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Abstract

The P300 speller is a common brain–computer interface (BCI) application designed to 

communicate language by detecting event related potentials in a subject’s electroencephalogram 

(EEG) signal. Information about the structure of natural language can be valuable for BCI 

communication systems, but few attempts have been made to incorporate this domain knowledge 

into the classifier. In this study, we treat BCI communication as a hidden Markov model (HMM) 

where hidden states are target characters and the EEG signal is the visible output. Using the 

Viterbi algorithm, language information can be incorporated in classification and errors can be 

corrected automatically. This method was first evaluated offline on a dataset of 15 healthy subjects 

who had a significant increase in bit rate from a previously published naïve Bayes approach and 

an average 32% increase from standard classification with dynamic stopping. An online pilot 

study of five healthy subjects verified these results as the average bit rate achieved using the 

HMM method was significantly higher than that using the naïve Bayes and standard methods. 

These findings strongly support the integration of domain-specific knowledge into BCI 

classification to improve system performance and accuracy.

Index Terms

Brain-computer interfaces; Natural Language Processing; Electroencephalography; Hidden 
Markov Models
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I. Introduction

High brain stem injuries and motor neuron diseases such as amyotrophic lateral sclerosis 

(ALS) can interrupt the transmission of signals from the central nervous system to effector 

muscles, impairing a patient’s ability to communicate and causing them to become ‘locked-

in’. Brain–computer interfaces (BCI) restore some of this ability by detecting electrical 

signals from the brain and translating them into computer commands [1]. The P300 Speller 

is a common BCI system that uses electroencephalogram (EEG) signals to simulate 

keyboard input, providing a means of communication [2].

The P300 speller works by presenting a grid of characters on a graphical interface and 

instructing the user to focus on a target letter. Characters are illuminated (i.e., “flashed”) in a 

pseudo-random manner and evoked responses known as P300 signals are elicited when the 

target character is flashed, which are detected by a classifier. Because the signal to noise 

ratio is low, several trials must be combined in order to correctly classify responses. The 

resulting typing speed can therefore be slow, prompting many studies focused on system 

optimization. Approaches that have been adopted to accomplish such optimization include 

varying the grid size [3–5], optimizing system parameters [6,7], and adopting different 

signal classification algorithms [8–11].

While the P300 speller is designed to provide a means for communication, most attempts at 

system optimization have not taken advantage of existing knowledge about the language 

domain. Most existing analyses treat character selections as independent elements chosen 

from a set with no prior information, but information about the domain of natural language 

can be used to create a prior belief about the characters to be chosen. It has been shown that 

system speed and accuracy can be improved when adding an n-gram language model as a 

prior for naïve Bayes [12], partially observable Markov decision process [13], and 

expectation maximization [14] algorithms.

Automatic error correction is another technique that has been largely unexplored in BCI 

communication. Traditionally, users have been instructed to correct errors as they occur, but 

in some cases such corrections may be unnecessary with an automatic correction technique. 

Many non-BCI typing methods employ automatic correction, including programs for word 

processing [15] and text messaging [16]. The field of BCI has witnessed some movement in 

this direction, as illustrated in a system by Ryan et al. whereby subjects can ignore errors 

when they are typed and correct them later with suggested words from a dictionary [17].

In this work, we build upon our previous system by modeling typing with the P300 speller 

as a hidden Markov model (HMM). An HMM treats typing as a sequential process where 

each character selection is influenced by the previous selection. The model is hidden 

because we cannot observe user intent directly. Instead, we use the Viterbi algorithm to 

determine the optimal sequence of target characters given the observed EEG signal. This 

method was compared offline with a standard stepwise linear discriminant analysis 

(SWLDA) method with dynamic stopping as well as a previously published naïve Bayes 

classifier (NB) [12] on a set of 15 healthy subjects. These results were then verified through 

a five subject online pilot study.
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II. Materials and methods

A. Data Collection

The subjects in the offline dataset were 15 healthy graduate students and faculty with normal 

or corrected to normal vision between the ages of 20 and 35. Only one subject (subject F) 

had previous experience using a BCI for typing. The system used a 6 × 6 character grid, row 

and column flashes, and an interstimulus interval (ISI) of 125 ms. Each subject underwent 

between 8 and 10 trials consisting of spelling a five letter word (Table 1) with 15 sets of 12 

flashes (six rows and six columns) for each letter. The choice of target words for this 

experiment was independent of the trigram language model used in the NB and HMM 

methods.

The subjects for the online study consisted of five healthy volunteers with normal or 

corrected to normal vision between the ages of 23 and 30. The training sessions for these 

subjects consisted of three sessions of copy spelling 10 character phrases. Each subject then 

chose a target phrase to spell in online sessions. In each session, the subject had five minutes 

to spell as much of the phrase as they could using one of the three analysis methods: 

SWLDA (without dynamic stopping), NB, or HMM. Subjects were instructed not to correct 

errors and to repeat the phrase if they completed it in under five minutes. Two different 

threshold values were used for each of the analysis methods (5 and 10 sets of flashes for 

SWLDA, and .95 and .98 for NB and HMM) for a total of six sessions. The threshold that 

yielded the best value for each method was chosen as the optimal value and the 

corresponding output was used to determine the subject’s performance.

BCI2000 was used for data acquisition and analysis was performed offline using MATLAB 

(version 7.10.0, MathWorks, Inc, Natick, MA). Three analysis methods were compared 

using stepwise linear discriminant analysis, naïve Bayes, and hidden Markov models, 

respectively.

B. SWLDA

SWLDA is a classification algorithm that selects a set of signal features to include in a 

discriminant function [18]. Training was performed using cross-validation between trials 

where the test set was one of the trial words and the rest were the training set.

The signals in the training set were assigned labels based on two classes: those 

corresponding to flashes containing the attended character and those without the attended 

character. Each new signal was then reduced to a score that reflects how similar it was to the 

attended class.

The algorithm used ordinary least-squares regression to predict class labels for the training 

set. It then added the features that were most significant in the forward stepwise analysis and 

removed the least significant features in the backward analysis step. These steps were 

repeated until either the target number of features was met or it reached a state where no 

features were added or removed [11].
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The score for each flash in the training set, , was then computed as the dot product of the 

feature weight vector, w, with the features from that trial’s signal, :

(1)

Scores for each flash in the training set were then computed and the distributions for the 

attended and non-attended signals were found. We assumed that scores were independent 

and normally distributed, resulting in the probability distributions

(2)

where  is the set of characters illuminated for the ith flash for character t in the sequence 

and μa, , μn and  are the means and variances of the distributions for the attended and 

non-attended flashes, respectively. Each stimulus response is assumed to be independent, 

resulting in the conditional distribution

(3)

A threshold probability, pThresh, was then set to determine when a decision should be made. 

The program flashed characters until either maxxt p(yt|xt) ≥ pThresh or the number of sets of 

flashes reached the maximum (15). The classifier then selected the character that satisfied 

argmaxxt p(yt|xt). The speeds, accuracies, and bit rates were found for values of pThresh 

between 0 and 1 in increments of 0.01 and the threshold probability that maximized the bit 

rate was chosen for each subject.

C. NB

The NB method uses conditional distributions, p(yt|xt), found in the same was as in the 

SWLDA method. A naïve Bayes classifier was used to determine the probability of each 

character given the flash scores and the previous decisions [19]. If we assume that the 

individual flashes are conditionally independent given the current attended character, the 

posterior probability is

(4)

Prior probabilities for characters were obtained from frequency statistics in an English 

language corpus [20]. This probability was simplified using the second-order Markov 

assumption to create a trigram model[21]. The prior probability that the next character is xt 

given that the last two characters chosen were xt−1 and xt−2 is then equal to the number of 

Speier et al. Page 4

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2015 May 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



times that all three characters occurred together in the corpus divided by the number of times 

the last two characters occurred together:

(5)

where c(xt−2, xt−1, xt) is the number of occurrences of the string ‘xt−2xt−1xt’ in the corpus. 

Trigrams for the English language were obtained from the Brown corpus, a compilation of 

over 2 million English documents published in the United States in 1961 [20].

Similar to the SWLDA method, a threshold probability, pThresh, was then set to determine 

when a decision should be made. The program flashed characters until either maxxt p(xt|yt, 

xt−1, …, x0) ≥ pThresh or the number of sets of flashes reached the maximum (15). The 

classifier then selected the character that satisfied argmaxxt p(xt|yt, xt−1, …, x0). Again, the 

speeds, accuracies, and bit rates were found for values of pThresh between 0 and 1 in 

increments of 0.01 and the threshold probability that maximized the bit rate was chosen for 

each subject.

D. HMM

Hidden Markov models are used to model Markov processes that cannot be directly 

observed, but can be indirectly estimated by state-dependent output. The goal of such 

systems is to determine the optimal sequence of states in the Markov process that could have 

produced an observed output sequence.

The HMM method treats typing as an nth order Markov process. States in the process 

consist of tuples representing the target character and the previous n−1 targets, xt = 〈xt, …, 

xt−n+1〉. Transition probabilities correspond to the conditional probability of the next state, 

xt, given the previous state, x′t−1,

(6)

A typed word is then simply a sequence of states of the Markov process, x = (x0, …, xn). 

Because we cannot directly inspect the states of the process, we observe indirectly through 

the EEG signals. The EEG response is dependent only on the current state and governed by 

the conditional probability, p(yt|xt), which is defined as in the NB method. The goal is to 

determine x through observation of the EEG signals, Y = (y0, …, yn)

At each time point, t, the probability of the current state is computed using the forward step 

of the forward-backward algorithm:

(7)
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As in the NB method, a selection occurs when the probability of a target character exceeds a 

threshold probability, pThresh. This is found by summing over all of the states that share the 

same character at time t.

(8)

At each time step, the Viterbi algorithm is used to determine the path to each state with the 

highest probability.

(9)

Back pointers are saved so that the optimal sequence ending in that state can be retrieved 

(Fig. 1). For each state, xt, a pointer is created to the state which satisfies

(10)

The optimal state for the current time step, xt, is selected such that it satisfies

(11)

The back pointers are then followed from the selected state to find the optimal sequence of 

states up to the current time step. The corresponding sequence of characters is considered 

the most probable string typed. Each time a selection is made, the entire sequence is 

overwritten by the current optimal string. In most cases, the sequence xt−1 has significant 

overlap with xt, so the new string is simply the old string with an appended character and 

possibly some corrected errors. For example, at a given time t, the state xt may have the 

highest probability. However, at time t+1, state xt+1 may have the highest probability with 

an optimal transition from x′t. The system would then go back and change the previous 

character to x′t (Fig. 1).

This study used a second order Markov process (i.e., n = 2) for this method to stay 

consistent with the language model used by the NB method. The states of the model are then 

xt = 〈xt, xt−n+1〉 and the transition probabilities are the conditional probabilities p(xt|xt−1, 

xt−2). As in the previous methods, the speeds, accuracies, and bit rates were found for values 

of pThresh between 0 and 1 in increments of 0.01 and the threshold probability that 

maximized the bit rate was chosen for each subject.

E. Evaluation

Evaluation of a BCI system must take into account two factors: the ability of the system to 

achieve the desired result and the amount of time required to reach that result. The efficacy 

of the system can be measured as the selection accuracy, which we evaluated by dividing the 

number of correct selections by the total number of trials.
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For each model we also calculated the selection rate (SR). First, the average amount of time 

for a selection is found by adding the gap between flashes (3.5 s) to the product of the 

amount of time required for a flash (.125 s), the average number of sets of flashes (s̄) and the 

number of flashes in each set (12). The selection rate measured in selections per minute is 

then the inverse of the average selection time:

(12)

As there is a tradeoff between speed and accuracy, we also use bit rate as a metric, which 

takes both into account. The bits per symbol, B, is a measure of how much information is 

transmitted in a selection taking into account the accuracy and the number of possible 

selections [22]:

(13)

where N is the number of characters in the grid (36) and P is the selection accuracy. The 

information transfer rate (ITR) (in bits min−1) can then be found by multiplying the selection 

rate by the bits per symbol. Significance was tested using paired two-sample t-tests with 14 

degrees of freedom.

Although the number of flashes was fixed for all trials, different selection rates were 

simulated by limiting the amount of data available for the classification algorithm. For 

example, if the confidence threshold is reached after 100 flashes, the corresponding data is 

used for classification and the rest is omitted.

III. Results

A. Offline

When using SWLDA in offline analysis, all subjects were able to type with varying levels of 

performance. The best performer (subject D) was able to achieve 89% accuracy at a rate of 

9.96 selections per minute, while the worst performer (subject C) achieved an accuracy of 

80% at a rate of only 3.96 selections per minute. The accuracy increased with the number of 

flashes for all subjects and 12 of the 15 were able to exceed 90% accuracy within 15 sets of 

flashes.

The optimal number of sets of flashes varied from 3 to 8, which yielded bit rates from 13.54 

to 40.82 (Table 2). In general, subjects that performed better achieved an optimal bit rate in 

fewer flashes. On average, the subjects had a 29% accuracy after a single set of flashes 

which increased to about 95% after 15 sets. The average selection rate for the static method 

was 5.87, the average accuracy was 88.82%, and the average bit rate was 24.44.

The maximum bit rates using the naïve Bayes classifier improved by 50% on average (p < 

10−8), ranging from 39% (subject E) to 65% (subject C) compared to the SWLDA results 

(Table 2). The selection rate rose significantly (p = 0.0002) which the accuracy remained 

relatively constant (p = 0.5). In some cases, a decreased accuracy (subject D) or selection 
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rate (subject B) was reported for the NB method relative to the SWLDA method because of 

the optimization based on bit rate. In these cases, the optimal bit rate may occur at a lower 

accuracy, but a much higher selection rate, or vice versa.

Six of the subjects reached 100% accuracy within the 15 sets of flashes using the HMM 

method and subject D had all characters correct within two sets of flashes. The improvement 

in ITR from the static method to the HMM method ranged from 9% (subject N) to 85% 

(subject I). The average bit rate across subjects improved by 32% from 24.44 to 32.33 (p < 

10−8). The selection rate rose from 5.87 to 7.88 (p < 10−5) and the accuracy increased stayed 

relatively constant (p = 0.35). The HMM method had a significantly higher ITR than the 

naïve Bayes method (p=0.001), although the optimal selection rates and accuracies were not 

significantly different (p=0.09 and p=0.43 respectively).

B. Online

In the online experiments, all five subjects were able to select characters with at least 75% 

accuracy using each of the methods (Table 3). Using the SWLDA method, four of the five 

subjects performed better using the five flash set, resulting in an average selection rate of 

5.07, an average accuracy of 91.68%, and an average ITR of 22.35. Two of the five subjects 

achieved 100% accuracy with both thresholds tested. Using the NB classifier, the average 

accuracy dropped to 82.83%, but the selection rate rose significantly to 9.35 (p=0.003), 

resulting in a significantly high ITR (33.80, p=0.0004).

Four of the five subjects performed best using the HMM classifier. The average selection 

rate was 9.55 characters/minute with an accuracy of 92.34%, resulting in an average bit rate 

of 42.31, which was significantly higher than those achieved using SWLDA (p=0.0003) and 

NB (p=0.02). On average, the HMM method was able to correct 3 errors per person, which 

accounted for 47% of the total errors made using this method (Table 4).

IV. Discussion

Most current BCI communication systems do not utilize domain knowledge when 

processing natural language. Using a hidden Markov model to integrate this information can 

significantly improve the results of such a system.

In offline analysis, the SWLDA method achieved an average bit rate of 20.07 across 

subjects before implementing dynamic stopping, which is consistent with previous studies 

[4, 17]. Dynamic stopping improved this value 22% on average, which is close to previously 

reported values [10, 12]. Our HMM method improves the bit rate by an 32% on average to 

32.33 relative to SWLDA. The offline improvement over the naïve Bayes method is more 

modest (7.1%), but still statistically and likely clinically significant (p=0.001). It should be 

appreciated that any improvement in performance can be considered useful since these BCI 

are intended to be the primary modality of communication for affected patients.

In general, the offline improvements over naïve Bayes seen after optimization are in speed 

rather than accuracy, which may be counterintuitive. This occurs because the HMM method 

has a stronger prior probability because it utilizes all of the past information. It is therefore 
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able to reach a similar accuracy with a lower confidence threshold, resulting in faster typing 

speed. When the confidence threshold is held constant in online tests, the typing speed is 

almost identical, but the accuracy increases due to the improved classifier.

In online analysis, subjects achieved an average ITR of 22.35 when using the SWLDA 

method. Two of the subjects achieved perfect accuracy using both configurations, indicating 

the system was not optimized for them as the minimal number of flashes for consistent 

performance was not reached. Despite the lack of a systematic optimization, the average 

performance online was superior to the offline performance. Similarly, both the NB and 

HMM methods demonstrated large improvements in online performance over offline. This 

could have been due to motivation from receiving feedback or because of randomness due to 

a small sample size.

The online performance increase of HMM over NB was much larger than that observed in 

offline analysis (25% for online, 7% for offline). This is likely attributable to the fact that, 

without error correction, errors compound in the NB method. Drastic errors such as missing 

a space will change the prior for subsequent characters, resulting in additional errors (Table 

4). In the HMM method, these errors are corrected, while less significant errors such as 

switching vowels are often missed. It may be possible to identify which errors are more 

likely to be caught by the HMM method, allowing users to trust the system to account for 

some errors while manually correcting those that might be missed. Allowing manual error 

correction could lead to improved results in one or both of these methods (see future 

directions).

The ability to retrospectively change prior miscategorized letters automatically could have 

significant benefits to users. However, some users could also be distracted or discouraged by 

the presence of an incorrect selection and feel compelled to manually correct it. Similar to 

other non-BCI typing methods, we believe that a user could learn to trust the system and 

adapt to a modified task that did not involve correcting errors, which is supported by the 

success of the subjects in our online study. We also note that the proposed HMM method 

remains compatible with a backspace option, and if a user is inclined to correct all errors 

manually, the system reduces to the NB method and is still an improvement over SWLDA.

A. Limitations and future directions

A standard system and classification method were used in this study, but NLP could be used 

to integrate domain knowledge into any BCI communication system. Also, the Viterbi 

method and language model prior can be combined with any classifier that returns a 

likelihood probability. Studying the effects of integrating NLP into other BCI systems and in 

conjunction with different analysis methods remains as future work.

Because this method cannot correct all errors automatically, the potential exists for 

uncorrected errors to exist in the final string. Some of these errors could be fixed by 

combining this method with an autocomplete method similar to that proposed by Ryan et al. 

[17]. It is also possible that many errors do not need to be corrected in order for the user’s 

intent to be conveyed as readers are able to understand text that contains errors. Depending 

on the application of the system, a certain error rate in the final output could be acceptable if 
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it is associated with an increased typing speed. The relationship between error rate in BCI 

communication output and reader understanding remains to be studied.

The amount of data acquired by the online pilot experiments was limited because of the 

number of configurations that needed to be tested. The results were therefore subject to 

significant variability as single errors could result in large changes in bit rate. The optimal 

threshold values also could not be computed for the online system as only two candidate 

values could be tested for each method. Finally, the difference in performance when subjects 

are required to correct errors was not explored. Additional online tests, possibly including 

multiple sessions with the same user, could provide more optimal configurations of the 

system and a better evaluation of online performance.

V. Conclusion

Typing with a P300 system can be modeled as a Markov process that can be indirectly 

observed through EEG response signals. The Viterbi algorithm effectively incorporates 

domain information into signal classification, which greatly improves the user’s ability to 

create language. This study shows that incorporating this natural language information 

significantly improves the performance of a BCI communication system.
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Fig. 1. 
Simplified Viterbi trellis for subject B spelling the word “shown.” At time t = 3, the 

character ‘I’ has the highest probability, resulting in the output “shi” after following the back 

pointers (dotted lines). At time t = 4, the character ‘W’ has the highest probability and the 

back pointers (bold lines) produce the output “show,” correcting the previous mistake.
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Table 1

Target words for BCI trials. Each subject was shown a subset of between eight and 10 of these words.

AFTER BLOCK CLEAR DAILY FIRST

GIANT HOURS MINUS NOTED PANEL

SCORE SHOWN UNITS
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Table 4

Example online output for each of the tested methods. Each is the result of subject D attempting to spell 

“Heroes in a half shell turtle power.” HMM* would be the output of the HMM method if the errors were not 

corrected.

Method Output

SWLDA HEROES IN A HALF SHELL TURTLE

NB HEROE RIN A HARE SHELL TURTLE PREER HERIES IN AINALF SH

HMM * TEROESINAHAL6HERLTURTLEPOWEDHEROESINAHALFLG

HMM HEROES IN A HALL THELL TURTLE POWED HEROES IN A HALF S
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