large enough in data. Therefore, I use the limiting

case to discuss the associating asset pricing tests.

granularity and the idiosyncratic risk puzzle

I use the result in Lemma 4 to establish asset pricing implications in the cross-

section. Idiosyncratic risks of large firms such that limn→∞ wi ̸= 0 should not be

diversified and generate risk premiums in the format of COV(ϵi,∑n
i wiϵi) as derived

in (1.3). To emphasize the impact of large market weight wi, I further assume that

idiosyncratic shocks among assets are independent, which gives the following result:

Proposition 1. With granularity, there exist large firms s.t. limn→∞ wi ̸= 0 as shown in

Lemma 4. If the idiosyncratic shocks are independent of each other with variance θi, then the

expected return for each asset converges to:

lim
n→∞

E[ri] = µ0 +
k

∑
s=1

βi,sµs + θiγ lim
n→∞

wi. (1.11)

The idiosyncratic variance θi, by definition, is bounded and hence the limitation of

wiθi is determined by the convergence of wi. Assuming independence among ϵ in

Proposition 1 simplifies the empirical test of my model implication. Identifying the

idiosyncratic shocks ϵi and testing whether the covariance in COV(ϵi,∑n
i wiϵi) explains

the expected returns of assets might suffer from omitted factor bias (see Giglio and Xiu

(2021)), or the lack of power due to weakly identified factor models (Giglio et al. (2021)).

Instead, measuring the variance of idiosyncratic shocks θi provides convenience and

robustness relative to the selection of factor models. From this perspective, most of

21



the variance in the asset returns is idiosyncratic. Hence the magnitude of θ measured

relative to various factor models must not change dramatically. Further, the analysis

based on (1.11) only requires measuring the relative ranking of θi and wiθi in the

cross-section, which avoids the issue of miss-measuring the magnitude of idiosyncratic

variance due to improper factor model selection.

In terms of theoretical insight, Proposition 1 points out that it should be the

size-adjusted idiosyncratic risk wiθi instead of itself θi that explains expected returns.

In the limiting case when n approaches infinity, only large firms limn→∞ wi ̸= 0 could

have their idiosyncratic shocks un-diversified to generate expected returns such that

limn→∞ wiθi ̸= 0. For a finite n market, the granularity drives big size differences in the

cross-section such that large firms have higher idiosyncratic risk premiums than small

firms. This effect is different from a size factor in Fama and French (1992), which states

that small firms commonly have higher expected returns due to a higher variance

of returns than large firms. In my framework, a ”small minus big” portfolio can be

interpreted as an APT-defined factor since it captures the pervasive pattern in the

return covariance.

Controlling for the factor risk premiums, the product of firm size and idiosyn-

cratic variance determines the magnitude of abnormal returns relative to APT factor

models, or a ”granular alpha”:

αi = γwiθi.

Notably, an asset’s market weight determines the marginal impact of idiosyncratic

risk on expected returns. Large firms have a high alpha per unit of idiosyncratic

variance since being” large” must require compensation in terms of pricing and make

the expected returns exhibit more of the idiosyncratic risk premium.

More importantly, Proposition 1 explains the ”idiosyncratic risk puzzle” (IRP
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hereafter) that there is a very robust negative relationship between idiosyncratic

variance and future returns, investigated in Ang et al. (2006) and Ang et al. (2009). As

in their papers, a typical test of whether idiosyncratic risks matter in the cross-section

is to estimate a linear regression between αi (expected returns unexplained by factors)

and the idiosyncratic risk θi:

αi = constant + ηθi.

The estimate of η̂ is documented to be negative, which seems puzzling since there

should not be a negative risk-return relation in asset prices.

If the expected returns follow the structure implied by my model, the estimate

of η will capture the correlation between the size-adjusted idiosyncratic risk wiθi and

the risk itself θi instead of the relation between risk and return. In other words, the

estimate η̂ in IRP is proportional to the correlation corr(wiθi,θi), such that

η̂ ∝ corr(wiθi,θi).

Accordingly, it is possible that performing cross-sectional tests for whether idiosyncratic

risk explains the expected returns without adjusting for wi can generate model miss-

specifications. With a thin-tailed distribution of firm size, this miss-specification does

not induce a misleading empirical conclusion since there is no significant size difference

in the cross-section. For example, if all the assets have the same market weight such

that wi = 1/n,∀i, then the estimate of η̂ equals:

η̂ =
1
n

γ > 0.

However, when the granularity is significant, large firms that populate the fat tail

account for most of the market valuation, and small firms have negligible market
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weights. Consequently, the magnitude of wiθi is mainly driven by the granularity in

wi. I plot the wiθi of individual assets at the end of 2020 in Figure 1.4. Comparing this

plot to Figure 1.1 shows that the large firms tend to have high wiθi and model-implied

alpha relative to factor models. Moreover, the magnitude of wiθi shown in Figure 1.4

is empirically reasonable. Assuming a risk aversion coefficient γ = 5 gives 2.5 percent

of α annually for the largest wiθi firm in Figure 1.4.

To summarize, my model suggests that large firms (low idiosyncratic risk) have

a significantly higher risk premium tied to their idiosyncratic risks than small firms

(high idiosyncratic risk). As a result, the granularity makes the correlation between

wiθi and θi dominated by the correlation between wi and θi. This correlation corr(wi,θi)

is negative as a feature of data, which is found in the cited papers and my empirical

test. Consequently,

η̂ ∝ corr(wi,θi) < 0.

Therefore, firms with high idiosyncratic risks tend to have negligible market weights

and low risk premiums raised by idiosyncratic risks, which drives the puzzling

empirical results in IRP.

granularity and the market risk premium

As the extension of the cross-sectional implication, large firms populate the

fat tail and violate the diversification in (1.5), which makes the level of granularity

increase idiosyncratic risks un-diversified on aggregate and hence affect the market

risk premium E[rm]. I formalize this intuition in Proposition 2:

Proposition 2. If the idiosyncratic shocks are independent of each other with variance θi, then

the expected return for the aggregate market converges to:
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lim
n→∞

E[rm] = µ0 +
n

∑
i

wi

(
k

∑
s=1

βi,sµs

)
+ γ lim

n→∞∑w2
i θi. (1.12)

The diversification assumption ensures the aggregate impact of idiosyncratic risk

∑ w2
i θi converges to zero since all the assets should have bounded variance such that

θmin ≤ θi ≤ θmax, hence,

θmin lim
n→∞∑w2

i = 0 ≤ lim
n→∞∑w2

i θi ≤ θmax lim
n→∞∑w2

i = 0.

In contrast, granularity fails the diversification and affects the magnitude of the market

expected returns tied to idiosyncratic risks.

I decompose the granular term ∑ w2
i θi into two parts to emphasize the aggregate

impact of granularity, such that:

∑w2
i θi = ∑w2

i

(
∑

w2
i

∑ w2
i

θi

)
.

This decomposition reveals that two channels determine the market expected return

tied to idiosyncratic risk: The level of granularity captured in ∑ w2
i is an indicator of

the under-diversification such that if it is negligible, then there is no aggregate impact

of idiosyncratic risk. The
(

∑
w2

i
∑ w2

i
θi

)
is a weighted-average of idiosyncratic risk. My

derivations use the Pareto distribution to highlight the first channel, which derives

the convergence of ∑ w2
i as a function of ζ. As shown in Lemma 5, a lower Pareto

coefficient ζ (higher granularity) indicates less diversified idiosyncratic risks in the

market portfolio and more risk premium on aggregate. The second channel relates to

whether the time-variation of idiosyncratic risk explains the market expected returns

in literature (see Goyal and Santa-Clara (2003), Bali et al. (2005)). I estimate the Pareto

coefficient ζ by fitting the fat-tail in firm size distribution each month and find that

ζ is time-varying with an average value around 1. This finding suggests a granular
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channel of market variation besides the time-varying idiosyncratic risk documented in

the literature.

Therefore, Proposition 2 motivates a time-series implication to test whether ζ

generates additional time-variation of market risk premium, controlling the magnitude

of idiosyncratic risk. Taking log of the granular term ∑ w2
i θi, by the decomposition,

gives a linear relation:

log(rm,t+1) = constant + controls + Alogıt. (1.13)

My model implies A < 0 since ζ decreases the magnitude of the market expected

returns tied to idiosyncratic risks.

1.3 Empirical Test

1.3.1 Data

My cross-sectional test is at the monthly frequency from June 1963 to December

2020. I use monthly return and firm size data in the CRSP and other characteristic data

in COMPUSTAT for control variables. I merged the monthly CRSP data and quarterly

COMPUSTAT characteristics data (replaced with annual data if not available). I use

a standard timing convention of leaving a six-month lag between the quarter end of

characteristics and the monthly returns to ensure the sorted variables are available for

constructing portfolios. Fama-French factors are from the Kenneth French data library.

As additional controls in the time-series test, I include the predictors from Welch

and Goyal (2008), available from 1945 to 2020. I test whether the Pareto coefficient, as a

measure of the level of granularity, captures the time variation of the market expected

returns in this sample period.
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1.3.2 Cross Section Test

My result in Proposition 1 states that the alpha relative to factor models should

depend on size-adjusted idiosyncratic risk:

αi = γwiθi.

Intuitively, I conduct empirical tests to study the cross-sectional relation between αi,

wi, and θi. Furthermore, since this result explains the IRP (as in Ang et al. (2006)

and Ang et al. (2009)), I construct my tests based on the same measurement of θi and

αi. To start with, I replicate their findings as a benchmark result to document that

performing cross-sectional tests for whether idiosyncratic risk explains the expected

returns without adjusting for wi can generate misleading empirical results. Then I add

the size adjustment implied by my model to show that granularity helps identify a

positive relation between idiosyncratic risk and returns.

Notably, I derive a linear relation between αi and wiθi at the firm level. The

same linear relationship may not hold perfectly in a portfolio-level test since If we treat

a portfolio as an asset, its alpha αp is simply a linear combination of each asset’s alpha

but its size-adjusted idiosyncratic risk wpθp does not equal the linear combination of

each asset’s. Therefore,

αp ̸= γwpθp.

From this perspective, I still use the portfolio level test as a benchmark (compared to

Ang et al. (2006)) to illustrate the economic insight of my model and further use the

firm level test (compared to Ang et al. (2009))) to justify my model implication.
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Portfolio level tests

Like Ang et al. (2006), I sort all the assets by their idiosyncratic risk θ measured

by daily returns in each month using Fama-French 3 factors (FF3 hereafter). Then I

split all the assets into five quintiles to construct five value-weighted portfolios sorted

by the idiosyncratic variance measured in the last month θi,t−1.

I report results using the five idiosyncratic risk sorting portfolios in Table 1.2.

First, I report the mean and volatility (annualized, in percent) of excess returns in each

portfolio, together with the total market weight of assets in each portfolio as a measure

of the average size in Panel A. I found the same pattern as documented in Ang et al.

(2006), the lowest risk portfolio rL tends to have a significantly higher return than the

highest rH:

E[rL − rH] > 0.

The annualized return spread between the lowest and the highest equals 7.23 percent

with significance. Furthermore, assets in the portfolio with the lowest risk account

for roughly 60 percent of the total market value, which indicates a significant size

difference in the cross-section due to granularity. In addition, as the idiosyncratic risk

increases from the lowest row to the highest, the size of firms in each quintile decreases.

As I explained in the theoretical derivations, this negative relationship between risk

and size is an essential feature of data to reconcile the IRP.

To further test the granularity’s impact on expected returns, I examine the

relation between αi, wi, and θi in the five portfolios. In Panel B, I measure the post-

sample alpha and idiosyncratic volatility relative to FF3 as the benchmark model. The

alpha spread between the lowest and the highest is 12.6 percent with significance. The

negative return spread observed in Panel A is not explained by factors. From the

granularity perspective, assets with low idiosyncratic risk θi have high market weight
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wi, which suggests a high ratio of alpha to idiosyncratic variance since the model

implies:

αi

θi
= γwi.

To verify the model implication, I find a decreasing α/θ ratio from the first row to

the last. For robustness, I also present the same test using the CAPM factor in Panel

B, using the three principal components of asset returns (PCA) as factors in Panel

C. These results reveal the same pattern: As θi increases, both the alpha αi and the

market weight wi decrease. In terms of the granular alpha implied by my model, the

αi/θi also decreases due to decreasing wi. This result depends on large firms having

non-negligible market weight and the high marginal impact of idiosyncratic risk on

expected returns.

Therefore, the cross-sectional results above suggest that large firms provide more

compensation for the investor to bear each unit of idiosyncratic risk. An immediate

implication of this argument is to take advantage of the high marginal risk-payoff

due to high market weight and construct a long-short trading strategy accordingly. I

construct the ”bet on granularity” portfolio by leveraging a long position of the lowest

θ portfolio with excess return rL − r f (large firms) and short the highest θ portfolio

with excess return rH − r f (small firms). The long-short strategy is constructed as

follows:

rL−H,t =
1/θL,t−1

1/θL,t−1 − 1/θH,t−1
(rL,t − r f )−

1/θH,t−1

1/θL,t−1 − 1/θH,t−1
(rH,t − r f ). (1.14)

This portfolio leverages the large firms (lowest θ) by the inverse of θ to capture the

high marginal impact of their idiosyncratic risk. I update the portfolio per month
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and estimate the θH,t−1 and θL,t−1 by the average idiosyncratic variance within each

quintile. The resulting denominator 1/θL,t−1 − 1/θH,t−1 is positive and normalizes the

portfolio return to be dollar-neutral. Given the negative relation between firm size

wi and idiosyncratic variance θi, the ”bet on granularity” portfolio should generate a

positive return spread unexplained by the factor model such that:

αL−H =
wL(large)− wH(small)

1/θL − 1/θH
> 0.

The positive alpha captures the size spread between portfolios with low and high

idiosyncratic risk such that wL(large size)− wH(small size) > 0.

As a benchmark, the portfolio constructed by θ measured by the past month

has an annualized average return equal to 7.36 percent and volatility equal to 13.60

percent. In addition, this positive return is not explained by factor models used as

controls. The long-short strategy has a 1.49 percent alpha relative to FF3 factors with

significance and a similar magnitude of alpha relative to CAPM and PCA factors.

The patterns in these five portfolios replicate findings in Ang et al. (2006) and

verify the insight that large firms have high impacts of idiosyncratic risk on expected

returns. A robustness check in the cited paper is to construct sorted portfolios by a

longer measurement window of idiosyncratic variance θ, which is a reasonable way to

test whether the IRP is sensitive to the time-varying level of idiosyncratic risks.

To ease the concern in this perspective, I apply the same method to construct the

long-short portfolio using θ measured by the past 3,6 and 12 months and summarize its

performance in Table 1.3. The patterns showed by the five sorted portfolios are robust

to the longer measurement window of the idiosyncratic variance θ. The long-short

portfolios formed by estimation of the past 3,6, and 12 months also generate positive

alphas relative to the benchmark models.

The above results replicate findings in Ang et al. (2006) and test my theoretical
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insight by constructing a long-short portfolio. To further explore the cross-sectional

relation between αi, θi, and wi, I extend the 5-portfolio setting to split all the assets

by percentiles of θ to construct 100 value-weighted portfolios. The 100 portfolios are

constructed following the same steps and provide a larger cross-section to test my

model implications. For each portfolio i = 1, ..,100, I estimate an FF3 factor model to

compute the post-sample αi,θi (annualized, in percent) and also the summed market

weight wi of assets in the portfolio. I use the 100 portfolios to present the ability of size-

adjusted idiosyncratic variance wiθi to explain alphas and reconcile the idiosyncratic

risk puzzle.

I start with estimating a typical test of risk-return relation in IRP:

αi = constant + ηθi.

The estimate of η̂ = −1.78 with a significant T-value. This significantly negative

estimate confirms the IRP that there is a negative relation between θi and αi in the

cross-section. I compare the IRP specification to the granular alpha implied by my

model:

αi = constant + γwiθi.

The estimate of γ̂ = 5.17 with a significant T-value. This estimate is consistent with

what the model implies since a positive estimate of γ̂ represents the risk-aversion

coefficient. In addition, to understand whether the size-adjusted risk wiθi has more

explanatory power than θi , I normalize wiθi and θi to make their standard deviation

equal one and estimate a constrained regression,

αi = constant + λwiθi + (1 − λ)θi.
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The estimate of λ̂ = 3.13 with a significant T-value. To minimize the total estimation

error, the constrained estimation picks a explanatory variable that fits the cross-sectional

variation of expected returns with more precision. The estimate suggests that the

granular channel of the idiosyncratic risk premium has more explanatory power than

θ itself to explain αi.

Furthermore, I use the 100 portfolios to illustrate how the granular impact of

idiosyncratic risk explains the IRP. If the expected returns follow the structure implied

by my model, the estimate of η will capture the correlation between the size-adjusted

idiosyncratic risk wiθi and the risk itself θi instead of the relation between risk and

return. The correlation estimated in the 100 portfolios indicates a negative relation

between the size-adjusted idiosyncratic risk wiθi and the risk itself θi such that

corr(wiθi,θi) = −0.61.

Intuitively, the negative correlation must be driven by the relationship between market

weights wi and idiosyncratic risk θi. The correlation between size and risk, under this

context, equals to:

corr(wi,θi) = −0.56.

As explained in my theoretical derivations, the negative size-risk relation, combined

with granularity, explains the IRP. Without the significant size difference in the cross-

section, the impact of wi would be negligible. In contrast, with granularity, the huge

size difference in wi dominantly drives the correlation between wiθi and θi to negative

due to the negative correlation between wi and θi. With granularity, large firms (low

idiosyncratic risk) have a significantly higher risk premium tied to their idiosyncratic

risks than small firms (high idiosyncratic risk). In other words, firms with high

idiosyncratic risks tend to have negligible market weights and low risk premiums
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raised by idiosyncratic risks, which drives the puzzling empirical results in IRP.

To better illustrate this idea, I plot the relationship between size wi and θi of the

100 portfolios in Figure 1.5. I find this negative relationship can be well approximated

by:

logθi ≈ constant + a logwi.

I plot this close to a linear relation between logged θi and wi. This relation is an

interesting pattern in the data, which is worthy of further investigation. Nevertheless,

the granular explanation of IRP relies on the dominance of size effect in wi to make

large firms have high wiθi. In Figure 1.6, I plot the relationship between wiθi and θi

of the 100 portfolios. The dot size in this plot is scaled by the total market weight of

each portfolio wi. The granularity in wi dominantly drives the distribution of wiθi and

hence explains the IRP as explained since only low θi portfolios have non-negligible wi

and wiθi. In contrast, the high θi portfolios have close to zero wi and wiθi.

Similar to the five-portfolio case in Ang et al. (2006), I also examine the robust-

ness of my 100-portfolio results for different lengths of the measurement window. In

Table 1.4, I summarize the estimate of η, γ, and the constrained estimate λ, together

with the estimated correlations corr(wiθi,θi), corr(wi,θi) using portfolios formed by the

idiosyncratic variance measured by the daily returns in the past 1,3,6 and 12 months.

All the estimates using different formation periods are significant and consistent with

granular alpha channels for idiosyncratic risk to explain the expected returns of my

model.

Individual asset level test

The portfolio level tests extend the results in Ang et al. (2006) and explain the

IRP. I generalize the portfolio level test to individual asset levels following the same
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construction in Ang et al. (2009). I replicate their specification:

ri,t = µ0 +
k

∑
s=1

βi,s,t
(

fs,t + µs
)
+ ηθi,t−1 + ϵi,t. (1.15)

To incorporate the time-varying magnitude of risks in asset returns, they test the cross-

sectional relation between expected returns and idiosyncratic risk with time-varying

parameters and apply a Fama-Macbeth regression using monthly data to estimate

η̂ < 0.5

To compare to the test in Ang et al. (2009), I generalize (1.11) to be time-varying

and estimate:

ri,t = µ0 +
k

∑
s=1

βi,s,t
(

fs,t + µs
)
+ γwi,t−1θi,t + ϵi,t. (1.16)

This specification originates from extending the single period competitive equilibrium

derived in my model to multiple periods similar to Merton (1973). I assume a special

case that parameters βi,s,t, ...,θi,t (from conditional covariance among asset returns)

change over time with i.i.d distribution not driven by any state variable, which leads to

the cross-sectional specification in (1.16). The size-adjusted idiosyncratic risk wi,t−1θi,t,

in this context, approximates the time-varying covariance between idiosyncratic shocks

ϵi,t and the weighted average ∑n
i=1 wi,t−1ϵi,t, which is similar to the time-varying factor

loading βi,s,t.

My setup is the same with Ang et al. (2009) in (1.15) except that they use the

past idiosyncratic variance θi,t−1 as the explanatory variable to document the IRP. I

estimate η̂ < 0 to replicate the IRP results and compare it to the estimate of γ̂ > 0 in

my model. The comparison between γ̂ and η̂ emphasizes that one should include both

the idiosyncratic risk and marginal impact of idiosyncratic risk determined by wi to

5The negative return spread between the highest and the lowest portfolios sorted by θi,t−1 in Ang
et al. (2006) implicitly confirms a negative estimate of η̂ < 0.
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test the risk-return relation in the cross-section. Similarly, to emphasize the importance

of size adjustment, I estimate a constrained model:

ri,t = µ0 +
k

∑
s=1

βi,s,t
(

fs,t + µs
)
+ λwi,t−1θi,t + (1 − λ)θi,t−1 + ϵi,t. (1.17)

A large λ̂ with significance suggests that the size-adjusted idiosyncratic risk explains

the cross-sectional variation of expected returns with more precision.

As in theirs, I apply the two-step Fama-Macbeth estimation procedure. In the

first step, I run factor regressions (FF3 as in Ang et al. (2009)) to the daily returns of

each asset in each month. This procedure gives estimates of factor exposures βi,s,t

and the size-adjusted idiosyncratic variance θi,t per month. Then in the second step, I

use the factor exposures and the size-adjusted idiosyncratic risk of each asset wi,t−1θi,t

estimated to explain the cross-sectional variation of expected returns. The second step

gives an estimate of γ̂t in each month, and the estimate of γ̂ the average value of all

the estimates in each sample period, such that:

γ̂ = 1/T
T

∑
t=1

γ̂t

As in typical Fama-Macbeth regressions, I use the simultaneous risk exposure β̂i,s,t

and wi,t−1θ̂i,t estimated from the first step to identify factor risk premium µs and the

risk aversion coefficient γ. I use the lagged weight wi,t−1 to avoid the mechanical

correlation between the holding period return ri,t and the market weight at the end

of each month wi,t. Further, I control the lagged characteristics since they also tend

to explain the cross-sectional variation of expected returns suggested by Daniel and

Titman (1997). I control the lagged book-to-market ratio and the momentum factor

computed by the sum of returns in the last six months as in Jegadeesh and Titman

(1993).

35



In Table 1.5, I report the cross-sectional regression estimates η̂ (using θi,t−1)

and γ̂ (using wi,t−1θi,t) separately. I also report λ̂ in the constrained model as in (1.17)

using both wi,t−1θi,t and θi,t−1. In column 1, I estimate a significant negative coefficient

η̂ = −2.23, which is consistent with the Ang et al. (2009) result. Conversely, the main

result in column 4 shows a significantly positive estimate of γ̂ = 9.15, which suggests

the importance of using size-adjusted idiosyncratic variance to identify a positive

risk-return relation. For robustness, I also report several other specifications. In the

second specification reported in column 2, I use both wi,t−1 and θi,t−1 as two variables

to explain the returns. The coefficient for θi,t−1 is still negatively significant with the

size controlled, and the magnitude of the coefficient does not change. In column 3, I use

the firm size wi,t−1 as the only explanatory variable besides the factor exposures and

characteristics. The estimate in column 3 shows an insignificantly positive coefficient

for wi,t−1 since it does not control the magnitude of idiosyncratic risk θi but only uses

the marginal impact of θi as suggested by my model. The specifications in column

2 and 3 does not identify a positive risk-return relation either, which emphasize

the importance of using the right functional form wi,t−1θi,t since it is a proxy for

the covariance with the granular shocks in the pricing kernel. In column5, I test a

specification using both the θi,t−1 and wi,t−1θi,t. The estimates for this specification

show the same significance of η̂ < 0 and γ̂ > 0, which suggests the robustness of

using size-adjusted idiosyncratic variance to identify a positive risk-return relation.

In addition, I estimate the constrained regression using both the θi,t−1 and wi,t−1θi,t

as in (1.17) to emphasize the granular effect in expected returns. The estimate of λ̂

is 0.71 with significance. Also, this constrained model, in the time-varying setup,

helps to identify a positive relationship between θi,t−1 and ri,t. This finding concretely

highlights the importance of using size adjustment to test whether idiosyncratic risks

explain risk premiums, as implied by my model.
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Robustness check for the cross-section tests

The first robustness check is to reconcile my results with the double-sorting tests

in the literature, which separate firms into several groups by size and then construct

portfolios sorted by idiosyncratic risks using firms within each group. Similarly, I

separate firms into three groups by size (the largest 30 percent, the smallest 30 percent,

and the left 40 percent in the middle) and apply the firm-level tests as in (1.15), (1.16)

and (1.17) to examine how the size-adjusted idiosyncratic risk explains expected returns

within each group of firms.

I summarize the results in Table 1.6. The η estimates in (1.15) from each group

are all significantly negative, which is consistent with the results in the literature that

the double-sorting does not resolve the IRP. This finding is not a surprise under the

granular explanation of IRP since the significant size difference due to granularity

exists in all groups of firms separated by size. In other words, even in the group

of firms with the smallest market value, the relative relation implied by my model

still holds such that firms with higher market weights have more idiosyncratic risk

premiums.

Consequently, the γ estimates using wiθi in (1.16) are all significantly positive

in the three groups, which further verifies the model’s cross-sectional implication.

In addition, the constrained estimates of λ in (1.17) are all significantly positive.

Meanwhile, the magnitudes of γ̂ in the three groups are quite different since the wiθi

of firms in the smallest group is way smaller than firms in the largest group. This

difference in cross-section verifies the argument of my paper: Large firms have market

weights significantly higher than small firms and hence have high idiosyncratic risk

premiums captured by γwiθi.

The second robustness check is to use other factor models to measure the

idiosyncratic variance θ to examine whether my empirical tests are sensitive to the
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factor model selection. As discussed in my theoretical derivations, measuring the

variance of idiosyncratic shocks θi should be robust to factor model selection since

various models give the same cross-sectional ranking of θi among firms. From this

perspective, my tests avoid issues in the identification of idiosyncratic shocks from

improper factor model selection (see Feng et al. (2020), Giglio et al. (2021) Giglio and

Xiu (2021),Giglio et al. (2022)).

Therefore, I extend my benchmark results using FF3 factors with the same

firm-level tests but using FF5 factors, PCA factors (the three principal components

of all asset returns), and the Q5 factors (see Hou et al. (2015), Hou et al. (2021)) and

summarize the results in Table 1.7. The portfolio-level results using other factor models

show the same pattern and are available upon request. Notably, the estimates of η

are still negative but less significant using the FF5 and Q5 factor models, which is

consistent with the findings in the literature. However, the size-adjusted idiosyncratic

risk always positively explains the expected returns with significance and a similar

magnitude of γ̂ and λ̂ to the benchmark results.

In summary, my empirical results are robust to factor model selection and tests

using firms grouped by size. The driving force of these results is the significant size

difference in the cross-section, which makes large firms have higher idiosyncratic

risk premiums than small firms, as captured by γwiθi. In practice, the size difference

among firms changes over time. Especially, there were lots of small firms in the

market from the decade 70s-90s as shown in Table 1.1, which could reduce the overall

cross-sectional variance of wi and hence weaken the IRP results and the explanatory

power of wiθi on expected returns.

Therefore, the last robustness check is to examine whether the granular explana-

tion of IRP changes over sub-sample periods. I separate the whole sample by decades

to run the same tests and summarize the results in Table 1.8. The total number of

firms jumped from 2995 in the 1960s to 6718 in the 1970s due to the emergence of the
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NASDAQ exchange, which kept increasing in the 80s and 90s. Most of these firms

were emerging technology companies and hence reduced the overall size difference

among firms. Consequently, the IRP estimates of η are not significantly negative in the

70s-90s. This result is consistent with my theoretical derivation since if all firms have

the same size, then IRP would not exist since

η̂ =
1
n

γ > 0.

On the opposite, the size-adjusted idiosyncratic risk wiθi positively explains the risk

premium with significance except in the 90s due to a notably high number of small

firms during the ”Internet bubble” period. The constrained estimate of λ is always

positive and significant, which suggests that large firms constantly exist in the market

and have high idiosyncratic risk premiums. The sub-sample results for the 100

portfolios show the same pattern and is available upon request.

1.3.3 Time-Series Test

The main results of this paper hinge on the Pareto coefficient ζ value, which

quantifies the level of granularity and the associating asset pricing implication. I

estimate the tail parameter ζ of the Pareto distribution using the Hill estimator (see

Hill (1975)). I introduce the details to estimate a monthly time-series of ζt in Appendix

Section A.3 and present the result of ζt explaining the time-variation of market risk

premium in the following section.

Time-series results

In this section, I test whether the Pareto coefficient predicts market return at a

monthly frequency:

log(rm,t+1) = constant + controls + Alogıt.
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The hypothesized predictive coefficient A should be significantly negative since a

low ζt indicates a high level of granularity and high risk premium in the market

returns. I normalize all the predictors to zero-mean and unit variance. Further, I adjust

heteroskedasticity and serial correlation in residuals in all of our predictive regressions

using the Newey-West standard error.

I summarize the main results in Table 1.9. In Panel A, I present the single

variable regression that the granular predictor logζt predicts the logged excess market

return rm,t+k at various horizons and different sub-samples. I use this single variable

regression as a benchmark result and control other predictors later for comparison.

In the first panel of Table 1.9, I report the results using the whole sample at various

horizons k = 1,12,60: The one-period ahead predictive coefficient is -0.28 with a

significant t-stat value of -2.11. I also report the coefficient to correct the Stambaugh

bias due to high serial correlation in logζt (see Stambaugh (1999)). The prediction

significance remains in the long horizon for k = 12,60.

Meanwhile, my empirical test above is motivated by the granular channel of

market variation that ζ reflects how much of the idiosyncratic risks are un-diversified.

This channel relates to whether the time-variation of idiosyncratic risk explains the

market expected returns in literature (see Goyal and Santa-Clara (2003), Bali et al.

(2005)). Therefore, I further test whether ζ generates additional time-variation of market

risk premium, controlling the magnitude of idiosyncratic risk. I measure the level of

idiosyncratic risk at the aggregate level by the weighted average of θ. Specifically, I

use FF3 factors, or the three principal components of daily returns, to measure each

asset’s idiosyncratic variance θi,t in each month and compute the sum of all weighted

by market weight wi,t−1. I also consider a measure of idiosyncratic risk relative to the

CAPM model introduced in Campbell et al. (2001). I plot these three idiosyncratic

risk measures in Figure 1.7 and find a very similar magnitude of idiosyncratic risk

changing over time. In Panel B, C, and D of Table 1.9, I report the results controlling
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the idiosyncratic risk under the three measures above, respectively. The magnitude of

the coefficient almost does not change, controlling for the idiosyncratic risk, yet the

significance of predictability is generally weaker.

In Figure 1.8, I plot the time-series estimator logζt together with the weighted

average of idiosyncratic variance θi,t relative to the Fama-French 3 factor models. The

Pareto coefficient tends to reach the bottom value at the shaded area, marking the

NBER recession. The tail predictor has a weakly negative correlation (-0.17) with the

level of idiosyncratic risk since the aggregate risk is counter-cyclical and increases with

the market risk premium. The evidence shown in this plot consists of the intuition that

a low Pareto coefficient implies a high risk premium and hence high future market

returns.

Control for alternative predictors

I use predictors listed in Welch and Goyal (2008) as controls for other systematic

risks to identify the granular channel of risk premium better. In Table 1.10, I provide a

summary of predictors, including their definitions, AR1 coefficients, and their correla-

tion coefficients with the main predictor logζt. The correlations between published

predictors and the granular predictor are weak: Besides the default spread, which has

a 0.27 correlation, all the other predictors have absolute correlations with ζ close to or

less than 0.1. The weak correlation suggests that existing predictors in literature do

not capture the granular effect.

In Table 1.11, I report results controlling for other predictors investigated in

Welch and Goyal (2008). I add each predictor to the single variable regression and

present bi-variate regression results. The granular predictor logζt negatively predicts

the market returns with all the predictors controlled at all horizons. The bi-variate

results highlight the stability of coefficients on logζt at all horizons: At monthly

frequency, the coefficient is between -0.34 and -0.25. The 12-month-ahead coefficient
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is between -2.69 and -1.65, and the 60-month-ahead is between -11.21 and -8.27. The

stability of coefficients suggests that the granular part of the market expected return

is independent of other resources in the literature, which is consistent with the weak

correlation between the Pareto coefficient and controlling variables. The significance

remains in the long horizon at k = 12,60, especially for the 60-month ahead.

In summary, I show that the Pareto coefficient negatively explains the time-

variation of the market capital value. The results confirm the economic intuition that

a low ζ indicates a high risk premium due to the failure of diversification and high

future market returns. Further, the results verify the time-series implication of my

model: The level of granularity increases the un-diversified idiosyncratic risks in the

market and explains the time-variation of the market’s expected returns.

For robustness, I also compute the out-of-sample R2 by comparing the predictive

error of logζ to the historical mean computed by a rolling window. I summarize the

out-of-sample results in the Appendix Section A.4.

1.4 Conclusion

I contribute to the existing asset pricing research by documenting a granular

channel of idiosyncratic risk to explain expected returns. I theoretically show that the

fat-tailed distribution of firm size breaks the market diversification assumed by APT,

making idiosyncratic risk matters for asset prices.

Moreover, my results highlight a novel asset pricing pattern: Low risk level

firms do not always have to generate low risk premiums. With granularity, large firms

have higher idiosyncratic risk premium than small firms, in spite of having a lower

level of idiosyncratic risks. This result is supported when running multiple sets of

robustness checks as well. Furthermore, this finding of mine explains the influential

”idiosyncratic risk premium puzzle” in Ang et al. (2006) and Ang et al. (2009). For
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implication at the aggregate level, I use a Pareto distribution to measure the level of

granularity and show that the Pareto coefficient explains the market variation while

controlling for time-varying idiosyncratic risk and alternative predictors in literature.

My theoretical model is based on a static APT model and treats the degree of

market granularity as a feature of data to explore potential deviations from factor

models. It would be interesting to combine the asset pricing study in this paper with

dynamic growth models that endogenously generate a fat-tailed distribution of firm

size (see Champernowne (1953), Wold and Whittle (1957), Gabaix (1999), Beare and

Toda (2022))). Further, a dynamic framework may include the existing features in

the asset pricing study: An asset pricing model that includes the factor risk structure

as in APT, or an equilibrium mechanism to generate factor structures in expected

returns, with the negative relation between firm size and volatility incorporated, must

produce fruitful understandings of the dynamic interaction between granularity and

asset returns.
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Figure 1.1. Firm Market Weight Sorted at the end of 2020.

This figure displays the fat right tail of firm size. I measure the firm size by each asset’s relative weight
in the market portfolio. The 10 largest firms are highlighted and account for over 25 percent of the
whole CRSP data in 2020 containing about 4,000 firms.
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(a) ζ = 0.9

(b) ζ = 1.5

(c) ζ = 2.5
.

Figure 1.2. Simulation of the largest firm’s market weight

In this figure, I use simulation of Pareto distribution with ζ = 0.9,1.5 and 2.5 to study how the market
weight of the largest firm wmax =

Xmax
∑ Xi

changes as n increases.
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(a) ζ = 0.9

(b) ζ = 1.5

(c) ζ = 2.5
.

Figure 1.3. Simulation of the ∑n
i w2

i as n increases

In this figure, I use simulation of Pareto distribution with ζ = 0.9,1.5 and 2.5 to study how the
diversification measure ∑n

i w2
i changes as n increases.
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Figure 1.4. Size-adjusted idiosyncratic risk of individual assets

In this figure, I plot the wiθi of individual assets sorted by market weight at the end of 2020. The dot
size is scaled by the total market weight of each portfolio wi.
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Figure 1.5. Size and idiosyncratic risk of the 100 sorted portfolios in log scale

In this figure, I plot the relation between θi and wi of the 100 portfolios sorted by θi in log scale. The dot
size is scaled by the total market weight of each portfolio wi.
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Figure 1.6. Size-adjusted idiosyncratic risk of the 100 sorted portfolios

In this figure, I plot the relation between wiθi and θi of the 100 portfolios sorted by θi. The dot size is
scaled by the total market weight of each portfolio wi.
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Figure 1.7. Three measures of idiosyncratic risk

I measure the level of idiosyncratic risk at the aggregate level by the weighted average of θ. Specifically, I
use FF3 factors, or the three principal components of daily returns, to measure each asset’s idiosyncratic
variance θi,t in each month and compute the sum of all weighted by market weight wi,t−1. I also consider
a measure of idiosyncratic risk relative to the CAPM model introduced in Campbell et al. (2001). The
shaded areas are NBER recessions.
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Figure 1.8. Pareto predictor v.s. idiosyncratic risk

I measure the level of idiosyncratic risk at the aggregate level by the weighted average of idiosyncratic
risk relative to Fama-French 3 factors. I plot this series together with the Pareto predictor. The blue line
is the Pareto predictor and the yellow line is the weighted average of idiosyncratic variance. The shaded
areas are NBER recessions.
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Table 1.1. Evidence of granularity over decades

Panel A: Summary of the 10 largest firms, 1940s-1970s
1940 1950 1960 1970

1 GENERAL MO-
TORS (0.05)

STANDARD OIL
NJ(0.05)

IBM (0.05) IBM (0.05)

2 STANDARD OIL
NJ(0.04)

GENERAL MO-
TORS (0.05)

GENERAL MO-
TORS (0.04)

STANDARD OIL
NJ(0.03)

3 DUPONT (0.04) DUPONT (0.04) STANDARD OIL
NJ(0.04)

GENERAL MO-
TORS (0.02)

4 GENERAL ELEC-
TRIC (0.03)

GENERAL ELEC-
TRIC(0.03)

TEXACO INC(0.02) EASTMAN KO-
DAK(0.02)

5 TEXASCO(0.02) TEXASCO(0.02) GENERAL ELEC-
TRIC(0.02)

GENERAL ELEC-
TRIC(0.02)

6 STANDARD OIL
IND(0.01)

STANDARD OIL
CAL(0.02)

DUPONT (0.02) TEXACO(0.01)

7 STANDARD OIL
CAL(0.01)

GULF OIL (0.02) EASTMAN KO-
DAK(0.01)

PROCTER & GAM-
BLE(0.01)

8 COCA COLA(0.01) IBM (0.01) GULF OIL (0.01) MINNESOTA MIN-
ING & MFG(0.01)

9 GULF OIL (0.01) SOCONY VACUUM
OIL(0.01)

STANDARD OIL
CAL(0.01)

DUPONT (0.01)

10 KENNECOTT COP-
PER (0.01)

STANDARD OIL
IND(0.01)

MINNESOTA MIN-
ING & MFG(0.01)

STANDARD OIL
CO IND(0.01)

Weight 0.24 0.26 0.24 0.19
Firm number 1019 1215 2995 6718

Panel B:Summary of the 10 largest firms, 1980s-2010s and 2020
1980 1990 2000 2010 2020

1 IBM(0.04) GE(0.02) XOM(0.03) AAPL(0.03) AAPL(0.05)
2 XON(0.02) XON(0.02) GE(0.03) GOOG(0.02) MSFT(0.05)
3 GE(0.02) KO(0.02) MSFT(0.02) MSFT(0.02) AMZN(0.04)
4 SUO(0.01) WMT(0.01) WMT(0.02) XOM(0.02) GOOG(0.03)
5 SN(0.01) IBM(0.01) C(0.02) BRK(0.02) FB(0.02)
6 GM(0.01) MSFT(0.01) PFE(0.02) BRK(0.02) BRK(0.02)
7 MOB(0.01) MRK(0.01) JNJ(0.01) AMZN(0.01) JNJ(0.01)
8 SD(0.01) PG(0.01) INTC(0.01) JNJ(0.01) WMT(0.01)
9 BLS(0.01) BMY(0.01) CSCO(0.01) WMT(0.01) V(0.01)
10 DD(0.01) JNJ(0.01) IBM(0.01) JPM(0.01) JPM(0.01)
Weight 0.15 0.14 0.17 0.18 0.25
Firm num-
ber

10428 12477 9040 6060 3823

This table presents the names of the ten largest firms and their market weight in each decade.
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Table 1.2. Portfolios sorted by idiosyncratic variance estimated by Fama-French 3

factors per month.

Panel A: Summary of portfolios sorted by idiosyncratic variance
L 2 3 4 H L-H

Mean 7.17 7.42 8.38 4.75 -0.06 7.23

Volatility 13.73 17.35 21.35 26.05 30.12 23.65

wi 0.60 0.23 0.11 0.05 0.02

Panel B: alpha relative to FF3
αFF3 1.18 -0.20 -0.44 -5.29 -11.42 12.60

T-stat 2.91 -0.38 -0.53 -3.88 -6.54 6.34√
θFF3 2.82 3.97 5.80 8.96 13.85

αFF3/θFF3 14.85 -1.29 -1.31 -6.60 -5.95

Panel C: alpha relative to CAPM
αCAPM 1.34 -0.02 -0.50 -5.39 -10.59 11.92

T-stat 2.52 -0.04 -0.48 -2.98 -4.35 4.20√
θCAPM 3.67 4.00 7.16 12.29 18.38

αCAPM/θCAPM 9.94 -0.14 -0.97 -3.57 -3.13

Panel D: alpha relative to PCA factors
αPC 5.90 5.29 5.06 0.11 -5.88 11.79

T-stat 3.45 2.66 2.33 0.04 -2.16 5.29√
θPC 12.83 15.28 17.24 19.31 20.11

αPC/θPC 3.59 2.27 1.70 0.03 -1.45

Like Ang et al. (2006), I sort all the assets by their idiosyncratic risk θ measured per month
using FF3 factors. Then I split all the assets into five quintiles to construct five value-weighted
portfolios sorted by the idiosyncratic variance measured in the last month θi,t−1. I report the
mean (annualized, in percent), volatility (annualized, in percent), and market weight of each
portfolio in Panel A. I also examine the alpha and idiosyncratic volatility (both annualized,
in percent) of these portfolios relative to several benchmark models. I report results using
Fama-French 3 factors in Panel B as the benchmark case, CAPM in Panel C and a factor model
including the three principal components of all the available asset returns in Panel D.
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Table 1.3. Performance of ”bet on granularity portfolios” under different formation
periods.

Bet on granularity portfolios
window length 1 3 6 12

rL−H rL−H rL−H rL−H
Mean 7.36 7.29 7.25 7.03

Volatility 13.60 13.67 13.66 13.74

αFF3 1.49 1.48 1.57 1.46

T-stat 3.67 3.62 3.79 3.54

αCAPM 1.64 1.60 1.62 1.47

T-stat 3.04 2.79 2.76 2.45

αPC 6.20 6.25 6.27 6.04

T-stat 3.65 3.62 3.62 3.45

Like Ang et al. (2006), I sort all the assets by their idiosyncratic risk θ measured by the past
1,3,6 and 12 months using the Fama French three factors. I split all the assets into five quintiles
to construct five value-weighted portfolios sorted by the idiosyncratic variance measured in the
last month θi,t−1. I construct the ”bet on granularity” portfolio by leveraging a long position
of the lowest θ portfolio rL and short the highest θ portfolio rH. The long-short strategy is
constructed as follows:

rL−H,t =
1/θL,t−1

1/θL,t−1 − 1/θH,t−1
(rL,t − r f )−

1/θH,t−1

1/θL,t−1 − 1/θH,t−1
(rH,t − r f )

I examine the alpha and idiosyncratic volatility (both annualized, in percent) of these portfolios
relative to several benchmark models. I report results using CAPM, Fama-French 3 factors
and a factor model including the three principal components of portfolios sorted by various
characteristics.
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Table 1.4. Cross-sectional results using 100 portfolios sorted by idiosyncratic variance,
robustness check for measurement window of idiosyncratic risk

Cross-sectional results using 100 portfolios
estimates \ window length 1 3 6 12

η -1.78 -1.76 -1.64 -1.28

T-stat -15.90 -15.63 -18.32 -18.09

γ 5.17 4.67 3.90 3.16

T-stat 8.72 7.78 7.88 7.60

λ 3.13 3.42 3.37 2.87

T-stat 17.21 15.85 17.66 17.47

corr(wiθi,θi) -0.61 -0.58 -0.54 -0.52

corr(wi,θi) -0.56 -0.51 -0.47 -0.44

Like Ang et al. (2006), I sort all the assets by their idiosyncratic risk θ measured per month
using FF3 factors/three principal components of daily returns. I examine the robustness of my
100-portfolio results for different measurement window lengths. I report estimate of

αi = constant + ηθi;

αi = constant + γwiθi.

In addition, I normalize wiθi and θi to make their standard deviation equal 1 and estimate a
constrained regression

αi = constant + λwiθi + (1 − λ)θi.

I summarize the estimate of η, γ and the estimated correlations corr(wiθi,θi), corr(wi,θi) using
portfolios formed by the idiosyncratic variance measured by the daily returns in the past 1,3,6
and 12 months.
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Table 1.5. Fama-MacBeth results, individual asset level

Cross-sectional Regression, Stock Level
ri,t ri,t ri,t ri,t ri,t ri,t

const 0.56 0.57 0.58 0.49 0.49 0.38

3.00 2.98 2.98 2.58 2.60 1.96

β̂Mkt−RF
i,t 0.00 0.00 -0.00 -0.01 -0.00 -0.03

0.05 0.05 -0.08 -0.19 -0.05 -0.53

β̂SMB
i,t 0.04 0.04 0.04 0.04 0.04 0.04

1.65 1.70 1.66 1.54 1.59 1.53

β̂HML
i,t -0.01 -0.01 -0.00 0.00 -0.00 0.00

-0.19 -0.20 -0.02 0.10 -0.08 0.12

b/mi,t−1 0.24 0.24 0.24 0.25 0.25 0.25

8.65 8.60 8.57 8.84 8.90 8.78

momi,t−1 -0.45 -0.46 -0.45 -0.48 -0.49 -0.36

-2.09 -2.15 -2.01 -2.14 -2.30 -1.66

θ̂i,t−1 -2.23 -2.23 (η) -2.24 0.29 (1-λ)
-1.98 -2.04 -2.09 7.79

wi,t−1 -0.08 -0.11 -1.86 -1.73 -3.18

-0.47 -0.59 -5.05 -4.80 -13.17

wi,t−1θ̂i,t 9.15 (γ) 8.77 0.71 (λ)
8.99 8.73 19.34

In this table, I report the individual asset level test of granular risk premium by running
ri,t on the size-adjusted idiosyncratic variance wi,t−1θi,t. The goal is to compare my estimate
to estimate in Ang et al. (2009), ri,t = constant + controls + ∑k

s=1 f̂ii,s,t¯s + ȷˆ̀i,t−1 + ffli,t, to my
model: ri,t = constant + controls + ∑k

s=1 f̂ii,s,t¯s + flwi,t−1ˆ̀i,t + ffli,t. I estimate η̂ in the columns 2

to replicate the results in Ang et al. (2009) and compare it to the estimate of γ̂ from my model in
the column 4. To emphasize the importance of size-adjustment, I estimate a constrained model
ri,t = µ0 + ∑k

s=1 βi,s,t
(

fs,t + µs
)
+ λwi,t−1θi,t + (1 − λ)θi,t−1 + ϵi,t in the column 6. I estimate

the idiosyncratic variance θ̂i,t by running daily returns on the FF3 factors per month. The
controlling variables are the FF3 factor loadings and the lagged characteristics suggested by
Daniel and Titman (1997). As in their paper, I control the lagged book-to-market ratio b/mi,t−1
and the momentum factor momi,t−1 computed by the sum of returns in the last six months as
in Jegadeesh and Titman (1993).
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Table 1.6. Fama-MacBeth results, individual asset level, with three size groups.

.

Panel A: Cross-sectional regression, large-cap firms
ri,t ri,t ri,t ri,t ri,t ri,t
controls controls controls controls controls controls

θ̂i,t−1 -16.47 -17.35 (η) -18.30 0.26 (1-λ)
-4.40 -4.56 -4.53 9.51

wi,t−1 -0.23 -0.14 -0.09 -0.25 -2.03

-2.49 -1.39 -0.44 -1.28 -15.91

wi,t−1θ̂i,t 1.52 (γ) 1.75 0.74 (λ)
2.34 2.74 27.01

Panel B: Cross-sectional regression, middle-cap firms
ri,t ri,t ri,t ri,t ri,t ri,t
controls controls controls controls controls controls

θ̂i,t−1 -10.89 -11.24 (η) -21.49 -0.39 (1-λ)
-5.52 -5.80 -9.46 -6.91

wi,t−1 -8.86 30.05 -37.24 -101.43 -107.23

-0.38 1.24 -1.09 -3.01 -3.59

wi,t−1θ̂i,t 56.81 (γ) 69.73 1.39 (λ)
7.38 9.01 24.48

Panel C: Cross-sectional regression, small-cap firms
ri,t ri,t ri,t ri,t ri,t ri,t
controls controls controls controls controls controls

θ̂i,t−1 -2.63 -3.10 (η) -10.29 -1.36 (1-λ)
-2.51 -3.24 -7.22 -12.65

wi,t−1 -3062.46 -3076.17 -4643.75 -4913.00 -5131.17

-9.18 -8.67 -11.11 -11.93 -11.80

wi,t−1θ̂i,t 595.42 (γ) 619.36 2.36 (λ)
15.79 16.21 21.97

In this table, I report the same individual asset level test within three groups of firms sorted by
size. I report the results of the same tests in Table 1.5. I estimate the idiosyncratic variance
θ̂i,t by running daily returns on the FF3 factors per month. The controlling variables are the
FF3 factor loadings and the lagged characteristics suggested by Daniel and Titman (1997). As
in their paper, I control the lagged book-to-market ratio b/mi,t−1 and the momentum factor
momi,t−1 computed by the sum of returns in the last six months as in Jegadeesh and Titman
(1993).
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Table 1.7. Fama-MacBeth results, individual asset level, using other factor models.

Panel A: Cross-sectional regression, controlling for FF5 factors
ri,t ri,t ri,t ri,t ri,t ri,t
controls controls controls controls controls controls

θ̂i,t−1 -1.68 -1.70 (η) -1.74 0.30 (1-λ)
-1.76 -1.83 -1.85 8.88

wi,t−1 -0.17 -0.19 -1.55 -1.48 -3.09

-0.98 -1.05 -4.50 -4.35 -14.44

wi,t−1θ̂i,t 8.35 (γ) 8.16 0.70 (λ)
8.22 7.95 20.87

Panel B: Cross-sectional regression, controlling for PCA factors
ri,t ri,t ri,t ri,t ri,t ri,t
controls controls controls controls controls controls

θ̂i,t−1 -2.22 -2.23 (η) -2.25 0.28 (1-λ)
-2.01 -2.08 -2.13 7.97

wi,t−1 -0.14 -0.15 -2.00 -1.93 -4.04

-0.79 -0.81 -4.73 -4.66 -16.55

wi,t−1θ̂i,t 6.73 (γ) 6.52 0.72 (λ)
7.97 7.77 20.99

Panel C: Cross-sectional regression, controlling for Q5 factors
ri,t ri,t ri,t ri,t ri,t ri,t
controls controls controls controls controls controls

θ̂i,t−1 -1.17 -1.19 (η) -1.19 0.30 (1-λ)
-1.40 -1.47 -1.46 8.91

wi,t−1 -0.19 -0.22 -1.66 -1.57 -3.26

-1.00 -1.12 -4.57 -4.42 -14.79

wi,t−1θ̂i,t 8.30 (γ) 8.10 0.70 (λ)
8.47 8.27 20.56

In this table, I report the same individual asset level test using FF5 factors, PCA factors (the
three principal components of all asset returns) and the Q5 factors (see Hou et al. (2015), Hou
et al. (2021)). I report the results of the same tests in Table 1.5. I estimate the idiosyncratic
variance θ̂i,t by running daily returns on the selected factors per month. The controlling
variables are the estimated factor loadings and the lagged characteristics suggested by Daniel
and Titman (1997). As in their paper, I control the lagged book-to-market ratio b/mi,t−1 and
the momentum factor momi,t−1 computed by the sum of returns in the last six months as in
Jegadeesh and Titman (1993).
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Table 1.8. Fama-MacBeth results, individual asset level, sub-sample results separated
by decades.

Fama-Macbeth regression per decade, Firm level
1960 1970 1980 1990 2000 2010

η -13.50 -0.10 0.25 1.01 -2.35 -1.61

-1.77 -0.04 0.43 1.66 -3.29 -2.02

γ 10.81 11.64 11.45 -1.53 7.80 15.17

3.44 4.92 5.42 -0.71 3.07 5.96

λ 0.93 0.61 0.69 0.25 0.80 1.05

9.37 6.78 8.53 2.24 12.00 15.59

Number of firms 2995 6718 10428 12477 9040 6060

In this table, I report the same individual asset level test in sub-samples separated by decades.
I report the results of the same tests in Table 1.5. I estimate the idiosyncratic variance θ̂i,t by
running daily returns on the FF3 factors per month. The controlling variables are the FF3 factor
loadings and the lagged characteristics suggested by Daniel and Titman (1997). As in their
paper, I control the lagged book-to-market ratio b/mi,t−1 and the momentum factor momi,t−1
computed by the sum of returns in the last six months as in Jegadeesh and Titman (1993).
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Table 1.9. Time-series results

Panel A: Single variable prediction, multiple-horizon results
logrm,t→t+1 logrm,t→t+12 logrm,t→t+60

logζt -0.28 -2.03 -10.81
T-stat -2.11 -1.70 -3.42
R2(%) 0.43 1.67 9.61

logζt (de Stambaugh-bias) -0.27 -2.04 -10.78

T-stat -1.87 -3.61 -8.77

Panel B: control ∑ wiθi(FF3)
logrm,t→t+1 logrm,t→t+12 logrm,t→t+60

logζt -0.27 -1.70 -6.17
T-stat -1.91 -1.31 -1.91
∑ wiθi(FF3) -0.20 -1.69 0.80

T-stat -0.99 -0.91 0.18

R2(%) 0.48 1.79 3.34

Panel C: control ∑ wiθi(PCA)
logrm,t→t+1 logrm,t→t+12 logrm,t→t+60

logζt -0.26 -1.64 -5.83
T-stat -1.81 -1.23 -1.78
∑ wiθi(PCA) -0.10 -1.11 1.53

T-stat -0.47 -0.56 0.33

R2(%) 0.33 1.12 3.47

Panel D: control ∑ wiθi(Campbell et al)
logrm,t→t+1 logrm,t→t+12 logrm,t→t+60

logζt -0.28 -1.78 -6.52
T-stat -1.94 -1.38 -2.06
∑ wiθi (Campbell et al) -0.23 -2.18 -0.21

T-stat -1.11 -1.20 -0.05

R2(%) 0.55 2.55 3.29

In this table, I report the monthly times-series results for the Pareto coefficient ζ to predict
log excess return for the aggregate market. A lower ξ implies a fatter tail. The hypothesized
predictive relation should be negative A < 0. In Panel A, I check the prediction results at multi-
ple horizons at various horizons k = 1,12,60, log(rm,t+k) = constant + Alog¸t. Furthermore, I
control for the level of idiosyncratic risk in log(rm,t+k) = constant + Alog¸t + ∑wi,t−1`i,t.
I measure the level of idiosyncratic risk at the aggregate level by the weighted average of θ.
Specifically, I use FF3 factors, or the three principal components of daily returns, to measure
each asset’s idiosyncratic variance θi,t in each month and compute the sum of all weighted
by market weight wi,t−1. I also consider a measure of idiosyncratic risk relative to the CAPM
model introduced in Campbell et al. (2001). The results controlling for these three measures
are in Panel B, C and D, respectively.
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Table 1.10. Summary of Predictors

Summary of Predictors
Description AR1 Corr with ξt

ξt granularity measure 0.97 1.00

bm book to market ratio 0.99 0.07

dspr default spread 0.97 0.27

dp dividend price ratio 0.99 -0.11

ep earning price ratio 0.99 0.04

ltr long term government bond return 0.05 0.01

ntis net equity expansion ratio 0.98 0.08

svar stock variance 0.40 -0.07

tspr term spread 0.96 0.11

corpr corporate bond return 0.11 0.01

In this table, I report the AR1 coefficient of all the predictors used. Also, I include the
correlation coefficient between each controlling predictor and the Pareto coefficients. The
controlling predictors in Welch and Goyal (2008) are defined as follows: bm is the book-to-
market ratio, dspr is the default spread, dp is the dividend price ratio, ep is the earning prices
ratio, ltr is the long term government bond return, ntis is the net equity expansion ratio, svar is
the stock variance, tspr is the term spread, corpr is the corporate bond return.
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Table 1.11. Time series results controlling for other predictors.

Panel A: Predictors Controlled, 1 Month Horizon
bm dspr dp ep ltr ntis svar tspr corpr

logζt -0.29 -0.34 -0.25 -0.29 -0.28 -0.27 -0.28 -0.30 -0.29
T-stat -2.13 -2.38 -1.86 -2.13 -2.22 -2.09 -2.14 -2.31 -2.30
predictor 0.13 0.20 0.26 0.22 0.37 -0.07 -0.16 0.26 0.52

T-stat 0.85 0.83 1.82 1.14 2.68 -0.36 -0.48 1.73 3.42

R2(%) 0.53 0.62 0.80 0.70 1.21 0.46 0.57 0.82 1.92

Panel B: Predictors Controlled, 60 Month Horizon
bm dspr dp ep ltr ntis svar tspr corpr

logζt -10.78 -13.31 -8.27 -10.63 -10.85 -10.95 -10.75 -11.21 -10.88
T-stat -3.56 -3.80 -3.06 -3.85 -3.44 -3.39 -3.40 -3.62 -3.46
predictor 6.32 7.11 14.24 8.86 1.84 -1.56 2.56 10.52 2.43

T-stat 1.97 2.47 5.79 2.03 1.56 -0.48 1.39 3.56 1.96

R2(%) 12.92 13.56 25.99 16.22 9.89 9.79 10.03 19.23 10.10

In this table, I report the double variable regression results for the logged excess market return
log(rm,t+k) at various horizons k = 1,12,60.

log(rm,t+k) = constant + Alog¸t + predictor

In Panel A, B, C, I report the results at different horizons, and the other predictors are controlled
in each column for a bi-variate regression. The Pareto coefficient is de-trended, and a lower
ξ implies a fatter tail. The hypothesized predictive relation should be negative A < 0. The
controlling predictors in Welch and Goyal (2008) are defined as follows: bm is the book-to-
market ratio, dspr is the default spread, dp is the dividend price ratio, ep is the earning prices
ratio, ltr is the long-term government bond return, ntis is the net equity expansion ratio, svar is
the stock variance, tspr is the term spread, corpr is the corporate bond return.
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Chapter 2

Fiscal Imbalances, Foreign Account
Imbalances, and Asset Returns
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2.1 Introduction

The dynamics of US stock returns, US Treasury returns, and foreign asset

investment returns are of central interest in finance and macroeconomic research, as

they represent the private, public, and external sectors of the economy, respectively.

These sectors are not isolated from each other; in fact, they are intricately connected,

as the aggregate output of the economy equals the sum of the cash flows of the three

sectors. Understanding the joint dynamics of these sectors is therefore crucial for

investors and policymakers, as it can help answer questions such as: What are the

implications of a contractionary fiscal policy for equity and foreign investment returns?

How do changes in net imports affect domestic asset valuation?

In this paper, we present a framework that allows us to explore the joint

dynamics of the three sectors by imposing the aggregate budget constraint of the

economy. Specifically, our objective is to examine the predictability of asset returns

within each sector and across sectors and to investigate whether imposing the aggregate

level accounting identity can improve the results of return predictability. Naturally,

our framework integrates three significant strands of literature that examine the

predictability of returns within each sector separately. The literature, beginning with

the pioneering paper of Campbell and Shiller (1988b), uses each sector’s intertemporal

budget constraint to demonstrate that the sector’s current cash flow can predict its

future expected returns or cash flow growth rate.1 For instance, the dividend-to-price

ratio can predict future expected returns or the future dividend growth rate of a firm

in the private sector. Similarly, the literature has used the government surplus-to-debt

ratio as a predictor for the public sector and the import-to-foreign asset value ratio as

1Since the literature on the predictability of returns within each sector separately is vast, we discuss it
further in the related literature section. Some notable references on budget constraints within each sector
include Campbell and Shiller (1988b), Larrain and Yogo (2008), Berndt et al. (2012), and Gourinchas and
Rey (2007b), among others.
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a predictor for the external sector.

The key insight of our framework is to use the aggregate budget constraint

to tie the three predictors, motivated by separate sector budget constraints, together.

Specifically, we use a GMM estimation to enforce the accounting identity that total

consumption equals the sum of cash flows in the three sectors: dividends, government

surplus (tax minus spending), and net imports, respectively. Our approach can

help identify how changes in one sector propagate to the others, conditioning on its

contribution to the cyclical movement of the whole economy. We apply this framework

to test the cross-predictability among the three sectors and investigate whether a value

adjustment or policy shifting in one sector could predict a corresponding change in the

expected returns or growth rate of the other sectors. This test of cross-predictability

is of great importance, as it can shed light on how different sectors of the economy

are interconnected and how shocks in one sector could affect the others. For example,

it can help us understand how fiscal policy may affect risk premiums in equity and

foreign asset investments.

Turning to our empirical analysis, we first replicate the univariate results of each

sector and find that our results align with the predictability literature for each sector.

Specifically, the dividend-to-price ratio predicts equity returns, with more significance

at longer horizons (e.g., see Campbell and Shiller (1988a), Cochrane (2008), and Pástor

and Stambaugh (2012)). On the other hand, the predictability of Treasury bond returns

is relatively weaker, as documented in recent papers such as Jiang et al. (2021). For

the external sector, we also find that the import-foreign asset ratio predicts foreign

investment returns, which is similar to the findings in Gourinchas and Rey (2007b)

and others. 2

2We use the import-to-foreign asset ratio instead of the export ratio measured in Gourinchas and
Rey (2007b) to express the consumption as the sum of three cash flows. While they computed the net
export-to-net asset ratio and found a non-stationary trend due to the increasing import of the US over
time, we applied a non-forward-looking filter (see Hamilton (2018)) to subtract the non-stationary trend
rather than the Hodrick–Prescott filter in their analysis.
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Next, we run a multivariate regression to test the cross-predictability between

sectors. Our key finding is that the government surplus-to-debt ratio negatively pre-

dicts future equity and foreign asset returns. Furthermore, by imposing the aggregate

budget constraint using the GMM estimator to estimate all predictive regressions

jointly, we find that the constrained estimate has smaller estimation error and more

predictive power in the longer horizon, which amplifies our key finding that the

government surplus-to-debt ratio is a significant predictor of equity and foreign asset

returns.

Our empirical results underscore the importance of considering budget con-

straints when examining the joint dynamics of asset returns. Moreover, they highlight

the impact of fiscal policy on the other two sectors. The negative predictability of

the government surplus-to-debt ratio on the asset returns in the two other sectors is

anchored on the classical view of the impact of fiscal policy, the Ricardian Equivalence

(Barro (1979)). If investors believe in the notion that the government has to either ”tax

now” or ”tax later”, a low surplus today could lead them to expect higher taxes in the

future. This, in turn, may result in higher risk premiums for investing in firms, as they

anticipate increased fixed costs imposed by the government.

In summary, our empirical results contribute to the literature by testing whether

fiscal decisions could predict the future expected returns or payouts growth rate in the

private and external sector, which is of importance yet remains unknown before our

general framework on cross-sector return predictability. Overall, our paper contributes

to the understanding of the joint dynamics of asset returns in the US economy by

examining the cross-predictability among the three major sectors - equity, Treasury

bonds, and foreign assets. Although our primary focus is on return predictability, the

general framework we develop to impose the aggregate budget constraint can help to

deepen our understanding of the regime switching among sectors and the structural

reasons behind their balance from each other.
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Related Literature

Our approach to decomposing the entire economy into three sectors and impos-

ing the aggregate budget constraint relates to three strands of literature on dynamic

value-adjustment based on the separate budget constraints of each sector, respectively:

the equity, public debt, and foreign asset account.

For equities, a large literature beginning with Campbell and Shiller (1988b) and

Campbell (1993) analyzes the dynamics of stock returns based on the budget constraint

of a representative investor. Research using this framework demonstrates that the

dividend-price ratio is driven by a time-varying risk premium of equity returns (see

Campbell (1991), Cochrane (2008), Cochrane (2011), Pástor and Stambaugh (2012)).

The predictability of dividend growth rate is also investigated by Menzly et al. (2004)

and Lettau and Ludvigson (2005). Additionally, there is an extensive body of research

focusing on understanding the drivers of stock return predictability and testing the

stability of this framework with richer econometric or structural model specifications,

e.g., Timmermann (1993), Ang et al. (2007), Campbell and Thompson (2008), Koijen and

Van Nieuwerburgh (2011). The vast amount of literature cited primarily focuses on the

equity sector and contributes extensively to understanding the drivers of stock return

predictability. For our purpose, we use the dividend-to-price ratio as the predictor of

the equity sector and employ it to test the joint dynamics of the three sectors.

Our paper also relates to Lettau and Ludvigson (2001) who use an aggregate

budget constraint to forecast equity returns. Our study is different in focus and results

in several important aspects. First, Lettau and Ludvigson (2001) use a consumption-

wealth ratio (”cay”) to predict equity returns only, by decomposing aggregate wealth

into human capital and investable assets. They do not decompose assets into the

three sectors and do not look at across-sector predictability, which is the focus of our

decomposition. Second, they use aggregate consumption without decomposing it. We

use the national accounts identity to decompose consumption into flow variables for
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the three sectors. The novelty of the across-sector decomposition is precisely what

allows us to ask whether there is across-sector predictability in the data. Naturally, the

labor-non-labor decomposition and our three-sector decomposition are complementary.

The private, public, and foreign sectors can further be decomposed into labor and

non-labor income components, as done by Lettau and Ludvigson (2001).3

Similarly, the government budget constraint is extensively used in macroeco-

nomics and finance literature to tackle questions related to the effects of fiscal policy on

the real economy and inflation. Recent examples of this literature include Berndt et al.

(2012), Berndt and Yeltekin (2015), and Giannitsarou and Scott (2006). It also underlies

the Ricardian equivalence literature (Barro (1979)). This literature uses log-linearization

of the government budget constraint, similar to the equity sector. However, the net

surplus (tax minus government spending) can be negative, unlike the cash flows of

equities. To avoid the technical issue of log-linearization due to negative surplus,

these papers assume a stable co-integration of tax and government spending, measur-

ing fiscal imbalance by a linear combination of the logged tax-to-debt ratio and the

spending-to-debt ratio. Our measure of fiscal policy imbalance differs from this litera-

ture, as we derive a new linear identity that allows for using net government surplus

directly. Our measure is more general, as it does not require a stable co-integration

of tax, government spending, and debt. Our measure captures the high volatility of

net surplus in the data and better fits the high government spending sample periods.

Recent papers also derive a linear identity without using negative net surplus, but

by using the logged debt-to-total output (GDP) ratio to predict treasury bond returns

(see Cochrane (2022) and Jiang et al. (2021)). This approach differs from ours, as it

3We do not emphasize labor income, as our focus is on the three sectors and across-sector pre-
dictability. Conseptually, one can introduce labor income more explicitly into our framework by further
decomposing each of the three sector’s assets into parts due to human capital and investable income.
As labor income is non-observable, one would have to use the approach in Lettau and Ludvigson (2001)
and come up with equivalent measure of ”cay” for each sector.
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does not impose the same budget constraint4. In addition, our approach of using the

budget constraint to predict treasury bond returns differs from Fama and Bliss (1987)

and Cochrane and Piazzesi (2005), which use the expectation of future interest rates to

predict realized bond returns.

In international finance, the valuation channel refers to the impact of capital

gains and losses on the external balance sheet. Lane and Milesi-Ferretti (2001) pio-

neered studies on the valuation effects. Our measure of foreign asset account imbalance

is closely related to that of Gourinchas and Rey (2007b), who laid the foundations using

a similar budget constraint for the foreign sector to test the dynamic value-adjustment

based on the imbalance of the foreign asset account. They documented that external

imbalance strongly predicts returns on net foreign assets. Gourinchas (2008) suggested

that short-term movements in external asset positions appear to be driven by the valua-

tion component in recent periods. Gourinchas and Rey (2014) concluded that valuation

effects have gained growing importance for both developed and emerging countries.

In particular, Gourinchas and Rey (2007b) cast doubt on the notion that exchange

rates may well be random walks (Meese and Rogoff (1983)) and also documented

strong predictability of exchange rates, overshadowing conventional predictors such

as cross-country differences in fundamentals (Rossi (2013)). Lane and Shambaugh

(2010) further studied the role of exchange rate movements in the valuation channel by

constructing a comprehensive dataset of a large number of countries. Corte et al. (2016)

showed that external imbalance can be useful in developing profitable cross-country

currency trading strategies.

4Liu (2023) also uses debt-to-GDP ratio to predict stock returns.
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2.2 Three Budget Constraints and One Aggregate
Budget Constraint

The starting point is the aggregate accounting identity of GDP:

Yt = Ct + It + Gt + Xt − Mt (2.1)

where Yt is GDP, Ct is aggregate consumption, It is the aggregate investment for future

production, Gt is the government spending, and Xt, Mt are export and import. We can

re-write this identity as

Ct = Dt + NSt + NMt (2.2)

where Dt = Yt − It − Tt is the dividend. This definition of dividend equals to the

output minus investment and tax, which is typical in literature (see Larrain and Yogo

(2008)), as the net payout to the firm owner. NSt = Tt − St is the net government tax

surplus, and NMt = Mt − Xt is the net imports. Conceptually, aggregate consumption

is driven by flows variables from three sectors: the private sector, the public sector,

and the external sector. In the private sector flow, the flow is the after-tax aggregate

dividend. In the public sector, it is the net government surplus. In the foreign sector,

the flow is net imports.

In asset pricing, it is often assumed that Ct = Dt (Lucas Jr (1978), Campbell

(1996)), which implicitly side-steps the role of fiscal policy or net imports on asset

returns. For each of the three sectors, we can define their own intertemporal budget

constraints. For the private sector, it is

At+1 + Dt+1 = (1 + RA
t+1)At (2.3)

where At is the value of private wealth in the economy, and RA
t+1 is the return to
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private wealth.

The public sector’s budget constraint is:

Bt+1 + NSt+1 = (1 + RB
t+1)Bt (2.4)

where Bt is the total value of government debt outstanding, and RB
t+1 is the return of

that debt.

Similarly, for the external sector, the budget constraint is:

Ft+1 + NMt+1 = (1 + RX
t+1)Ft (2.5)

where Ft is the net value (assets minus liabilities) of foreign assets, and RX
t+1 is the

return on those foreign assets.

These budget constraints have been used in isolation in the literature (for

example, Campbell and Shiller (1988a) for the equity sector, Berndt et al. (2012) for the

public sector, and Gourinchas and Rey (2007b) for the external sector).

We can define the total domestic wealth of the economy Wt as:

Wt = At + Bt + Ft (2.6)

and using total outflows, Ct, can write the aggregate budget constraint as

Wt+1 + Ct+1 = (1 + RW
t+1)Wt (2.7)

where the gross return of the economy is equal to the weighted average of the returns

in each sector, or

1 + RW
t+1 = (1 + RA

t+1)(At/Wt) + (1 + RB
t+1)(Bt/Wt) + (1 + RX

t+1)(Ft/Wt) (2.8)
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2.2.1 Three BCs and Within-Sector Predictability

We use a variation of a common log-linearization approach (Campbell and

Shiller (1988b), Larrain and Yogo (2008), Gourinchas and Rey (2007b)) to obtain a

log-linear relation between state variables, future log returns, and future dividend

growth rates. For the three sector BCs in (2.3), (2.4), and (2.5) we obtain

DAt = κ0,DA + κ1,DA

∞

∑
j=0

ρ
j
DA

(
rE

t+j+1 − ∆dt+j+1

)
(2.9)

NSBt = κ0,NSB + κ1,NSB

∞

∑
j=0

ρ
j
NSB

(
rD

t+j+1 − ∆nst+j+1

)
(2.10)

NMAt = κ0,NMA + κ1,NMA

∞

∑
j=0

ρ
j
NMA

(
rX

t+j+1 − ∆nmt+j+1

)
(2.11)

where DAt = Dt/At, NSBt = NSt/Bt, NMAt = NMt/Ft are the valuation ratios in

each sector. The κs and ρs are constants determined by the steady-state values of each

ratio. Their functional form is specified in the Appendix Section B.1.

It is worth highlighting that, in expressions (2.9), the dividend yield DAt is

not in logs, and neither are the state variables in the other sectors, NSBt and NMAt.

This is because, as outlined in the appendix, we use a modification of the standard

log-linearization to accommodate negative and volatile cash flows. Specifically, the

modification is necessary because, in the data, net government surplus is negative and

volatile for extended periods, which challenges some of the existing log-linearization

approaches (Larrain and Yogo (2008), Berndt et al. (2012)). Similarly, in the foreign

sector, net imports are negative in a part of our sample period, and net foreign assets

can be close to zero when net foreign assets and liabilities are of similar magnitudes.

These features present a difficulty for the typical log-linearization for the external

sector (Gourinchas and Rey (2007a)). But conceptually, we obtain linear relations
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between the state variables on the left-hand-side and future log returns and log growth

of fundamentals which then allow us to test for predictability in returns and growth in

fundamentals.

The three intertemporal relations (2.9-2.11) have been the foundation of separate

strands of literature that analyze the predictability of equity returns, Treasury returns,

and foreign asset returns. The conditioning variables used are either the within-sector

conditioning variables or macroeconomic quantities, such as inflation, interest rates,

term spread, and default spread.

2.2.2 The ABC and Across-Sector Predictability

The log-linearized version of the ABC obtains similarly to the three sector

BCs. Namely, linearizing and iterating forward equation (2.7) yields the following

expression

CWt = κ0,CW + κ1,CW

∞

∑
j=0

ρ
j
CW

(
rW

t+j+1 − ∆ct+j+1

)
. (2.12)

The state variable in this expression is the consumption-to-wealth ratio, CWt, which is

a weighted average of the state variables of the individual sectors, or

CWt = α0 + w1DAt + w2NSBt + w3NMAt. (2.13)

Similarly, the aggregate the log return of the economy, rW
t+j+1, is a weighted average of

the log returns in the three sectors,

rW
t+j+1 = α1 + w1rE

t+j+1 + w2rD
t+j+1 + w3rX

t+j+1. (2.14)

And similarly, for the consumption growth rate,
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∆ct = α2 + w1∆dt + w2∆nst + w3∆nmt. (2.15)

The weights of the three sectors are w1 = AW/ρDA
AW/ρDA+BW/ρNSB+FW/ρNMA

, w2 =

BW/ρNSB
AW/ρDA+BW/ρNSB+FW/ρNMA

, and w3 = FW/ρNMA
AW/ρDA+BW/ρNSB+FW/ρNMA

. Intuitively, w1, w2,

and w3 are each sector’s weight in the aggregate wealth at the steady state, adjusted

by the log linearization coefficients ρs.

The aggregate budget constraint presented in equation (2.13-2.15) ties the pre-

dictability of each sector together by enforcing the weighted average of the three

predictors, i.e. DA, NSB and NMA, respectively, equal to the weighted average of the

expected future returns and cash flow growth rates of the three sectors.

Therefore, if there is an imbalance in one sector, such as NSB = T−G
B , which

measures fiscal policy, this change will affect the consumption-to-wealth ratio and

could generate correspondence to future asset returns and cash flow growth rates in

all the sectors. We identify this channel by enforcing the coefficient of predicting the

consumption growth rate to be equal to the weighted average of the coefficients of

predicting all three cash flow growth rates, as indicated by (2.15). Furthermore, to

link to the return predictability, we also impose within-sector constraints such that

the coefficients of predicting returns and cash flow growth rate satisfies the separate

budget constraints in (2.9-2.11). We apply the GMM estimation method to enforce all

the budget constraints in a multivariate predictive system that combines all the sectors

to study cross-sector predictability. We provide details of our estimation strategy in

Appendix Section B.2.

The study of cross-sector predictability provides valuable insights into the

interplay between different sectors’ returns and cash flow growth rates, shedding light

on the mechanisms that drive asset pricing in the economy. By decomposing total

consumption into dividends, government surplus, and net imports, our approach
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allows us to investigate how fiscal policies and other macroeconomic shocks impact

the returns of different asset classes. For example, if a tax increase has a real impact

on the equity market, we would expect the government surplus to predict equity

returns in our framework. Moreover, by studying the predictability of returns and cash

flow growth rates across multiple sectors simultaneously, we can also gain a better

understanding of the factors that drive asset prices and the transmission of shocks

across different sectors of the economy. Ultimately, our goal is to develop a more

comprehensive and accurate framework for asset pricing that takes into account the

complex interdependencies between different sectors of the economy.

Our approach differs significantly from that of Lettau and Ludvigson (2001)

(hereafter LL) in several ways. LL introduced a consumption-to-wealth ratio, known as

cay, to analyze equity return predictability. However, they focused only on the private

sector and divided income into labor and non-labor income. Their objective was not to

examine cross-sector predictability but to develop a state variable that could reliably

capture expected equity return variation while controlling for the effect of labor income.

In contrast, our approach utilizes the same consumption-wealth dynamic as LL to

explore interactions among different sectors of the economy and analyze predictability

across sectors. By doing so, we aim to gain insights into the drivers of asset pricing

and the interplay between different sectors’ returns and cash flow growth rates.

2.3 Data

We use quarterly data for the private sector (US equity), public sector (US public

debt), and external sector (US foreign asset account). All data start from 1947 on a

quarterly basis and are updated until the end of 2021, unless they are not available at

the beginning of our sample period. In such cases, we provide specific instructions on

where the original series started and how we interpolate back to 1947.
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We collect dividend and price data for the S&P 500 from Robert Shiller’s website.

We compute the summed market capitalization of all the firms in CRSP to scale the

dividends and market value of the private sector. To enforce the aggregate budget

constraint, we gather the total net worth and personal consumption expenditure (PCE)

data from the collection of economic data series on the FRED website. The quarterly

data of total net worth begin in 1952. We use annual data from 1947-1952 and assume

equal quarterly growth within the same year to recover quarterly values.

Our public sector data primarily comes from the NIPA Table, which is available

on the FRED or BEA websites. We collect the total public debt series from FRED.

Following Berndt et al. (2012), we compute tax and government spending from terms

in NIPA Table 3.2. Tax equals total receipts (line 37) plus seigniorage revenue, which

is calculated as (Mt − Mt−1)/CPIt. Mt represents the money base, and CPIt is the

consumer price index obtained from FRED. Government spending equals current

expenditures (line 41) plus gross government investment (line 42) plus capital transfer

payments (line 43) minus consumption of fixed capital (line 45) minus debt interest

payments (line 29).

For the external sector, we rely on the methodology of Gourinchas and Rey

(2007b) to construct measures on the gross positions, flows, and returns. As Gourinchas

et al. (2010) updated certain data sources and computations of these variables, we

closely follow them in obtaining the variables from numerous databases, including Flow

of Funds Accounts, Board of Governors of the Federal Reserve System, and Bureau

of Economic Advisors. Our calculation includes data from 13 countries: Australia,

Canada, Denmark, France, Germany, Ireland, Italy, Japan, Mexico, Netherlands, Spain,

Sweden, and the United Kingdom. The raw data for the external sector is not as

well-organized as for the other two sectors, and we interpolate the data to match

the length and frequency of our sample when the raw data is unavailable. Detailed

documentation is available upon request.
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2.4 Results

The summary statistics of the returns of the three sectors (rE, rD, rX), cash flows

of the three sectors (∆d, ∆ns, ∆nm), and valuation ratios DA, NSB, and NMA are in

Panel A of Table 2.1. The average annual return of the US stock market, adjusted for

inflation, is 8% with a standard deviation of 16%. The Treasury return adjusted for

inflation is 2%, while the return of foreign assets adjusted for inflation is 6%. The real

returns of the three sectors are not correlated, as evidenced by the correlation matrix

presented in Panel B of Table 2.1. The weak correlations among these returns suggest

that they represent three distinct asset classes, each potentially attracting a different

group of investors. This further highlights the importance of considering these sectors

separately when examining their dynamics and interactions.

We would also like to draw attention to the high volatility of the growth rate

of net government surplus, which stands at an annual level of 146%. This significant

volatility is primarily due to shifts in fiscal policy. This stylized fact led us to develop a

linearization technique that captures this high volatility, utilizing the raw government

surplus-to-debt ratio rather than a log-linearized approximation employed in Larrain

and Yogo (2008) and Berndt et al. (2012). In Figure 2.1, we compare the two time-series

to highlight the differences: During extreme historical periods, such as the oil crisis

in 1973, the global financial meltdown of 2008-09, and the unprecedented COVID-19

pandemic in 2020, the rich dynamics of NSB = T−G
B cannot be accurately captured by

its log-linearization. These extraordinary events led to dramatic shifts in government

policies and fiscal interventions, which in turn resulted in considerable fluctuations in

the net government surplus.

Interestingly, the correlations between the valuation ratios and the cash-flow

growth of the three sectors throughout the whole sample are not significant, with the

strongest correlation being -0.12 between dividends and government surplus. We plot
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the three ratios, which serve as state variables driving the cyclical movement of the

whole economy, together in Figure 2.2. In the plot, we observe temporary correlation

regimes among the three sectors. For example, the dividend-to-price ratio kept going

down during the 1990s, and both the net surplus and import increased simultaneously.

However, these correlations are not permanent, and there isn’t always one sector’s

valuation ratio going down while the other two go up. The time-varying mechanism of

the three sectors balancing against each other cancels out throughout the entire sample,

leading to a weak unconditional correlation. From this perspective, our framework,

which studies the joint dynamics of the three sectors and enforces the aggregate budget

constraint, provides a solid starting point. Although our primary focus in this paper

is on asset return predictability, exploring the conditional correlations and regime-

switching of the joint dynamics of the three sectors would be an interesting topic for

further investigation.

We now begin by replicating the predictability results of each sector using our

data. The univariate predictive regressions, which use each sector’s valuation ratio, are

presented in Table 2.2. This table replicates the results for the predictive regressions of

the equity sector (columns 1 and 2), Treasury sector (columns 3 and 4), and foreign

asset investment sector (columns 5 and 6). The table consists of three forecasting

horizons in Panels A, B, and C. Additionally, we report unbiased estimates of our

coefficients, as suggested in Stambaugh (1999).

Our findings align with the predictability literature for each sector. The

dividend-to-price ratio, DA, predicts the equity return rE at long horizons, as ev-

idenced by studies such as Campbell and Shiller (1988a), Cochrane (2008), and Pástor

and Stambaugh (2012). Although we construct the dividend-price ratio without log-

ging it, resulting in greater volatility than the logged ratio, the return predictability

result is quite similar. Most of the predictability stems from equity returns rather than

the dividend growth rate. In other words, equity valuations are primarily driven by
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time-varying equity risk premiums.

The predictability of treasury bond returns rB by NSB is less strong and only at

8-period-ahead horizons. At shorter horizon, we observe no predictability, which is

similar to the public debt valuation puzzle in Jiang et al. (2021). In other words, the

expected treasury bond returns in the future, due to potential mis-valuation of the

public debt, do not change according to the current fiscal policy status, captured by

NSB = T−G
B . This valuation puzzle, within our framework, further motivates us to

investigate the cross-predictability of one sector’s valuation ratio on the other sector’s

returns.

We ask whether the expected returns of equity and foreign assets correspond to

fiscal policy. If investors subscribe to Ricardian Equivalence (Barro (1979)) – the notion

that the government has to either ”tax now” or ”tax later” – a low surplus today could

lead them to expect higher taxes in the future. This, in turn, may result in higher risk

premiums for investing in firms, as they anticipate increased fixed costs imposed by

the government.

For the external sector, we similarly find that NMA significantly predicts future

foreign investment returns, while cash-flow predictability remains weak, suggesting

that the valuation adjustment in foreign assets is primarily driven by the time-varying

risk premium. Although our construction of the predictor differs from that of Gourin-

chas and Rey (2007b) as discussed in Appendix Section B.1, our findings align well

with their results.

Table 2.3 presents the multivariate results, where the returns of each sector are

regressed on their own predictors and the predictors of the other two sectors. Serving

as a benchmark, these regressions are unrestricted, meaning no constraints are imposed

during the estimation process. Motivated by the univariate results and our intention

to understand whether the expected returns in one sector correspond to imbalances

in other sectors, our primary focus is on cross-predictability. Specifically, we examine
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the influence of the net surplus-to-debt ratio (NSB), the dividend-to-price ratio (DA),

and the net import-to-foreign asset ratio (NMA) in predicting returns across different

markets. In line with the univariate analysis, the multivariate results are presented

across three forecasting horizons in Panels A, B, and C, allowing for a comprehensive

examination of the joint return dynamics in both the short and long terms.

In summary, the multivariate analysis presented in Table 2.3 confirms that the

predictability of each sector’s own returns remains largely intact even after account-

ing for state variables in other sectors. The coefficients for each predictor are not

significantly different from their univariate counterparts in Table 2.2, given the low cor-

relation among the predictors as indicated in Table 2.1. Regarding cross-predictability,

we observe a significant negative relationship between NSB and returns in the private

and foreign sectors, confirming our intuition that a high government surplus now

suggests a lower tax in the future and lower risk premiums for investing in equity or

foreign assets. Meanwhile, neither DA nor NMA exhibit significant predictability on

returns in the other two sectors. Notably, the cross-predictability of NSB is weaker in

longer horizons in the unrestricted regressions. This result could possibly relates to

the regime switching of how sectors balance from each other in the long horizon.

To better understand the joint dynamics of the three sectors, following our

unconstrained estimation in Table 2.3, we impose the sector budget constraints and

the aggregate budget constraint and estimate all predictive regressions jointly with

GMM.5 A detailed explanation of the estimation strategy is provided in Appendix

Section B.2. With the imposition of constraints, we observe some notable changes in

our results reported in 2.4 . Firstly, the predictive power of NSB is stronger in predicting

public debt returns at longer horizons. Secondly, the negative cross-predictability of

NSB is also more pronounced in both the short and long horizons. These results

highlight the importance of considering budget constraints when examining the joint

5The standard errors of this constrained estimation are computed by bootstrapping for 1,000 times.
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dynamics of asset returns. If the Ricardian Equivalence holds in the long run, a lower

government surplus-to-debt ratio relative to its long-term average would signal a lower

cost of borrowing or a higher net surplus in the future, which could be achieved by

increasing taxes or decreasing government spending. In this sense, the NSB ratio

negatively predicts the risk premium in the equity and foreign asset sector, as a lower

government surplus could signal a contractionary fiscal policy in the future and higher

risk premium for investing in equity or foreign assets. However, this mechanism

may be difficult to observe, particularly in the short term using only public sector

data. Our results suggest that incorporating data from the other two sectors and

imposing aggregate budget constraints can help to better identify how this fiscal policy

adjustment channel propagates throughout the economy.

All of our results are based on asset returns adjusted for inflation. In Appendix

Section B.3, we present robustness checks of our results using nominal returns and

excess returns relative to risk-free rates. We find that the predictability of each

sector’s own returns and cross-sector predictability remains largely similar regardless

of whether we use real, nominal, or excess returns. These results suggest that our

findings are robust to different measures of asset returns.

2.5 Conclusion

In this study, we investigate the joint dynamics and predictability of asset

returns for the equity, treasury, and foreign asset investment sectors, as each represents

a distinct asset class with different dynamics and potential investors. We find that the

predictability of each sector’s own returns remains largely intact even after accounting

for state variables in other sectors.

To better understand the joint dynamics of the three sectors, we impose the

aggregate budget constraint and estimate all predictive regressions jointly. The results
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of this estimation highlight the importance of considering the aggregate cyclical

movement of the economy as a whole when examining the joint dynamics of asset

returns. Based on our multivariate analysis, we find that the net surplus-to-debt

ratio negatively predicts the risk premium in the equity and foreign asset investment

sectors, as a lower government surplus could signal a contractionary fiscal policy in

the future and higher risk premiums for investing in equity or foreign assets. However,

this mechanism may be difficult to observe in the short term based solely on public

sector data. Our results suggest that considering data from all three sectors and

imposing aggregate budget constraints can help to better identify how this fiscal policy

adjustment channel propagates throughout the economy.

Overall, our study contributes to the literature on asset return predictability by

examining the joint dynamics of asset returns across different markets, considering

their respective valuation ratios and cash flows, and incorporating budget constraints

to better understand their interactions. Further research could explore the conditional

correlations and regime-switching of the joint dynamics of the three sectors, as well as

the implications of our findings for portfolio diversification and asset allocation.
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Figure 2.1. Comparison between Government Surplus-to-Debt Ratio and Its Log-
linearization.

In this figure, I plot the raw government surplus-to-debt ratio and its log-linearized approximation
following the methods in Larrain and Yogo (2008) and Berndt et al. (2012). Both ratios are normalized
to have zero mean and unit variance.
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Figure 2.2. The Valuation Ratios of the Three Sectors

In this figure, we plot the valuation ratios of the three sectors. All the ratios are normalized to zero-mean
and unit-variance.
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Table 2.1. Summary Statistics

Table 1 Panel A: Summary Statistics
rE rD rX ∆d ∆ns ∆nm DA NSB NMA

Mean 0.08 0.02 0.06 0.01 -0.04 0.02 0.03 -0.01 0.05

Std 0.16 0.05 0.23 0.01 1.46 0.06 0.01 0.02 0.09

AR1 0.06 0.04 0.13 0.64 -0.07 0.06 0.96 0.86 0.86

T-stat 0.90 0.44 1.99 7.41 -2.63 0.99 66.86 21.65 21.77

Table 1 Panel B: Correlation matrix among variables
Corr(ret) Corr(∆c f ) Corr(ratio)

1.00 0.03 0.08 1.00 -0.12 0.00 1.00 -0.03 0.11

0.03 1.00 0.03 -0.12 1.00 0.02 -0.03 1.00 0.02

0.08 0.03 1.00 0.00 0.02 1.00 0.11 0.02 1.00

This table displays summary statistics of three sector log returns (real returns), cash flow
growth, and valuation ratios. We construct real return by logged nominal return minus logged
inflation(growth of the CPI index). Our data includes 300 observations for each time series
at a quarterly frequency between 1947 Q1 and 2021 Q4. Panel A firstly shows annualized
mean and standard deviation of each time series, then the AR1 coefficients, and the T-stats of
the coefficients. Panel B shows correlation between returns, cash flow growth, and valuation
ratios of the three sectors. rE,rD,rX are the logged real return of equity, debt, and external
asset, respectively. ∆d,∆ns,∆nm are the cash flow growth of private, debt, and external sectors,
respectively. DA is the dividend price ratio, NSB is the net government surplus (tax minus
spending) to debt ratio, and NMA is the net import to foreign asset ratio.
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Table 2.2. Single Variable Predictive Regression, OLS estimated

Table 2 Panel A: Single Variable Predictive Regression, One-period ahead
rE

t+1 ∆dt+1 rB
t+1 ∆nst+1 rX

t+1 ∆nmt+1
DAt 0.63 -0.18 NSBt 0.02 -0.84 NMAt 0.11 -0.05

1.74 -1.26 0.55 -0.89 2.26 -0.76

R2
0.01 0.02 R2

0.00 0.00 R2
0.03 0.00

unbiased 0.28 -0.15 unbiased 0.02 -1.28 unbiased 0.11 -0.03

0.67 -1.70 0.43 -0.27 2.88 -0.79

R̃2
0.00 0.01 R̃2

0.00 0.00 R̃2
0.03 0.00

Table 2 Panel B: Single Variable Predictive Regression, Four-period ahead

∑4
k=1 ρkrE

t+k ∑4
k=1 ρk∆dt+k ∑4

k=1 ρkrD
t+k ∑4

k=1 ρk∆nst+k ∑4
k=1 ρkrX

t+k ∑4
k=1 ρk∆nmt+k

DAt 2.70 -0.63 NSBt 0.15 1.12 NMAt 0.38 -0.09

2.17 -1.27 1.27 0.18 2.30 -0.64

R2
0.05 0.02 R2

0.01 0.00 R2
0.08 0.00

unbiased 2.36 -0.61 unbiased 0.15 0.50 unbiased 0.38 -0.08

3.00 -2.22 1.71 0.06 4.65 -0.89

R̃2
0.04 0.02 R̃2

0.01 0.00 R̃2
0.08 0.00

Table 2 Panel C: Single Variable Predictive Regression, Eight-period ahead

∑8
k=1 ρkrE

t+k ∑8
k=1 ρk∆dt+k ∑8

k=1 ρkrD
t+k ∑8

k=1 ρk∆nst+k ∑8
k=1 ρkrX

t+k ∑8
k=1 ρk∆nmt+k

DAt 4.62 -0.70 NSBt 0.32 3.86 NMAt 0.51 -0.08

2.36 -0.79 1.50 0.28 1.89 -0.50

R2
0.08 0.01 R2

0.02 0.00 R2
0.07 0.00

unbiased 4.38 -0.71 unbiased 0.32 2.97 unbiased 0.52 -0.07

4.18 -1.53 2.20 0.22 4.31 -0.67

R̃2
0.07 0.01 R̃2

0.02 0.00 R̃2
0.07 0.00

This table shows the prediction results of three sectors using each valuation ratio in a single
variable regression, estimated by OLS. rE,rD,rX are logged real returns of equity, debt, and
external asset, respectively. ∆d,∆ns,∆nx are cash flow growth of private, debt, and external
sectors, respectively. DA is the dividend price ratio, NSB is the net government surplus (tax
minus spending) to debt ratio and NMA is the net import to foreign asset ratio. We correct
for Stambaugh bias and compute the unbiased coefficient and R-squared R̃2 accordingly. The
standard error of the unbiased estimate is generated by bootstrapping 10,000 draws. In Panel
A, we forecast the one-period ahead variables. In Panels B and C, we compute the summed
returns and cash-flow growth in the long horizon.
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Table 2.3. Multiple Variables Predictive Regression

Table 3 Panel A, Multiple Variable Predictive Regression, One-period ahead
rE

t+1 rD
t+1 rX

t+1 ∆dt+1 ∆nst+1 ∆nxt+1
DAt 0.61 0.07 -0.03 -0.19 21.81 -0.48

1.78 0.41 -0.06 -1.24 1.74 -0.57

NSBt -0.27 0.02 -0.41 0.05 -0.64 -0.40

-2.16 0.56 -2.52 0.66 -0.45 -1.62

NMAt -0.01 0.00 0.12 0.01 0.39 -0.04

-0.18 0.36 2.40 1.21 0.33 -0.75

R2
0.03 0.00 0.05 0.04 0.01 0.02

Table 3 Panel B, Multiple Variable Predictive Regression, Four-period ahead

∑4
k=1 ρkrE

t+k ∑4
k=1 ρkrD

t+k ∑4
k=1 ρkrX

t+k ∑4
k=1 ρk∆dt+k ∑4

k=1 ρk∆nst+k ∑4
k=1 ρk∆nmt+k

DAt 2.55 0.17 0.07 -0.71 89.03 1.24

2.20 0.29 0.05 -1.42 2.06 0.58

NSBt -0.86 0.16 -1.75 -0.08 2.96 -1.24

-2.31 1.26 -3.27 -0.32 0.40 -1.73

NMAt -0.02 -0.01 0.39 0.04 4.03 -0.09

-0.20 -0.16 2.50 1.35 1.11 -0.70

R2
0.09 0.01 0.15 0.04 0.06 0.05

Table 3 Panel C, Multiple Variable Predictive Regression, Eight-period ahead

∑8
k=1 ρkrE

t+k ∑8
k=1 ρkrD

t+k ∑8
k=1 ρkrX

t+k ∑8
k=1 ρk∆dt+k ∑8

k=1 ρk∆nst+k ∑8
k=1 ρk∆nmt+k

DAt 4.43 0.30 0.73 -1.09 114.60 4.72

2.52 0.34 0.27 -1.42 2.05 1.70

NSBt -0.90 0.34 -3.48 -0.81 8.28 -0.49

-1.36 1.49 -4.03 -2.30 0.57 -0.41

NMAt -0.06 -0.04 0.51 0.09 7.31 -0.12

-0.48 -0.45 2.03 1.72 1.50 -0.75

R2
0.10 0.03 0.20 0.14 0.07 0.05

This table shows the OLS estimates of using three valuation ratios in one regression predicting
logged real returns and cash flow growths of all three sectors. rE,rD,rX are logged real
returns of equity, debt, and external asset, respectively. ∆d,∆ns,∆nx are cash flow growth of
private, debt, and external sectors, respectively. DA is the dividend price ratio, NSB is the net
government surplus (tax minus spending) to debt ratio, and NMA is the net import to foreign
asset ratio.
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Table 2.4. Multiple Variables Prediction, using GMM to Enforce Aggregate Budget
Constraint

Table 3 Panel A, Multiple Variable Prediction, One-period Ahead

retE
t+1 retD

t+1 retX
t+1 ∆dt+1 ∆nst+1 ∆nxt+1

DAt 0.48 -0.06 -0.03 -1.25 17.51 0.07

2.44 -0.64 -0.08 -2.49 2.43 0.16

NSBt -0.28 0.02 -0.54 0.03 -0.10 -0.13

-2.58 0.37 -2.80 0.19 -0.04 -0.63

NMAt -0.03 0.01 0.10 0.00 0.21 0.04

-1.19 1.23 2.39 -0.10 0.38 0.81

Table 3 Panel B, Multiple Variable Prediction, Four-period Ahead

∑4
k=1 ρkrE

t+k ∑4
k=1 ρkrD

t+k ∑4
k=1 ρkrX

t+k ∑4
k=1 ρk∆dt+k ∑4

k=1 ρk∆nst+k ∑4
k=1 ρk∆nmt+k

DAt 1.92 0.04 0.47 -5.67 78.04 1.85

3.52 0.19 0.51 -4.70 4.61 1.91

NSBt -0.70 0.22 -2.41 -0.22 3.04 -0.59

-3.11 2.11 -6.49 -0.56 0.55 -1.46

NMAt -0.08 0.01 0.33 -0.15 2.89 0.03

-1.51 0.25 3.86 -1.68 2.30 0.38

Table 3 Panel C, Multiple Variable Prediction, Eight-period Ahead

∑8
k=1 ρkrE

t+k ∑8
k=1 ρkrD

t+k ∑8
k=1 ρkrX

t+k ∑8
k=1 ρk∆dt+k ∑8

k=1 ρk∆nst+k ∑8
k=1 ρk∆nmt+k

DAt 3.48 0.51 1.57 -8.02 112.85 4.48

4.70 1.56 1.25 -4.82 4.80 3.73

NSBt -0.88 0.47 -4.12 -0.84 7.12 0.22

-2.67 2.76 -6.99 -1.32 0.77 0.40

NMAt -0.11 -0.02 0.43 -0.34 6.32 -0.03

-1.56 -0.63 3.60 -2.36 3.12 -0.30

This table shows the GMM estimates of three valuation ratios predicting logged real returns
and cash flow growths of all three sectors. We use the GMM method to enforce the aggregate
budget constraint and the budget constraint of each sector. rE,rD,rX are logged real returns of
equity, debt, and external asset, respectively. The standard errors of this constrained estimation
are computed by bootstrapping 1,000 times. ∆d,∆ns,∆nx are cash flow growth of private, debt,
and external sectors, respectively. DA is the dividend price ratio, NSB is the net government
surplus (tax minus spending) to debt ratio, and NMA is the net import to foreign asset ratio.
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Chapter 3

Conditional Correlation with Factor
Structure
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3.1 Introduction

Precise estimation of the covariance matrix among assets is essential for finance

practitioners in both portfolio allocation and risk management. However, as the

number of assets increases, the estimation of the covariance matrix loses accuracy due

to the high-dimensional curse.

In terms of cross-sectional estimation, the shrinkage method and factor models

are widely used to address the high-dimensional dilemma. The shrinkage method

corrects the bias of the covariance matrix eigenvalues using a shrinkage estimator, as

demonstrated by Ledoit and Wolf (2004) and Ledoit et al. (2012). Factor models, such

as those proposed by Chan et al. (1999) and Ledoit and Wolf (2003), present the asset

returns’ covariance matrix as a quadratic function of the conditional covariance with

factors.

Q = BΣB′ + Qε

, where B is the N by K factor loading, Σ is the covariance among factors, and Qε is

a diagonal covariance matrix among the residuals. This factor structure reduces the

estimation dimension from N to K, where K is the number of factors.

In this paper, we propose a conditional factor model to address the high-

dimensional dilemma in time-series estimation using the Dynamic Conditional Corre-

lation (DCC) model, as documented by Engle and Sheppard (2001). The DCC model is

a multivariate generalized autoregressive conditional heteroskedasticity-type (GARCH)

model that decomposes the covariance to volatility and correlation matrix Rt using the

”DeGarch” returns. The covariance likelihood is decomposed into the single-assets

GARCH and conditional correlation likelihood. However, as the number of assets

increases, the optimization over R−1
t and |Rt| becomes imprecise.
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As the primary contribution, we solve R−1
t and |Rt| in closed form by inserting

a conditional factor structure into the DCC model, which simplifies the likelihood

estimation. Our factor model shrinks the N × N correlation matrix to a factor loading

matrix XN×K, as in cross-sectional factor models. We show that the quadratic form of

the correlation matrix provides more dynamism than the linear model used in factor

models, providing more accurate estimates of the covariance matrix.

Our proposed model combines techniques from two strands of literature: cross-

sectional factor models and time-series DCC models. We highlight the advantages

of our model, including its ability to reduce the estimation dimension, its quadratic

form for modeling the correlation dynamics, and its well-known inference property, as

documented by White (1996).

To test the performance of our model, we compare it against other variations

of the DCC model, both in-sample and out-of-sample. We construct the minimum

variance portfolio and tangency portfolio based on the out-of-sample forecast of

the covariance matrix, as in the conventional literature. Our method outperforms

the classical DCC model both in and out-of-sample, and we show that combining

our model with the nonlinear shrinkage method in Ledoit et al. (2012) yields better

estimates of the unconditional covariance.

Our proposed model relates to recent methods to solve the high-dimensional

issue in dynamic conditional correlation models, such as the DECO model by Engle

and Kelly (2012). However, our method assumes a different structure from the DECO

model, which assumes a pairwise equal correlation structure in the covariance matrix.

Our method also differs from the factor models proposed by Engle et al. (1990) and

Engle (2009), which assume a constant factor structure.

The remainder of the paper is organized as follows. Section 3.2 presents the

proposed model and estimation method. Section 3.3 describes the data and benchmark

models used and reports the in- and out-of-sample performance
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3.2 Model and Estimation Method

This section introduces the model specification and estimation steps. Within

the same quasi-maximum likelihood estimate approach, the estimators’ asymptotic

distribution is included in Appendix C.2.

3.2.1 Model Specification

I begin by taking a conditional factor setting. Assume there are K factors for all

N assets. The pricing kernel mt is modeled as:

mt = at−1 − b′t−1 ft, (3.1)

where at−1 is a scalar, bt−1 is a K by 1 rotation vector, and ft is the K by 1 vector of

factors. Each stock rit and factor fkt satisfies the pricing equation:

Et−1[ritmt] = 1. (3.2)

Proposition 2.1 Excess Return

The expected excess return under conditions in (3.1) and (3.2) is:

Et−1[rit − r f
t ] = β′

itEt−1[ ft]. (3.3)

βit = COVt−1(rit, ft)VARt−1( ft)
−1. (3.4)

Et−1[ ft] is a K by 1 vector of each factor risk premium and βit is the K by 1

dynamic factor loading vector. In this equation, COVt−1(rit, ft) is the K by 1 vector of

the conditional covariance between r[it] and each factor; VARt−1( ft) is the conditional

variance matrix among K factors.
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Proposition 2.1 can be written in matrix format as follows:

Et−1[rt − r f
t ] = βtEt−1[ ft]. (3.5)

βt = COVt−1(rt, ft)VARt−1( ft)
−1, (3.6)

where COVt−1(rt, ft) is the N by K combination of all the assets’ factor covariance.

Based on proposition 2.1, I model the asset returns as follows.

Factor Model Assumption

rt − r f
t = βt ft + εt (3.7)

2a. f is exogenous: Et−1( ftϵit) = 0 for any i; and

2b. Idiosyncratic returns are independent cross assets: Et−1(ϵitϵjt) = 0, i ̸= j.

The conditional factor setting in this section generalizes the static CAPM model to the

extent that it allows for time-varying betas. Further, it is correctly specified if all the

risk factors are added in the model. We then derive the conditional distribution of

rt|t−1:

Proposition 2.2 Conditional Distribution

rt|t−1 ∼ N(µt, Ht) (3.8)

µt = βtEt−1[ ft] + r f
t (3.9)

Ht = COVt−1(rt, ft)VARt−1( ft)−1COVt−1(rt, ft)′ + VARt−1(εt) (3.10)

βt = COVt−1(rt, ft)VARt−1( ft)−1 (3.11)
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Proposition 2.2 indicates that my method is robust for combining with the enormous

class of forecasting literature modeling Et−1[ ft]. As a guide to practitioners, this

method can have both the conditional mean and the variance forecast as its inputs for

constructing the optimal portfolio. Because I emphasize conditional correlation, I treat

the conditional mean as constants and directly work with demeaned returns.

In terms of the second moment, proposition 2.2 shows that the N by N dynamic

covariance matrix can be shrunk to the N by K covariance matrix between asset returns

and factors. Under assumption 2a and 2b, by decomposing the conditional covariance

Ht = DtRtDt, where Dt is the diagonal matrix of each asset’s conditional volatility

(“DeGarch”), I derive Rt such that I obtain the closed-form solution of its inverse and

determinant. This allows me to construct the likelihood function, which, in turn, can

be feasibly optimized.

Proposition 2.3 Conditional Correlation

Let Kt = Corrt−1( ft) be the conditional correlation matrix among K factors. Let Xt be

the N by K matrix written in partition form Xt = [ρ′1,t . . . ρ′n,t], where ρi,t is a K by 1

vector representing the conditional correlation between ri and each factor.

Rt = XtK−1
t X′

t + diag{1 − ρ′i,tK
−1
t ρi,t} (3.12)

R−1
t = diag{ 1

1 − ρ′i,tK
−1
t ρi,t

}

− diag{ 1
1 − ρ′i,tK

−1
t ρi,t

}Xt(Kt + X′
tdiag{ 1

1 − ρ′i,tK
−1
t ρi,t

}Xt)
−1X′

tdiag{ 1
1 − ρ′i,tK

−1
t ρi,t

}

(3.13)
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|Rt| = det(Kt + X′
tdiag{ 1

1 − ρ′i,tK
−1
t ρi,t

}Xt)det(K−1
t )∏

i
(1 − ρ′i,tK

−1
t ρi,t) (3.14)

Proposition 2.3 works as a dynamic multi-factor extension of the toy model in the

Introduction. If only a market risk exists, then the correlation among the factors is 1.

This makes the construction of the likelihood function in this study trivially simple.

The spirit of these tricks is to shrink an infeasible optimization problem, including the

dynamic adjustment of an N by N matrix inverse, to a K by K case. Thus, we set a

conditional factor model and show important tools for likelihood simplification. The

next section introduces the estimation method based on these tools.

3.2.2 Estimation Method

Based on propositions 2.2 and 2.3, the estimation procedure is designed as follows:

Step 1: DCC Normalization

Set a joint DCC among the demeaned assets and factors:

r1
t|t−1 = [rt|t−1 ft|t−1]

r1
t|t−1 ∼ N(0, DtR1

t Dt)
(3.15)

The joint DCC is specified as follows:
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GARCH for each r1
i :

D2
t = diag{wi}+ diag{κi} ◦ rt−1r′t−1 + diag{λi} ◦ D2

t−1

DeGARCH:

ε1
t = D−1

t r1
t

Qt = S(1 − α − β) + αε1
t−1ε1

t−1
′
+ βQt−1

R1
t = diag{Qt}−1Qtdiag{Qt}−1

(3.16)

Step 2: Reconstruct the Correlation

Partition the joint correlation R1
t :

R1
t =

 Rt Xt

X′
t Kt

 (3.17)

Where Rt and Kt are correlation matrixes among N assets and K factors, respec-

tively, and Xt = {ρi,k,t}N×K = [ρ′1,t . . . ρ′n,t] contains the correlations between each asset

and factor. This partition allows me to construct the likelihood function with the factor

model-implied correlation matrix RL
t in lieu of Rt from the traditional DCC.

RL
t = XtK−1

t X′
t + diag{1 − ρ′i,tK

−1
t ρi,t} (3.18)

Step 3: Maximize the Likelihood

Construct the likelihood function based on RL
t . The likelihood is generated by parame-

ters S,α, β and, thus, optimized by the selection of these parameters.
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RL
t
−1

= diag{ 1
1 − ρ′i,tK

−1
t ρi,t

}

− diag{ 1
1 − ρ′i,tK

−1
t ρi,t

}Xt(Kt + X′
tdiag{ 1

1 − ρ′i,tK
−1
t ρi,t

}Xt)
−1X′

tdiag{ 1
1 − ρ′i,tK

−1
t ρi,t

}

(3.19)

det(RL
t ) = det(Kt + X′

tdiag{ 1
1 − ρ′i,tK

−1
t ρi,t

}Xt)det(K−1
t )∏

i
(1 − ρ′i,tK

−1
t ρi,t). (3.20)

The correlation likelihood is given as follows:

Lc(α, β,S) = −1
2

T

∑
t=1

(−ε′tεt + logdet(RL
t ) + ε′tR

L
t
−1

εt). (3.21)

Equations (3.18), (3.19), and (3.20) build a joint dynamic for RL
t as a function of Xt.

As mentioned in the introduction, the model presents the conditional correlation

in a quadratic form as it estimates a simple linear forecast model. The estimator’s

asymptotic distribution can be derived similar to DCC, as shown in Appendix C.2.

3.2.3 Alternative Estimation Method: MacGyver

A joint likelihood estimate is more efficient, though it requires high computation power.

To address this drawback, Engle (2009) proposed a “MacGyver” method to separately

estimate N(N−1)
2 pairwise DCC, and then take the α and β from the average among all

the pairwise αi and βi. Though this method requires lower computation power, it is

not as efficient.

Similarly, one can always implement the method herein in an easier manner: In lieu

of building the full matrix dynamic, separately estimate N by K pairs of the bivariate
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DCC model to obtain each ρi,k,t, and then build Rt by (3.18):

∀i,∀k,Vi,k = [ri; Fk],build n × k pairs of DCC for Vi,k (3.22)

qi,k,t = si,k + αi,kεi,k,t−1εF
k,t−1 + βiqi,k,t−1 (3.23)

ρi,k,t =
qi,k,t√
σ2

i,th
F
k,t

(3.24)

Xt = {ρi,k,t}N×K = [ρ′1,t . . . ρ′n,t] (3.25)

Rt = XtK−1
t X′

t + diag{1 − ρ′i,tK
−1
t ρi,t} (3.26)

∀k,αk = f (αi,k), βk = f (βi,k) (3.27)

Like the MacGyver DCC, the estimates from this method have an unknown inference

property. Rather than N(N−1)
2 pairs for the DCC, my model only requires N times K

pairs of estimation.

3.3 Empirical Results

In this section, two datasets of the constituents returns from S&P500 index are used to

test the model performance for measuring correlation. The first is the 5-minutes price

data from 2010 to 2017. After cleaning up the data, 377 stocks returns are available in

the full sample. I use this high-frequency dataset to compute the realized correlation

as the benchmark, and then compare it with the model-implied under certain loss

functions. The second is the daily returns of S&P500 index constituents from 2000 to

2018
1 , used to form out-of-sample portfolios.

I attempt to include some representative models as candidate estimators:

• DCC: original Dynamic Conditional Correlation Model

• DECO: Dynamic Equicorrelation Model, as in Engle and Kelly, 2012

1The original data is from 2000 to 2015, with 395 assets that with full history during this period. We
then extend our sample by combining new data from 2015 to 2018, with 449 assets.
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• DCC–NLS: DCC with nonlinear shrinkage, as in Engle et al. (2017)

• Model: The model proposed in this study; conditional factor structured.

• Model–NLS: The model proposed in this study with nonlinear shrinkage.

Without loss of generality, I use the S&P500 index value-weighted return as the only

factor. The trade-off between single and multiple factors is clear: More factors ensure

the validity of exogeneity and independence among idiosyncratic returns. The single

factor model is more parsimonious for estimation and, thus, less noisy.

3.3.1 Loss against Realized Correlation

Based on the high-frequency covariance matrix theory (see Barndorff-Nielsen and

Shephard (2004)), I compute the realized correlation Rrealized
t and the average correlation

of a matrix as follows:

Rrealized
t =

1
nt

nt

∑
i=0

rt+i∆r′t+i∆ (3.28)

ρ̄t = ∑
i ̸=j

∑
j

Rt(i, j)
2

n(n − 1)
(3.29)

where nt is the number of small-time intervals in each unit time.

I further define several loss functions to compare the accuracy of the model-

implied correlation:

• Squared Error for the Average Correlation ρ̄t:

SEt = (ρt − ρrealized
t )2. (3.30)

• Mean Squared Error:
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MSEt =
2

N(N − 1) ∑
i ̸=j

∑
j
(Rt(i, j)− Rrealized

t (i, j))2. (3.31)

• Mean Absolute Error:

MAEt =
2

N(N − 1) ∑
i ̸=j

∑
j
| (Rt(i, j)− Rrealized

t (i, j) | (3.32)

• Quasi-Normal Likelihood Error:

QLt = det Rt − log(det Rt)− det Rrealized
t (3.33)

Rt in these functions denotes the model-implied correlations and Rrealized
t is

measured by 5-minute returns.

The loss of the models against the benchmark over time is reported in Table

3.1. Panel A shows the average loss function values of different models and Panel

B reports the t-statistics of each model’s loss against the DCC model. In general, a

nonlinear shrinkage intercept does improve the accuracy of the models. The DCC–NLS

and DECO models win over the original DCC under certain loss functions. My model

and its combination with the nonlinear shrinkage has the smallest loss and wins over

the original DCC model compared with the other models.

In addition, my model naturally yields a dynamic factor loading βt. Like the partition

of conditional correlation matrix, I derive βt by decomposing the conditional covariance

matrix H1
t = VARt−1([rt ft]):

H1
t =

 Ht COVt−1(rt, ft)

COVt−1(rt, ft)′ VARt−1( ft)

 (3.34)
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βt = COVt−1(rt, ft)VARt−1( ft)
−1 (3.35)

Equation (3.34) eases the practical applications in the following sections.

3.3.2 Model Implication

Risk Management: Marginal Value at Risk

I now demonstrate how my method applies to risk management for allocating the

value at risk of a portfolio. Unlike an allocation problem that determines the optimal

weight, a risk management task takes the portfolio weights as given and analyzes the

effect of altering asset positions marginally on the portfolio risk.

For any portfolio with N assets:

rpt =
N

∑
i=1

witrit (3.36)

The joint relationship between assets and the portfolio returns is depicted by a

conditional factor model:

rit = βitrpt + εit (3.37)

βit = COVt−1(rit,rpt)VARt−1(rpt)−1 (3.38)

This leads to:

N

∑
i=1

witβit = 1,∀t (3.39)

Equation (3.39) allows us to link each asset’s contribution to the total risk through
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βit. This argument falls in line with the definition of the marginal value at risk:

∆VaRit =
∂VaRpt
∂witWt

is a partial derivative that measures how a dollar position adjustment

shifts the total value at risk. A marginal value at risk (with confidence level θ) is then

defined as follows:

∆VaRit =
∂VaRpt

∂witWt
= Zθ

∂σpt

∂wit
= Zθ βitσpt (3.40)

where Zθ is the critical value for normal distribution, Wt is the total wealth, σpt

is the conditional total volatility, and βit is the dynamic portfolio risk loading. Equation

(3.39) and (3.40) indicate that:

VaRpt

Wt
= Zθσpt =

N

∑
i=1

witβitZθσpt =
N

∑
i

wit∆VaRit (3.41)

Equation (3.41) gives a clear decomposition of each asset’s contribution to the portfolio’s

unite money value at risk. I take the S&P500 5-minutes data to construct a portfolio

weighted by their market capital, and then estimate the joint correlation among all the

stocks and the portfolio. The performance of the models is measured comparing it

with the value at risk from the realized covariance matrix:

∆VaRrealized
it = Zθ βrealized

it σrealized
pt

βrealized
it = COVt−1(rit,rpt)

realized{VARt−1(rpt)
realized}−1

(3.42)

I compute the marginal value at risk for each asset with my model, the com-

bination of my model with nonlinear shrinkage and the factor DCC model with the

MacGyver method (which also yields dynamic betas by pairwise estimation). Then,

the capital-weighted square errors, absolute errors, are computed as follows:
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MSEVaR
t = (

N

∑
i

wit∆VaRit −
N

∑
i

wit∆VaRrealized
it )2

MAEVaR
t =|

N

∑
i

wit∆VaRit −
N

∑
i

wit∆VaRrealized
it |

(3.43)

The average error over time is reported in Table 3.1, Panel C. Unlike the loss measured

in Panels A and B, the combination of nonlinear shrinkage improves the accuracy

substantially. This is because I measure the average accuracy of the N asset dynamics

in lieu of all the N(N−1)
2 elements in the correlation matrix. The benefit of a precise

intercept estimation is often important for reliable practical work.

Portfolio Allocation

Based on the mean-variance utility developed in Markowitz (1952), the conditional

mean and variance is specified as in proposition 2.2. I also assume a constant risk-free

rate for convenience.

rt|t−1 ∼ N(µt, Ht) (3.44)

µt = βtEt−1[ ft] + r f (3.45)

Ht = COVt−1(rt, ft)VARt−1( ft)−1COVt−1(rt, ft)′ + VARt−1(εt) (3.46)

βt = COVt−1(rt, ft)VARt−1( ft)−1 (3.47)

By construction, my model can yield the first moment forecast by estimate Et−1[ ft] in

lieu of the entire cross-section of expected returns Et−1[rt]. One can simply combine a

risk premium forecast model with my method to derive better portfolios. Because I

focus on forecasting the conditional variance, I simply take the historical average risk

premium times dynamic factor loading as the expected return, µ̂t = βt ft. For all my
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models, because there is no dynamic factor loading, the expected return is given as

historical means µ̂t = rt.

Then, three target portfolios are defined as:

• Global Minimum Variance Portfolio:

ŵGMV,t = argminw′Htw s.t w′⃗1 = 1 (3.48)

ˆwGMV,t =
H−1

t 1⃗

1⃗′H−1
t 1⃗

(3.49)

• Minimum Variance Portfolio (with a required return q, set q = 0.1) (MV):

ˆwMV,t = argminw′Htw s.t w′⃗1 = 1 w′µ ⩾ q. (3.50)

ˆwMV,t =
C − qB

AC − B2 H−1
t 1⃗ +

qA − B
AC − B2 H−1

t µt (3.51)

where A = 1⃗′H−1
t 1⃗, B = 1⃗′H−1

t µt,C = µ′
tH

−1
t µt.

• Tangency Portfolio:

ˆwTGC,t = argmaxw′(µt − r f )−
1
2

γw′Htw s.t w′⃗1 = 1 (3.52)

ˆwTGC,t =
H−1

t (µt − r f )

1⃗′H−1
t (µt − r f )

(3.53)

I then construct monthly updating portfolios for all the candidates listed before. The

procedure is set as follows:
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Step 1 : Take the end of t month’s last day forecast µt+1, Ht+1 to construct

portfolios ̂wGMV,t+1, ŵMV,t+1, ̂wTGC,t+1.

Step 2 : Pseudo out-of-sample test the performance and use the realized daily

returns in the t + 1 month (averagely 22 days per month) to compute all the portfolios

returns, standard deviations, and Sharpe ratios.

Step 3: Include the t + 1 month returns in the sample based on a 1,000-day

rolling window. This yields the forecast µt+2, Ht+2, and then return to step 1.

Following this recursive pseudo-out-of-sample method, I report the average

performance over time of the three portfolios generated by the models in Table 3.2.

I find that, on average, my model and the model with nonlinear shrinkage produce

lower volatility portfolios and higher information ratio/Sharpe ratio. Consistent with

the literature, both DCC–NLS and DECO produce better results than DCC does.

3.4 Conclusions

The study applies the conditional factor model to multivariate covariance mod-

els. It combines both cross-section and time-series features of the covariance models to

solve the high-dimensional curse.

To improve the methodology on mean-variance allocation, my method incor-

porates the literature on conditional mean forecasting. Under my framework, the

expected return forecasting task is reduced to risk premium forecasting. For profes-

sions with strong intuitions on what creates a risk premium, the method is sound for

practical use.

As shown in the empirical work, a single factor specification, conditional CAPM

setting generates a robust in and out-of-sample covariance fit. However, in terms of

asset pricing research, it is important to study further what factors drive correlation

among assets with the proposed method. The model should be extended to a vaster
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class of risk factor literature as a test of this factor’s power to create cross-sectional

co-movement. My method thus opens a new channel to test conditional asset pricing

models within the second moment.

This study emphasizes the method’s performance with a single factor. What

factors to be added to the model and to what extent can adding factors increase the

prediction power of the model remain open questions for future research.
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Table 3.1. Average Loss of each model and T-stats against DCC

Panel A :Loss Under Different Measures
DCC DCC NLS DECO Model Model NLS

SEt 0.010 0.010 0.010 0.007 0.007

MSEt 0.078 0.078 0.109 0.065 0.065

MAEt 0.222 0.222 0.222 0.199 0.199

QLt -74.2 -68.8 -71.72 -17.8 -18.4
Panel B: T-stats of Loss(DCC)-Loss(models)

DCC NLS DECO Model Model NLS
SEt -9.1 1.7 41.0 39.2
MSEt -16.4 -55.9 40.4 42.8
MAEt 1.5 0.91 50.5 53.4
QLt 22.2 16.4 22.3 22.3

Panel C: Loss of Portfolio VaR
DCC(MacGyver) Model Model NLS

MSEVaR
t 0.29 0.24 0.89

MAEVaR
t 0.49 0.47 0.12

In this table, I report the estimation of my model, my model combined with the non-linear shrinkage
(Ledoit et al. (2012), Engle et al. (2017)), and variations of the DCC model.

• DCC: original Dynamic Conditional Correlation Model

• DECO: Dynamic Equicorrelation Model, as in Engle and Kelly, 2012

• DCC-NLS: DCC with nonlinear shrinkage, as in Engle et al. (2017)

• Model: The model proposed in this study; conditional factor structured.

• Model-NLS: The model proposed in this study with nonlinear shrinkage.
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Table 3.2. Portfolio Allocation Results

Panel A :Global Minimum Variance Portfolio (GMV)
Deco DCC DCC NLS Model Model NLS

Mean % 20.1 22.7 21.6 15.6 15.4
Std % 15.2 13.8 12.5 11.8 11.7
IR 0.32 0.59 0.68 0.99 0.98

Panel B :Minimum Variance Portfolio(MV)
Deco DCC DCC NLS Model Model NLS

Mean % 24.1 21.5 19.9 14.8 12.2
Std % 14.7 13.4 12.1 12.7 11.3
IR 0.68 0.87 0.96 1.43 1.51

Panel C :Tagency Portfolio(TGC)
Deco DCC DCC NLS Model Model NLS

Mean % -20.2 -36.9 -20.9 11.0 11.2
Std % 36.3 112.3 28.4 15.4 15.6
IR 0.6 0.012 0.88 1.45 1.45

In this table, I report the estimation of my model, my model combined with the non-linear shrinkage
(Ledoit et al. (2012), Engle et al. (2017)), and variations of the DCC model.

•DCC: original Dynamic Conditional Correlation Model

•DECO: Dynamic Equicorrelation Model, as in Engle and Kelly, 2012

•DCC-NLS: DCC with nonlinear shrinkage, as in Engle et al. (2017)

•Model: The model proposed in this study; conditional factor structured.

•Model-NLS: The model proposed in this study with nonlinear shrinkage.
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Appendix A

Appendix for Chapter 1

A.1 Factor,Idiosyncratic Risk and Diversification in a
Standard APT

In this section, I give a proof of Lemma 1 and Lemma 2. Based on the factor

model in APT, we can decompose the covariance among n returns Σnnn into two parts,

strong covariance from factors Σnnn
fff and covariance among idiosyncratic risk Σnnn

ϵ . We

define factor and idiosyncratic risk by covariance as in Chamberlain (1983):

Definition 1. A portfolio described in vector form www = [w1, ..,wn] is well-diversified if:

lim
n→∞

n

∑
i

w2
i = 0. (A.1)

∑n
i w2

i measures the dispersion of the portfolio weights or variance among portfolio

weights. A well-diversified portfolio has zero weight dispersion at the limit of infinite

assets, meaning that all assets are roughly the same size. For example, an equal-

weighted portfolio is well-diversified since its size dispersion scales as 1/n: ∑n
i w2

i =

1/n. Based on this definition, a proof of Lemma 1 is straightforward:

Proof of Lemma 1: If there exists an asset such that limn→∞ wi ̸= 0, then the diversifi-

cation measure

lim
n→∞

w2
i ̸= 0.
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Therefore, to satisfy the diversification condition, it must be limn→∞ wi = 0,∀i.

Now I proceed to the APT derivation. To prove the Lemma 2, We repeat the

basic setup in the Section 1.2.1 in matrix form and present the derivation of APT. There

are n firms in the whole asset space; each has a return:

rrr = E[rrr] + BBB fff + ϵϵϵ, (A.2)

E[ϵϵϵ||| fff ] = 0. (A.3)

this leads to a variance decomposition:

Σnnn = BBBΣnnn
fff BBB′′′ + Σnnn

ϵ . (A.4)

the term BBBΣnnn
fff BBB′′′ is a variation of our factor definition: I perform an eigenvalue decom-

position to the defined factor covariance, where the factor loading is the eigenvector

of the covariance matrix. This method is consistent with Chamberlain (1983) and

Chamberlain and Rothschild (1983), which generalize the assumptions in Ross (1976).

Precisely, they define factors and idiosyncratic risks by the eigenvalue of the covariance

matrix. In a market with n asset, let ρi(Σ), i = 1...n be the eigenvalues of a covariance

matrix Σ, sorted in descending order.

Definition 2. Σn
f have a factor structure if:

∃k ≤ n, s.t. lim
n→∞

ρi=1..k(Σ
nnn) = ∞. (A.5)

The factor structure is defined by unbounded eigenvalues of the covariance or ”per-

vasive” components among returns. If there is one portfolio that correlates with

sufficiently many assets, then it is a factor. Idiosyncratic risk is defined by the comple-

ment:
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Definition 3. Σn
ϵ is idiosyncratic if:

lim
n→∞

ρi(Σnnn) ≤ C,∀i. (A.6)

In other words, covariance among assets can be decomposed into two parts, a strongly

correlated factor structure, and an idiosyncratic ”residual” variance. I hybridize these

general definitions with a standard APT model in the textbook of Connor and Korajczyk

(1995) and present the perspective that when diversification fails, idiosyncratic risk

produces aggregate risk premium. The definition implies that there is no portfolio that

contains only idiosyncratic risk that could have a strong correlation with all the assets.

I further assume that there is a representative investor who has a CARA utility

base on the aggregate return u(www′′′rrr) such that u′′ < 0,constant. The Euler equation:

E[u′(www′′′rrr)rrr] = 111γ0. (A.7)

where γ0 is the reciprocal of the investor’s subjective discount. Inserting the return

equation (A.2) into the pricing formula gives:

E[rrr] = 111γ0 − BBB
E[u′(www′′′rrr) fff ]

E[u′]
− E[u′(www′′′rrr)ϵϵϵ]

E[u′]
. (A.8)

Use taylor expansion to u′(www′′′rrr) at point u′(www′′′(EEE[rrr] + BBB fff )) gives:

u′(www′′′rrr) ≈ u′(www′′′(EEE[rrr] + BBB fff )) + u′′(www′′′(EEE[rrr] + BBB fff ))www′′′ϵϵϵ. (A.9)

We can approximate the last term u′(www′′′rrr)ϵϵϵ by inserting the Taylor expansion result.

Given the assumption that factor is independent from ϵ, the last term E[u′(www′′′rrr)ϵϵϵ] is

simplified to:
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E[u′(www′′′rrr)ϵϵϵ] ≈ γΣnnn
ϵ wwwE[u′]. (A.10)

where the risk aversion coefficient is γ = −u′′
u′ > 0.

Define the factor risk premium τ = E[u′(www′′′rrr) fff ]
E[u′] as the factor risk premium and

reorganize terms, we can have:

E[rrr] = 111γ0 + BBBτττ + Σnnn
ϵ wwwγ. (A.11)

The covariance term COV(ϵi,∑n
i wiϵi) in (1.3) is stacked into the vector Σnnn

ϵ www. The

market risk premium is:

E[rm] = www′′′E[rrr] = γ0 + www′′′BBBτττ + www′′′Σnnn
ϵ wwwγ. (A.12)

When the market portfolio is well-diversified, the granular risk premium eg(n) =

γVAR(∑n
i wiϵi) = γwww′′′Σnnn

ϵ www converge to zero as n approaching infinity, which gives the

proof of Lemma 2.

Proof of Lemma 2: With diversification,

lim
n→∞

eg(n) = lim
n→∞

γwww′′′Σnnn
ϵ www ≤ γ lim

n→∞

n

∑
i=1

w2
i ρ1(Σnnn

ϵ ) = 0. (A.13)

Furthermore, the vector term Σnnn
ϵ www in the expected return of each asset is smaller or

equal to www′′′Σnnn
ϵ www, and hence converge to zero. As a result,

lim
n→∞

E[rrr] = 111γ0 + BBBτττ.
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A.2 Derivation using a Pareto Distribution

I show the proof of Lemma 3 as the case of the thin-tail distribution.

Proof of Lemma 3: Recall that,

lim
n→∞∑w2

i = lim
n→∞∑

(Xi)
2

(∑ Xi)2 = lim
n→∞

1
n

1/n ∑(Xi)
2

(1/n ∑ Xi)2 . (A.14)

If the first and second moments of Xi is finite, then:

lim
n→∞

1/n∑(Xi)
2 = E[X2],

lim
n→∞

1/n∑ Xi = E[X].

Therefore, the diversification measure converges to:

lim
n→∞∑w2

i = lim
n→∞

1
n

E[(Xi)
2]

E[Xi]2
= 0.

Now I use a Pareto distribution to derive the violation of the APT assumption

when ζ < 2. I start with the proof of Lemma 4. Recall that the maximum market

weight wmax equals:

wmax = Xmax/
n

∑
i=1

Xi

The derivation for wmax is invariant to re-scale of Xi. Therefore, for simplicity, I

normalize the lower bound of Pareto distribution xm to equal one such that:

P(Xi > x) = x−ζ , x > 1 (A.15)

The limiting distribution of the maximum value from an i.i.d sample following any

distribution is derived by the Fisher–Tippett–Gnedenko theorem (see Gnedenko (1943)).
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I use this theorem on the Pareto distribution to show that the Xmax converges to a

Frechet distribution in the following lemma:

Lemma 6. If the firm size Xi follows an i.i.d Pareto distribution such that

P(Xi > x) = x−ζ , x > 1.

Define an = n1/ζ , then the maximum value Xmax = max{X1,...,n} has a limiting distribution

such that:

lim
n→∞

P(Xmax/an ≤ x) = lim
n→∞

Fn(anx) = e−x−ζ
.

Xmax/an converges to a random variable Fζ that follows a Frechet distribution with tail

parameter ζ.

Proof of Lemma 6: The proof is an implication of the Fisher–Tippett–Gnedenko

theorem. By definition,

F(anx) = 1 − (anx)−ζ = 1 − 1
n

x−ζ .

The limiting distribution of Xmax/an is given by:

lim
n→∞

P(Xmax/an ≤ x) = lim
n→∞

Fn(anx) = lim
n→∞

(
1 − 1

n
x−ζ

)n
= e−x−ζ

.

The convergence of ∑ Xi when ζ < 2 is given by the stable law, which is a

generalized convergence theorem for infinite-variance random variables (Durrett (2019),

Theorem 3.8.2.):

Theorem. (Stable Law) Suppose X1,X2, . . . are i.i.d. with a distribution that satisfies

(i) limx→∞ P(X1 > x)/P(|X1| > x) = θ ∈ [0,1]

(ii)P(|X1| > x) = x−αL(x)
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where α < 2 and L is slowly varying. Let Sn = ∑n
i=1 Xi

an = inf{x : P(|X1| > x) ≤ n−1} and bn = nE(X11|X1|≤an)

As n → ∞, (Sn − bn)/an ⇒ Y where Y has a non-degenerate distribution.

I apply this theorem to the Pareto distribution. The random variable Y, in this context,

have the shape parameter ζ. I denote the convergence to be Yζ and specify how the

characteristic function of Yζ in the following derivations. For the Pareto distribution in

(A.15), θ = 1, α = ζ and L(x) = 1, such that

an = n1/ζ ,

and

bn = n
∫ n1/ζ

1
ζx−ζdx.

The magnitude of bn depends on the range of ζ such that:

bn =



n
(

n1/ζ−1 − ζ

1 − ζ

)
≈ n1/ζ = an ζ < 1

n
(

n1/ζ−1 − ζ

1 − ζ

)
≈ n

ζ

ζ − 1
= nE[X] ζ > 1

n logn ζ = 1

(A.16)

With these calculations, I derive the convergence of ∑ Xi:

lim
n→∞∑ Xi = lim

n→∞
(anYζ + bn),

such that,
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lim
n→∞∑ Xi =



lim
n→∞

n1/ζ(Yζ + 1) ζ < 1

lim
n→∞

Yζ + logn ζ = 1

lim
n→∞

n1/ζYζ + nE[X] ζ > 1

(A.17)

where the characteristic function of Yζ , φYζ
(t), is a stable distribution with shape

parameter ζ:

φYζ
(t) = exp{tµi − σ|t|ζ

(
1 + sign(t)wζ(t)i

)
}

where sign(t) is the sign function and wt is a function determined by ζ:

wζ(t) = tan(πζ/2),ζ ̸= 1 (A.18)

= π/2log |t|,ζ ̸= 1 (A.19)

A distribution with this type of characteristic function is known as a stable distribution.

µ and σ are the location and scale parameters, and the shape parameter is determined

by ζ, the Pareto coefficient of X.

Combining the results above gives the convergence of wmax = Xmax/ ∑ Xi as in

Lemma 4:

lim
n→∞

wmax = Xmax/
n

∑
i=1

Xi =



Fζ

Yζ + 1
ξ < 1

lim
n→∞

Fζ

Yζ + logn
ξ = 1

lim
n→∞

Fζ

Yζ + n1−1/ζ E[X]
ξ > 1

(A.20)

As a comparison of the maximum result, I derive the limiting convergence of

Xmin = min{X1,...,n} to illustrate how fast small firms in the Pareto distribution would
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have their market converge to zero and hence does violate the APT assumption.

Lemma 7. If the firm size Xi follows an i.i.d Pareto distribution such that

P(Xi > x) = x−ζ , x > 1.

The minimum value Xmin = min{X1,...,n} has a limiting distribution such that:

lim
n→∞

P(n(Xmin − 1) > x) = lim
n→∞

Pn(X > x/n + 1) = e−xζ .

Therefore, n(Xmin − 1) converges to a random variable expζ that follows a exponential distri-

bution with shape parameter ζ.

Proof of Lemma 7: The proof of this lemma is quite straightforward since:

lim
n→∞

P(n(Xmin − 1) > x) = lim
n→∞

Pn(X > x/n + 1) = lim
n→∞

[
(1/nx + 1)n]−ζ

= e−xζ .

Therefore, the cumulative density function of n(Xmin − 1) is 1 − e−xζ as n approaches

infinity, which is an exponential distribution. In other words, the minimum value

Xmin decreases with n at the rate of 1/n. As a result, one can show that the minimum

market weight wmin converges to:

lim
n→∞

wmin = Xmin/
n

∑
i=1

Xi =



lim
n→∞

1 + expζ /n

n1/ζ(Yζ + 1)
ξ < 1

lim
n→∞

1 + expζ /n

Yζ + logn
ξ = 1

lim
n→∞

1 + expζ /n

n1/ζYζ + nE[X]
ξ > 1

(A.21)

As a comparison of the maximum results, the minimum market weight always con-

verges to zero faster than 1/n, which indicates that small firms do not violate the APT
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assumption.

The proof of Lemma 5 is another implication of the stable law to derive the

convergence of ∑ X2
i . Now, since X2

i also follow a Pareto distribution with index

ζ/2 < 1, the convergence is:

lim
n→∞∑ X2

i = lim
n→∞

n2/ζ(Yζ/2 + 1). (A.22)

Similarly, the characteristic function of Yζ/2 is a stable distribution with shape parame-

ter ζ/2:

φYζ/2 = exp{tµi − σ|t|ζ/2
(

1 + sign(t)wζ/2(t)i
)
}.

Proof of Lemma 5: Combining the results in (A.17) and (A.22) gives the convergence

of ∑n
i w2

i :

lim
n→∞∑w2

i =



Yζ/2 + 1
(Yζ + 1)2 ζ < 1

lim
n→∞

Yζ/2+1

(Yζ + logn)2 ζ = 1

lim
n→∞

Yζ/2 + 1
(Yζ + n1−1/ζ E[X])2 ζ > 1

(A.23)

The proof of Proposition 1 and Proposition 2 is derived by (A.11) and (A.12)

with assuming independence among ϵi. Given the value of ζ is around 1, the results

in Lemma 5 and Lemma 4 induces asset pricing implications in Proposition 1 and

Proposition 2.

A.3 Estimation of the Pareto distribution

The main results of this paper hinge on the Pareto coefficient ζ value, which

quantifies the level of granularity and the associating asset pricing implication. When
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Xi=1...n are i.i.d and follows the exact Pareto distribution in (1.7) such that

P(Xi > x) =
(

x
xm

)−ξ

, x > xm.

The Pareto distribution implicitly assumes that only firms with market values larger

than xm follow a Pareto distribution. Selecting a threshold to estimate the Pareto

distribution excludes the small firms in the sample, which is consistent with the

theoretical motivation that large firms induce violations of the APT models.

I estimate the tail parameter ζ of the Pareto distribution using the Hill estimator

(see Hill (1975)). At each month, I sort all the n firm sizes in a descending order

Xi=1,...,n and select a threshold value xm = Xk to use the largest k firms for estimating

ζ. The Hill estimator is:

ζ =

{
1/k

k

∑
i=1

(log Xi − log Xk)

}−1

. (A.24)

this estimator can be interpreted as a maximum likelihood estimator of ζ conditioning

on a known minimum threshold xm = Xk, which has a simple to derive asymptotic

inference property as k → ∞. Therefore, the literature typically selects the threshold

position k by fixing a cutoff ratio k/n = 5%,10%... to make k proportional to the total

number of assets n and conduct the statistical inference by the asymptotic property of

the estimator as n → ∞.

I find that the large firms in the stock market are fitted well by the Hill estimator

of the Pareto distribution, which justifies my theoretical derivations1. Specifically,

matching the survival probability in (1.7) with the frequency in data gives,

1This assumption should not affect the theoretical results in Section 1.2.2 since small firms only
account for a tiny fraction of the total value. Furthermore, I can derive the same theoretical results when
the whole sample is drawn from a mixture of the Pareto distribution and a thin tail distribution. The
proof is available upon request.
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i/n ≈
(

Xi

Xk

)−ζ

.

The logarithm of this equation implies a linear relationship between logged rank i and

size Xi in (1.7) since:

log(i/n) ≈ log

((
Xi

Xk

)−ζ
)
= −ζ

(
log Xi − log Xk

)
.

Therefore, to check the goodness of fitting, I plot the logged rank-size plot of the largest

10% firms in the December of 2020 in Figure A.1. I fit the linear relationship in the

red dash line using the Hill estimator of ζ̂ = 0.94, which suggests a significant level of

the fat tail and the APT violations as implied by my model. Meanwhile, I find a slight

deviation from the straight line with concavity. The concavity comes from including

firms smaller than the size implied by the Pareto distribution, which might induce a

downward bias of the Hill estimator.

For time-series implication in my paper, the cutoff selection affects the pre-

dictability of ζ on market returns as motivated in (1.13):

log(rm,t+1) = constant + controls + Alogıt.

A loose cutoff ratio k/n (large k) would include more firms and reduce the estimator’s

variance for better statistical power of my time-series test. However, a loose cutoff also

generates a downward bias of ζ since it could include small firms in the sample that

may not follow the Pareto distribution.

Due to the downward bias, a time-series estimate of ζ would be non-stationary

since its variance and magnitude depend on the number of assets n. I estimate ζ using

the largest 10% firms in each month to form a time-series of ζt and plot it in Figure A.2.

I plot the estimate of ζt in the blue line, together with the confidence interval (+/- two
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times the standard errors of ζt as a maximum likelihood estimator) in the two red

lines below and above. Figure A.2 shows that the estimates of ζ̂t have higher standard

errors at the beginning of the sample period due to fewer observations. As the number

of firms included increases over time, the standard errors decrease, but the downward

bias increases due to more small firms included in the estimation. Notably, there

are two downside jumps of ζt in June 1962 and January 1973 due to the merging of

AMEX-listed and NASDAQ-listed firms. In summary, I find that the average estimate

of ζ̂t using the largest 10 % firms is around 1, which verifies the significant level of

granularity used in my asset pricing results. However, the time-series estimate tends

to have downward biases and hence a decreasing trend due to the increasing n in the

sample period.

To construct a stationary estimate of ζt, I firstly test a the relation between

log ζ̂t and the logged number of firms lognt in the data each month presented in

Figure A.3. I take advantage of the relation between log ζ̂t and lognt and subtract the

non-stationary trend due to an increasing number of firms over the sample period and

then take the de-trended ζt into (1.13) to estimate:

log(rm,t+1) = constant + controls + Alogıt(debias)

To adjust for the bias-variance issue, a vast amount of papers assume a more

general class of fat tail distribution to develop the bias-correction methods accordingly

(see Hall and Welsh (1985), Diebold et al. (1998), Peng (1998), Beirlant et al. (1999),

Feuerverger and Hall (1999), Gomesa and Martins (2002), Alves et al. (2003)). Instead

of applying these bias-correction methods for ζ̂t at each time separately, my ”de-bias”

procedure takes advantage of the co-integration and intends to improve the power of

testing whether the level of fat tail predicts the market returns.
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A.4 Out-of-sample predictive results

I check the out-of-sample predictive power of my model and report results

in Table A.1. I estimate the single variable case using logζt ,and bi-variate cases

adding time-varying idiosyncratic risk and other predictors surveyed in Welch and

Goyal (2008) at horizon k = 1,12,60. For each set of predictors I test, I compute the

Out-of-sample R2 (Oos R2) by comparing the predictive error of each set of predictors

to the historical mean computed by a 240-month rolling window. I also perform

the Diebold-Mariano test (DM) to check whether my predictive model outperform

the historical mean. The lag number h used for DM tests in different horizon k is

computed by the rule of thumb h = k1/3 + 1. For using logζt only, the out-of-sample

R2 reaches 1.50 percent at the 12-month horizon and 13.34 percent (with a significant

T-stat 2.07) at the 60-month horizon, which indicates a robust predictive power of ζ in

the long period. Combining logζt with other predictors also displays out-of-sample

predictive power at the long-horizon. I highlight the list of predictors that have positive

out-of-sample R2 at k = 60 ahead with a significant DM test T-stat.

A.5 Additional figures and tables
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Figure A.1. Logged rank-size plot in December 2020

In this figure, I plot the logged rank-size plot of the largest 10% firms in December 2020. The red dashed
line shows the fitted relation implied by the Pareto distribution. The ten largest firms are highlighted.
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Figure A.2. Pareto Coefficient Estimate of Market Value per Month

At the end of each month, I estimate the tail parameter ζ of Pareto distribution using the Hill estimator
(see Hill (1975)) at a monthly frequency. I use the largest ten % firms to illustrate a trade-off between
bias and variance of the Hill estimator. I plot the estimate of ζt in the blue line, together with the
confidence interval (+/- two times the standard errors of ζt as a maximum likelihood estimator) in the
two red lines below and above. The two vertical dash lines in the plot mark the expansion of n due to
the merging of security exchanges: AMEX in June 1962 and NASDAQ in January 1973. The shaded
areas are NBER recession periods.
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Figure A.3. Pareto Coefficient Estimate and Number of Firms

I plot the co-integration relation between the logged Pareto coefficient logζ (estimated from the largest
ten % firms) and the logged number of firms n. Both the time series are normalized to zero-mean and
unit-variance with their raw magnitudes displayed on two separate sets of ticks on the y-axis.
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Table A.1. Out-of-sample prediction results.

predictor \ horizon logrm,t→t+1 logrm,t→t+12 logrm,t→t+60

logζ OosR2 -0.17 1.50 13.34

DM -0.17 0.31 2.07

logζ,∑ wiθi(FF3) OosR2 -0.20 -1.69 0.80

DM -0.99 -0.91 0.18

logζ,∑ wiθi(PCA) OosR2 -2.85 -10.20 4.72

DM -1.73 -1.11 0.47

logζ,∑ wiθi(Campbell et al) OosR2 -2.69 -7.11 3.04

DM -1.55 -0.76 0.38

logζ, bm OosR2 -1.47 1.04 17.60
DM -1.43 0.17 1.98

logζ, dspr OosR2 -1.79 -3.27 15.48
DM -0.63 -0.58 1.89

logζ, dp OosR2
0.05 12.92 40.60

DM 0.05 2.19 4.16
logζ, ep OosR2 -2.24 -3.48 10.52

DM -0.91 -0.48 1.12

logζ, ltr OosR2
0.30 1.81 13.41

DM 0.21 0.38 2.05
logζ, ntis OosR2 -1.04 3.17 10.26

DM -0.67 0.35 1.40

logζ, svar OosR2 -7.28 -14.22 -15.09

DM -1.82 -0.96 -0.63

logζ, tspr OosR2
0.06 6.64 22.64

DM 0.04 0.89 2.51
logζ, corpr OosR2

0.66 2.01 13.44
DM 0.43 0.41 2.06

I summarize the out-of-sample predictive power of all the sets of predictors I test. I compute the
Out-of-sample R2 by comparing the predictive error of each set of predictors to the historical
mean computed by a 240-month rolling window. I also perform the Diebold-Mariano test to
check whether my predictive model outperforms the historical mean.
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Appendix B

Appendix for Chapter 2

B.1 Derivation of the linearized identities

In this section, we show the derivation of linearized identities for the three

sectors.

DAt = κ0,DA + κ1,DA

∞

∑
j=0

ρ
j
DA

(
rE

t+j+1 − ∆dt+j+1

)
(B.1)

NSBt = κ0,NSB + κ1,NSB

∞

∑
j=0

ρ
j
NSB

(
rD

t+j+1 − ∆nst+j+1

)
(B.2)

NMAt = κ0,NMA + κ1,NMA

∞

∑
j=0

ρ
j
NMA

(
rX

t+j+1 − ∆nmt+j+1

)
(B.3)

In addition, these three linear identities are weighted-summed to derive an aggregate

identity of the economy such that

CWt = κ0,CW + κ1,CW

∞

∑
j=0

ρ
j
CW

(
rW

t+j+1 − ∆ct+j+1

)
(B.4)

We further show that the aggregate budget constraint is approximately equal to a

weighted average of each sector budget constraint. Specifically,

CWt = α0 + w1DAt + w2NSBt + w3NMAt,
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rW
t = α1 + w1rE

t + w2rD
t + w3rX

t .

And according to the budget constraint, the cash-flow growth also follows,

∆ct = α2 + w1∆dt + w2∆nst + w3∆nmt.

We derive the weight of each sector w1,2,3 based on our calculation and further use it

to impose the constraint in our estimation.

B.1.1 The Aggregate Accounting Identity

The accounting identity of GDP is:

Yt = Ct + It + Gt + Xt − Mt (B.5)

which leads to a decomposition of consumption:

Ct = Yt − It − Tt + Tt − Gt + Mt − Xt (B.6)

Define the net surplus as:

NSt = Tt − Gt (B.7)

and the net import as:

NMt = Mt − Xt (B.8)

Ct = Yt − It − Tt + NSt + NMt (B.9)

Typical finance literature like Larraine and Yogo (2008) take the firm as production
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technology and its after-tax revenue as a dividend (or total payout to the household),

i.e. Dt = Yt − It − Tt. This leads to:

Ct = Dt + NSt + NMt (B.10)

Equation (B.10) is an aggregate budget constraint for the whole economy. It decom-

poses the total consumption into flows of three sectors: The private sector (financed

by the after-tax revenue Dt), the Public sector (financed by the government surplus

NSt = Tt − Gt), and external sector adjustment.

The aggregate budget constraint wraps budget constraints for the three sectors

together:

Budget constraint for the private sector is:

At+1 + Dt+1 = (1 + RA
t+1)At (B.11)

For the public sector is:

Bt+1 + NSt+1 = (1 + RB
t+1)Bt (B.12)

For the external sector is:

Ft+1 + NMt+1 = (1 + RX
t+1)Ft (B.13)

The stock value of the three sectors is also linked together as in (B.10) if we

define the total domestic wealth of economy Wt as:

Wt = At + Bt + Ft (B.14)

One can treat the total asset value as net wealth, matched to the equity value of each
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firm. The total wealth, as accumulated value produced by the economy, is kept by

firms, borrowed by the government, or traded out for foreign assets. Therefore, the

total wealth equals the sum of domestic asset value, government debt, and foreign

asset value.

The total wealth Wt follows a similar dynamic to each sector, with total outflows

Ct:

Wt+1 + Ct+1 = (1 + RW
t+1)Wt (B.15)

Identity defined in equation (B.10) and (B.14) allow us to express the total wealth

dynamic (B.15) by the sum of each sector. The total wealth return RW , as a portfolio

return includes the three classes of assets, is the weighted average of the three sectors’

return.

1 + RW
t+1 = (1 + RA

t+1)At/Wt + (1 + RB
t+1)Bt/Wt + (1 + RX

t+1)Ft/Wt (B.16)

The portfolio return relation wraps each sectors budget constraint into aggre-

gate:

1 + RW
t+1 =

Wt+1 + Ct+1

Wt
(B.17)

=
At+1 + Dt+1

At
At/Wt +

Bt+1 + St+1

Bt
Bt/Wt +

Ft+1 + NMt+1

Ft
Ft/Wt(B.18)

Based on this intuition, we apply the linearization technique to each sector and

the aggregate account and then show that the aggregate identity is a weighted average

of the three sectors.
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B.1.2 Separate Budget Constraints

We now linearize the sector budget constraint. Unlike the equity sector case

solved by Campbell and Shiller (1988a) (CS hereafter), the cash flows considered in

our setting could be negative, i.e. when the government is in deficit or the external

sector has a net export. Therefore, a logged flow-value ratio would not be available

and hence we develop a comparable technique to handle the negative cash flow.

For saving the notation, we express all the sector budget constraints in a general

form,

Vt(1 + Rt+1) = Vt+1 + CFt+1.

A sector has the cumulative account value Vt and cash flow CFt, and its return is

defined by,

1 + Rt+1 =
Vt+1 + CFt+1

Vt
=

Vt+1 + CFt+1

CFt+1

CFt+1

CFt

CFt

Vt
= (1 +

1
CFVt+1

)∆CFt+1CFVt.

(B.19)

We denote the un-logged cash flow growth by ∆CFt+1 =
CFt+1

CFt
and the cash flow value

ratio by CFVt =
CFt
Vt

. Taking log for both sides of the equation gives:

rt+1 = log(
Vt+1 + CFt+1

Vt
) = log

(
(1 +

1
CFVt+1

)∆CFt+1CFVt

)
(B.20)

We approximate the right side equation as a function of CFVt+1,∆CFt+1,CFVt by the

first-order Taylor expansion around a steady state. This presentation is valid in the

sense it ensures the product of the three terms to be positive as long as Vt > 0 and

Vt + CFt > 0 at any time t. Let us present the function log(Vt+1+CFt+1
Vt

) in a general

form,
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f (X1, X2, X3) = log((1 +
1

X1
)X2X3).

Taking first-order derivative and combining with the fact that ∆CF = 1 and the two

valuation ratio equals the same CFV at steady state leads to:

log(
Vt+1 + CFt+1

Vt
) ≈ log(1 + CFV)− V

V + CF
CFV−1(CFVt+1 − CFV) + (∆CFt+1 − 1)

+ CFV−1(CFVt − CFV)

(B.21)

Using the approximate relation that log(1 + x) ≈ x, we define the simple cash flow

growth mapped to the log cash flow growth in CS:

∆c ft+1 = ∆CFt+1 − 1 =
CFt+1

CFt
− 1 (B.22)

Let ρ = V
V+CF = 1/(1 + CFV), we can write:

rt+1 = κ − ρ(CFV)−1CFVt+1 + ∆c ft+1 + (CFV)−1CFVt (B.23)

where the constant term is

κ = log(1 + CFV) + ρ − 1 (B.24)

At steady state, the logged expected return equals

r = log(1 + CFV) + ρ − 1 − ρ + 1 = log(1 + CFV) (B.25)

Re-organize the term and makes
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(CFV)−1CFVt = −κ + rt+1 − ∆c ft+1 + ρ(CFV)−1CFVt+1 (B.26)

or we can write

CFVt = −κCFV + CFV
(
rt+1 − ∆c ft+1

)
+ ρCFVt+1. (B.27)

Solving this equation K = 2, ...,∞ periods in forward gives

CFVt = κ0 + κ1

K−1

∑
j=0

ρj
(

rt+j+1 − ∆c ft+j+1

)
+ ρK(CFV)−1CFVt+K. (B.28)

κ0 and κ1 are constants computed from the steady state CFV. In the long-horizon,

when K approached zeros, and given a positive steady state CFV such that ρ < 1,

CFVt = κ0 + κ1

∞

∑
j=0

ρj
(

rt+j+1 − ∆c ft+j+1

)
. (B.29)

In the main body of the paper, we apply this general form of linear identity to the

three sectors and aggregate consumption-wealth relations. Accordingly, we use the

notation κ0,DA, κ1,DA and ρDA to present the constant in the linearization of DAt, and

rE, ∆d for the return and cash-flow growth in the equity sector. And, we use a similar

notation for the other budget constraints.

B.1.3 Aggregate Budget Constraint as a Weighted Average of
Separate Budget Constraints

As we showed in the first section, the aggregate budget constraint is a sum of all

the sector budget constraints, we now show that the linearized A.B.C is approximately

a weighted average of all the linearized B.C. As shown in (B.16), the aggregate account

return rW is a weighted average of each sector. We start with using a general format to
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present this relation here to save notations. The aggregate portfolio contains sectors

i = 1...n with each sector’s return, cash flow, and stock value denoted by Ri,CFi,Vi,

respectively. Each sector has a budget constraint, which is approximated by:

ri,t+1 = ∆c fi,t+1 − ρi(CFVi)
−1CFVi,t+1 + (CFVi)

−1CFVi,t (B.30)

The total portfolio return under this general setup equals:

1 + RW
t+1 =

n

∑
i

Vi,t/Wt(1 + Ri,t+1)

Mapping with the general solution in the last subsection, the consumption wealth

dynamic in (B.15) is approximated by:

rw
t+1 = ∆ct+1 + (CW)−1CWt − ρ(CW)−1CWt+1 (B.31)

We proxy the aggregate log return rW
t+1 as a weighted average of each log return using

a textbook log-linearization technique in the macroeconomic literature.

1 + Rw
t+1

1 + Rw − 1 =
n

∑
i

VW i(1 + Ri)

∑ VW i(1 + Ri)

(
1 + Ri,t+1

1 + Ri
− 1
)

(B.32)

Therefore, we define the weight

wi =
VWi(1 + Ri)

∑ VWi(1 + Ri)
,

and use the approximate relation log(1 + x) ≈ x for a small x to show that,

rw
t+1 ≈ constant +

n

∑
i

wiri,t+1. (B.33)

Similarly, for the consumption wealth ratio CWt, we decompose the consump-

tion as follows,
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Ct = ∑CFi,t.

Dividing this equation by Wt, we have

CWt = ∑CFVi,t
Vi,t

Wt
.

Use the steady state condition in (B.25), we can show,

1 + Ri = 1 + CFVi = 1/ρi. (B.34)

Consequently,

(CW)−1CWt = constant + ∑wi(CFVi)−1CFVi
t . (B.35)

At last, we combine the relation between asset returns and the linearized

identity.

rW
t+1 = ∑wiri,t+1 = ∑wi

(
∆c fi,t+1 − ρi(CFVi)

−1CFVi,t+1 + (CFVi)
−1CFVi,t

)
(B.36)

Matching terms in this equation with the A.B.C gives,

∆ct+1 = constant + ∑wi∆c f i
t+1. (B.37)

Therefore, our derivation in this section shows that the aggregate budget con-

straint is a weighted average of each sector by solving the relation between the aggre-

gate portfolio return rW and returns in each sector. Mapping with our three-sector
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setting, the weights are

w1 =
AW/ρDA

AW/ρDA + BW/ρNSB + FW/ρNMA
,

w2 =
BW/ρNSB

AW/ρDA + BW/ρNSB + FW/ρNMA
,

w3 =
FW/ρNMA

AW/ρDA + BW/ρNSB + FW/ρNMA
.

Intuitively, the weights are each account’s weight in the aggregate wealth at the steady

state, adjusted by a linearization coefficient ρ. These calculation showed that the

log-linearized A.B.C is a weighted average of log-linearized B.C.

B.1.4 Combine the Foreign Asset and Liability

The linearization we develop in the above is very general yet it requires a positive

account value Vt and a well-defined log return such that 1 + Rt+1 =
Vt+1+CFt+1

Vt
> 0. We

find that this assumption does not hold for the external sector with the return equals,

1 + Rx
t+1 =

Ft+1 + NMt+1

Ft
.

The net foreign asset value F equals to the difference between foreign asset Ax and

liability Lx. During certain period, the net foreign asset Ft = Ax
t − Lx

t is close to zero

and the net import is negative, which drives the gross return to be extremely negative

so that we cannot define a log return.

We handle this problem by separately approximating the dynamic of foreign

assets and liability:

Ax
t (1 + Rax

t+1) = Ax
t+1 + Mt+1 (B.38)
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Lx
t (1 + Rlx

t+1) = Lx
t+1 + Xt+1 (B.39)

Given Ft = Ax
t − Lx

t , we use the portfolio conclusion in the last section to derive a proxy

for the external sector B.C. as a weighted average of the B.C. for the asset and liability,

where we assign the weight to be:

φa =
VWax(1 + Rax)

VWax(1 + Rax)− VWal(1 + Ral)
(B.40)

φl =
VWal(1 + Ral)

VWax(1 + Rax)− VWal(1 + Ral)
(B.41)

These exercise allows us to directly work on the net foreign asset as a single sector. We

thus derive the separate linear identity for each sector, and the aggregate wealth of the

economy.

B.2 Empirical Setting

B.2.1 Sector Budget Constraints

Using the technique in the last section, we first approximate each sector’s budget

constraint:

(DA)−1DAt = rA
t+1 − ∆dt+1 + ρA(DA)−1DAt+1 (B.42)

(NSB)−1NSBt = rB
t+1 − ∆nst+1 + ρB(NSB)−1NSBt+1 (B.43)

(NMA)−1NMAt = rX
t+1 − ∆nmt+1 + ρX(NMA)−1NMAt+1 (B.44)

where the notation for each sector maps with (B.1),(B.2),(B.3).

Due to the steady state relation in (B.34), we estimate the value of DA, NSB,
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and NMA and ρA,ρB,ρX using the average log return for each sector r̄i:

CFVi = exp(r̄i)− 1 (B.45)

ρi = 1/(1 + CFVi) (B.46)

The A.B.C is:

(CW)−1CWt = rw
t+1 − ∆ct+1 + ρ(CW)−1CWt+1 (B.47)

which is a weighted average of the three-sector B.C. We estimate the weight by the

average log return for each sector r̄i and average log V/W ratio ¯vwi :

wi =
e ¯vwi er̄i

∑ e ¯vwi er̄i
(B.48)

B.2.2 A Predictive Regression System

We now set a predictive regression framework in matrix format. Define:

rrraaatttiiiooottt = [DAt; NSBt; NMAt]

as a column vector and similarly:

rrrttt = [rA
t ;rB

t ;rX
t ]

∆ccc fff ttt = [∆dt;∆nst;∆nxt]

We then have:
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rrrt+1 = αααrrr + bbbrrrrrraaatttiiiooottt + ϵϵϵrrr
t+1 (B.49)

∆ccc fff t+1 = αααc f + bbbc f rrraaatttiiiooottt + ϵϵϵ
c f
t+1 (B.50)

∆ct+1 = αc + bbb′crrraaatttiiiooottt + ϵϵϵc
t+1 (B.51)

rrraaatttiiiooot+1 = ccc + ϕϕϕrrraaatttiiiooottt + ϵϵϵratio
t+1 (B.52)

The sector b.c. says for each sector:

1 = CFVi(bi
r − bi

c f ) + ρiϕi (B.53)

in matrix format, we have the sector B.C:

III = dddiiiaaaggg(DDDAAA,,, NNNSSSBBB,,, NNNMMMAAA)(bbbrrr −−− bbbc f ) + dddiiiaaaggg(ρρρAAA,,,ρρρBBB,,,ρρρXXX)ϕϕϕ (B.54)

Same as we did in the unconstrained case, we estimate the bbb′c by running three

regressions and impose

bbb′c = φφφ′bbbCF (B.55)

Using the multi-period relation, if we run the sum of K-period ahead return

and cash flow growth on the ratios, we can get similar constraints:

III = dddiiiaaaggg(DDDAAA,,, NNNSSSBBB,,, NNNMMMAAA)(bbbrrr(kkk)−−− bbbc f (kkk)) + dddiiiaaaggg(ρρρAAA,,,ρρρBBB,,,ρρρXXX)Kϕϕϕ(kkk) (B.56)

B.3 Results of Forecasting Nominal and Excess Returns
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Table B.1. Predictive Regression for Nominal and Excess Returns, Single-Variable

Panel A: Single Variable Predictive Regression, One-period ahead
Nominal Excess Nominal Excess Nominal Excess

rE
t+1 rE

t+1 rB
t+1 rB

t+1 rX
t+1 rX

t+1
DAt 0.80 0.54 NSBt 0.04 -0.03 NMAt 0.12 0.12

2.28 1.48 1.26 -0.96 2.47 2.32

R2
0.02 0.01 R2

0.00 0.00 R2
0.04 0.03

unbiased 0.46 0.19 unbiased 0.04 -0.03 unbiased 0.12 0.11

1.13 0.46 0.90 -0.78 3.08 2.92

R̃2
0.01 0.00 R̃2

0.00 0.00 R̃2
0.03 0.03

Panel B: Single Variable Predictive Regression, Four-period ahead
Nominal Excess Nominal Excess Nominal Excess

∑4
k=1 ρkrE

t+k ∑4
k=1 ρkrE

t+k ∑4
k=1 ρkrD

t+k ∑4
k=1 ρkrD

t+k ∑4
k=1 ρkrX

t+k ∑4
k=1 ρkrX

t+k
DAt 3.24 2.31 NSBt 0.20 -0.03 NMAt 0.41 0.40

2.78 1.85 1.82 -0.34 2.63 2.44

R2
0.07 0.04 R2

0.02 0.00 R2
0.09 0.08

unbiased 2.93 1.98 unbiased 0.20 -0.04 unbiased 0.41 0.40

4.03 2.52 2.46 -0.50 5.08 4.80

R̃2
0.06 0.03 R̃2

0.02 0.00 R̃2
0.09 0.08

Panel C: Single Variable Predictive Regression, Eight-period ahead
Nominal Excess Nominal Excess Nominal Excess

∑8
k=1 ρkrE

t+k ∑8
k=1 ρkrE

t+k ∑8
k=1 ρkrD

t+k ∑8
k=1 ρkrD

t+k ∑8
k=1 ρkrX

t+k ∑8
k=1 ρkrX

t+k
DAt 5.52 3.82 NSBt 0.34 -0.01 NMAt 0.54 -0.08

3.15 1.93 1.67 -0.03 2.06 -0.51

R2
0.13 0.06 R2

0.03 0.00 R2
0.07 0.00

unbiased 5.31 3.59 unbiased 0.33 -0.01 unbiased 0.55 -0.07

5.71 3.44 2.50 -0.11 4.54 -0.69

R̃2
0.12 0.05 R̃2

0.03 0.00 R̃2
0.08 0.00

This table shows the prediction results for nominal and excess returns of three sectors using each
valuation ratio in a single variable regression, estimated by OLS. For both excess and nominal returns,
rE,rD,rX are the log returns of equity, debt, and external asset, respectively. DA is the dividend price
ratio, NSB is the net government surplus (tax minus spending) to debt ratio, and NMA is the net
import to foreign asset ratio. We correct for Stambaugh bias and compute the unbiased coefficient and
R-squared R̃2 accordingly. The standard error of the unbiased estimate is generated by bootstrapping
10,000 draws. In Panel A, we forecast the one-period ahead variables. In Panels B and C, we compute
the summed returns and cash-flow growth in the long horizon.
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Table B.2. Predictive Regression for Nominal and Excess Returns, Multiple-Variable

Panel A, Multiple Variable Predictive Regression, One-period ahead
Nominal Nominal Nominal Excess Excess Excess

rE
t+1 rD

t+1 rX
t+1 rE

t+1 rD
t+1 rX

t+1
DAt 0.78 0.24 0.14 0.52 -0.03 -0.13

2.31 1.38 0.30 1.47 -0.20 -0.28

NSBt -0.25 0.04 -0.40 -0.32 -0.03 -0.46

-2.06 1.33 -2.50 -2.57 -0.99 -2.85

NMAt 0.00 0.01 0.12 0.00 0.01 0.12

-0.01 0.92 2.59 -0.08 0.76 2.49

R2
0.03 0.03 0.06 0.03 0.01 0.06

Panel B, Multiple Variable Predictive Regression, Four-period ahead
Nominal Nominal Nominal Excess Excess Excess

∑4
k=1 ρkrE

t+k ∑4
k=1 ρkrD

t+k ∑4
k=1 ρkrX

t+k ∑4
k=1 ρkrE

t+k ∑4
k=1 ρkrD

t+k ∑4
k=1 ρkrX

t+k
DAt 3.06 0.73 0.62 2.10 -0.29 -0.38

2.82 1.27 0.43 1.82 -0.65 -0.26

NSBt -0.79 0.21 -1.67 -1.06 -0.04 -1.95

-2.20 1.95 -3.30 -2.81 -0.42 -3.63

NMAt 0.01 0.02 0.41 0.00 0.01 0.40

0.10 0.53 2.83 -0.02 0.29 2.68

R2
0.11 0.06 0.16 0.10 0.01 0.17

Panel C, Multiple Variable Predictive Regression, Eight-period ahead
Nominal Nominal Nominal Excess Excess Excess

∑8
k=1 ρkrE

t+k ∑8
k=1 ρkrD

t+k ∑8
k=1 ρkrX

t+k ∑8
k=1 ρkrE

t+k ∑8
k=1 ρkrD

t+k ∑8
k=1 ρkrX

t+k
DAt 5.25 1.25 1.63 3.46 -0.75 -0.26

3.38 1.37 0.66 1.97 -1.17 -0.10

NSBt -0.82 0.39 -3.32 -1.26 -0.04 -3.85

-1.34 1.84 -4.13 -1.91 -0.20 -4.48

NMAt 0.01 0.04 0.57 -0.03 0.00 0.55

0.05 0.52 2.49 -0.21 0.07 2.26

R2
0.16 0.08 0.22 0.10 0.02 0.22

This table shows the OLS estimates of using three valuation ratios in one regression predicting logged
nominal and excess returns of all three sectors. For both excess and nominal returns, rE,rD,rX are the
log returns of equity, debt, and external asset, respectively. DA is the dividend price ratio, NSB is the
net government surplus (tax minus spending) to debt ratio, and NMA is the net import to foreign
asset ratio. We correct for Stambaugh bias and compute the unbiased coefficient and R-squared R̃2

accordingly. The standard error of the unbiased estimate is generated by bootstrapping 10,000 draws.
In Panel A, we forecast the one-period ahead variables. In Panels B and C, we compute the summed
returns and cash-flow growth in the long horizon.
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Table B.3. Predictive Regression for Nominal and Excess Returns, using GMM to
Enforce Aggregate Budget Constraint

Table 3 Panel A, Multiple Variable Prediction, One-period Ahead
Nominal Nominal Nominal Excess Excess Excess

rE
t+1 rD

t+1 rX
t+1 rE

t+1 rD
t+1 rX

t+1
DAt 0.87 0.18 0.19 0.31 -0.17 -0.11

4.86 2.37 0.52 1.50 -2.15 -0.29

NSBt -0.26 0.05 -0.50 -0.30 -0.04 -0.59

-2.45 1.04 -2.70 -2.86 -1.03 -3.14

NXAt -0.02 0.02 0.11 -0.03 0.01 0.10

-1.06 2.23 2.85 -1.02 1.73 2.35

R2
0.04 0.04 0.06 0.03 0.02 0.06

Table 3 Panel B, Multiple Variable Prediction, Four-period Ahead
Nominal Nominal Nominal Excess Excess Excess

∑4
k=1 ρkrE

t+k ∑4
k=1 ρkrD

t+k ∑4
k=1 ρkrX

t+k ∑4
k=1 ρkrE

t+k ∑4
k=1 ρkrD

t+k ∑4
k=1 ρkrX

t+k
DAt 2.93 0.63 0.84 1.20 -0.49 -0.04

6.05 3.40 1.00 2.08 -2.71 -0.04

NSBt -0.66 0.30 -2.33 -0.85 -0.04 -2.64

-3.21 3.20 -6.52 -3.47 -0.48 -6.87

NMAt -0.03 0.04 0.38 -0.07 0.02 0.34

-0.68 2.23 4.49 -1.20 1.22 3.98

R2
0.09 0.10 0.22 0.06 0.02 0.22

Table 3 Panel C, Multiple Variable Prediction, Eight-period Ahead
Nominal Nominal Nominal Excess Excess Excess

∑8
k=1 ρkrE

t+k ∑8
k=1 ρkrD

t+k ∑8
k=1 ρkrX

t+k ∑8
k=1 ρkrE

t+k ∑8
k=1 ρkrD

t+k ∑8
k=1 ρkrX

t+k
DAt 4.81 1.50 1.82 2.20 -0.64 0.40

7.73 4.94 1.46 3.05 -2.55 0.32

NSBt -0.82 0.57 -4.01 -1.08 0.05 -4.60

-2.82 3.72 -7.29 -3.35 0.35 -7.86

NMAt -0.02 0.07 0.53 -0.09 0.00 0.43

-0.26 2.74 4.68 -1.29 0.16 3.73

R2
0.14 0.17 0.27 0.06 0.02 0.26

This table shows the constrained GMM estimates of using three valuation ratios in one regression
predicting logged nominal and excess returns of all three sectors. For both excess and nominal returns,
rE,rD,rX are the log returns of equity, debt, and external asset. DA is the dividend price ratio, NSB is
the net government surplus (tax minus spending) to debt ratio, and NMA is the net import to foreign
asset ratio. We correct for Stambaugh bias and compute the unbiased coefficient and R-squared R̃2

accordingly. The standard error of the unbiased estimate is generated by bootstrapping 10,000 draws.
In Panel A, we forecast the one-period ahead variables. In Panels B and C, we compute the summed
returns and cash-flow growth in the long horizon.
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Appendix C

Appendix for Chapter 3

C.1 Proof of the Conditional Factor Model

Proof of Proposition 2.1

Equation (3.2) leads to:

r f
t = 1/Et−1[mt] (C.1)

1 = Et−1[ritmt] = COVt−1(rit,mt) + Et−1[rit]Et−1[mt] (C.2)

⇒ Et−1[rit − r f
t ] = −COVt−1(rit,mt)/Et−1[mt] (C.3)

Combine with the pricing kernel in (3.1):

Et−1[rit − r f
t ] = b′t−1COVt−1(rit, ft)/Et−1[mt] (C.4)

By assuming each factor satisfies the pricing equation:

Et−1[ ft − r f
t ] = b′t−1VARt−1( ft)/Et−1[mt] (C.5)

As an extension of proof 2.1, let HK
t = VARt−1( ft) be the conditional covariance

matrix of factors and COVt−1(rit, ft) be the k by 1 vector containing all the conditional

covariance between rit and each fkt. Then, based on assumptions 2a and 2b:
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Proof of Proposition 3.2

∀i ̸= j,ri,t = f ′t βit + εi,t,rj,t = f ′t β jt + ε j,t (C.6)

COVt−1(rit,rjt) = β′
iVARt−1( ft) = β′

iH
K
t β j (C.7)

COVt−1(rit, ft)′ = β′
iVARt−1( ft) = β′

iH
K
t (C.8)

COVt−1(rjt, ft)′ = β′
jVARt−1( ft)) = β′

jH
K
t (C.9)

⇒ COVt−1(rit, ft)′(HK
t )

−1COVt−1(rjt, ft) = COVt−1(rit,rjt) (C.10)

Decompose HK
t to DK

t KtDK
t , and then divide (C.10) by σi,tσj,t:

1
σi,t

COVt−1(rit, ft)
′(DK

t )
−1K−1

t (DK
t )

−1COVt−1(rjt, ft)
1

σj,t
= ρi,j,t (C.11)

Note that, by definition, (DK
t )

−1COVt−1(rit, ft)
1

σi,t
= ρi,t is the K by 1 vector containing

all the correlations between rit and each fkt. Thus,

ρi,j,t = ρ′i,tK
−1
t ρj,t. (C.12)

Equation (C.12) can be extended to matrix form:

Define Xt as the N × K matrix containing every Corrt−1(rit, fkt). Then, Rt can be

presented by XtK−1
t X′

t plus an adjustment term for diagonal elements:

Rt = XtK−1
t X′

t + diag{1 − ρ′i,tK
−1
t ρi,t}

Derive the closed-form solution of R−1
t and |Rt| by applying the following theorem:
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Theorem Woodbury Identity

(A + UCV′)−1 = A−1 − A−1U(C−1 + V′A−1U)−1V′A−1 (C.13)

det(A + UCV′) = det(C−1 + V′A−1U)det(C)det(A) (C.14)

Proof of Proposition 3.3

Rt = XtK−1
t X′

t + diag{1 − ρ′i,tK
−1
t ρi,t} (C.15)

Set A = diag{1 − ρ′i,tK
−1
t ρi,t},U = V = Xt,C = K−1

t :

A−1 = diag{ 1
1−ρ′i,tK

−1
t ρi,t

} (C.16)

det(A) = ∏i(1 − ρ′i,tK
−1
t ρi,t) (C.17)

(C−1 + V′A−1U) = Kt + X′
tdiag{ 1

1−ρ′i,tK
−1
t ρi,t

}Xt (C.18)

(C.19)

which leads to:

R−1
t = diag{ 1

1 − ρ′i,tK
−1
t ρi,t

}

− diag{ 1
1 − ρ′i,tK

−1
t ρi,t

}Xt(Kt + X′
tdiag{ 1

1 − ρ′i,tK
−1
t ρi,t

}Xt)
−1X′

tdiag{ 1
1 − ρ′i,tK

−1
t ρi,t

}

(C.20)

det(Rt) = det(Kt + X′
tdiag{ 1

1 − ρ′i,tK
−1
t ρi,t

}Xt)det(K−1
t )∏

i
(1 − ρ′i,tK

−1
t ρi,t) (C.21)
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C.2 Statistical Inference

The likelihood is decomposed into a GARCH part and a correlation part:

L1(θ) = −1
2 ∑

t

n

∑
i=1

(log(2π) + log(hi,t) +
r2

i,t

hi,t
)− 1

2 ∑
t
(log(2π) + log(hm,t) +

r2
m,t

hm,t
)

L2(θ,ϕ) = Lc(θ,ϕ) = −1
2

T

∑
t=1

(−ε′tεt + log |Rt|+ ε′tR
−1
t εt)

log f1,t = −1
2

n

∑
i=1

(log(2π) + log(hi,t) +
r2

i,t

hi,t
)− 1

2
(log(2π) + log(hm,t) +

r2
m,t

hm,t
)

log f2,t =
1
2
(log |Rt|+ ε′tR

−1
t εt)

(C.22)

White (1996) Theorem 6.1

Under assumptions C.1–C.6,

√
T(γ̂ − γ∗) ∼A N(0, A∗−1BA∗−1)

,

where A∗ =

 E[▽θθ L1(rt,θ∗)] 0

.E[▽θϕL2(rt,θ∗,ϕ∗)] E[▽θθ L2(rt,θ∗,ϕ∗)]

.

and

B∗ = var(T− 1
2 ∑t(s∗1,t

′, s∗2,t
′)) ,

where s∗1,t = E[▽θ L1(rt,θ∗)] and s∗2,t = E[▽ϕL1(rt,θ∗,ϕ∗)].

Write assumptions in White (1996) and Engle and Kelly (2012):

Assumptions C.1

(a) For all θ ∈ Θ,ϕ ∈ Φ, E[log f1,t(rt,θ)] and E[log f2,t(rt,θ,ϕ)] exist and are finite,

∀t;

(b) E[log f1,t(rt,θ)] and E[log f2,t(rt,θ,ϕ)] are continuous on Θ and Φ, ∀t; and

(c) {log f1,t(rt,θ)} and {log f2,t(rt,θ,ϕ)} each obey the strong uniform law of
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large number.

Assumptions C.2

f1,t and f2,t are each twice continuously differentiable on Θ and Φ, ∀t.

Assumptions C.3

For all θ ∈ Θ,ϕ ∈ Φ, E[▽θ L1(rt,θ)] < ∞ and E[▽ϕL2(rt,θ,ϕ)] < ∞, ∀t.

Assumptions C.4

(a) For all θ ∈ Θ,ϕ ∈ Φ, E[▽θθ L1(rt,θ)] < ∞ and E[▽ϕϕL2(rt,θ,ϕ)] < ∞;

(b) E[▽θθ L1(rt,θ)] and E[▽ϕϕL2(rt,θ,ϕ)] are continuous on Θ and Φ;

(c) {▽′
θs1,t(rt) = ▽θθ log f1(rt,θ)} and {▽′

ϕs2,t(rt) = ▽ϕϕ log f2(rt,θ,ϕ)}; and

(d) A∗ is negative definite.

Assumptions C.5

E[L1(rt,θ)] is uniquely maximized by θ∗ interior to Θ, and E[L2(rt,θ,ϕ)] is

uniquely maximized by ϕ∗ interior to Φ.

Assumptions C.6

{(T− 1
2 s∗1,t

′, T− 1
2 s∗2,t

′)} ≡ {(T− 1
2▽′

θ L1(rt,θ∗), T− 1
2▽′

ϕL2(rt,θ∗,ϕ∗))} obeys the cen-

tral limit theorem.

Like DECO, the studied model ensures identification as long as each pairwise DCC is

properly identified.
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