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The Development of the Notion of Sameness:
A Connectionist Model

Michael Gasser and Linda B. Smith

Indiana University

Abstract

Comparison is of two types, the implicit sort that
is behind all categorization and the explicit sort by
which two object representations are compared in
short-term memory. Children learn early on both
to categorize and to compare explicitly, but they
only learn to use dimensions in these processes
considerably later. In this paper we present a con-
nectionist model which brings together categoriza-
tion and comparison, focusing on the development
of the use of dimensions. The model posits (1) a
general comparison mechanism which is blind to
the nature of its inputs and (2) the sharing of
internal object and dimension representations by
categorization and comparison processes. Trained
on the two processes, the system learns to use di-
mension inputs as filters on its representations for
objects; it is these filtered representations which
are matched in comparison. The model provides
an account of the tendency for early comparison
along one dimension to be disrupted by similari-
ties along other dimensions and of the process by
which the child might overcome this deficiency.

Background
Comparison and Cognition

Generalization from past to present experience involves
a measure of the similarity of present perceptual in-
put to what has been perceived before. The likelihood
that we call some object a dog is a function of how
similar that object is to other objects known to be
dogs. But humans do more than categorize objects; we
also compare objects along a wide array of perceptual
dimensions. For example, we judge a dog to be the
same color as our cat or to be large for dogs in general.
Indeed, what we consider higher mental functioning—
metaphor, poetry, science itself—involves pointing to
and discovering novel kinds of similarity.

The problem of how a child develops a system of
multiple kinds of perceptual similarity together with
devices for linguistically communicating about similar-
ity is clearly of great importance to cognitive science.
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This is an area in which there is rich and detailed data
about human development but no current theory that
adequately explains it.

In this paper we describe a connectionist model of
some of the basic facts of comparison along percep-
tual dimensions. The workings of the model are based
on the idea that categorization (what color?) and com-
parison (same color?) make use of the same dimension
representations and the same internal representations
for objects. We propose that these representations de-
velop in response to the demands of the two tasks.

Categorization and Comparison

Categorization involves comparing a stimulus in
short-term memory to representations of previously en-
countered stimuli in long-term memory. A simple pat-
tern associator performs this implicit form of compar-
ison through the connection weights that make up its
long-term memory. Categorization can be in terms of
either complex categories such as DOG and CHAIR or
dimensional attributes such as RED and BIG.!

But the implicit comparison between an item in
short-term memory and long-term representations may
be quite different from the comparison of two items in
short-term memory. We shall call the latter explicit
comparison. If we take the evidence from language
seriously, this process goes on often in human cogni-
tion. A sentence such as my ball is the same color as
yours requires speaker and hearer to maintain repre-
sentations of both objects in short-term memory, where
they can be compared. In this paper we will only
be concerned with that subtype of explicit comparison
which is signalled in English by the word same along
with a perceptual dimension noun such as size.

In order for an abstract comparison device which
looks for symmetry in its two input patterns to make
judgements of “same thing,” “same color,” and “same
size,” it must have access to representations in which
only the relevant dimension manifests itself. Irrelevant
dimensions need somehow to be “filtered” out.

!We are concerned here with categorization in the sense
of naming an object or an attribute and not in the sense of

the underlying meaning of concepts.




Developmental Facts

There is a well-documented trend in the development
of object and dimensional comparisons and object and
dimensional language. The following specific facts are
those that we are interested in accommodating.

1. Early object categorizations are principally across all
dimensions at once [Smith 1989a, 1989b]. The sen-
sory features are somehow compressed into a single
representation in which all constituents are weighted
more or less equally.

2. The comparison of objects by overall similarity—the
judgement that two identical cups are alike in the
same way as two identical dogs—appears very early
[Smith, 1984]. By 24 months, children comment on
the similarity of objects through iterative naming,
counting, and use of the plural [Sugarman, 1983%.
The productive use of a form such as the plural at
this age suggests that there is a comparison compo-
nent that operates early and that is independent of
specific perceptual properties.

3. The ability to make judgements of sameness along a
single dimension—to know that two green objects
are alike in the same way as two blue objects—
develops later, after the acquisition of the words by
which we talk about the perceptual properties of ob-
jects [Smith, 1984, 1989b).

4. Early judgements of sameness along a dimension ap-
pear to be contaminated by overall similarity. That
is, 3- and 4-year-old children will call a big red square
and a big orange square the same size but will refuse
to call a big red square and a big blue square the
same size [Kemler, 1982].

The Model

We model these phenomena using a connectionist net-
work which takes as inputs “pre-perceived” images and
dimension words such as size and yields lexical outputs
such as big and same. The architecture of the model
is shown in Figure 1. Boxes denote banks of units
and solid arrows complete connectivity between banks.
The main features of the model are the following:

1. Global comparison and comparison along various di-
mensions are handled by the same subnetwork.

2. The dimension and the internal object representa-
tions are shared by the comparison and categoriza-
tion components of the system.

3. Following training on categorization and compari-
son, input from dimension words “filters” out irrel-
evant dimensions in the representations of objects.

Categorization

The CATEGORIZATION component, shown on the right
side of Figure 1, is composed of a simple pattern as-
sociator. Input to this component comes in in the
form of a “pre-perceived object” (hereafter “PrP0”),
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Figure 1: Architecture of the Model

corresponding to the output level in a theory such as
Treisman and Gelade’s [1980] (see also Smith [1989b)).
The PPO has been segregated from background objects
and contains information about its perceptual features.
There are separate sets of units for each of several
“pre-dimensions” at this level. However, the system
does not recognize these dimensions as such; they can-
not be used in making categorizations or comparisons
along particular dimensions. The PERCEIVED OBJECT
(“Po”) layer corresponds to what is perceived or ex-
perienced. A pattern on this layer is a compression of
the PPO pattern and may be influenced by input from
other layers, in particular from the DIMENSION WORDS
(“pDw™) layer. This influence takes the form of the fo-
cusing of attention on one or more dimensions. For
example, the question what color is it? should cause
color information to dominate the representation.

On the CATEGORY WORDS level, attribute words like
red and big and complex category nouns such as dog
and chair are each assigned a single unit. In catego-
rization this layer is the output of the network; the
system “sees” an object and names it or assigns it an
attribute. While the network is designed to learn both
complex categories such as DOG and attributes such as
BIG, we will be concerned only with the latter. The
CATEGORY WORDS layer may also function as an in-
put layer (indicated by the thin arrow in the figure),
e.g., in modeling the system’s response to an utterance
like the marble is green. In this case, it influences the
pattern of activation on the PO layer.

During training and testing on categorization, the
network is presented with a PPO on its input layer,
consisting of a pattern of features on the various pre-



dimensions. A single unit is also turned on on the
DW layer, corresponding to a question about one di-
mension, e.g., what color 1s the object?. The network
is trained using backpropagation [Rumelhart et al.,
1986). In an effort to make the degree of supervision re-
alistic, output targets are provided only for those units
which are above a response threshold, unless no unit
goes above the threshold, in which case a target (1.0)
is provided for a single appropriate unit.

Comparison

Alongside the CATEGORIZATION subnetwork, we pro-
pose a “dumb” COMPARISON component which does
not know what objects are being compared or the di-
mensions on which they are to be compared. It simply
compares patterns of activation. Selective attention—
changes in the dimensions along which the comparison
is to made—is accomplished by the same mechanisms
that are involved in categorization by dimension. The
overlap between these mechanisms is suggested by the
fact that languages refer to dimension categorization
(what color?) using the same nouns as are used for
sameness comparison (same color).?

The COMPARISON component is shown on the left
side of Figure 1. This is another pattern associator,
similar to the symmetry network described by Rumel-
hart et al. [1986], with a hidden layer to handle inputs
which are not linearly separable. The compared pat-
terns appear on two input groups. One is just the o
layer, which also participates in categorization. The
other is a short-term memory buffer which contains a
copy of a recent pattern from the po layer.

This component implements two sorts of processes.
Run in one direction, it compares two input objects.
Input from the pPo and DW layers produces a pattern
on the po layer. If a DW unit is on, the PO pattern
is a “filtered” version of the object. This pattern is
copied to the COMPARISON BUFFER layer, and a sec-
ond PPO is fed to the network together with the same
pW pattern. Finally the two (possibly filtered) object
representations are compared at the SIMILARITY layer,
which consists of a single unit.

Run in the other direction (the thick arrows in the
figure), the network models responses to assertions
about the sameness of objects (my doll is the same
as yours). The input is a pattern on the COMPARI-
SON BUFFER units representing one object, a pattern
on the SIMILARITY unit representing sameness, and a
pattern representing (possibly incomplete) knowledge
about the second object on the PO layer. The output
is an updated representation on the po layer.

Dimension as a Filter

The CATEGORIZATION and COMPARISON components
share the PO representations, which are subject to the

%It remains to be established whether children know the
use of words such as color in comparison once they have
acquired their use in categorization.
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filtering effects of dimensional input. In order for the
CATEGORIZATION subnetwork to succeed on a dimen-
sional categorization task (what color 1s it?), the input
from the pw layer should highlight the relevant di-
mension and attenuate the other dimensions to the ex-
tent that only the appropriate output unit (e.g., RED)
reaches the response threshold. It is thus possible for
the network to produce an appropriate response even
with some contamination from irrelevant dimensions.
That is, training on categorization may not result in
DW-to-PO connection weights which completely elimi-
nate irrelevant dimensions from a representation.

The comparison task is more demanding. Consider
the case of two objects which are the same on the di-
mension in question but significantly different on all
others. Any contamination from the irrelevant dimen-
sions at all would adversely affect the output on the
SIMILARITY unit.

How might the system’s performance on the compar-
ison task vary with time? We assume the COMPARISON
component is first trained simply to detect similarity
between pairs of input patterns. At this point, the
system would be unable to make use of dimension in-
formation. Next, training on the categorization task
would result in some filtering out of dimensions other
than the one that is input from the pw layer. Now
the network should also begin to be able to detect sim-
ilarity between two objects along a given dimension.
But, as in children, similarity judgements at this stage
should still depend on the overall similarity between
the objects. Training on the comparison task itself
would then refine the behavior of the dimension filter.
Given two objects and the assertion that they are the
same on a given dimension, their filtered representa-
tions should be identical. Thus the filtered representa-
tion of the first could be used as a target for the filtered
representation of the second. Together with continued
training on the categorization task, this should result
in an adequate representation of dimension.

Experiment

We ran an experiment in which the same network was
trained on categorization and comparison tasks. The
procedures described below were repeated six times
with different initial random connection weights.

Categorization Task

A categorization network was first set up with random
initial weights. The PPO layer consisted of 28 units,
7 for each of 4 simple linear “pre-dimensions”. The
PO layer consisted of 20 units; that is, there was some
compression of the patterns from the input layer. The
DW layer contained 3 units, one for each of the output
dimensions, that is, those for which there were target
categories. There were 9 CATEGORY WORDS units, one
for each of the target categories.

The network was trained to perform dimension
categorization on 2500 randomly generated “pre-



Table 1: “Same” and “Different” Pattern Distances

Same | Different
Before training 1.464 0.966
After categorization training | 1.172 1.211
After comparison training 0.314 0.519

perceived” input objects. Input objects were con-
strained in ways designed to model in a gross fashion
the structure that is present in the world; the details
need not concern us here. Also given to the network
was input from a single unit in the bw layer. Thus the
network’s task corresponded to a question such as what
color is this object?. Output targets were provided us-
ing the procedure described above. That is, targets
depended on the system’s own output, in ways that
seem to correspond to what goes on in actual language
acquisition contexts.

The performance of the network on categorization
improved overall, as would be expected, though with
the output-generated targets, improvement was not as
smooth as it would have been with completely super-
vised learning. For most of the runs, the network suc-
ceeded in correctly categorizing at least 25 consecutive
input objects by the end of the training.

The critical question, however, is how well the net-
work learns to selectively attend to single dimensions.
To determine this, we created a set of 45 test pattern
pairs. These were of two types, those in which the
objects were the same on the input dimension and dif-
ferent on the other three dimensions (hereafter referred
to as the “same” pairs) and those in which the objects
were different on the input dimension and the same
on the other three dimensions (hereafter referred to as
the “different” pairs). Testing the network consisted
in running it with the objects in the test pairs as in-
puts and determining the Euclidian distance between
the PO responses to the inputs for each pair. Of in-
terest is the relative distance between the pairs. To
the extent that the dimension input is behaving like
a filter, as described above, the distance between the
hidden-layer patterns for the “same” pairs should be
smaller than that between the “different” pairs.

We made these comparisons before the network was
trained, after the categorization training on 2500 in-
puts, and again following the second, comparison phase
of training (described below) on 2500 additional in-
puts. Table 1 shows the results of the comparisons,
averaged over the 6 runs.

The *“same” pairs start out considerably further
apart than the “different” ones because they differ on
three out of four, vs. one out of four, input dimen-
sions. The effect of training on the categorization task
is to significantly (p < .01) diminish this difference,
though the “same” pairs are only slightly closer than
the “different” pairs. Although the dimension filter is
not doing a very good job of eliminating irrelevant di-
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mensions from the input, the network has learned to
categorize quite well. Good categorization along di-
mensions and an inability to ignore overall similarity
in comparing objects on one dimension are precisely
the behaviors exhibited by 4- and 5-year-old children.

Comparison Task

During the second phase of training, the network was
trained on more categorization on half of the trials and
on explicit comparison on the other half. The compari-
son task was designed to fit the real task in which there
are two objects in front of the child and the adult says
X is the same color as Y. This task conforms to run-
ning the network in the direction indicated by the thick
arrows in the COMPARISON part of Figure 1. Given an
input object which is red, big, round, and smooth, and
another which is red, small, square, and rough,? the
system was expected to use the information that the
objects were the same color to help if later make same-
ness judgements of its own.

This task was implemented in the following manner.
The input pattern for one object was presented to the
PPO layer together with one lexical dimension on the
DW layer, just as for the categorization task. The pat-
tern this yielded on the PO layer was then saved. Next
the second input object, identical to the first on the
input dimension, was presented in the same way. Now
the stored pattern was treated as a target for the po
layer. Note that the idea is not that the response to the
first object is somehow superior to the response to the
second, only that training in this manner should bring
the patterns closer together. The important point is
that an effective filtering mechanism is learned via the
explicit comparison of objects along single dimensions.

We did not actually use the COMPARISON component
for the implementation of this task. We assumed that
the COMPARISON network, given a filtered representa-
tion of one object in the COMPARISON BUFFER and an
indication of sameness to another object on the siM-
ILARITY unit, could generate its own internal target
for the filtered representation of the second object by
simply copying the pattern for the first object.

Results of comparisons between the “same” and “dif-
ferent” pairs following this phase are shown in Table 1.
As predicted, the “same” distances have decreased sig-
nificantly (p < .01) relative to the “different” dis-
tances. There is also a significant overall decrease in
distances for both pairs. Because we trained the net-
work only on comparison of objects that were meant to
be the same, this is not surprising. Though it learned
to treat some as more similar than others (those that
are the same on the input dimension), in general it
moved object representations closer together.

3Labels for the various dimensions are used for conve-
nience only,



Discussion

In our model dimension words such as color have the
same internal representations whether they apply to
categorization or to comparison of objects. The two
tasks place similar demands on the dimension repre-
sentations: within the distributed PO representations,
features of the input dimension must be played up and
features of other dimensions played down. As we have
seen, however, the comparison task is more demand-
ing in this regard. This aspect of our model, which fits
with one current mathematical model of children’s sim-
ilarity judgements [Smith, 1989b], may help us under-
stand why young children are able to categorize objects
even seemingly by a single attribute long before they
can make explicit comparisons along single dimensions.

Training on categorization is insufficient for the for-
mation of an effective dimensional filter. Following cat-
egorization training only, the distance between pairs of
dimension-filtered representations is about the same
when the two objects are the same only on the input
dimension as it is when they differ only on the input
dimension. It is training on explicit comparison in our
model that gives rise to effective dimension filters. The
developmental implications of this finding are clear.
Training children on the language of dimensional com-
parison may be a causal force in the emergence of the
ability of children in the late preschool period to selec-
tively attend to single dimensions.

One possible criticism of our experiment is the se-
quencing that we imposed on the learning. Com-
parison training began only after categorization was
learned. This order fits the developmental facts [Mac-
namara, 1982]. Nonetheless, determining whether (and
how) our results depend on the sequencing of training
will be an important aspect of future research.

This research makes three contributions. First, it
provides a model of one of the major trends in hu-
man development, from wholistic object comparison
to dimensional comparisons. Second, the model distin-
guishes categorization and comparison in ways which
clarify the theoretical issues and suggest new experi-
ments. For example, it suggests that children’s early
use of plural and iterative naming may depend on
global similarity, in addition to category identity, a hy-
pothesis that could be tested empirically. Third, our
model may bring insights to connectionist modeling of
cognitive development. For example, the idea of using
one internal representation as a target for another may
be applicable generally when there is reason to posit
representations that are shared by processes which con-
strain them in different ways.

Conclusions

The central problem in understanding development is
understanding how new behaviors emerge. The inher-
ent difficulty of this problem has led much of the best
work in cognitive development to be essentially adevel-
opmental. The dominant empirical strategy consists of
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describing behavior at different developmental points.
We know for example that 5-month-olds can discrim-
inate colors, that 2-year-olds have difficulty learning
color words relative to other words, that 5-year-olds
have a rudimentary mapping of color words to the color
space, and that adults exhibit sophisticated and highly
structured color concepts. But we do not know how
the abilities of babies translate into the difficulties of
toddlers, the minimal competence of children, and the
sophistication of adults.

While the model described in this paper is still prim-
itive, it already demonstrates how a system can get
from a stage at which it judges two objects to be the
same color only if they are similar overall to a stage at
which it can make the judgement without paying at-
tention to irrelevant features. It does this by adjusting
its connection weights in such a way that dimensional
input has the effect of filtering out the irrelevant fea-
tures in its internal representations for objects. Thus,
for the crucial area of comparison and categorization,
this connectionist model provides a starting point for
understanding developmental change.
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