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Abstract

Introduction—Statins, widely prescribed drugs for treatment of cardiovascular disease, inhibit 

the biosynthesis of low density lipoprotein cholesterol (LDL-C). Despite providing major benefits, 

sub populations of patients experience adverse effects, including muscle myopathy and 

development of type II diabetes mellitus (T2DM) that may result in premature discontinuation of 
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treatment. There are no reliable biomarkers for predicting clinical side effects in vulnerable 

individuals. Pharmacometabolomics provides powerful tools for identifying global biochemical 

changes induced by statin treatment, providing insights about drug mechanism of action, 

development of side effects and basis of variation of response.

Objective—To determine whether statin-induced changes in intermediary metabolism correlated 

with statin-induced hyperglycemia and insulin resistance; to identify pre-drug treatment 

metabolites predictive of post-drug treatment increased diabetic risk.

Methods—Drug-naïve patients were treated with 40 mg/day simvastatin for 6 weeks in the 

Cholesterol and Pharmacogenetics (CAP) study; metabolomics by gas chromatography-time-of-

flight mass-spectrometry (GC–TOF–MS) was performed on plasma pre and post treatment on 148 

of the 944 participants.

Results—Six weeks of simvastatin treatment resulted in 6.9% of patients developing 

hyperglycemia and 25% developing changes consistent with development of pre-diabetes. Altered 

beta cell function was observed in 53% of patients following simvastatin therapy and insulin 

resistance was observed in 54% of patients. We identified initial signature of simvastatin-induced 

insulin resistance, including ethanolamine, hydroxylamine, hydroxycarbamate and isoleucine 

which, upon further replication and expansion, could be predictive biomarkers of individual 

susceptibility to simvastatin-induced new onset pre-type II diabetes mellitus. No patients were 

clinically diagnosed with T2DM.

Conclusion—Within this short 6 weeks study, some patients became hyperglycemic and/or 

insulin resistant. Diabetic markers were associated with decarboxylated small aminated 

metabolites as well as a branched chain amino acid directly linked to glucose metabolism and fatty 

acid biosynthesis. Pharmacometabolomics provides powerful tools for precision medicine by 

predicting development of drug adverse effects in sub populations of patients. Metabolic profiling 

prior to start of drug therapy may empower physicians with critical information when prescribing 

medication and determining prognosis.

Keywords

Metabolomics; Metabolic profiling; Pharmacometabolomics; Pharmacometabonomics; Precision 
medicine; Personalized medicine; Statin; Simvastatin; Insulin resistance; Diabetes and 
hyperglycemia

1 Introduction

Statins reduce the risk of cardiovascular disease (CVD) by inhibiting 3-hydroxy-3-methyl-

glutaryl-CoA reductase (HMGCR), thereby reducing circulating LDL-cholesterol (LDL-C) 

and effectively lowering risk of heart attack, stroke and atherosclerosis (Grundy et al. 2004). 

In addition to cholesterol reduction, statins provide a broad spectrum of pleiotropic 

biological effects: they improve endothelial function, provide antioxidant, anti-inflammatory 

and immunomodulatory effects (Jasinska et al. 2007) and improve asthma (Zeki et al. 2015, 

2009). New mechanistic insights are being gained about biochemical events related to the 

numerous therapeutic benefits of statins, as well as to the side effects.
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Results from several studies have recognized new onset T2DM as a potential side effect of 

statin therapy. For instance, in The Justification for the Use of Statin in Primary Prevention: 

An Intervention Trial Evaluating Rosuvastatin (JUPITER) trial, rosuvastatin increased 

incident T2DM by 28% in participants with one or more diabetes risk factors and expedited 

diabetes onset compared to those who developed diabetes while on placebo (Ridker et al. 

2012). Additionally, investigators from several other human trials, including HPS, 4S, 

SEARCH (simvastatin), CORONA, GISSI HF (rosuvastatin), ASCOT-LLA, PROVE-IT 

TIMI, TNT, IDEAL (atorvastatin), and AFCAPS/TexCAPS (lovastatin) also found an 

increase in incident diabetes in patients taking statins (Ruscica et al. 2014; Sattar et al. 

2010). The USAGE study surveyed over 10,000 patients on various statins and found that 

62% discontinued statin therapy due to adverse effects (Cohen et al. 2012). Diabetes risk 

may be linked to statins’ tendency to decrease the production of adiponectin, reduce 

adipocyte maturation, lower GLUT4 expression in adipocytes and inhibit glucose-induced 

insulin secretion (Brault et al. 2014). Additionally, several studies have implicated that the 

risk of the diabetic or the pre-diabetic state (metabolic syndrome) is related to amino acid 

pathophysiology (Newgard et al. 2009; Tai et al. 2010; Wang et al. 2011; Wurtz et al. 2012).

Adverse and therapeutic response to statins varies greatly and may be due to genetic and/or 

environmental influences. Variation in response due to genetic polymorphisms (Mangravite 

et al. 2008), diet (Vaquero et al. 2010), level of immune response (Ridker et al. 2008), 

environmental conditions, and drug interactions (Bai 2010) have been identified, but do not 

fully explain response variation.

LDL-C and other biomarkers are insufficient in predicting clinical benefit or side effects; 

thus, more reliable biomarkers are needed. We previously encompassed the power of 

metabolomics by using complementary platforms to identify global effects of simvastatin 

treatment in addition to markers of simvastatin response. Pharmacometabolomics is evolving 

as a field that compliments and informs pharmacogenomics and serves as a compass for 

identifying drug-affected biochemical pathways that can be navigated for genetic mutations 

that may predict drug response and adverse effects (Kaddurah-Daouk and Weinshilboum 

2014; Kaddurah-Daouk et al. 2015). Pharmacometabolomics captures the metabolic state of 

an individual under genetic and environmental influences and permits analysis of the fluidic 

changes occurring at the biochemical level by sampling pre and post drug treatment 

(Kaddurah-Daouk et al. 2008; Kaddurah-Daouk and Weinshilboum 2014). 

Pharmacometabolomics-informed pharmacogenomics as well as pharmacometabolomics-

informed pharmacokinetics better elucidates mechanism of drug action, thereby broadening 

the toolbox for identifying drug effects anddisease pathophysiology while providing 

powerful tools for precision medicine (Kaddurah-Daouk and Weinshilboum 2014; 

Kaddurah-Daouk et al. 2015).

Hitherto, we implemented a series of targeted and non-targeted metabolomics platforms to 

profile samples from the Cholesterol and Pharmacogenetics (CAP) study (Simon et al. 

2006), from individuals representing the upper and lower tails of simvastatin response, as 

well as the full distribution of LDL-C response.
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Baseline metabolic profiles of good responders differed from that of poor responders in 

multiple metabolomic analyses, as did metabolic signatures post drug exposure. Baseline 

levels of the bacterial-derived bile acids lithocholic acid, taurolithocholic acid and 

glycolithocholic acid, three bacterial-derived bile acids, as well as coprostanol, a product of 

enteric bacterial reduction of endogenous cholesterol, predicted simvastatin-induced LDL-C 

lowering, implicating gut microflora in modulating drug efficacy and reinforcing the 

interconnection of pharmacometabolomics, pharmacogenomics, the environment and diet on 

drug response (Kaddurah-Daouk et al. 2011). In the same select groups of CAP study 

participants, we used targeted lipidomic analysis and found that baseline cholesterol ester 

and phospholipid metabolites correlated to simvastatin-induced LDL-C reduction, 

particularly increased arachidonic acid and decreased linoleic acid within multiple lipid 

classes in all participants, and increased delta-5-desaturase activity in only the good 

responders. Additionally, we found different signatures that correlate with simvastatin-

induced changes in C-reactive protein and in LDL-C lowering, suggesting that distinct 

metabolic pathways mediate statin effects on these two markers of statin efficacy 

(Kaddurah-Daouk et al. 2010). Using untargeted gas chromatography time-of-flight mass 

spectrometry (GC-MS), we determined that simvastatin treatment affected the amino acid 

degradation pathway (Trupp et al. 2012).

Taken together, our previous findings support metabolomics as an effective tool in 

identifying markers of simvastatin response (Krauss et al. 2013). These studies led us to 

hypothesize that pharmacometabolomics can also be used to identify markers of simvastatin 

adverse effects.

In the present study, we investigate the changes in intermediary metabolism and the risk of 

developing hyperglycemia and/or insulin resistance as an adverse response to simvastatin.

2 Methods

2.1 Clinical samples obtained from cholesterol and pharmacogenetic study

Plasma samples were analyzed from 148 participants selected from the CAP study cohort, 

which included a total of 944 Caucasian and African-American men and women treated with 

simvastatin at 40 mg/day for 6 weeks. Detailed information about the study and the 

participants of the CAP study has been published by Simon et al. in 2006 while detailed 

information about the 148 participants included in this investigation is included in the 

supplementary material presented by Trupp et al. in 2012 (Simon et al. 2006; Trupp et al. 

2012). Briefly, participants were 60 years of age with pre-treatment serum cholesterol levels 

between 160 and 400 mg/dL. The plasma samples used in the present study were collected 

at baseline and at 6 weeks of therapy after an overnight fast. Clinical measurements of 

glucose and insulin were taken pre and post treatment and used in the Homeostasis Model 

Assessment (HOMA) to estimate beta cell function, insulin sensitivity and insulin resistance; 

c-peptide and cholesterol metabolites were also measured pre and post simvastatin 

treatment, along with several other clinical tests. Additional information, including 

medication compliance and diet, have been published (Trupp et al. 2012).

Elbadawi-Sidhu et al. Page 4

Metabolomics. Author manuscript; available in PMC 2018 May 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.2 Metabolomic analysis by GC-TOF mass spectrometry

Metabolomic analysis was performed as previously described (Trupp et al. 2012). Briefly, 

plasma aliquots were extracted and derivatized for analysis by gas chromatography time-of-

flight mass spectrometry (GC-MS) as previously described (Trupp et al. 2012). Peak finding 

and deconvolution of acquired spectra were processed using the metabolomics BinBase 

database (Kind et al. 2009; Scholz and Fiehn 2007). BinBase metabolite spectra entries were 

matched against the Fiehn mass spectral library of 1200 authentic metabolite spectra with 

retention index and mass spectrum information or against the current NIST commercial 

library (Kind et al. 2009). Quantitative data were normalized to the sum intensities of all 

known metabolites and used for statistical investigation.

2.3 Statistical analyses

Right-skewed metabolites with distribution right skewness larger than 2 were log-

transformed before further analysis. Metabolites were associated with clinical endpoints 

using linear regression analysis. First, each metabolite was associated with each clinical 

endpoint of interest (univariate analysis), while adjusting for clinical covariates that were 

associated with the clinical endpoint. Covariates for each clinical endpoint were selected 

using all subset selection based on the Bayesian Information Criterion (BIC). P values were 

obtained for each metabolite. Storey’s q value was calculated to account for multiple testing 

(Storey 2003). Second, for each clinical endpoint, all subset selection based on BIC was 

applied to the entire set of metabolites to identify the linear combination of metabolites that 

was associated with the endpoint (multivariate analysis). During this process, the covariates 

to be adjusted for were forced staying in the model.

Partial correlation networks were built among metabolites with each clinical endpoint using 

a sparse partial correlation estimation approach (Peng et al. 2009). A connection between 

two variables in the network implied conditional dependency between the corresponding 

variable pairs, conditional on the rest of the variables in the network. The false discovery 

rate was controlled at 0.05.

Pathway enrichment analysis was performed using MetaboAnalyst 3.0 (http://

www.metaboanalyst.ca) with hypergeometric test used for over representation analysis and 

relative-betweeness centrality used for pathway topology analysis (Xia et al. 2012, 2009, 

2015).

3 Results

Metabolomics results consisted of plasma metabolites identified by GC-MS. Clinical 

measures consisted of plasma glucose, plasma insulin, HOMA-IR, HOMA-beta and c-

peptide/glucose ratio. We focused on the following evaluations: (A) association of baseline 

metabolite levels versus baseline clinical measures, (B) therapy-induced changes in pre-

diabetes risk assessment clinical measures, (C) therapy-induced changes in metabolite levels 

versus changes in clinical measures, (D) post-treatment metabolite levels versus post-

treatment clinical measures (E) baseline metabolite levels versus therapy-induced changes in 

clinical measures and (F) baseline metabolite levels versus post-treatment clinical measures. 
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Baseline age and BMI were significantly correlated with baseline fasting plasma glucose 

levels (p = 0.0012, 0.0110). BMI was also significantly associated with baseline insulin, c-

peptide, and HOMA_IR scores (p < 0.0001); thus, these covariates were accounted for in the 

linear regression analyses. Other covariates, such as sex and race, were not significantly 

associated with measured clinical scores.

3.1 Baseline glucose, insulin and HOMA correlate with baseline amino acids and fatty 
acids levels

Baseline clinical measures positively correlated with fatty acids and amino acids (Table 1) 

both in univariate (p < 0.05) and multivariate analysis. Glucogenic amino acids, including 

alanine and glutamic acid, were associated with glucose, insulin and HOMA levels; glutamic 

acid also correlated with c-peptide levels. Fatty acids were also significantly correlated to 

baseline glucose, insulin and HOMA levels (Table 1). In addition, the ketone body 3-

hydroxybutanoic acid negatively correlated with glucose, insulin and HOMA. 

Aminomalonic acid, a metabolite found in atherosclerotic plaques (Van Buskirk et al. 1984), 

had significant negative correlation to insulin and HOMA pre-statin treatment. A biomarker 

for elevated diabetes risk, 2-aminoadipic acid (Wang et al. 2013), was found to positively 

correlate to baseline HOMA and to glucose/c-peptide ratio, but not to baseline glucose, c-

peptide or insulin levels. Azelaic acid was inversely correlated with insulin and HOMA 

measurements at baseline. Table 1 lists all baseline metabolites that were correlated to 

baseline clinical measures while Online Resources 1 and 2 detail the p and q values of the 

univariate and multivariate analyses; pathway enrichment results are listed in Table 2.

3.2 Simvastatin therapy increases risk of T2DM

Despite the short duration of the study, 42% of subjects experienced elevated plasma glucose 

(>3% increase) post-simvastatin treatment (Fig. 1a). Of these subjects, 6.9% developed 

fasting hyperglycemia, indicated by fasting plasma glucose greater than 125 mg/dL, and 

25.0% became pre-diabetic, as indicated by fasting plasma glucose levels between 100 and 

125 mg/dL. Fasting plasma glucose of all subjects was above the lower limit for normal 

fasting plasma glucose levels of 70 mg/dL; thus, none of the subjects developed 

hypoglycemia. Insulin increased in 49.7% of subjects following simvastatin treatment; 

HOMA-IR and HOMA-beta scores increased in 49.0 and 46.0% of subjects, respectively 

(Fig. 1b–e). Additionally, the glucose/c-peptide ratio, which is used as a measure of insulin 

secretion, was generally decreased in individuals with increased plasma glucose and 

increased in individuals with decreased plasma glucose post treatment.

3.3 Change in glucose, isoleucine and ketoleucine correlate to change in T2DM risk 
assessments following simvastatin therapy

When change in metabolite level pre and post drug treatment was evaluated against change 

in clinical diabetes measures using a univariate analysis, change in analytical glucose 

significantly correlated (p < 0.05) to change in clinical glucose, insulin and HOMA-IR prior 

to FDR correction. Change in isoleucine correlated (p < 0.05) to change in glucose and c-

peptide levels while change in ketoleucine correlated to change in insulin. Online Resource 

3 details additional simvastatin-induced changes in metabolite levels that correlated to 

simvastatin-induced changes in clinical measures.
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Multivariate analysis revealed several metabolites, primarily amino acids and fatty acids, 

with change in levels pre and post treatment correlated to change in T2DM risk assessment 

levels. Alanine correlated to glucose and c-peptide changes; ketoleucine correlated to insulin 

and HOMA changes. In addition, isoleucine and galactosyl-glycerate (negative correlation) 

changes correlated to glucose; N-methylalanine, glycerol, palmitoleic acid (negative 

correlation) and glucuronic acid (positive correlation) changes correlated to insulin changes; 

serine, palmitoleic acid, beta-alanine and an isomer of arachidonic acid (negative 

correlation) changes correlated to HOMA changes and phenylalanine, isocitric acid, fructose 

and arabitol (positive correlation) changes correlated to c-peptide changes. Change in 

isoleucine (negative correlation) pre and post simvastatin treatment correlated to the change 

in glucose/c-peptide ratio, an indicator of apparent insulin secretion. When all of the above 

metabolites were used for pathway enrichment analysis, the cyanoamino acid metabolism 

was the only pathway to be enriched for this analysis (data not shown).

3.4 Post-treatment insulin and HOMA, but not glucose, correlate to post-treatment amino 
acids and fatty acids levels

Insulin and HOMA plasma levels after simvastatin treatment correlated (p < 0.05) primarily 

with post-treatment amino acids and fatty acids, several of which were also correlated at 

baseline (Table 3). Low glycine plasma level was observed in subjects with high insulin or 

HOMA. In contrast, alanine and glutamic acid post-treatment levels were high in patients 

with high post-treatment insulin or HOMA levels; however, the relationship did not pass 

multiple hypothesis testing. These two diabetes risk assessments were also inversely 

correlated to several fatty acids, including lauric acid, linoleic acid, palmitoleic acid and 

oleic acid, as well aminomalonate and 3-hydroxybutanoic acid. N-methylalanine was 

inversely related to insulin post-simvastatin treatment. In addition to proline (positive 

correlation), alanine (positive correlation) and glycine (negative correlation), c-peptide levels 

post treatment also correlated to lactic acid (positive correlation), succinic acid (negative 

correlation), lauric acid (negative correlation) and aminomalonate (negative correlation). The 

non-adjusted p values of these correlations indicate that they may be affected by statin 

treatment and should be further investigated.

Collectively, post treatment metabolites that correlated to post treatment clinical measures (p 

< 0.05) were mostly associated with cyanoamino acid metabolism and fatty acid 

biosynthesis; other enriched pathways are listed in Table 4.

Multivariate regression analysis of post-treatment levels resulted in two metabolites with a 

significant inverse relationship to glucose post simvastatin treatment: a uridine-like 

compound (negative correlation) and galactosyl-glycerate (negative correlation) (Online 

Resource 5). The relationship observed in univariate analysis between insulin and glycine 

(negative correlation), glutamic acid (positive correlation) and 3-hydroxybutanoic acid 

(negative correlation) was also observed in the multivariate analysis. Multivariate analysis 

preserved the relationship observed between HOMA and glycine (negative correlation). 

Alanine, linoleic acid and octadecanol correlated to HOMA prior to p value adjustment. 

Despite lack of significant correlations between c-peptide and annotated metabolites during 

the univariate analysis, multivariate analysis resulted in significant association of glycine 
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(negative correlation) and alanine (positive correlation) to c-peptide levels post treatment. 

Tyrosine and azelaic acid post simvastatin treatment were related to post c-peptide levels as 

well.

3.5 Baseline levels of glucose, branched-chain amino acids and small aminated 
compounds linked to simvastatin-induced beta cell dysfunction and insulin response

Baseline levels of metabolites were analyzed in relation to changes in clinical measures of 

diabetes in an effort to identify predictors of a simvastatin-induced pre-diabetic state. 

Significant correlation of metabolites at baseline to changes in glucose, insulin, c-peptide or 

HOMA was only observed with non-annotated metabolites, that is, metabolites with current 

unknown structure. In contrast, several identified metabolites correlated to change in beta 

cell function and insulin response, as indicated by the glucose to c-peptide ratio (Table 5). 

Glucose and the branched-chain amino acids isoleucine and valine positively correlated with 

change in the glucose to c-peptide ratio, indicating that individuals with high baseline levels 

of these three metabolites had decreased beta cell function after simvastatin treatment. In 

addition, ethanolamine, a precursor in lipid biosynthesis, and cyclohexylamine, 

hydroxylamine and hydroxycarbamate also had baseline levels significantly associated (p < 

0.05) with change in glucose to c-peptide ratio. Baseline levels of ketoleucine as well as the 

saturated fatty acid myristic acid and the fatty alcohol hexadecanol correlated with change in 

the glucose/c-peptide ratio with p value <0.1.

3.6 Pre-drug metabolite levels correlate to post-drug clinical measures of pre-diabetes

Baseline metabolite levels were significantly (p < 0.05) correlated with post-treatment 

clinical measures of pre-diabetes (Table 6). Glutamic acid positively correlated to glucose, 

insulin and HOMA-IR with q < 0.2. Alanine and 3-hydroxybutanoic acid also correlated to 

these three clinical measures, but the relation to glucose had a high q-value. Baseline levels 

of several amino acids significantly correlated (p < 0.05; q < 0.2) to insulin and HOMA-IR, 

as did aminomalonate, 3-hydroxybutanoic acid, azelaic acid, lactic acid and linoleic acid. 

Ethanolamine also significantly correlated to insulin. These metabolites were compared to 

the baseline metabolites that significantly correlated to clinical measures pre-drug treatment 

to assess which correlations were likely non-drug related. Of the 13 baseline metabolites that 

were strongly correlated to post-drug treatment clinical measures, two were not correlated to 

pre-drug treatment clinical measures: ethanolamine and threonine. Baseline ethanolamine 

negatively correlated to post-treatment insulin and threonine positively correlated to insulin 

and HOMA-IR.

4 Discussion

Statins are widely administered effective drugs for the prevention of cardiovascular disease; 

however, their use has been linked to increased incidence of T2DM. We have previously 

published data from the Cholesterol and Pharmacogenetics (CAP) study that detailed the 

association of metabolites, particularly lipids and amino acids, to simvastatin-induced 

cholesterol lowering in patients classified as good and poor responders as well as in full 

range responders (Kaddurah-Daouk et al. 2010; Trupp et al. 2012). We have also published 

data from the CAP study correlating enteric microbiome metabolites to simvastatin 
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response, identifying three secondary bacterial-derived bile acids that contributed to 

prediction of beneficial simvastatin response (Kaddurah-Daouk et al. 2011). In this study, we 

examined the relationship of metabolites to clinical measures of pre-diabetes. We used a 

GC-MS metabolomics platform to measure and investigate changes in intermediary 

metabolism and the associated possibility of developing elevated plasma glucose as an 

adverse response to simvastatin.

We determined that 6 weeks of daily simvastatin treatment increased plasma glucose and 

insulin in some subjects, indicating development of insulin resistance. Evaluation of the 

homeostatic model assessment for insulin resistance (HOMA-IR) and for beta cell function 

(HOMA-b) indicated that many subjects showed increased insulin resistance (54%) and 

altered beta cell function (53%) following statin treatment.

Numerous publications implicate statin therapy in increasing the risk of new-onset diabetes 

and worsening glycemic control (Bang and Okin 2014; Macedo et al. 2014; Wang et al. 

2014). Statins are associated with 7–25% higher risk of diabetes, with variation of effect 

based on the particular statin and dose. Although different rankings have been assigned to 

the statins in terms of their diabetogenic probability, most studies suggest that rosuvastatin, 

simvastatin and atorvastatin are more likely to cause T2DM than pravastatin, although there 

is published data that suggest pravastatin is also culpable (Baker et al. 2010; Cho et al. 2015; 

Koh et al. 2010; Sattar et al. 2010).

The risk of developing T2DM following statin treatment may be higher in some individuals 

than others, particularly those in a pre-diabetic state (Ridker et al. 2012; Sattar et al. 2010). 

Those with increased plasma glucose and decreased insulin sensitivity and insulin release 

may be more likely to fully develop T2DM after taking statins (Cho et al. 2014; Ridker et al. 

2012). Several mechanisms are hypothesized for statin effect on diabetes risk, including 

decreased production of adiponectin, reduced adipocyte maturation, impaired glucose 

transporter 4 translocation, inhibition of intracellular signaling and diminished beta cell 

proliferation and insulin secretion due to decreased leptin (Brault et al. 2014).

Clinical diagnosis of T2DM is typically documented after a second test confirms the out-of-

normal result. Since assessments in our study were performed once pre-drug treatment and 

once post-drug treatment, patients within our study were not clinically diagnosed with 

T2DM. We did, however, link diabetic outcomes to intermediary metabolism at baseline and 

post-simvastatin treatment. Despite the short duration of the study, several subjects 

developed hyperglycemia, while many more displayed signs of pre-diabetes and insulin 

resistance. Insulin and c-peptide concentrations increased in several subjects following 

simvastatin treatment, as did HOMA-IR and HOMA-beta scores (Fig. 1). These increases 

predict the potential onset of T2DM, as insulin and c-peptide secretion changes often 

precede measurable glucose abnormalities. Subjects who had increased plasma glucose in 

response to statin treatment apparently had decreased insulin secretion post treatment, and 

vice versa. So in addition to possible changes in insulin resistance, as indicated by changes 

in HOMA-IR and HOMA-beta, 6 weeks of simvastatin treatment may also alter insulin 

secretion in susceptible individuals.
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4.1 Effect of fasting on energetics is observed at baseline but is disrupted following 6 
weeks of simvastatin treatment

Our metabolomics analysis by GC-MS of baseline plasma resulted in many metabolites 

significantly related to baseline, fasting clinical measures (Table 1). These metabolites are 

related to intermediary metabolism and most are closely related to the TCA cycle and energy 

consumption. Many of the identified metabolites would be expected to be elevated during 

fasting to provide carbon for gluconeogenesis or energy for cells. Additional metabolites 

that are not directly linked to the TCA cycle also significantly correlated to baseline clinical 

measures. As expected, fatty acids were low in individuals with high insulin levels, 

indicating increased lipid biosynthesis in these subjects. Prior to simvastatin treatment, 

intermediary metabolism appears to be behaving as expected during a fasting state and the 

impact of gluconeogenesis and the TCA cycle is observed.

The number of metabolites that significantly correlated to clinical measures of diabetes 

decreased after simvastatin treatment, indicating that the general trends that were associated 

with a fasting state at baseline were obstructed by individuals’ development of pre-diabetes 

(Table 3).

4.2 Simvastatin therapy alters glycine, alanine and glutamic acid levels

Glycine was repeatedly inversely correlated to clinical measures of diabetes, a possible 

reflection of the changing metabolic state of subjects post simvastatin administration. 

Multiple investigators have studied the impact of glycine on glucose and insulin levels in 

healthy and diabetic individuals. Gannon et al. reported that ingested glycine typically 

increased insulin secretion or had no effect (2002) and that gelatin, comprised primarily of 

glycine, significantly increased insulin secretion in untreated diabetics (1988). In our study, 

a significant decrease in glycine was observed in subjects with increased insulin, HOMA 

and c-peptide, suggesting simvastatin alters expected outcomes. Post alanine and glutamic 

acid levels, however, followed expected outcome, with increased levels associated with 

increased insulin and HOMA post treatment. As major regulators of glucose metabolism, the 

changes observed in these amino acids suggest that simvastatin treatment alters metabolism 

towards a more diabetic state.

4.3 Methylated alanine is inversely related to insulin following simvastatin therapy

N-methylalanine, a possible pyruvate precursor, decreased in relation to increased insulin 

post-treatment; the change in N-methylalanine during the course of treatment was also 

inversely related to the change in insulin. When this same data set was evaluated in regards 

to amino acid contributions to variation in response to simvastatin, N-methylalanine was 

found to strongly correlate to the branched-chain amino acid valine while negatively 

correlating with oxalic acid, nicotinic acid, phosphoric acid, asparagine, oxoproline, 

hexadecanol and octadecanol (Trupp et al. 2012). In 1975, Lin and Wagner purified the 

enzyme N-methylalanine dehydrogenase in pseudomonas MS and characterized its function 

as responsible for the interconversion of N-methylalanine + H2O + NADP+ to pyruvate + 

methylamine + NADPH + H+ (Lin and Wagner 1975). Despite its use in synthetic and in 

vitro inhibitory reactions, little is known about the endogenous function of N-methylalanine. 

Pyruvate levels did not significantly change in this study and it is unclear whether the 
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decrease in N-methylalanine is due to decreased synthesis of the metabolite or due to 

increased consumption. Further research into the biochemical role of N-methylalanine is 

warranted and may help elucidate its link to insulin levels.

4.4 Decrease in azelaic acid, a potential treatment for T2DM, observed following 
simvastatin treatment

Post treatment free fatty acid levels also correlated to post treatment insulin levels, as well as 

to glucose and HOMA, indicating a shift towards insulin resistance. Interestingly, azelaic 

acid, a dicarboxylic acid found in wheat, rye and barley that has been shown to reverse 

diabetic symptoms following a high-fat diet in mice (Muthulakshmi et al. 2015), decreased 

in relation to increased glucose, insulin, c-peptide and HOMA in all analyses. Although not 

always with statistical significance, this inverse correlation did meet significance in several 

comparisons. Muthulakshmi and Saravanan demonstrated that when diabetic mice were fed 

80 mg/kg body weight of azelaic acid daily for 5 weeks, plasma glucose and insulin were 

reduced to near normal levels, suggesting potential therapeutic effect of azelaic acid 

(Muthulakshmi and Saravanan 2013). The investigators detailed the azelaic acid-induced 

enhanced activity of hepatic hexokinasae, glucose-6-phosphate dehydrogenase, glucose-6-

phosphatase and fructose-1,6-bisphosphatase, thereby favoring glycolysis over 

gluconeogenesis and lowering plasma glucose levels (Muthulakshmi and Saravanan 2013). 

Since this endogenous dicarboxylic acid, which is also used to treat inflammation, decreased 

when subjects in our study developed simvastatin-induced pre-diabetes and apparent full 

diabetes, it may be inferred that this statin either inhibits azelaic acid production or 

accelerates its beta-oxidation to acetyl-CoA and malonyl-CoA; alternatively, the reduction of 

azelaic acid may be due to depletion in response to elevated plasma glucose. In our study, 

the low endogenous levels of azelaic acid may be rapidly diminished in hyperglycemia.

4.5 Branched-chain amino acids and other metabolites predict T2DM risk following 
simvastatin therapy

The branched-chain and aromatic amino acids have been reported to predict T2DM and may 

modulate diabetic onset by impairing insulin secretion and promoting insulin resistance via 

activation of mTOR, JUN and insulin receptor substrate (IRS) 1 (Wang et al. 2011). We 

found that baseline valine and tyrosine were significantly correlated to baseline insulin levels 

and that both, as well as leucine, were correlated with HOMA at baseline; phenylalanine, but 

not the others, significantly correlated to insulin secretion at baseline. Furthermore, baseline 

levels of valine and isoleucine correlated to the change in glucose to c-peptide ratio 

following simvastatin treatment, indicating that their baseline levels do indeed predict 

diabetes onset. The previously reported biomarker for predicting T2DM, 2-aminoadipic 

acid, was also identified in our study as correlating with clinical measures of diabetes at 

baseline, but not post-treatment (Wang et al. 2013).

Several other baseline metabolites were associated with the change in glucose to c-peptide 

level and monitoring these metabolites prior to simvastatin treatment could aid in predicting 

the potential of an individual for developing beta cell dysfunction or insulin resistance. The 

baseline levels of ketoleucine correlated to the change in glucose to c-peptide ratio. Randle 

et al. documented that ketoleucine, a HMG-CoA and ketone body precursor, stimulates 
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insulin secretion and is elevated in diabetes (Randle et al. 1987) and our data suggests that 

this transamination product of leucine may also be a potential biomarker of simvastatin-

induced insulin resistance.

Notably, the baseline levels of the saturated fatty acids myristic acid, capric acid, lauric acid 

and pelargonic acid positively correlated to the change in glucose to c-peptide ratio, whereas 

the baseline levels of the monounsaturated oleic acid and the polyunsaturated linoleic acid 

negatively correlated with this ratio. This contrast may illuminate differences in diet and 

lifestyle of individuals who are more or less susceptible to developing type II diabetes.

As expected, the ketone body 3-hydroxybutanoic acid was inversely correlated to glucose, 

insulin and HOMA in several of the analyses. Ketone bodies elevate in a healthy fasting state 

to supply energy in times of low glucose as well as in a type I diabetic state, when lack of 

insulin production results in high levels of ketone bodies despite high levels of plasma 

glucose. Ketoacidosis rarely occurs in T2DM and cases are typically limited to select 

populations, including the elderly, those of Hispanic or African-American descent or those 

with extensive family history of the disease (Dhatariya et al. 2016; Gabriel and Soni 2014; 

Jefferies et al. 2015). Although 43 of the 148 subjects in our analysis were African-

American, we did not observe an increase in ketone bodies in relation to increased glucose 

levels.

4.6 Baseline levels of ethanolamine and hydroxylamine linked to simvastatin-induced 
insulin dysregulation

The strongest correlations between simvastatin-induced change in glucose to c-peptide ratio 

and baseline metabolites were to ethanolamine and the hydroxylated amino metabolites 

hydroxylamine and hydroxycarbamate, as well as isoleucine and cyclohexylamine. 

Hydroxylamine is an intermediate in microbial denitrification and is also an intermediate in 

the oxidation of arginine to nitric oxide and induces nitric oxide-mediated vasorelaxation 

(DeMaster et al. 1989). Panagiotidis et al. demonstrated that hydroxylamine inhibited both 

glucose-induced and L-arginine-induced insulin secretion in freshly prepared mouse islets 

(Panagiotidis et al. 1995). More recently, Kimura et al. demonstrated that hydroxylamine 

may reduce hyperglycemia in T2DM by enhancing glucose uptake in C2C12 skeletal muscle 

cells via insulin receptor substrate 1 activation (Kimura et al. 2014). Thus, the association 

we observe between baseline levels of hydroxylamine and the change in insulin regulation 

indicates this intracellular nitric oxide donor may be a potential predictor of patient 

susceptibility to diabetes onset following simvastatin treatment.

Ethanolamine was the only metabolite to strongly correlate at baseline to both post-

treatment and to change in clinical measures of diabetes, indicating that this phospholipid 

head group may be a potential biomarker of simvastatin-induced insulin resistance and 

hyperglycemia and may indicate statin-induced alterations in lipid metabolism leading 

towards a diabetic state. In addition to the membrane lipid phosphatidylethanolamine, 

ethanolamine is also a component of endogenous lipid signaling molecules, including N-

palmitoylethanolamine, N-acylethanolamine and N-arachidonoylethanolamine. These 

messenger molecules are anti-inflammatory and promote cellular homeostasis (Skaper et al. 
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2015). Thus, alterations in plasma ethanolamine levels may indicate a disruption in 

protective mechanisms.

4.7 Pharmacometabolomics identifies decarboxylation and oxidation mechanism in 
simvastatin-induced hyperglycemia and insulin resistance

Decarboxylation was found to be a recurring theme in metabolites that were significantly 

associated with clinical measures of T2DM. Ethanolamine, the metabolite we identified as 

most likely to predict simvastatin-induced diabetic risk, is biosynthesized via 

decarboxylation of serine. Hydroxylamine is a decarboxylation product of N-

hydroxycarbamate, both of which were found to have pre-drug plasma levels correlated to 

post-drug adverse effects. Azelaic acid is a dicarboxylic acid known to have T2DM 

therapeutic properties and was inversely correlated to diabetes risk in our study; the 

reduction of azelaic acid may possibly be due to simvastatin-induced decarboxylation. This 

may be due to drug-induced oxidative stress, as decarboxylation of aliphatic dibasic acids is 

known to be an oxidation mechanism.

Cyclohexylamine is a toxic metabolite formed by desulfonation of cyclamate by intestinal 

bacteria and enhances oxidation of proteins. The statistical significance of cyclohexylamine 

in pre drug treated plasma to post drug treated glucose and insulin levels is surprising, since 

the artificial sweetener cyclamate is banned in the United States. This interesting finding 

needs further investigation and may lead to novel discoveries involving the gut microbiome 

and oxidative stress mechanism in statin induced adverse effects.

4.8 Conclusions

Collectively, the correlations observed between metabolites and clinical measures of 

diabetes demonstrate that oral administration of 40 mg/day of simvastatin for 6 weeks 

increases the risk of developing elevated plasma glucose particularly in susceptible 

individuals. Patients with mild insulin resistance are more likely to develop full insulin 

resistance after simvastatin treatment, which may drive their metabolism towards a more 

gluconeogenic state. Metabolic profiling prior to simvastatin treatment may assist in 

identifying individuals who are at higher risk of adverse side effects. The metabolites 

identified in our study should be further investigated and their potential as biomarkers of 

simvastatin-induced hyperglycemia and insulin resistance validated. Pharmacometabolomics 

provides powerful tools for precision medicine by predicting development of drug adverse 

effects in sub populations of patients. Metabolic profiling prior to start of drug therapy may 

empower physicians with critical information when prescribing medication and determining 

prognosis.
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Fig. 1. 
Changes in clinical measures after simvastatin treatment. Changes in clinically measured, a 
glucose, b insulin, c c-peptide, d HOMA-IR and e HOMA-beta are represented with 

negative values indicative of decrease after treatment and positive values indicative of 

increase after treatment. Patients with the greatest elevation in clinical measures are 

highlighted within the red boxes. The dashed vertical line represents the mean
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Table 1

Baseline metabolites significantly (p < 0.05) associated with baseline clinical measures

Glucose Insulin HOMA C-peptide

a. Univariate analysis

 Glucose Positive Positive Positive Positive

 Lactic acid Positive Positive Positive Positive

 Glutamic acid Positive Positive Positive Positive

 Glycine NS Negative Negative Negative

 Asparagine NS Negative Negative Negative

 Aminomalonate NS Negative Negative Negative

 Alanine Positive Positive Positive NS

 3-Hydroxybutanoic acid Negative Negative Negative NS

 Glycerol Negative Negative Negative NS

 Linoleic acid Negative Negative Negative NS

 Azelaic acid Negative Negative Negative NS

 2-Aminoadipic acid NS NS Positive Positive

 Nicotinic acid Negative NS Negative NS

 Valine NS Positive Positive NS

 Leucine Positive NS Positive NS

 Aspartic acid NS Positive Positive NS

 Hydroxylamine NS Negative Negative NS

 5-Oxoproline NS Negative Negative NS

 Palmitoleic acid NS Negative Negative NS

 Tyrosine NS Positive Positive NS

 Oleic acid NS Negative Negative NS

 Fructose NS NS NS Positive

 Malate NS NS NS Positive

 Proline NS NS Positive NS

 Uric acid Positive NS NS NS

 Sucrose Negative NS NS NS

b. Multivariate analysis

 Glucose Positive NS Positive Positive

 3-Hydroxybutanoic acid Negative Negative Negative NS

 Glutamic acid Positive NS Positive NS

 Glycine NS Negative Negative NS

 Asparagine NS NS NS Negative

 2-Aminoadipic acid NS NS NS Positive

Metabolite levels pre-statin treatment correlated with clinical measurements pre-statin treatment using (a) univariate regression analysis and (b) 
multiple regression analysis. Positive/negative indicates direction of correlation between metabolite and clinical measure

NS not significant
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Table 2

Pathway enrichment analysis: baseline metabolites related to baseline clinical measures

Pathway #Hits/total compounds P value FDR

Nitrogen metabolism 4/39 0.000153 0.004939

Aminoacyl-tRNA biosynthesis 5/75 0.00016 0.004939

Cyanoamino acid metabolism 3/16 0.000185 0.004939

Thiamine metabolism 2/24 0.013228 0.21165

Alanine, aspartate and glutamate metabolism 2/24 0.013228 0.21165

Valine, leucine and isoleucine biosynthesis 2/27 0.016601 0.22135

Glycolysis or Gluconeogenesis 2/31 0.021608 0.24695

Propanoate metabolism 2/35 0.027166 0.26518

Glutathione metabolism 2/38 0.031675 0.26518

Valine, leucine and isoleucine degradation 2/40 0.034837 0.26518

Galactose metabolism 2/41 0.036463 0.26518

Synthesis and degradation of ketone bodies 1/6 0.044084 0.29389

Fatty acid biosynthesis 2/49 0.050486 0.31069

Baseline metabolites that correlated to baseline clinical measures with p < 0.05 and q < 0.2 were used for pathway enrichment analysis. Pathways 
with FDR<0.3 are listed below
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Table 3

Post-treatment metabolites significantly (p < 0.05) associated with post-treatment clinical measures

Univariate analysis Glucose Insulin HOMA C-peptide

Glucose Positive Positive Positive NS

Glutamic acid Positive Positive Positive NS

Maltose Positive NS NS NS

Lauric acid Negative Negative Negative Negative

Myristic acid Negative Negative NS NS

Linoleic acid NS Negative Negative NS

Alanine NS Positive Positive Positive

Glycine NS Negative Negative Negative

Palmitoleic acid NS Negative Negative NS

Isocitric acid NS NS Positive Positive

3-Hydroxybutanoic acid NS Negative Negative NS

Aminomalonate NS Negative Negative Negative

Oleic acid NS Negative Negative NS

Azelaic acid NS NS Negative NS

N-Methylalanine NS Negative NS NS

Proline NS NS NS Positive

Succinic acid NS NS NS Negative

Lactic acid NS NS NS Positive

Metabolite levels post-treatment correlated with clinical measurements post-statin treatment using (a) univariate regression analysis and (b) 
multiple regression analysis. Positive/Negative indicates direction of correlation between metabolite and clinical measure

NS not significant
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Table 4

Pathway enrichment analysis: post-treatment metabolites related to post-treatment clinical measures

Pathway #Hits/total compounds Raw p value FDR

Fatty acid biosynthesis 4/49 0.000231 0.0185

Cyanoamino acid metabolism 2/16 0.00471 0.1884

Citrate cycle (TCA cycle) 2/20 0.007343 0.1958

Glycolysis or Gluconeogenesis 2/31 0.017221 0.3444

Propanoate metabolism 2/35 0.021697 0.3472

Metabolites and clinical measures of pre-diabetes were measured after 6 weeks of simvastatin treatment. Correlations with p < 0.05 were used for 
pathway enrichment analysis. Pathways with FDR < 0.3 are listed below
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Table 5

Baseline metabolites related to change in glucose:c-peptide ratio

Metabolite Correlation P value Q value

Ethanolamine Positive 0.0042 0.14

Cyclohexylamine Positive 0.014 0.15

Hydroxylamine Positive 0.026 0.18

Isoleucine Positive 0.032 0.19

Hydroxycarbamate Positive 0.042 0.22

Glucose Positive 0.049 0.23

Valine Positive 0.059 0.24

1-Hexadecanol Positive 0.067 0.24

Ketoleucine Positive 0.069 0.24

Myristic acid Positive 0.12 0.32

The direction of correlation as well as p and q values are listed for metabolites measured pre-drug treatment that were associated with change in the 
glucose:c-peptide ratio. The ratio is indicative of pancreatic beta cell function and insulin response
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Table 6

Pre-treatment metabolites significantly (p < 0.05) associated with post-treatment clinical measures

Univariate analysis Glucose Insulin HOMA C-peptide

3-Hydroxybutanoic acid Negative Negative Negative NS

Alanine Positive Positive Positive NS

Aminomalonate NS Negative Negative NS

Asparagine NS Negative Negative Negative

Aspartic acid NS Positive Positive NS

Azelaic acid NS Negative Negative NS

Ethanolamine NS Negative NS Negative

Glutamic acid Positive Positive Positive NS

Glycine NS Negative Negative Negative

Lactic acid NS Positive Positive Positive

Linoleic acid NS Negative Negative NS

Threonine NS Positive Positive NS

Uridine NS NS NS Negative

Valine NS Positive Positive NS

Metabolite levels pre-treatment correlated with clinical measurements post-statin treatment using (a) univariate regression analysis and (b) multiple 
regression analysis. Positive/Negative indicates direction of correlation between metabolite and clinical measure

NS not significant
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