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The lateral mobility of proteins within cell membranes is usually
thought to be dependent on their size and modulated by local
heterogeneities of the membrane. Experiments using single-particle
tracking on reconstituted membranes demonstrate that protein
diffusion is significantly influenced by the interplay of membrane
curvature, membrane tension, and protein shape. We find that the
curvature-coupled voltage-gated potassium channel (KvAP) undergoes
a significant increase in protein mobility under tension, whereas the
mobility of the curvature-neutral water channel aquaporin 0 (AQP0)
is insensitive to it. Such observations are well explained in terms of
an effective friction coefficient of the protein induced by the local
membrane deformation.

Brownian motion | Saffman–Delbrück | internal membrane structure |
drag force | micropipette aspiration

Brownian motion plays an essential role in biological pro-
cesses. Since the pioneering experiments of Perrin (1), the

observation of diffusing objects has emerged as a mean to extract
the rheological properties of the surrounding medium or the
probe particle size. The theoretical investigation of diffusion of
proteins within membranes has been studied widely going back
to P. G. Saffman and M. Delbrück (SD). They investigated the
hydrodynamic drag acting on a membrane inclusion when the
membrane is described as a 2D fluid sheet of viscosity μm em-
bedded within a less viscous fluid of viscosity η (2). In this theory,
the diffusion coefficientD0 in the limit of a large viscosity contrast
between the membrane and bulk fluid is given by:

D0 =
kBT
4πμm

�
log

�
ℓ
ap

�
− γ

�
: [1]

The length ℓ= μm=η is the length scale over which flow is gener-
ated within the bilayer by the inclusion, kBT is the thermal en-
ergy, and γ is Euler’s constant. This model predicts a logarithmic
dependence of D0 on the protein radius ap, which has been
confirmed for some in vitro experiments on membranes contain-
ing transmembrane proteins (see ref. 3 and references therein).
In contrast, the experiments of Gambin et al. (4) showed signif-
icant deviations from the SD theory.
A possible origin for the discrepancy observed by Gambin

et al. (4) is the significant local membrane deformation due to
the interaction between the inclusion and the lipid bilayer (5).
Naji et al. suggested in ref. 6 that inclusions experience addi-
tional dissipation, either due to internal flows within the mem-
brane or to additional fluid flows produced by the deformed
membrane. This work triggered a number of theoretical studies
investigating the coupling of inclusion proteins with the mem-
brane that had been pioneered by the Seifert’s group (see ref. 7
and references therein). Such studies have systematically gone
beyond the SD model by including additional effects (8–12). So
far, a thorough verification of these ideas has not been attemp-
ted. To investigate the effect of the protein–lipid coupling on the

protein mobility, we study its dependence on membrane tension,
because this parameter affects the local membrane deformation.
In this work, we compare the mobility of two transmembrane

proteins with the same lateral size, aquaporin 0 (AQP0) and a
voltage-gated potassium channel (KvAP), reconstituted in gi-
ant unilamellar vesicles (GUVs). Whereas AQP0 does not de-
form locally the bilayer, KvAP locally bends the membrane (13).
Using single-particle tracking (SPT), we demonstrate that the
curvature-coupled protein KvAP undergoes a significant in-
crease in mobility under tension, whereas the mobility of the
curvature-neutral water channel AQP0 is insensitive to it. This
difference, which goes beyond the SD model, is explained by an
approach that includes the interplay between membrane de-
formation and friction with the surrounding medium and within
the bilayer. This is compelling evidence that the Brownian mo-
tion of a shaping-membrane protein is not simply dependent on
the inclusion size but also related to the lateral extension of the
deformed membrane patch, which depends on tension.

Results
The membrane inclusions are two tetrameric transmembrane
proteins of size ap = 4 nm: (i) AQP0, a water channel abundant
in the eye lens (14), and (ii) an archeabacterial voltage-gated
potassium channel (KvAP) (15). KvAP has been shown to have a
strong affinity for curved membranes and thus inducing bending
of the membrane. The inclusion ability to curve membranes is
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generally quantified by its spontaneous curvature Cp, which
reflects the preferred value of local membrane curvature. For
KvAP, we have measured Cp = 0:04 nm−1 (13). In contrast,
AQP0 does not exhibit any preference for curved membranes,
and thus has a zero spontaneous curvature (13). To investigate
the lateral mobility of these proteins in membranes, they were
reconstituted at low density (∼40 inclusions per μm2) in fluid
phase GUVs, and a small protein fraction was then labeled with
quantum dots (QDs). Although both protein insertions are present
in the GUV, only one insertion was labeled with the QDs
(13). Micropipette aspiration was then used to hold the GUV in
place and to control its membrane tension Σ (16) (Fig. 1A). To
measure protein displacements, the QD position was detected
with SPT near the bottom of the vesicle using epifluorescence
microscopy equipped with a fast and sensitive camera (17). We
limited our analysis to a small rectangular membrane area (Fig.
1B). We find that the mean-square displacement (MSD) of the
proteins exhibits a linear time dependence at short time and
a crossover to a constant value dependent on the size of the
observation window at larger time (Materials and Methods and
Fig. S1). Details of our protocols and analysis are described in
the Supporting Information.
We determined the diffusion coefficient Deff for each applied

membrane tension (Fig. 2 and Fig. S2). In the high-tension limit,
the diffusion coefficients of AQP0 and KvAP are comparable
and correspond to the value predicted by the SD model (Eq. 1),
namely D0 = 2:5 μm2=s for ap = 4 nm. When the tension drops
from 10−3 to 10−6 N/m, less than a 5% variation of Deff is found
for AQP0, whereas a drastic decrease of about 40% is revealed
for KvAP. In any case, such a tension dependence is incompatible
with the standard SD approach.

To address this issue, we have developed an analytical model
and numerical simulations. SD theory implicitly assumes that the
protein diffuses in a membrane that remains flat and unaffected
by the presence of the protein. In contrast, we take into account
that the protein strongly affects its environment. The back action
on the diffusing object, translates into a modified drag force.
This phenomenon is general in physics and is known as polaron
effect (18). A polaron is a charge carrier that deforms a sur-
rounding lattice and moves in it with an induced polarization
field. Similarly in liquids, an isolated ion recruits nearby coun-
terions in a process that affects its mobility. Here, we consider
a single protein diffusing on a membrane patch of size L � ap
described by a height function hðrÞ. We use the modified Helfrich
Hamiltonian:

H0½h;R�= κ

2

Z
d2r

��
∇2h

�2
+
Σ
κ
ð∇hÞ2 −ΘGðr−RÞ∇2h

�
; [2]

where the first two terms represent the energy of elastic bending
of the bilayer with modulus κ and tension Σ, and the last term
models the membrane curvature induced at the location of the
protein R, which is time dependent. The strength of the induced
curvature scales linearly with the protein spontaneous curvature
Cp, Θ= 4πa2pCp, similarly to refs. 6 and 8. The range of influence
of the protein on the membrane is modeled by the weight func-
tionG, which is normalized to 1 and is nonzero over a distance of
the order of ap. This Hamiltonian carries with it a cutoff length a,
which corresponds to the bilayer thickness (∼5 nm). From this
approach, we obtain the membrane profile around the inclusion
given in Eq. S37. The lateral characteristic width of this mem-
brane profile is the crossover length between the tension and the
bending regime for the fluctuations, namely ξ=

ffiffiffiffiffiffiffiffi
κ=Σ

p
, whereas

the characteristic height of the membrane deformation at zero
tension scales as Θ (Eq. S31). The geometry of the local defor-
mation from the membrane midplane induced by KvAP when
subjected to various tensions is shown in Fig. 3 (Fig. S3). Using
the method of refs. 6, 8, and 10, we have carried out simulations
(with parameters shown in Fig. S4), which also confirm the
expected theoretical membrane profile as shown in Fig. 3.
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Fig. 1. Experimental approach to diffusion measurements in fluctuating
membrane. (A) Schematic of experimental setup: a GUV containing tracer
molecule (lipid, AQP0, or KvAP) labeled with a QD is aspirated in a micro-
pipette. In a typical sequence, 100–1,000 individual QDs explore the bottom
pole of the GUV. Single QD displacements are measured as a function of the
applied membrane tension Σ. (B) Example of QD trajectory. The truncated
circle corresponds to the boundary of the area explored by QDs within the
depth of field of the microscope. Only the green part of the trajectory
contained in a centered square region of interest is considered for the single-
QD tracking analysis. One pixel is 160 nm.
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Fig. 2. Protein lateral mobility in fluctuating membranes. Semilogarithmic
plot of the diffusion coefficients (Deff) as a function of the membrane ten-
sion Σ, for AQP0 ð◆Þ and KvAP ð▲Þ labeled with streptavidin QDs. Each
point represents a median diffusion coefficient obtained from hundreds of
individual trajectories for a GUV at a given tension; the error bars correspond to
SE. KvAP data adjusted by Eq. 3 (solid line) yields a protein coupling coefficient
Θ= 3:5×10−7 m considering a= 5 nm, κ= 20 kBT and D0 ’ 2:5 μm2=s. Simu-
lations of the protein diffusion on a membrane subject to thermal fluctuations
ð■Þ agree well with the experimental data and theory. (Insets) Sketches of
membrane deformation near proteins.
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Below, we investigate the implications of this local membrane
deformation for the mobility of the protein. The model assumes
that the dynamics of the membrane is controlled by hydro-
dynamics in the surrounding fluid of viscosity η. The corresponding
timescale is much faster than the diffusion time of the inclusion,
justifying the use of an adiabatic approximation to derive an ef-
fective dynamics for the protein. Using the framework developed
by Démery and co-worker in ref. 9, the effective drag force exerted
on the inclusion, namely, f =−∇RH0½h;R�, can be obtained an-
alytically at fixed inclusion velocity v. To leading order in v, this
leads to a friction coefficient λ given by f = −λv. We find that
λðσÞ=Θ2ηW0ðσÞ=2a, where σ =Σa2=4πκ is a reduced tension and
W0ðσÞ is a function given in Eq. S27. The diffusion coefficient
Deff is obtained from the effective drag coefficient using the
Einstein relation:

D0

Deff
= 1+

ηD0Θ2W0ðσÞ
2akBT

; [3]

where D0 represents the bare diffusion coefficient of the inclu-
sion in a flat tense membrane, given by Eq. 1. The tension depen-
dence of Deff is shown in Fig. 2 and Fig. S5. The same dependence
was found in simulations (Fig. 2 and Movies S1 and S2), in
which the protein diffusivity was directly computed from the
MSD of stochastic trajectories. Moreover, it is important to
appreciate that the friction coefficient λ is independent of tem-
perature, which shows that the thermal fluctuations of the
membrane do not contribute to this effect within the adiabatic
approximation. An extended description of the theory and sim-
ulations is proposed in the Supporting Information.

Discussion
We next test our model against the KvAP experiments. We find
that theory and simulations fit very well the experimental results
for Deff versus Σ using a coupling coefficient Θ= 3:5× 10−7m.
This proves that the mechanical coupling between the proteins
and the membrane can strongly affect protein mobility. At high
tension, the experimental data of AQP0 and KvAP converge to
the same plateau value, consistently with the SD limit because
they have about the same steric radius. As a control, we mea-
sured the diffusion coefficient of pure lipids, and confirmed that

it is independent of tension as found for AQP0 (Fig. S6). The
corresponding constant value for D0 agrees with the prediction
of the SD model, using a lipid size ap = 0:5 nm. At lower tension,
Fig. 2 shows that the KvAP data start to deviate significantly
from the plateau at Σ∼ 5× 10−3 N=m, which corresponds to the
point at which the lateral characteristic length ξ is of the order of
the protein size as expected from our theory.
An additional outcome of this approach concerns the depen-

dence of Deff with the protein radius ap, which can be obtained
from the following scaling argument. Because the protein makes
a fixed angle with respect to the membrane, Cp ∼ 1=ap. Given the
relation Θ= 4πa2pCp, this implies Θ∼ ap. Below the crossover to
the SD regime, the local membrane deformation is much larger
than the protein size ap � ξ, and the drag is dominated by the
contribution due to the membrane deformation. Therefore, using
Eq. 3, one findsDeff ∼ kBTa=a2p, in agreement with ref. 9. Note that
such a result is also compatible with the Stokes–Einstein scaling
law in 1=ap obtained in ref. 6, because in this reference only one
characteristic length for the protein is used; thus, a ’ ap.

Contribution of an Advected Lipid Layer. Despite a good agreement
between model and data, the physical interpretation of the cou-
pling coefficient Θ requires a more detailed discussion. Indeed,
the spontaneous curvature deduced from this coupling coefficient
via a fit of the data is significantly larger than that obtained from
thermodynamic measurements, based on the preferential sorting
at equilibrium of the proteins between GUV and highly curved
membrane nanotubes (13). One possible interpretation for this
discrepancy is that, in dynamic measurements, the basic relevant
object, namely, the association of the moving protein with the
deformed membrane around it, may have a size larger than ap.
Such an enhancement of the size could describe physically a layer
of lipids dragged by the motion of the protein as considered in ref.
11. Given the value of the coupling coefficient Θ, we obtain an
effective area of the protein of the order of 2,200 nm2. This is
equivalent to an effective radius of 47 nm, a rather large value with
respect to the lipid and protein sizes (0.5 and 4 nm, respectively).

Additional Contribution Due to Interleaflet Friction.At this point, we
propose an alternate explanation for the discrepancy between
the dynamic measurement and the thermodynamic one. In the
approach outlined so far, the dissipation only originates in the
fluid displaced by the “bump” in the membrane. However, as
pointed out in ref. 6, other dissipation mechanisms in the mem-
brane are possible and likely to be dominant in highly viscous
membranes. As a consequence of the curvature induced in the
bilayer near the protein, a difference of lipid density between the
leaflets is built up, which either relaxes after the protein has passed
or is carried by the protein. In any case, there is locally a difference
of velocity between each leaflet, which is responsible for further
dissipation from intermonolayer slip as the inclusion moves.
A simplified internal structure can be given to the membrane

by decorating both leaflets with additional fields representing
lipid density deviations from the equilibrium density, ρ± (19). A
neutral surface is defined for each leaflet by the property that
bending and stretching are decoupled in energy when deforma-
tions are defined with respect to it. The neutral surfaces of each
monolayer are located at a distance d from the overall neutral
surface of the bilayer. Deviations from the equilibrium density
for each layer can be accounted for with the Hamiltonian:

H½h;R�=H0½h;R�+ km

2

Z
L2

d2r
h
ðρ+ − 2 dHÞ2 + ðρ− + 2 dHÞ2

i
; [4]

where H represents the mean curvature of the membrane, and
km is the elastic compression modulus of the 2D fluid within
each monolayer.
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Fig. 3. Membrane shape as a function of the tension. (A) Profile calculated
from Eq. S37 with Θ=3:5× 10−7 m, κ = 20 kBT, and ap = 4 nm (solid lines).
Profile calculated from the numerical energy minimum shape using simula-
tion (dashed line). The height value far away from the inclusion is chosen to
be zero. Discrepancy at low tension originates from the finite size of the
membrane L2 used in the simulations (Supporting Information). (B) Three-
dimensional membrane profiles obtained from numerical simulations for
three different tensions (see also Movies S1 and S2).
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As far as the dynamics is concerned, we introduce two additional
parameters, namely, the shear viscosity of each lipid monolayer,
μm, and the friction coefficient between the two leaflets, b. We find
with this improved model the same stationary membrane profile
but a modified drag coefficient of the form:

λðσÞ=Θ2η

2a

�
W0 +

bd2

ηa
W1 +

d2

a2
W2 +

μmd
2

2ηa3
W3

�
; [5]

where Wi are functions dependent on the reduced tension σ,
defined in the Supporting Information (Eq. S46).
This drag friction coefficient reflects three dissipation sources:

(i) the dissipation in the bulk fluid, which is proportional to η and
corresponds to the W0 term discussed above in Eq. 3 with a
correction given by the W2 term, (ii) the interleaflet dissipation,
which is proportional to b and appears in the W1 term, and (iii)
the dissipation due to the shear viscosity of a single monolayer,
which is proportional to μm and is given by the W3 term. One can
evaluate the relative importance of these contributions in Eq. 5
using the following bilayer parameters a= 5 nm, d= 1 nm (19),
b= 109 J·s·m−4 (20–22) and μm = 6× 10−10 J·s·m−2 (23), from which
one finds the dimensionless factors bd2=ηa ’ 200, ðd=aÞ2 ’ 0:04,
and μmd

2=2ηa3 ’ 2. It follows from such estimates that the mono-
layer friction should play the largest role in the effective friction
of the protein (Eq. 5). As a result, it should also be the case for
the effective diffusion coefficient corresponding to this drag co-
efficient λðσÞ:

D0

Deff
= 1+

D0λðσÞ
kBT

: [6]

With the inclusion of dissipative mechanisms internal to the
membrane, we can still account for the dependence of Deff versus
Σ (Fig. S6) and Eq. 6, but with a lower a coupling coefficient
Θ= 3:4× 10−8 m, corresponding to a Cp = 0.16 nm−1. This value is
then much more compatible with the thermodynamic measure-
ments previously reported in ref. 13.
In this paper, we provide compelling evidence that the effec-

tive mobility of a protein is controlled not only by its intrinsic
geometric size as in the SD model, but by an effective size that
depends on dissipation mechanisms present in the surrounding
fluid and in the membrane. An additional outcome of our study
is that it is possible to extract from this type of experiment a
measurement of the spontaneous curvature of the protein and of
the interleaflet friction at the single-molecule level. All these
parameters depend on the local environment and on the shape of
the protein, in a way that needs to be investigated more syste-
matically in future experiments.
In cell membranes, the local environment of proteins is het-

erogeneous and dynamic. A more realistic approach to such a
situation would require further studies on (i) the diffusion of a
protein in a membrane that may be driven out of equilibrium
(24), or (ii) the diffusion of a protein that can be activated, such
as voltage-gating channels, mechanosensitive channels, G-protein–
coupled receptors or light-activated rhodopsins. The strong de-
pendence of the protein mobility on its local environment should
lead to a more complex kinetics of clustering of membrane recep-
tors and of association of membrane receptors to ligands. More
generally, such effects can contribute to the lateral organization of
cell membranes and to the formation of dynamical heterogeneities.

Materials and Methods
Detailed protocols are given in SI Materials and Methods.

Protein Reconstitution in GUVs and Micromanipulation. Archeabacterial volt-
age-gated potassium channels (KvAP) or native AQP0 were reconstituted in
GUVs using the electroformation method on platinum wires (13, 25, 26). The

final protein-to-lipid mass ratio is estimated to 1:200, corresponding ap-
proximately to 40 proteins per μm2. Before the SPT experiments, biotinylated
proteins were labeled with QD655–streptavidin conjugate (Life Technologies).
QD-labeled GUVs were then transferred to themicroscopy observation chamber.
They were aspirated in a glass micropipette and the membrane tension
Σ was adjusted by changing the difference of hydrostatic pressure (16). For
each vesicle, the membrane was prestressed at Σ≈ 10−3 N=m during 2 min and
then Σ was decreased to the lowest value before diffusion measurement.

QD Imaging and Analysis. Micromanipulated GUV was positioned so that the
bottom pole could sit within the depth of field of the optical Nikon Eclipse Ti
microscope (Fig. 1A). The high-speed imaging of single QDs attached to tracer
molecules was made using an epifluorescence microscope equipped with an
electron-multiplying CCD camera (iXon DU-897; Andor Technology). The
membrane tension was then increased step by step and for each membrane
tension, two sequences of 30,000 images were recorded with 2-ms exposure
time. In a typical sequence, 100–1,000 individual QDs explore a membrane
surface of 3- to 5-μm width in the focal plane (Fig. 1B). Detection and tracking
of individual QDs was performed with MATLAB routines (SPTrack, version 4).
QD centroid positions were determined with a spatial resolution of 10 nm.
Trajectories were built by connecting the fluorescence peaks that could be
unequivocally assigned to individual QD using a modified routine of the
Multiple-Target Tracing (MTT) software developed by Sergé et al. (27), based
on Bayesian inference methods. To avoid geometrical artifacts related to the
projection of these 3D trajectories on the focal plane, we limited our analysis
to a square region of interest (ROI) around the GUV bottom pole. Only tra-
jectories that were at least 30 points long in ROI were kept for further analysis.

For each vesicle at a givenmembrane tension,we recordedbetween 50–1,000
trajectories in ROI. The diffusion coefficient of the tracer is extracted from the
analysis of the MSD, ÆΔr2ðtÞæ defined in Eq. S1. Although the MSD appears
linear with respect to time at short time, a saturation at larger time is typically
observed. We interpret this saturation illustrated in Fig. S1 as a consequence of
the truncation of the trajectories, which leave the observation window (the
ROI). A theory based on the solution of the diffusion equation in a finite 2D
domain of size ðLx × LyÞ, developed in the Supporting Information, gives the
conditional MSD to remain in this window: ÆΔr2ðtÞæcond →0:0947ðL2x + L2yÞ, for
t→∞. This explains the crossover between a linear behavior of the MSD at
short times to a plateau at long times. In all experiments, we have carefully
checked that we were far from the crossover regime when measuring the ef-
fective mobility. We particularly thank M. Lomholt (MEMPHYS, Odense, Den-
mark) for insightful discussions on this issue.

This diffusion coefficient was obtained from the short time behavior of the
MSD with ÆΔr2ðtÞæ= 4Dt +b, where b is a variable offset reflecting the spot
localization accuracy (28). From this analysis, we obtained a distribution of
diffusion coefficients corresponding to one vesicle at one tension from
which we extracted the median value and the SE of the diffusion coefficient
reported in Fig. 2.

Computational Methods. The computational methods follow closely the
algorithms developed in ref. 10. The membrane–protein system were ther-
malized by introducing stochastic driving fields for both the proteins and
membrane. The stochastic dynamic equations were integrated in time using
the Euler–Maruyama method (29). The membrane profiles were extracted
from our computational model by allowing for the membrane mechanics to
relax to equilibrium for a fixed protein and taking a cross-section through
the protein location. To obtain statistics, we used a straightforward Monte
Carlo approach, where independent trajectories were realized for the pro-
tein diffusion subjected to membrane thermal fluctuations. The tension de-
pendence of the diffusivity was determined from simulations of the membrane–
protein system started with a flat membrane and letting the system equilibrate.
After equilibration, the MSD was computed and the diffusivity statistics de-
termined by generating several simulation trajectories for each reported tension
value. In this manner, both the energy minimizing shape profiles and stochastic
protein dynamics were obtained from the computational model.
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