
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Towards a Distributed OS for Data-Intensive Cloud Applications

Permalink
https://escholarship.org/uc/item/1gc460x3

Author
Wang, Stephanie

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1gc460x3
https://escholarship.org
http://www.cdlib.org/

Towards a Distributed OS for Data-Intensive Cloud Applications

By

Stephanie Wang

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Ion Stoica, Chair
Professor Joseph Hellerstein

Professor Matei Zaharia
Professor Joseph Gonzalez

Fall 2023

Towards a Distributed OS for Data-Intensive Cloud Applications

Copyright © 2023

by

Stephanie Wang

1

Abstract

Towards a Distributed OS for Data-Intensive Cloud Applications

by

Stephanie Wang
Doctor of Philosophy in Computer Science

University of California, Berkeley
Professor Ion Stoica, Chair

Commodity hardware is reaching fundamental limits, while the demands of data-
intensive applications continue to grow. Thus, we now rely on horizontal scale-out
and hardware accelerators to improve application performance and scale, while de-
veloping a myriad of distributed execution frameworks that are specialized to specific
application domains, from data analytics to machine learning. While this reduces
burden for certain applications, it also creates three problems: (1) duplicated system
implementation effort, (2) reduced framework evolvability, and (3) difficulty interop-
erating efficiently between applications, especially when large data is involved.

This thesis describes the first steps towards a distributed “operating system”
that can provide essential services to such data-intensive applications. This would
allow currently monolithic frameworks to be built as libraries instead, making them
easier to build, evolve, and compose. Towards this vision, we propose an intermedi-
ate and interoperable execution layer that handles common problems in distributed
execution and memory management.

We first propose distributed futures, a general-purpose programming interface
that extends the RPC abstraction with pass-by-reference semantics and a shared
address space. Distributed futures act as a virtual memory-like abstraction but for
the distributed setting, enabling distributed memory management to be factored out
into a common system. Next, we present a design for this system that provides flexible
fault tolerance with low overheads. We first present a fault-tolerant architecture for
distributed futures that provides automatic memory management. We show how
this system factors out system complexity from data-intensive applications without
sacrificing performance, using MapReduce workloads as an example. Finally, we show
how stronger recovery guarantees can be layered on top of this core architecture to
provide greater recovery flexibility to end applications. Thus, we show how an end-
to-end approach to fault tolerance can expand system generality.

i

To my family.

ii

Contents

Contents ii

List of Figures vi

List of Tables xii

1 Introduction 1
1.1 The Landscape of Data-Intensive Applications 5
1.2 Alternative Solutions . 10
1.3 Overview and Contributions . 12

2 Distributed futures and RPC 15
2.1 Introduction . 15
2.2 API . 17
2.3 Automatic memory management . 19
2.4 Is the API enough for applications? 21
2.5 Related abstractions for distributed memory 24
2.6 System Implementation and Thesis Work 25

2.6.1 Memory management . 25
2.6.2 Fault tolerance . 27

2.7 Conclusion and Lessons Learned . 28

3 Lineage stash 29
3.1 Introduction . 30
3.2 Background . 33

3.2.1 Case Study: Stream Processing 33
3.2.2 System Model and Challenges 34

3.3 Lineage Stash Overview . 36
3.4 Lineage Stash Implementation . 41

3.4.1 Definitions . 41
3.4.2 Protocol . 43
3.4.3 Failure Model . 48

iii

3.5 Evaluation . 49
3.5.1 Microbenchmarks . 50
3.5.2 End-to-end Applications . 53

3.6 Related work . 56
3.7 Conclusion and Lessons Learned . 58

4 Ownership 59
4.1 Introduction . 59
4.2 Distributed Futures . 64

4.2.1 API . 64
4.2.2 Applications . 64

4.3 Overview . 67
4.3.1 Requirements . 67
4.3.2 Existing solutions . 70
4.3.3 Our solution: Ownership . 71

4.4 Ownership Design . 72
4.4.1 Task scheduling . 74
4.4.2 Memory management . 76
4.4.3 Failure recovery . 79

4.5 Evaluation . 83
4.5.1 Microbenchmarks . 83
4.5.2 End-to-end applications . 87

4.6 Related Work . 88
4.7 Discussion . 89

4.7.1 Programming languages . 89
4.7.2 Impact on Ray . 90

4.8 Conclusion and Lessons learned . 91

5 Exoshuffle 93
5.1 Introduction . 94
5.2 Motivation . 96

5.2.1 Shuffle Systems . 96
5.2.2 Random Shuffle in ML Training Pipelines 98

5.3 Shuffle with Distributed Futures . 100
5.3.1 The Distributed Futures API 100
5.3.2 Expressing Shuffle with Distributed Futures 101

5.4 System Architecture . 102
5.4.1 Example: Push-based Shuffle 102
5.4.2 Scheduling Primitives . 102
5.4.3 Transparent System Facilities 105

5.5 Evaluation . 108
5.5.1 Shuffle Performance . 108

iv

5.5.2 Implementation Complexity 111
5.5.3 System Microbenchmarks . 111

5.6 Related Work . 114
5.7 Discussion . 115
5.8 Conclusion and Lessons Learned . 116

6 Exoflow 118
6.1 Introduction . 119
6.2 Motivation . 122

6.2.1 Overview of recovery strategies 122
6.2.2 Applications . 125

6.3 API . 127
6.3.1 Overview and requirements 127
6.3.2 Model . 130
6.3.3 Guaranteeing exactly-once execution 132
6.3.4 References . 133

6.4 Architecture . 136
6.5 Evaluation . 136

6.5.1 ML training pipelines . 137
6.5.2 Stateful serverless workflows 139

6.6 Related Work . 140
6.7 Discussion . 142
6.8 Conclusion and Lessons Learned . 143

7 Conclusion 144
7.1 Related Work . 144

7.1.1 Distributed dataflow . 144
7.1.2 RPC and actors . 146
7.1.3 High-performance computing (HPC) 148
7.1.4 Distributed shared memory (DSM) 149
7.1.5 Disaggregated memory . 150
7.1.6 Serverless . 151
7.1.7 Cluster managers . 152

7.2 Discussion . 153
7.2.1 Broader Impact: History of Ray as an open-source project . . 153
7.2.2 Lessons Learned . 154
7.2.3 Limitations and future work 158

7.3 Conclusion . 164

v

Appendix 186

A Ownership system protocols 186
A.1 Distributed Reference Counting . 186
A.2 Formal Specification . 187

B Exoshuffle libraries, applications, and evaluation 189
B.1 Expressing Shuffle Strategies with Distributed Futures 189

B.1.1 Pre-Shuffle Merge . 189
B.1.2 Push-based Shuffle . 190
B.1.3 Straggler Mitigation . 190
B.1.4 Data Skew . 191

B.2 Expressing Shuffle Applications . 191
B.2.1 Online Aggregation with Streaming Shuffle 192
B.2.2 Distributed ML Training with Pipelined Shuffle 192

B.3 Evaluation . 193
B.3.1 Performance Comparison of Shuffle Libraries 193
B.3.2 Shuffle Scalability . 194
B.3.3 Shuffle Applications . 194
B.3.4 CloudSort . 194
B.3.5 Online Aggregation with Streaming Shuffle 196
B.3.6 Distributed ML Training . 196

C Exoflow system design and evaluation 198
C.1 Architecture . 198

C.1.1 Workflow execution . 198
C.1.2 Workflow recovery . 199
C.1.3 Execution backends . 201

C.2 Implementation . 201
C.3 Evaluation . 202

C.3.1 Online-offline graph processing 202
C.3.2 Microbenchmarks . 204

D Some random walks 208

vi

List of Figures

1.1 Application and execution models for data analytics workloads. . . . 7
1.2 Application and an example execution for distributed ML training with

online data preprocessing. 9
1.3 Thesis overview. Light blue indicates a system discussed in this thesis,

while dark blue indicates the abstraction exposed by that system. Light
gray boxes indicate application libraries that may be built on top of
the system abstractions. 13

2.1 A single “application” actually consists of many components and dis-
tinct frameworks. With no shared address space, data (squares) must
be copied between different components. 16

2.2 Logical RPC architecture: (a) today, and (b) with a shared address
space and automatic memory management. 16

2.3 Applications for a pass-by-reference API. Legend: gray circle is the
client, other circles are RPCs, dashed arrows are RPC invocation, solid
squares are data, solid arrows are dataflow. 23

3.1 A streaming mapreduce. (a) Logical representation. Mappers com-
pute a stateless function over each record (rounded box) in the input
and output the results to a Reducer. (b) Physical representation,
as a dynamic dataflow. Solid arrows show data dependencies (record
batches). White arrows show stateful dependencies [145], determined
by the execution order on a given process. Mappers do not have appli-
cation state, but they are stateful because they can buffer records and
dynamically push them to Reducer by submitting tasks, which get ex-
ecuted in a nondeterministic order. Reducer fails during task 3 (red),
and outlined tasks must be re-executed to preserve exactly-once se-
mantics. Lineage reconstruction (green) exactly reconstructs Reducer
by replaying its inputs since the last checkpoint in the same order.
Global checkpointing (blue) re-executes all processes’ tasks since the
last checkpoint, possibly in a different order (e.g., Reducer may execute
task 3 before 2). 30

LIST OF FIGURES vii

3.2 (a) Lineage stash architecture, on top of a decentralized dataflow
scheduler. A and B are processes that can submit tasks to each other
(e.g., A1 submits B1). Dotted arrows show the protocols used to com-
municate between nodes. (b) Stream processing. D is a nondeter-
ministic operator that reads dynamically sized batches (buffers) from
multiple input sources (A, B, C) in any order and outputs results
to downstream operator E. G is a deterministic operator that reads
statically sized batches from a single source, F 35

3.3 (a) A nondeterministic application and (b) a failure scenario showing
why lineage must be forwarded. Because C executes tasks from A,B
in a nondeterministic order, it must retrieve its lineage from D after a
failure, shown by the red dashed arrows. 39

3.4 (a) A deterministic application and (b) a failure scenario showing what
lineage must be remembered. To recover B after a failure, A simply
resubmits (red dashed arrows) its previous tasks. 39

3.5 Lineage stash methods for getting and receiving a task’s uncommitted
lineage (Definition 3.5). A practical implementation can easily avoid
forwarding duplicate lineage by recording which tasks have been sent
to which nodes. 43

3.6 Node methods for task execution. AssignTask also records nondeter-
ministic execution order by updating the task’s predecessorId. Non-
deterministic events during task execution are recorded by appending
to the task’s applicationLog (not shown). 44

3.7 Forwarding and flushing lineage. (a) Task A2 submits task B2, for-
wards the uncommitted lineage (A2) to B, and asynchronously flushes
B2. (b) A and B receive commit acknowledgements for A1 and B2.
A1 can be evicted because it has no dependencies, but B2 cannot. (c)
A and B receive commit acknowledgements for the remaining tasks
and it is safe to evict all tasks. 45

3.8 Lineage stash methods for flushing to the global store. FlushTask

writes a task asynchronously to the global store with the callback
TryEvict. Once a task (or a newer version) is committed and its
dependencies have been evicted, it is evicted in TryEvict (TryEvict
also tries to evict any dependent tasks, not shown). 46

3.9 Recovery procedure for the nondeterministic process from Fig 3.3 in
detail. (a) (1) C contacts downstream process D, (2) D flushes its
lineage, (3) D receives all acknowledgements, (4) D replies to C. (b)
Processes A and B (not shown) resubmit their last submitted tasks
(A2, B1) to C. This may happen concurrently with steps 1-4. (c)
After steps 1–5, C recovers the lineage of A2 and B1, which includes
the initial execution order, from the global store. 47

LIST OF FIGURES viii

3.10 Task latency for deterministic and nondeterministic applications, with
lineage stash vs WriteFirst. A ring of 64 processes is instantiated, one
on each node. Each process submits no-op tasks with a unique token
to its successor. Task latency is the time before the process receives
its token again divided by the number of processes. For Fig 3.10c, we
forward an uncommitted task up to f=8 times. 49

3.11 Median (and first and third quartiles) size of the forwarded uncom-
mitted lineage, varying task duration for different values of f , the max-
imum number of concurrent failures tolerated. Above 10ms tasks, the
uncommitted lineage size is stable. 50

3.12 (a) Allreduce duration on 64 workers (m5.2xlarge), averaged over 20
trials (with std. deviation). WriteFirst and the lineage stash use
ring allreduce, with simulated global store latency as labeled. (b)
Allreduce recovery time for lineage stash vs WriteFirst vs OpenMPI,
with checkpoints to disk every 150 iterations. We kill and restart a
worker at iteration 284. (c) Distributed SGD on the lineage stash
vs Horovod v0.16.1, on 16 p3.8xlarge. Both use TensorFlow v1.12 on
Resnet-101 with synthetic data and batch size 64. The lineage stash
uses the same ring allreduce as in §3.5.2.1. Each worker checkpoints
the model to disk every 640 iterations (˜7min). We kill and restart a
worker at iteration 1200. 52

3.13 (a) Latency CDF for a streaming wordcount on 32 m5.xlarge work-
ers at 400k records/s (4M words/s). Latency is sampled once every
1000 records. Both systems used a parallelism of 32 (per source, map,
reduce, sink) and checkpoints to disk every 30s. (b, c) Failure and re-
covery for streaming wordcount on 32 m5.xlarge nodes at 300k record-
s/s, checkpoints to disk every 30s. A worker is killed and restarted at
t=˜45s (vertical red line), ˜15s after the first checkpoint. We report
(b) median latencies seen by a single sink (with 1st and 3rd quartiles),
x-axis is the record timestamp, and (c) total throughput, x-axis is
physical time. The throughput drop at t=˜80s is due to checkpointing. 54

4.1 A distributed futures program. compute and add are stateless. a -

future, b future, and c future are distributed futures. 60
4.2 Example executions of the program from Figure 4.1. (a) With RPC.

(b) With RPC and distributed memory, allowing the system to reduce
data copies. (c) With RPC and futures, allowing the system to manage
parallel execution. (d) With distributed futures. 61

4.3 Distributed futures applications. 66
4.4 Failure detection. (a) a’s location is known by the time worker 2

receives the reference. (b) a’s location may not be known when worker
2 receives add, so worker 2 cannot detect the failure. 68

LIST OF FIGURES ix

4.5 Failure recovery. (a) Data is passed by value, so the driver recovers by
resubmitting add. (b) b is also lost. f’s description must be recorded
during runtime so that b can be recomputed. 69

4.6 Distributed futures systems. (a) An application. (b) Master man-
ages metadata and object failures. (c) Workers write metadata asyn-
chronously, coordinate failure handling with leases. (d) Workers man-
age metadata. Worker 1 handles failures for workers 2 and 3. Worker
1 failure is handled by A’s owner elsewhere in the cluster. 70

4.7 Architecture and protocol overview. (a) Task execution. (b) Local
task scheduling. (c) Remote task scheduling. (d) Object transfer.
(e) Task output storage and input retrieval. Ownership layer manages
distributed memory garbage collection and recovery. (f) Scheduler
fetches objects in distributed memory to fulfill task dependencies. . . 74

4.8 Task scheduling and the method of recording a task’s location for the
program in Figure 4.6a. (a) Centralized master. (b) Distributed
leases. (c) Scheduling with ownership. (1-2) Local scheduler redirects
owner to node 2. (3) Update task location. (4-5) Remote scheduler
grants worker lease. (6) Task dispatch. (d) Direct scheduling by the
owner, using the worker and resources leased from node 2 in (c). (e)
Length of critical path of local and remote task execution, in terms of
local and remote RTTs. 75

4.9 (a) Distributed memory store API, and (b-d) Memory management
for the program in Figure 4.6a. (1-2) B returns a large object X in
distributed memory. The primary copy is pinned until all references
have been deleted. (3) Worker 1 dispatches C once X is available. (4-5)
Get the value from distributed memory (location lookup not shown).
(6) C returns a small object Y directly to the owner. (7-8) Object
reclamation. 77

4.10 Object recovery. 79
4.11 Owner recovery. 79
4.12 Throughput and scalability. (a-d) Task submission is divided across

multiple intermediate drivers, either colocated on the m5.8xlarge head
node or spread with one m5.8xlarge node per driver. 1 intermediate
driver is added per 5 worker nodes. Each task returns either a small
(short binary string) or large (1MB blob) object. (e) Scaling task
submission using nested tasks and first-class distributed futures. . . 82

4.13 Task latency. Local means that the worker and driver are on the same
node. Error bars for standard deviation (across 3k tasks). 85

4.14 Total run time (log-scale), relative to ownership without failures. The
application is a chain of dependent tasks that execute on one node.
Each task sleeps for the duration on the x-axis (total 10s) and returns
either (a) a short binary string, or (b) a 10MB blob. 85

LIST OF FIGURES x

4.15 End-to-end benchmarks. (a) Image classification latency (right is p95-
p100). (b) Online video stabilization latency. (c) Online video stabi-
lization latency with failures (starting at p90). L=leases; O=ownership;
CP=checkpointing; WF=worker failure; OF=owner failure. 86

5.1 Exoshuffle builds on an extensible architecture. Shuffle as a library is
easier to develop and more flexible to integrate with applications. The
data plane ensures performance and reliability. 95

5.2 Shuffle algorithms for various applications. Exoshuffle uses distributed
futures to execute these DAGs. 97

5.3 Pipelining data preprocessing and shuffle with GPU tasks in an ML
training application. 98

5.4 Comparing a monolithic vs. application-level shuffle architecture. (a)
implements all coordination and block management through an exter-
nal shuffle service on each node, in this case implementing the Magnet
shuffle strategy (Appendix B.1.2). (b) shows the same shuffle strat-
egy but implemented as an application on a generic distributed futures
system. 104

5.5 Comparing job completion times on the Sort Benchmark. The dashed
lines indicate the theoretical baseline (§5.5.1.1). Exoshuffle is abbrevi-
ated as ES. 109

5.6 Comparing shuffle time in Dask and Ray. Legends show number of
processes × threads. 112

5.7 Effect of I/O optimizations in Ray. 112

6.1 (a) An example workflow with internal outputs (e.g., a out) and ex-
ternal outputs (e.g., put(key,val)). (b) The most efficient recovery
strategy depends on output visibility and nondeterminism. 123

6.2 (a) ETL workflow today, using external outputs for communication.
(b) The same ETL workflow with internal outputs only. (c) ML train-
ing workflow today, with external outputs and manual orchestration
within a task. (d) The same ML workflow with internal outputs only,
and orchestration is handled by the workflow system. Third-party
framework state (TF workers) can be passed between workflow tasks. 124

6.3 Serverless workflow systems [188, 216, 110] guarantee exactly-once se-
mantics by interposing on all communication to external storage, e.g.,
through a transaction buffer, and explicitly managing visibility of these
external effects. 126

LIST OF FIGURES xi

6.4 (a) Task annotations. Edge cuts represent checkpoint=True. (b)
Passing references (small boxes) in an ML workflow. Blue Refs are
actors that wrap TensorFlow worker state. (c) Passing an ActorRef

in an ETL workflow. B and C call read-only methods on the Spark
context actor. 129

6.5 Workflow architecture. The controller and executors are RPC-like ser-
vices built using Ray actors. Each invocation on these services returns
a distributed future (system-internal Refs). 135

6.6 End-to-end duration for the ML workflow application shown in Fig-
ures 6.2d and 6.4b. Left: End-to-end duration without failure. Right:
End-to-end duration with different failure types. The shadow repre-
sents the execution time without failure. 137

6.7 (a) Response latency percentile for a serverless travel reservation bench-
mark [87]. (b) Median latency of the trip reservation request from the
travel reservation benchmark. Error bar represents 99-percentile la-
tency. 139

B.1 Comparing job completion times on the Sort Benchmark. The dashed
lines indicate the theoretical baseline (§5.5.1.1). Exoshuffle is abbrevi-
ated as ES. 193

B.2 Online aggregation. Dotted lines show map progress; solid, reduce
progress. 195

B.3 Single-node ML training for 20 epochs. 195
B.4 4-node, distributed ML training for 20 epochs. 195

C.1 (c) Latency CDF of online-offline graph processing. 203
C.2 Microbenchmarks. (a) Triggering and data passing latency of Ex-

oflow and other workflow systems, using AWS Lambda (λ) and Ray
as execution backends. Missing bars indicate limitations in inter-task
communication. (b) End-to-end run time for the ETL workflow shown
in Figures 6.2b and 6.4c, compared with Airflow and native Spark. . 205

C.3 Microbenchmarks, cont. Maximum task throughput (a: 1 task/DAG;
b: 100 tasks/DAG) of 10k tasks, compared against Ray as an optimal
baseline, on 1 node and 4 nodes. 206

xii

List of Tables

1.1 A comparison of abstractions used, from a traditional single-machine
OS (Unix/POSIX) to a representative distributed dataflow system (Na-
iad) to general-purpose distributed execution platforms (RPC + con-
tainer orchestrator vs. the work presented in this thesis). 3

1.2 DA=Data Analytics; ML=Machine Learning; G=General-purpose. A
comparison of features across distributed execution systems, focusing
on those relevant to data-intensive computing. The upper section
includes examples specialized to some application domain, while the
middle section includes general-purpose frameworks that may serve as
lower-level building blocks and “glue” systems for those in the upper
section. The last row describes the abstraction and system proposed
by this thesis. 6

2.1 A language-agnostic pass-by-reference API. 18
2.2 RPC-like systems that expose a shared address space. Each system was

designed for the listed application domain. Systems that implement
both first-class references and futures are distributed futures systems. 22

3.1 Task specification (version, predecessorId and applicationLog may be
updated after task creation to record nondeterminism) 42

3.2 Summary of mean latencies in milliseconds during normal operation
and during recovery for Ray with the lineage stash (LS) compared to
baseline systems on a variety of applications. For latency during a
failure in streaming (§3.5.2.3), we take the mean of all reported la-
tencies between the failure time to when the latency for new inputs
converges to normal operation. For the other applications, we report
the maximum latency. 53

4.1 Distributed futures API. The full API also includes an actor creation
call. A task may also return a DFut to its caller (nested DFuts are
automatically flattened). 65

4.2 Ownership table. The owner stores all fields. A borrower (Section 4.3.2)
only stores fields indicated by the *. 73

LIST OF TABLES xiii

5.1 Different shuffle systems are built to optimize shuffle for deployment
in different storage environments. 97

5.2 Approximate lines of code for implementing shuffle algorithms in Ex-
oshuffle versus in specialized shuffle systems. 111

6.1 Workflow API. Top: API calls exposed to the application. Middle:
Task annotations specified by application or third-party library. Bot-
tom: Exoflow-internal Ref API, pluggable by execution backend. . . 127

A.1 Full description of the References field in Table 4.2. Every process
with an instance of the DFut (either the owner or a borrower) maintains
these fields. 186

B.1 CloudSort costs over years. 196

xiv

Acknowledgments

One of my greatest qualms about starting a PhD was that I would end up working
on problems in isolation. It’s safe to say that this did not happen, and I have many
people to thank for that.

First and foremost, I would like to thank my advisor Ion Stoica. Ion taught me
nearly everything I know about how to do good research. At the risk of going against
his primary advice to focus, I’d like to thank Ion for several of the qualities that he
embodies and that I admire the most: his dedication to working on problems that
matter, his ability to simplify down to the fundamentals, and his boundless energy
in continuing to push the boundaries of what we believe is achievable.

I would like to thank the other members of my thesis and quals committees: Joe
Hellerstein, Matei Zaharia, Alvin Cheung, and Joey Gonzalez. Their feedback and
perspective throughout has been valuable and insightful. Be thankful that you are
reading this version of the thesis and not the one I gave to my thesis committee!

I would like to thank my undergraduate and MEng advisors, Frans Kaashoek and
Nickolai Zeldovich, who gave me my start in systems research an unknown number
of years ago now. Now that I am more aware of just how many things professors
are juggling, I feel even more grateful for the time and attention you gave to all of
your students, both in the classroom and in research. Without your encouragement,
mentorship, and support, I probably would have just done another internship.

I would like to thank my other wonderful coauthors and collaborators from grad-
uate school. In roughly chronological order: Philipp Moritz and Robert Nishihara,
for making my first few years of graduate school a delightful team experience; hope
we can share some ginger tea again soon. Eric Liang, for contributions to nearly every
chapter in this thesis, especially the ownership work, and for being an excellent judge
of system design; I couldn’t have asked for a better complement in building practical
large-scale systems. Edward Oakes, for contributions to the ownership work and for
being an all-around fun coding partner.

Although this thesis officially has only one author, two of the chapters in this
thesis in particular should truly have multiple authors. I would like to highlight these
two collaborators in particular: Frank Sifei Luan, for contributions to the Exoshuffle
work, and Siyuan Zhuang, for contributions to the Exoflow work. I feel truly priv-
ileged to have gotten the chance to work with you both and look forward to seeing
what you do next.

For the sake of keeping this short, I’d also like to acknowledge my other col-
leagues at Anyscale, many of whom I’ve worked closely with in developing Ray, and
some of the many coauthors that I’ve worked with during this thesis: Romil Bhard-
waj, SangBin Cho, Melih Elibol, Benjamin Hindman, Jaewan Hong, Zhuohan Li,
John Liagouris, Richard Liaw, Jianan Lu, Ujval Misra, Rishabh Poddar, Johann
Schleier-Smith, Alexey Tumanov, Zongheng Yang, Samyu Yagati, Siyuan Zhuang,
and Danyang Zhuo. I sincerely hope we all get more opportunities to collaborate.

LIST OF TABLES xv

Those are some of the names on the official record, but of course graduate
school would not have been the same without the wonderful community of students,
postdocs, faculty, and staff at Berkeley, the RISELab, and NetSys. I learned so much
from you all, and much more importantly, you made graduate school life fun!

Next a special shout-out to friends who kept me happy, healthy, and sane all
during grad school. To my lifelong friends from Burton Third, here’s to 333rd more
years! And to the many wonderful friends I made during my years at Berkeley: my
labmates, my neighbors in NetSys and on the 5th floor of Soda, my roommates, and
my cohort from PhD visit days.

Finally, I want to thank my family. First to Tyler, my partner in life who has
been with me through the good and the bad, the adventures and the everyday. I
truly cannot imagine how grad school would have been without you, and I can’t wait
for our next chapter together. To Tyler’s mother Ruth, who kept us well-supplied in
cookies and love all through grad school. To my sister Jie, my brother Peter, and the
beautiful family that you’ve brought to us; I’m so excited to see Forest and Orion
grow up with us. And last but not least, to my parents, whose unconditional love,
support, and sacrifice are the reasons I’m here.

1

Chapter 1

Introduction

Scaling applications with distributed execution has now become the norm. On
one hand, commodity hardware is colliding with fundamental limits in compute and
memory scalability. On the other hand, data-intensive applications are continuing to
grow in scale, ubiquity, and diversity.

On the hardware side, the end of Moore’s Law and Dennard scaling has meant
that application performance must now be scaled horizontally, by leveraging multiple
machines, and through specialized hardware, such as with GPUs for machine learning
(ML). The difficulty of scaling memory capacity has meant that memory continues to
be the limited resource in data-intensive and ML applications. Meanwhile, significant
performance and/or durability differences persist between traditional DRAM versus
emerging technologies in nonvolatile storage and remote memory access. Thus, re-
ducing data copies and data movement continue to be important factors in ensuring
performance for data-intensive applications.

On the applications side, an important and inevitable trend is heterogeneity.
Application heterogeneity creates diversity and complexity in the underlying software
systems. For example, diversity in end use cases for data analytics has led to a
dichotomy between distributed systems that use batch vs. stream processing. The
rise of ML has complicated this picture further, as these workloads often require
both analytics-like data processing on CPUs and scientific computing-like processing
on GPUs. Differences between GPUs and CPUs complicate the usual problems in
distributed systems of resource management, communication, and fault tolerance.

Application heterogeneity has led to a myriad of specialized distributed execution
frameworks designed to support applications within specific domains. While this
reduces burden for standalone applications that fit into one domain, it also creates
three problems.

1. System implementation effort: Frameworks are developed in isolation, lead-
ing to duplicated development effort across different frameworks.

2. Evolvability: Frameworks are often built as monolithic distributed systems

CHAPTER 1. INTRODUCTION 2

on top of low-level APIs such as remote procedure calls (RPCs) and OS system
calls. This makes the frameworks difficult to evolve and extend as they mature.
In combination with the above, the result is that features and optimizations
introduced in one framework are not easily portable to another.

3. Inter-framework applications: Due to workload heterogeneity, an impor-
tant end use case is applications that might span multiple domains. In these
cases, application development requires stitching together different specialized
frameworks. Doing so efficiently requires coordinated data movement and shar-
ing of cluster resources across frameworks. These problems are left to the end
developer.

The role of an operating system (OS) is to provide essential services among differ-
ent applications that share the same physical resources. In addition, POSIX provides
a common standard for operations such as filesystem access and inter-process com-
munication. In the single-machine setting, this has of course been wildly successful.
However, we lack such a system for the distributed setting. Application-specific dis-
tributed frameworks can play such a role, but only for a limited application domain.
Lower-level interfaces such as remote procedure calls (RPC) are a general-purpose
standard but limited in their ability to provide essential OS services such as memory
management (Table 1.1).

An OS for distributed applications would allow specialized distributed frame-
works to be developed as libraries that share a common underlying execution layer.
Towards this vision, the focus of this thesis is on the design of an intermediate and
interoperable execution layer that handles common problems in distributed execu-
tion and memory management. Such a layer would make domain-specific frameworks
easier to build, evolve, and compose:

1. System implementation effort: Libraries can share key functionality such
as garbage collection and fault tolerance for distributed memory. Development
of future domain-specific libraries is also accelerated.

2. Evolvability: By factoring out a common intermediate layer, we can decouple
system concerns that are currently entangled, internal to monolithic distributed
frameworks. This allows greater evolvability at the library layer, which can now
deal with higher-level and more domain-specific concerns.

3. Inter-framework applications: By sharing a common distributed scheduling
and memory layer, composition of libraries can be accomplished with lower
developer and performance overhead. For example, physical data copies between
libraries can be shared.

Some essential distributed services have already become standard. For example,
the modern analogy to a single-machine file system or database is a cloud blob store

CHAPTER 1. INTRODUCTION 3

RPC +
container Distributed OS

Unix/POSIX Naiad orchestrator (this thesis)

Computation
Processes, Dataflow Containers Actors, tasks

threads

Memory
Virtual Event

-
Distributed

memory stream futures

Communication Sockets
Event

RPC RPC
stream

Storage
File Cloud Cloud Cloud

system storage storage storage

Table 1.1: A comparison of abstractions used, from a traditional single-machine OS
(Unix/POSIX) to a representative distributed dataflow system (Naiad) to general-
purpose distributed execution platforms (RPC + container orchestrator vs. the work
presented in this thesis).

or database. However, we argue in this thesis that distributed execution does not
yet have a comparable standard. We draw the requirements for a common execution
layer from existing data-intensive frameworks, whose functionality we would like to
factor out, and by analogy to Unix, whose functionality we would like to emulate but
in the distributed setting.

1. Computation: Similar to POSIX processes and threads, the unit of compu-
tation must be flexible. In the distributed setting, this means that it must be
possible to express different models of parallelism, from data parallelism in big
data systems to model parallelism in distributed ML systems. Concretely, the
abstraction should support both stateless and stateful computation, and allow
for system implementations that can dynamically spawn computation in mil-
liseconds or less, in order to support a wide range of computation granularities.

2. Memory: Similar to virtual memory, there must exist an abstraction for dis-
tributed memory that makes the location of the data transparent. This is to
enable factoring out problems common in data-intensive applications, such as
sharing physical memory, reducing data movement and swapping to disk. It
also implies that the system must provide key automatic distributed memory
management features, e.g., memory allocation, deallocation, and movement.

3. Communication: Similar to POSIX sockets, there must be a standard prim-
itive for communication with other processes. This is to support orchestration
of distributed execution, both intra- and inter-framework.

CHAPTER 1. INTRODUCTION 4

4. Fault tolerance: Handling process and memory faults becomes a much more
complex problem in the distributed setting. Ideally, the system would provide
failure transparency. However, a general-purpose solution is likely to add high
run-time performance overheads. Thus, instead the goal in this thesis is to
provide a flexible spectrum between recovery guarantees vs. run-time overheads.

This thesis describes a general-purpose distributed system called Ray that meets
these requirements. We take inspiration from what is arguably the closest popular
example of a distributed OS that exists today: a container orchestrator such as Ku-
bernetes [53] combined with RPC for communication (Table 1.1). This combination
is popularly used to support microservices applications but lacks three of the key
features needed in data-intensive systems: a fine-grained and dynamic unit of paral-
lelism, an abstraction for distributed memory, and (a choice of) failure transparency.

Thus, we first propose a general-purpose programming interface that extends
RPC with these features. In particular, we use the actor model for computation, and
a single function call as the smallest unit of parallelism, i.e. a task. We also propose
a novel primitive which we call distributed futures, as an abstraction for distributed
memory (Chapter 2). In traditional RPC, all data sent from the caller to the callee
must be copied by value, which becomes expensive for large data. This means that
data-intensive frameworks built directly on top of RPC must often implement addi-
tional systems to manage distributed memory efficiently. Distributed futures enable
pass-by-reference semantics for RPC, allowing callers to send data without necessarily
having it local. In this way, distributed futures allow distributed memory manage-
ment to be factored out into a common underlying system.

The remainder of this thesis focuses on the design of this system. The presented
architecture provides automatic management of distributed memory and transparent
recovery for applications with deterministic and idempotent tasks (Chapter 4). We
show how this system factors out system complexity from data-intensive applications
without sacrificing performance, using MapReduce workloads as an example (Chap-
ter 5). Finally, we show how stronger recovery guarantees can be layered on top of
this core architecture to provide greater recovery flexibility to end applications (Chap-
ter 6). Thus, we show how an end-to-end approach [173] to fault tolerance can expand
system generality.

Thesis: Distributed futures and actors, combined with an end-to-end approach to
fault tolerance, can serve as a general-purpose and interoperable execution subtrate
for data-intensive applications.

Today, we already have substantial evidence towards this thesis. For example, in
2022, the Ray system was used to train the large language model (LLM) that powers
ChatGPT and is one of the largest ML models to date. The main reasons for this
choice, compared to other popular general-purpose choices such as MPI, were the
dynamicity and fault tolerance of the system, as described in Chapter 4. We have

CHAPTER 1. INTRODUCTION 5

also used the Ray system as an intermediate execution substrate for a MapReduce-
like framework, replacing RPC to enable greater evolvability and interoperability with
other data-intensive applications. In 2023, this system was used to break the world
record in CloudSort, which measures the cost of sorting 100TB of data in the public
cloud [131].

1.1 The Landscape of Data-Intensive Applications

Here, we motivate the three outlined requirements: (1) a flexible unit of parallel
computation, (2) an abstraction for distributed memory, and (3) developer choice over
recovery strategy. In particular, we will argue that despite a myriad of distributed
execution frameworks that aim to be general-purpose, application needs regarding
these three features continue to evolve, making it challenging to provide a one-size-
fits-all system.

We overview these challenges by contrasting the requirements of distributed
data analytics vs. more recent ML workloads in model training and inference, many
of which are supported today by the first section of systems shown in Table 1.2.
The key difference between these workloads is their parallelism strategy. While both
employ data parallelism, the required systems are worlds apart. Data analytics trans-
forms can often be applied independently to arbitrary partitions of data, making it
more amenable to elastic, asynchronous, and heterogeneous compute. In contrast,
ML computation requires data-parallel workers to communicate frequently and exe-
cute in lockstep; thus static, synchronous, and homogeneous clusters make efficiency
much simpler to achieve. Furthermore, while data analytics can continue to use data
parallelism to scale out and overcome the memory wall, larger ML models require
additional model parallelism strategies. Together, these differences motivate the re-
quirement for a flexible unit of parallel computation.

Because of these differences, data analytics and ML workloads have also inspired
entirely separate implementations, even though both categories of systems often ex-
pose a dataflow-based API (Figures 1.1a and 1.2a). However, this state of the world is
also not ideal, as many end-to-end workloads require both CPU and accelerator exe-
cution. For example, model training and inference on a GPU often require pipelining
with CPU-based data loading and preprocessing (Figure 1.2b). Even predominantly
GPU-based ML workloads offload compute and/or memory to the CPU [170]. These
heterogeneous applications motivate the requirement for an abstraction for distributed
memory, which would allow different frameworks or fine-grained units of computation
to efficiently exchange data.

Finally, the differences in parallelism strategy also impact the appropriate choice
of recovery strategy. In data analytics frameworks such as MapReduce, Spark, and
Naiad, the challenges in fault tolerance often stem from the problem of producing
consistent snapshots [60] with low overhead. In particular, each datum should appear

CHAPTER 1. INTRODUCTION 6

S
y
st

em

Applications

Message location transparency

Transparent fault tolerance

Automatic resource management

Stateful API

Abstraction

M
ap

R
ed

u
ce

[7
2,

20
5]

D
A

X
X

X
×

M
ap

,
re

d
u
ce

A
p
ac

h
e

S
p
ar

k
[2

12
]

D
A

X
X

X
X

/×
D

at
afl

ow
(R

D
D

)
A

p
ac

h
e

F
li
n
k

[5
6]

D
A

X
X

X
X

D
at

afl
ow

(s
tr

ea
m

)
N

ai
ad

[1
46

]
D

A
X

X
X

X
T

im
el

y
d
at

afl
ow

C
ie

l
[1

48
]

D
A

X
X

X
×

F
u
n
ct

io
n

ca
ll

D
is

tr
ib

u
te

d
T

en
so

rF
lo

w
[1

8]
M

L
X

X
X

X
D

at
afl

ow
(t

en
so

rs
)

P
y
T

or
ch

R
P

C
[7

0]
M

L
X

×
×

X
F

u
n
ct

io
n

ca
ll

(t
en

so
rs

)

R
P

C
[4

4,
9]

G
×

×
×

X
F

u
n
ct

io
n

ca
ll

R
P

C
+

ke
y
-v

al
u
e

st
or

e
G

X
×

×
X

F
u
n
ct

io
n

ca
ll

A
ct

or
s

[1
95

,
2,

42
]

G
×

X
/×

X
X

M
es

sa
ge

/f
u
n
ct

io
n

ca
ll

M
es

sa
ge

-p
as

si
n
g

[1
90

,
86

,
78

]
G

×
×

×
X

M
es

sa
ge

D
at

al
og

d
er

iv
at

io
n
s

[2
4,

65
]

G
X

X
X

X
D

ec
la

ra
ti

ve
ru

le
s

S
er

ve
rl

es
s

fu
n
ct

io
n
s

[1
76

,
52

]
G

×
×

X
×

F
u
n
ct

io
n

ca
ll

D
is

tr
ib

u
te

d
sh

ar
ed

m
em

or
y

[1
53

]
G

X
×

X
X

T
h
re

ad
s+

sh
ar

ed
m

em
or

y

D
is

tr
ib

u
te

d
fu

tu
re

s
+

ac
to

rs
(R

ay
)

G
X

X
/×

X
X

F
u
n
ct

io
n

ca
ll

Table 1.2: DA=Data Analytics; ML=Machine Learning; G=General-purpose. A
comparison of features across distributed execution systems, focusing on those rele-
vant to data-intensive computing. The upper section includes examples specialized to
some application domain, while the middle section includes general-purpose frame-
works that may serve as lower-level building blocks and “glue” systems for those in
the upper section. The last row describes the abstraction and system proposed by
this thesis.

CHAPTER 1. INTRODUCTION 7

selectsortfilter

(a) A dataflow DAG of transforms specified by the application.

stagedata

(b) Batch processing execution of the DAG.

source sink

operator

(c) Stream processing execution of the DAG.

Figure 1.1: Application and execution models for data analytics workloads.

to processed exactly once in the snapshot. When the computation is inherently
synchronous and nondeterministic, as in ML, producing a consistent snapshot is much
simpler. Instead, the challenges in fault tolerance often stem from the tightly coupled
and fate-sharing nature of ML clusters. These differences motivate the requirement
for developer choice over recovery strategy.

We expand on these differences by first examining the generality and limitations
of the primary execution models for data analytics: batch processing (Figure 1.1b) and
stream processing (Figure 1.1c). Batch processing produces results over a fixed-size
“batch” of data at a time, while stream processing may execute over an unbounded
stream of data. Batch processing is typically used in offline scenarios, in which a large
amount of input data must be processed at high throughput and there is no need for
user interaction. Stream processing is more commonly used in online scenarios, as it
can provide low-latency incremental results over a live stream of events.

Both batch and stream processing take advantage of data parallelism. Typically,
the application “driver” first specifies a DAG of data transforms to the system (Fig-

CHAPTER 1. INTRODUCTION 8

ure 1.1a). Transforms are often implemented as map and/or reduce operations: a
map operation can be applied to each record individually while reduce operations ag-
gregate multiple records. For example, Figure 1.1a shows an application DAG where
filter and select are examples of map while sort requires a map and reduce. Map
and reduce operations can be transparently parallelized and scaled out by partitioning
the input dataset.

Batch processing systems such as MapReduce, Spark, and DryadLINQ require
the developer to decompose their application into a series of deterministic trans-
forms over an immutable dataset. Then, by partitioning the input dataset, each data
transform can be executed as a “stage” of parallel tasks, one for each partition (Fig-
ure 1.1b). All-to-all transforms such as a sort require a (logically) synchronous barrier
at the end of a stage to materialize results. Most batch dataflow systems use a central-
ized scheduler, and fault tolerance can be provided through transparent re-execution
of lost tasks.

Stream processing uses an asynchronous and stateful model, in which each data
transform is physically instantiated as one or more “operators” that share an input
stream (Figure 1.1c). Operators are placed before execution, but data partitioning
and task scheduling are done on the fly, as each operator independently reads from
its input stream once it is ready to process another record. Operators may have
local state, including an output stream buffer and user-defined state. Typically, fault
tolerance is provided through global checkpointing and rollback.

Batch and stream processing are both general-purpose models that can in prin-
ciple capture distributed deep learning workloads in addition to data analytics. At a
high level, ML workloads can be expressed as a logical DAG of map and reduce oper-
ations. For example, Figure 1.2a shows how an ML training job might be expressed
as a DAG that takes the training dataset as input. However, in practice, extending
existing data analytics frameworks to support deep learning requires high effort [208]
and the result can incur significant performance overheads. The reasons stem from
the fundamentally different core computation patterns of deep learning: stochastic
gradient descent and accelerator-based computation.

Stochastic gradient descent (SGD) can be scaled out via data parallelism by
creating multiple copies of a model, each executing over a disjoint subset of the
training dataset. However, SGD is also inherently sequential, as weights must be
updated before taking another step. Thus, scaling SGD with data parallelism is
nontrivial and requires frequent communication and synchronization between workers.

Frequent communication is a poor fit for batch processing systems; training deep
learning models on Spark for example can add an order of magnitude more overhead
than a specialized system such as TensorFlow [144]. Meanwhile, stream process-
ing systems often exploit asynchronous execution for better performance; frequent
synchronization negates this edge. As an example, Naiad is a general-purpose and
low-latency stream processing system that supports cyclical dataflow [146]. In prin-
ciple, such a system could achieve high performance for ML dataflow graphs as well.

CHAPTER 1. INTRODUCTION 9

gradient
aggregatebackprop

model update

data
preprocessing

model

(a) A machine learning training job, expressed as a dataflow DAG over the training
dataset.

…

…

…

map

train

GPU

GPU

GPU

map

…

CPU

CPU

CPU

(b) An example execution that involves both CPU-based preprocessing and GPU-
based training.

Figure 1.2: Application and an example execution for distributed ML training with
online data preprocessing.

However, Naiad’s focus is on incremental processing and inherently unpredictable in-
put events; ML dataflow systems assume synchronous computation and can thus use
fixed-size “mini-batches” to improve performance [18].

In addition, these per-layer operations usually require accelerators (often GPUs)
for sufficient performance. The use of accelerators creates significant challenges in
fault tolerance and resource management. First, because GPU workers must syn-
chronize frequently, the workers naturally fate-share. In contrast, batch processing
systems structure the execution so that workers can fail and recover independently.

Second, resource management becomes more complex with accelerators in gen-
eral and GPUs in particular. Frameworks such as Apache Spark [212] (batch pro-
cessing) and Naiad [146] (stream processing) are designed for multicore machines.
Their architectures rely on the OS to enable efficient sharing of physical memory
and cores among worker threads on the same machine. Unfortunately, it is relatively
expensive to share memory across CPU and GPU threads as it usually requires copy-

CHAPTER 1. INTRODUCTION 10

ing, which is limited by PCIe bandwidth [170]. Multiplexing GPU tasks (“kernels”)
is also challenging; since tasks are often memory-intensive, coordinating access to
shared memory resources is critical but can also add significant overheads [210]. In
addition, modern GPUs use specialized and proprietary communication links such as
NVIDIA’s NVLink that are physically separate from commodity networks.

Finally, the fully connected layers that are commonly found in deep learning
models typically require all model weights to be in memory to achieve acceptable
performance. When model size exceeds GPU memory capacity, this introduces an
additional challenge of model parallelism, or scaleout of a single model copy across
multiple GPUs [71, 183]. Model parallelism strategies can be further broken down
into tensor vs. pipeline parallelism. Scalability of both strategies is fundamentally
limited by increasing communication and/or memory cost [109, 218].

Given these issues, adding native and efficient GPU support to existing data-
parallel execution frameworks has proven to require significant effort and complex-
ity [208]. Meanwhile, it is also not sufficient to build completely distinct and GPU-
based frameworks, as many workloads require both CPU and GPU execution, such
as in Figure 1.2b.

1.2 Alternative Solutions

Monolithic frameworks. As a result of these differences, developers have built
monolithic execution frameworks that are specialized for distributed ML. For ex-
ample, Distributed TensorFlow, Apache MXNet, and PyTorch Distributed are all
designed for parallel and distributed SGD. These frameworks eschew high-level execu-
tion models such as batch and stream processing and instead re-implement a dataflow
interface using low-level message-passing interfaces. This allows for tight control over
scheduling of parallel execution and distributed memory management. They simi-
larly expose a DAG-based programming interface, but one that is highly specialized
to neural networks. Fault tolerance is commonly supported through checkpointing.

Inevitably, however, universality turns out to be difficult to achieve. Hyper-
parameter search, for example, requires hierarchical and data-dependent algorithms
that are difficult to express directly in DAG-based deep learning frameworks. Rein-
forcement learning requires both hierarchical algorithms and scale-out of black-box
third-party simulators that may be CPU-based [127]. Some workloads require sig-
nificant CPU-based data preprocessing and shuffling that must be overlapped with
GPU computation while scaled and recovered independently [149]. End-to-end ML
workflows that cover the entire model development lifecycle, from model design to
training to (re-)deployment, may require these steps and more.

Building end-to-end ML workflows with monolithic execution frameworks thus
requires one of two strategies. One option is to extend monolithic frameworks to sup-
port more and more types of workloads. This unfortunately has a limit in application

CHAPTER 1. INTRODUCTION 11

generality. As more varied workloads are supported, the framework becomes more
complex and difficult to evolve. Even while ML training frameworks converge, infer-
ence, for example, turns out to require significantly different systems. This is due to
the requirement of low latency for dynamic requests in inference, vs. high-throughput
on static inputs for training.

Glue systems. The other option is to have application developers stitch together
frameworks and custom code. This can be accomplished with general-purpose “glue”
systems such as RPC, message-passing, and actor-based frameworks (the middle sec-
tion of systems in Table 1.2). Such frameworks provide lower-level messaging prim-
itives for general-purpose distributed execution and are explicitly designed to inter-
operate with third-party systems.

For example, to support an ML training workflow that involves data prepro-
cessing, the data may first be preprocessed on CPUs with a Spark job, then sent
to Distributed TensorFlow for GPU consumption (Figure 1.2b). This process would
be repeated until training completes. The two job types could be coordinated and
overlapped using RPC.

However, this strategy also puts the onus of achieving end-to-end properties such
as performance and fault tolerance on the application developer, as glue frameworks
typically do not take on the necessary responsibilities of managing resources, data
movement, and recovery across frameworks.

Consider resource management in glue frameworks. RPC, message-passing and
actor-based systems often support parallel execution through service sharding as well
as multithreaded and/or asynchronous remote invocation. One caveat, however, is
that these systems typically do not manage application resources. For example, sup-
pose some application workflow involves parallel execution across two distributed
application frameworks sharing a cluster, and both are built on top of RPC. The
RPC layer has no visibility into the resources held by each application framework,
and thus will not be able to ensure that resources are appropriately allocated be-
tween the two frameworks. This responsibility is typically left to a third party, e.g.,
a container orchestrator such as Kubernetes [53].

Efficient data movement is a greater challenge. While the location of a server
(e.g., an RPC service or an actor) may be transparent, the message data that is
sent to the server is not. In particular, a client must have the message data local,
and sending the data requires copying the data. For request-response paradigms, the
server must similarly copy the response data back to the client. This can be expensive
when the data sent is large. It is also unnecessary when the response is meant to be
processed by another server.

Monolithic frameworks often avoid this bottleneck by building custom subsys-
tems for distributed memory management. Unfortunately, however, using a glue
system to pass data between monolithic frameworks will still result in copying the
data, often via disk or network.

CHAPTER 1. INTRODUCTION 12

Finally, glue systems do not provide the same level of failure transparency that is
typically provided by an application-specific framework. This is due to their general-
purpose nature: providing the same level of failure transparency and durability as a
framework specialized to distributed ML, while also providing generality, would result
in exorbitant performance overheads and/or system complexity. A single strategy for
recovery, such as message logging, cannot provide optimal runtime overhead for all
applications [78]. Offering multiple strategies increases complexity. As a result, most
glue systems offer only weak recovery guarantees. Typically, this means providing
at-most-once or at-least-once execution semantics, with optional utilities to aid in
building fault-tolerant services [2, 3].

Thus, while glue systems offer useful utilities for scheduling and communication
between monolithic frameworks, their functionality falls short of modern application
demands. Managing resources, data movement, and recovery across frameworks be-
comes the developer’s responsibility. Given the complexity of this problem, developers
will sacrifice performance for a simple solution. For example, writing data to a highly
available and scalable cloud storage system is a simple solution. It allows developers
to move data in a fault-tolerant way between two different frameworks, and without
having to manage any shared resources between the producer and consumer(s). How-
ever, this method can also result in unnecessarily high latency and wasted resources.

1.3 Overview and Contributions

In this thesis, we propose a general-purpose execution layer for data-intensive appli-
cations and a flexible approach to fault tolerance.

In Chapter 2, we first propose a general-purpose distributed programming inter-
face based on distributed futures, actors, and tasks. Distributed futures extend RPC
with a shared and immutable address space and thus provide a common abstraction
for distributed memory. We explore how such an interface can and has been used to
support different kinds of applications, as well as the implementation challenges that
it imposes.

The remaining chapters describe an architecture for this interface. We use Chap-
ter 3 to motivate the need for an architecture that provides a choice of recovery
strategy, which is realized in Chapters 4 and 6. Chapter 4 also describes the design
of the distributed memory subsystem, which is leveraged in Chapter 5 to support
MapReduce-style applications.

Thus, in Chapter 3, we first present the lineage stash, a fault tolerance technique
that targets the proposed interface and provides a strong guarantee of exactly-once
semantics for distributed futures and actors. The lineage stash aims to resolve the
tradeoff between checkpointing- vs lineage-based recovery approaches: results for
applications in distributed training and stream processing show that the lineage stash
provides task execution latencies similar to checkpointing alone, while incurring a

CHAPTER 1. INTRODUCTION 13

Cloud

Chapter 4: Ownership

R
ei

nf
or

ce
m

en
t l

ea
rn

in
g

Chapter 5:
Exoshuffle

D
is

tri
bu

te
d

S
Q

L

M
L

pr
ep

ro
ce

ss
in

g

D
is

tri
bu

te
d

M
L

tra
in

in
g

D
is

tri
bu

te
d

M
L

se
rv

in
g

Exactly-once workflows

Chapter 2: Distributed futures + actors

MapReduce

Chapter 6:
Exoflow

Distributed futures + actors + task annotations

System described
in thesis

Abstraction

Application

Legend

Figure 1.3: Thesis overview. Light blue indicates a system discussed in this thesis,
while dark blue indicates the abstraction exposed by that system. Light gray boxes
indicate application libraries that may be built on top of the system abstractions.

recovery overhead as low as other lineage-based approaches. However, the lineage
stash is designed for a specific category of applications: low-latency and data-intensive
applications that might contain nondeterministic control flow. Thus, this chapter also
serves to illustrate the challenges in providing one-size-fits-all transparent recovery as
part of a general-purpose execution layer.

In Chapter 4, we present ownership, which serves as the foundation for an al-
ternative and extensible approach to fault tolerance. The ownership architecture for
distributed futures and actors provides RPC-like latency and scalability, but extends
RPC with a fault-tolerant distributed memory layer. The ownership architecture
provides minimal but essential recovery guarantees. Exactly-once semantics is only
guaranteed for deterministic and idempotent tasks. The system does not provide
durability or high availability for values stored in distributed memory. However, it
does provide essential fault tolerance features needed by most applications: a choice
between at-least-once or at-most-once semantics, and fault-tolerant distributed mem-
ory management. The latter comprises two properties under failure: 1) prevention
of distributed memory leaks (completeness), and 2) reachability and failure detection
for values in distributed memory (soundness).

CHAPTER 1. INTRODUCTION 14

Key applications of the ownership system that fit these assumptions include
those that can implement checkpointing at the application level with minimal effort
and overhead. For example, distributed ML training jobs are often run offline and can
straightforwardly checkpoint their state between epochs with minimal coordination.
Furthermore, applications that can be implemented with deterministic and idempo-
tent computations will benefit from transparent recovery. For example, in Chapter 5,
we show how Exoshuffle extends the ownership layer with out-of-core processing to
support the large-scale and fault-tolerant MapReduce applications commonly seen
in data analytics. We show that Exoshuffle can achieve comparable performance
and data scale as more specialized data processing frameworks, while also providing
greater system extensibility and application interoperability with domains outside of
data analytics, such as ML training.

In Chapter 6, we present Exoflow, a layer that builds upon the ownership system
to expand the recovery guarantees and support a broader set of applications. In par-
ticular, Exoflow is an orchestrator for programmatic and distributed workflows that
provides exactly-once semantics and durability to the application. Workflows are task
pipelines have traditionally been used to coordinate team processes; programmatic
workflows are ones that can be written as software while distributed workflows are
a more recent concept that are used to coordinate across distinct services or frame-
works [5, 8, 11]. Unlike other distributed workflow systems, Exoflow decouples the
unit of recovery from the unit of execution. In particular, different units of execution
may be recovered through different strategies, thus allowing more flexible tradeoffs
between run-time and recovery overheads. To do this, Exoflow extends distributed
futures with additional abstractions for expressing application semantics such as non-
determinism, which Exoflow then uses to decide how to recover each unit of execution.

We conclude in Chapter 7 with discussion of related work and future directions
towards a distributed OS for data-intensive applications. Broadly, future directions
are analogous to the problems found in traditional single-machine OSes. In particular,
these include: providing performant but extensible system mechanisms, greater ex-
tensibility towards heterogeneous devices such as GPUs, and codesign of distributed
execution systems with programming languages.

15

Chapter 2

Distributed futures and RPC

In this chapter, we present distributed futures, an extension to the popular RPC
API and the key abstraction used in the following chapters. We argue that dis-
tributed futures provides a necessary feature for data-intensive RPC applications: a
shared (but immutable) address space. Much like how RPC factors out communica-
tion from distributed applications, distributed futures factors out distributed memory
management from distributed data-intensive applications. Here, we lay out the mem-
ory management functionalities that may be factored out and present some of the
open challenges in building such a system. The architecture of such a system and the
challenges relating to fault tolerance are addressed in later chapters.

2.1 Introduction

RPC has been remarkably successful. Most distributed applications built today use an
RPC runtime such as gRPC [9] or Apache Thrift [6]. The key behind RPC’s success is
the simple but powerful semantics of its programming model. In particular, RPC has
no shared state: arguments and return values are passed by value between processes,
meaning that they must be copied into the request or reply. Thus, arguments and
return values are inherently immutable. These simple semantics facilitate highly effi-
cient and reliable implementations, as no distributed coordination is required, while
remaining useful for a general set of distributed applications. The generality of RPC
also enables interoperability : any application that speaks RPC can communicate with
another application that understands RPC.

However, the lack of shared state, and in particular a shared address space, has
its limitations. In particular, for data processing domains such as data analytics and
machine learning, end applications do not typically use RPC directly. This is because
pass-by-value works well when data values are small, but when data values are large,
it may cause inefficient data transfers. For example, if a caller invokes x = f() then

CHAPTER 2. DISTRIBUTED FUTURES AND RPC 16

RPC

A B

E

C

application

i ii

1 2 3
F (e.g., Distributed TF)D (e.g., Apache Spark)

Figure 2.1: A single “application” actually consists of many components and distinct
frameworks. With no shared address space, data (squares) must be copied between
different components.

Servers
 request

 data

Executors

Scheduler + Mem Mgt

request
Distributed object store

Load balancer

cache
 client

(a)

Servers
 request

 data

Executors

Scheduler + Mem Mgt

request
Distributed object store

Load balancer

cache
 client

(b)

Figure 2.2: Logical RPC architecture: (a) today, and (b) with a shared address space
and automatic memory management.

y = g(x), it would have to receive x and copy x to g’s executor, even if f executed
on the same server as g.

There has been more than one proposal to address this problem by introducing
a shared address space at the application level [62]. The common approach is to
enable an RPC procedure to store its results in a shared data store and then return
a reference, i.e., some metadata that acts as a pointer to the stored data. The RPC
caller can then use the reference to retrieve the actual value when it needs it, or pass
the reference on in a subsequent RPC request.

While a shared address space can eliminate inefficient or unnecessary data copies,
doing it at the application level places a significant burden on the application pro-
grammer to manage the data. For example, the application must decide when some
stored data is no longer used and can be safely deleted. This is a difficult problem,
analogous to manual memory management in a non-distributed program.

Thus, instead of using RPC directly, distributed data-intensive applications tend
to be built on top of specialized frameworks like Apache Spark [212] for big data
processing or Distributed TensorFlow [18] for machine learning. These frameworks
handle difficult systems problems such as memory management on behalf of the ap-
plication. However, with no common foundation like RPC, interoperability between

CHAPTER 2. DISTRIBUTED FUTURES AND RPC 17

these frameworks is a problem. Resulting applications resemble Figure 2.1, where
some components communicate via RPC and others communicate via a framework-
specific protocol. This often results in redundant copies of the same data siloed in
different parts of an application.

We argue that RPC itself should be extended with a shared address space and
first-class references. This has two application benefits: 1) by allowing data-intensive
applications to be built directly on RPC, we promote interoperability, and 2) by shift-
ing automatic memory management to a common system, we can reduce duplicated
work between specialized frameworks. Indeed, we are already starting to see this
realized by the latest generation of data systems, including Ciel [148], Distributed
PyTorch [12], and Ray [145], the system described in this thesis. All implement an
RPC-like interface with a shared address space. Our aim is to bring attention to the
common threads and challenges of these and future systems.

At first glance, introducing a shared address space to RPC seems to directly
contradict the original authors, who argued that doing so would make the semantics
more complex and the implementation less efficient [44]. We believe, however, that
these concerns stem not from a shared address space itself, but rather from supporting
mutability. By adding an immutable shared address space, we can preserve RPC’s
original semantics while enabling data-intensive applications.

Immutability simplifies the system design, but what concretely would support-
ing a shared address space require? To answer this question, we first consider the
design of RPC systems today. While RPC is often assumed to be a point-to-point
communication between the caller and a specific callee, today’s RPC systems look
more like Figure 2.2a: a load balancer schedules an RPC to one of several servers
(which can themselves act as an RPC client). Even the original authors of RPC
provided such an option, known as dynamic binding [44]. Extending this architecture
with an immutable shared address space would mean: (1) augmenting each “execu-
tor” with a local data store or cache, and (2) enhancing the load balancer to be
memory-aware (Figure 2.2b).

In the rest of this chapter we explain what it means to add first-class support for
immutable shared state and pass-by-reference semantics to RPC. We give examples
of applications that already rely on this interface today. Then, drawing from recent
data systems, we discuss the challenges and design options in implementing such an
interface.

2.2 API

There are two goals for the API: (1) It should preserve the simple semantics of RPC,
and (2) It should allow the system to manage memory on behalf of the application.
We use immutability to achieve the former. It is the simplest approach because the
system does not need to define and implement a consistency model as part of the API.

CHAPTER 2. DISTRIBUTED FUTURES AND RPC 18

Ref r A first-class type. Points to a value which may not exist yet
and may be located on a remote node.

shared(Ref r) →
SharedRef

Returns a copy of r that can be shared with another client by
passing to an RPC.

f.remote(Ref r)

→ Ref

Invoke f. Pass the argument by reference: the executor re-
ceives the dereferenced argument. Returns a Ref pointing to
the eventual reply.

f.remote(SharedRef

r) → Ref

Invoke f. Pass the argument by shared reference: the executor
receives the corresponding Ref. Returns a Ref pointing to the
eventual reply.

get(Ref r) → Val Dereference r. This blocks until the underlying value is com-
puted and fetched to local memory.

delete(Ref r) Called implicitly when r goes out scope. The client may not use
r in subsequent API calls.

Table 2.1: A language-agnostic pass-by-reference API.

Meanwhile, the application remains free to implement mutability with local state.
We will use the term “client” to mean the process that invokes an RPC, while

the “executor” refers to the server process that executes the RPC. Note that the
executor may also be an RPC client, if it invokes RPCs on other executors.

First-class references. A first-class primitive is one that is part of the system
API. For references, it means that the RPC system is involved in the creation and
destruction of all clients’ references. Compared to the original RPC proposal [44],
there are three key differences in the API (Table 2.1):

First, all RPC invocations return a reference (of type Ref). The caller can
dereference an RPC’s reply when it needs it by calling get. We choose to have all
RPC invocations return a reference so that the application never needs to decide
whether an executor should return by value or by reference. Instead, this is decided
transparently by the system. References are logical, so a system implementation can
choose to pass back all replies by value, by reference, or both, e.g., depending on the
size of the reply. A future extension to the API could allow applications to control
this decision, if needed.

Second, the client can pass a reference as an RPC argument, in addition to nor-
mal values. There are two options for passing Refs as arguments. If a function with
the signature f(int x) is passed a Ref argument, the system implicitly dereferences
the Ref to its int value before dispatching f to its executor. Thus, the executor never
sees the Ref.

In some cases, it may be useful for another executor receive the reference instead
of the value. To support this, we also support remote functions with the signature

CHAPTER 2. DISTRIBUTED FUTURES AND RPC 19

f(Ref r), and the caller must pass a SharedRef instead of a noraml Ref. The
executor in this case shares the Ref argument passed by its caller, meaning that the
executor can further pass the Ref to another RPC or call get.

The intention behind the two different API options is to make the developer
conscious of data movement and to allow the system to optimize memory manage-
ment. With implicit dereferencing, the callee does not begin execution until all of
its Ref arguments are local. This can require more memory usage and may not be
suitable for incremental computation, but it also gives the system control over mem-
ory management, e.g., it can wait until all arguments are ready before scheduling
the function. On the other hand, with SharedRefs, the system has less visibility
into how the callee will use the received Ref, i.e., whether and when it will call get.
SharedRefs do however allow for efficient delegation: the executor may forward the
shared Ref to another executor for the actual computation, without needing the data
local.

Third, a client uses the delete call to notify the system when it no longer needs
a value. Note that this is implicit : it is not exposed to the application and should be
called automatically by the language bindings when a Ref goes out of scope. This is
important for memory safety, as we will see next.

Distributed futures. A third requirement for the API is that it should explicitly
support parallelism. Parallelism is of course critical to the performance of many
data-intensive applications. It has already been addressed in part by the addition
of asynchrony to RPC, hence the focus in this chapter is primarily on first-class
references and their implications for memory management.

A common asynchronous API has each RPC invocation immediately return a
future, or a pointer to the eventual reply [35, 129]. In Section 2.3, we explain how this
in conjunction with a reference, i.e. a pointer to a possibly remote value, gives the
system insight into the application, by giving a view of the caller’s future requests.
Thus, we introduce the term distributed future to mean a future that is also a first-
class reference to a possibly remote value. The impact on the API shown in Table 2.1
is that the function invocations are asynchronous.

2.3 Automatic memory management

First-class references allow the system to manage distributed memory on behalf of
the application. For contrast, we will consider an application-level shared address
space implementation that combines a key-value store with an existing RPC system.
The application uses keys as references. We will call these raw references because
their operations are not encapsulated by the RPC API. Thus, the system is fully or
partially unaware of operations such as reference creation or deletion.

CHAPTER 2. DISTRIBUTED FUTURES AND RPC 20

We consider four key operations in memory management, the concrete design of
which we will explore in later chapters:

Allocation. The minimum requirement is the ability to allocate memory without
specifying where. This is analogous to malloc, which handles problems such as frag-
mentation in a single-process program. This requirement is easily met by both raw
and first-class references, as key-value stores do not require the client to specify where
to put a value.

Reclamation. Reclaiming memory once there are no more references is a key re-
quirement for applications with nontrivial memory usage. This is challenging in a
distributed setting. It requires a fault-tolerant protocol for distributed garbage col-
lection [160]. A key benefit of first-class references is that the API allows the system
to implement this protocol on behalf of the application because all reference creation
and destruction operations are encapsulated in the API.

In contrast, it is virtually impossible for the system to determine whether the
application still holds a raw reference, analogous to determining whether a raw pointer
is still in scope in a single-progress program. The problem is that raw references allow
and even encourage the application to create a reference at any time, e.g., by hard-
coding a string key. Thus, correctness requires manual memory management.

Movement. The primary motivation of pass-by-reference semantics is to eliminate
unnecessary distributed data movement. The use of raw references shifts the respon-
sibility of data movement to the system: the application has to specify when to move
data (i.e., by calling get), but not how or where. The use of first-class references in
combination with futures allows the system to also decide when to move data. By
coordinating data movement with request scheduling, the system has greater control
in optimizing data movement.

For example, a key system feature is data locality : when the data needed by a
request is large, the system can choose an executor near the data rather than moving
the data to the executor. This cannot be implemented with a put/get key-value
store interface. It is straightforward with first-class references because each request
specifies the Refs that it needs to the system, before placement.

Even if a key-value store were extended for data locality, we would still miss out
on valuable optimizations, such as pipelining of I/O and compute. For example, if
an executor had incoming requests f() and g(x), the system could schedule f() while
fetching x in parallel. The use of futures enables this optimization for requests from
the same client, by allowing a client to make multiple requests in parallel.

Thus, the Ref API gives the system visibility into each request’s data depen-
dencies, affording unique opportunities in optimizing data movement with request
scheduling. This also motivates our choice to expose two options for argument deref-

CHAPTER 2. DISTRIBUTED FUTURES AND RPC 21

erencing, either implicit (by passing a Ref) or explicit (by passing a SharedRef).
Much like raw references, there is ambiguity around if and when an executor will
dereference a SharedRef, which affects the usefulness of system optimizations. For
example, a request with SharedRef arguments may simply pass the references to an-
other RPC instead of dereferencing them directly. In this case, scheduling the request
according to data locality brings no benefit.

Memory pressure. To improve throughput, a single server machine generally ex-
ecutes multiple RPC requests concurrently. If the total memory footprint is higher
than the machine’s capacity, at least one process will be killed or swapped to disk by
the OS, incurring high overheads [15, 172]. For example, with pure pass-by-value, the
scheduler would not be able to queue new requests once the local memory capacity
was reached. With raw references, each request would contain only references to its
dependencies, so additional requests could be queued. However, this only defers the
problem: the concurrent requests would still overwhelm the machine once they began
execution and called get on their dependencies.

A memory-aware scheduler can ensure stability and performance by coordinating
the memory usage of concurrent requests. This is true independent of a shared address
space. However, a key challenge is determining each request’s memory requirements.
One could require developers to specify memory requirements, but in practice, this is
very difficult.

First-class references give the system rich information about each request’s mem-
ory requirements, with no developer effort. This is again because the scheduler has
visibility into each request’s dependencies. Thus, the scheduler could for example
choose a subset of requests for which to fetch the dependencies, based on dependency
size and the available memory.

Thus, only a system with first-class references can adequately handle reclama-
tion, movement, and memory pressure for the application. In fact, we argue that
RPC systems with a shared address space should not expose raw references to the
application. If they do, it is at the developer’s risk.

2.4 Is the API enough for applications?

The latest generation of distributed data systems shows us how valuable automatic
memory management is to applications. We argue that these systems are in fact RPC
systems with a shared address space (Table 2.2), even if they may not call themselves
as such. All have a function invocation-like interface. Most use an immutable shared
address space, and most use first-class references.

Despite the many API commonalities, these systems were originally proposed
for a wide range of application domains, from data analytics to machine learning.
We argue that the API proposed in Table 2.1 is sufficiently general because it can

CHAPTER 2. DISTRIBUTED FUTURES AND RPC 22

System Applications

Im
m

u
ta

b
le

F
ir

st
-c

la
ss

re
fs

F
u
tu

re
s

S
h
ar

ed
re

fs

S
ta

te
le

ss
fn

s

S
ta

te
fu

l
fn

s

Ciel [148] Data processing X X X X X ×
Ray [145] RL, ML X X X X X X
Dask [171] Data analytics X X X × X X/×
Distributed PyTorch [12] ML × X X X × X
Distributed TensorFlow [18] ML X X × × X X
Cloudburst [186] Stateful serverless × X/× X X X X

Table 2.2: RPC-like systems that expose a shared address space. Each system was
designed for the listed application domain. Systems that implement both first-class
references and futures are distributed futures systems.

be used to express any application targeted by one of the systems in Table 2.2. To
illustrate this, we will describe three concrete applications (Figure 2.3) that drove the
development of some of these systems.

Data processing. Ciel is a universal execution engine for distributed dataflow pro-
cessing that uses a distributed futures API virtually identical to that proposed [148].
Unlike data processing systems such as Apache Hadoop [205] and Spark [212], which
implement a data-parallel interface, Ciel uses task parallelism: each task is a func-
tion that executes on a data partition. For example, Figure 2.3a shows a simple
map-reduce application with two tasks per stage. Ciel programs can also have nested
tasks, similar to an RPC executor that itself invokes RPCs.

Ciel shows equal or better performance than Hadoop for synchronous data pro-
cessing [148]. Futures and first-class references are used to express the dataflow graph
to the system. Ciel also shows that its interface is general, supporting both iterative
and data-dependent control flow patterns [148].

Reinforcement learning. Ray [145], the system described in this thesis, uses a
distributed futures API to support emerging AI applications such as reinforcement
learning (RL). RL requires a combination of asynchronous and stateful computa-
tion [152]. A typical algorithm proceeds in asynchronous stages: a driver sends the
current model to a number of train tasks (Figure 2.3b). The train tasks are stateful
because the executors hold an environment simulator in local memory.

Futures allow the driver to process the train results asynchronously1. First-class

1Ray extends the API proposed in Table 2.1 with a wait call that returns the first ready reference,

CHAPTER 2. DISTRIBUTED FUTURES AND RPC 23

map1

map2

reduce1

reduce2

driver

(a) Data processing (b) RL

ParamServer
 .get

ParamServer
 .apply

train

(c) Parameter server

1 # (a) MapReduce.
2 map_out = [map.remote(i) for i in range(m)]
3 out = [reduce.remote(map_out[i][j] for i in range(m))
4 for j in range(r)]
5 get(out)
6

7 # (b) RL, one round.
8 refs = [train.remote(i, weights_ref) for i in range(3)]
9 while ready_ref = wait(refs):

10 result = get(ready_ref)
11 # ... apply the result ...
12

13 # (c) Parameter server, one round.
14 weights_ref = ps.get.remote()
15 refs = [train.remote(i, weights_ref) for i in range(3)]
16 ps.apply.remote(refs)

(d) Pseudocode using a pass-by-reference API (Table 2.1).

Figure 2.3: Applications for a pass-by-reference API. Legend: gray circle is the client,
other circles are RPCs, dashed arrows are RPC invocation, solid squares are data,
solid arrows are dataflow.

CHAPTER 2. DISTRIBUTED FUTURES AND RPC 24

references are used to reduce redundant data copies when sending the model weights
to the train tasks (Figure 2.3b). Ray’s distributed object store optimizes this with:
(1) shared memory to eliminate copies between executors on the same machine, and
(2) a protocol for large data transfer between machines [145].

Parameter server. A primary motivation for Distributed PyTorch [12] and Dis-
tributed TensorFlow [18] is model training. A standard algorithm is synchronous
stochastic gradient descent (SGD), using a parameter server to store the model
weights [63, 124] (Figure 2.3c). In each round, each worker gets the current weights
from the parameter server, computes a gradient, and sends the gradient to the pa-
rameter server to be aggregated. Synchrony is important to ensure that gradients are
not stale [63].

Similar to Figure 2.3b, first-class references allow the system to optimize the
broadcast of the current weights. The driver can also use references to concisely
coordinate each round without having the data local (Figure 2.3d).

Both Distributed PyTorch and Distributed TensorFlow use an API similar to
Table 2.1, extended with higher-level primitives specific to machine learning, e.g.,
optimization strategies [18, 125]. Distributed PyTorch allows mutable memory, and
Distributed TensorFlow requires the developer to specify a static graph instead of
using futures2.

Summary. Given the overlap in API, we believe that these systems have encoun-
tered many of the same challenges in automatic memory management. The result
is duplicated effort and inconsistent feature support. For example, CIEL handles
memory pressure by using a disk-based object store, but has no method of recla-
mation [150]. Distributed PyTorch implements distributed reference counting for
reclamation but throws out-of-memory errors to the application [12]. Thus, we ask:
how can we create a common foundation for data-intensive applications that is simple,
efficient, and general enough?

2.5 Related abstractions for distributed memory

Distributed shared memory [153] (DSM) provides the illusion of a single globally
shared address space across physically distributed threads. Our RPC proposal has
two differences: (1) shared memory is immutable, and (2) the use of futures and first-
class references. The former decision is informed by the historical difficulties of imple-
menting DSM in practice [153, 41, 111, 123]. The latter is valuable for capturing richer
application semantics that enable automatic memory management (Section 2.3).

similar to get with a timeout.
2Distributed TensorFlow v2 supports eager execution, which produces a dynamic graph, similar

to futures.

CHAPTER 2. DISTRIBUTED FUTURES AND RPC 25

Some systems have introduced novel and rich abstractions to manage consistency
for mutable shared state [76, 206, 25]. For example, FaRM [76] uses distributed
transactions while Anna [206] offers a range of consistency levels. We chose a minimal
approach that preserves the pass-by-value semantics of RPC and avoids imposing a
consistency model. This does not preclude developers from using or implementing
other consistency models at the application level.

Distributed message queues [154, 114] provide a common communication system
based on publish/subscribe event streams. They handle message dispatch to multiple
consumers, and thus can be considered a higher-level form of RPC that provides a
shared adddress space. For example, in Figure 2.1, a message queue could act as
a replacement for RPC in the lefthand application. However, the focus of message
queues is on supporting online applications, where messages are typically smaller and
handlers are less compute-intensive than in data processing. In particular, message
queue systems may not place as great an emphasis on problems such as CPU or
memory contention between workers and reducing data movement.

Other systems introduce new abstractions for accessing remote memory, in-
cluding distributed data structures [49] and primitives for a single “object” [172].
These are fundamentally different approaches to programming distributed memory.
In particular, we call for tightly coupling the notion of functions with remote mem-
ory (Section 2.2) and co-designing function scheduling and memory management (Sec-
tion 2.6).

Section 2.4 summarizes modern system manifestations of pass-by-reference RPC.
Many have handled some but not all of the problems in memory management dis-
cussed in Sections 2.3 and 2.6. None have fully addressed the challenges of interop-
erability, which is unsurprising given that it was not their explicit goal. For example,
the concept of ownership in the system Ray handles automatic memory reclamation
and recovery, but requires all references to be coupled to their creator, which is a
problem for interoperability [201].

2.6 System Implementation and Thesis Work

2.6.1 Memory management

The design of a shared address space requires some distributed object store. In par-
ticular, this object store should add some in-memory storage to each server that is
co-located with the executor (Figure 2.2b). While the object store could be imple-
mented directly with an external and distributed key-value store, we argue that to
realize the benefits of pass-by-reference, we must co-design the scheduler and mem-
ory management systems. For example, we may decide what to cache locally based
on what functions are queued locally.

The remainder of this thesis describes such a design, in which the RPC scheduler

CHAPTER 2. DISTRIBUTED FUTURES AND RPC 26

and object manager are co-designed. We will use the term “task” to mean a single
RPC invocation, to better match the terminology used in data processing systems,
while a “distributed future” is the first-class reference and future returned by a task.
As an introduction to the main thesis work, we examine each of the key memory
management operations to show why co-design with the task scheduler is essential
and to briefly describe how this thesis work handles the operation:

Reclamation. Reclamation must ensure memory safety, i.e. referenced values
should not be reclaimed, and liveness, i.e. values that are not referenced should
eventually be reclaimed. A common approach is reference counting, to avoid the
need for global pauses [160]. Concretely, this means that for each Ref, the system
tracks: (1) whether the caller still has the Ref in scope, and (2) whether any in-flight
requests have the Ref as an argument. The latter requires cooperation between mem-
ory management and the scheduler. Shared references (Section 2.2) further require
the system to track (3) which other clients have the Ref in scope.

We study the design of an efficient and fault-tolerant memory reclamation sys-
tem in the ownership work (Chapter 4). At a high level, the idea is to design a
system in which reference counts can be kept local to the caller, i.e. the “owner”,
for efficiency. To support fault-tolerant reclamation, we implement fate sharing, i.e.
reference holders fail if the owner fails.

Movement. Co-design of scheduling and memory management gives the system
greater control over data movement and sharing within the distributed object store.
For example, a key-value store can improve data access time for skewed workloads by
replicating a hot key. However, it must do this reactively, according to how often a key
is used and where the keys are needed [33]. In contrast, a co-designed system could
simultaneously schedule the consumers of some data with a broadcast protocol, e.g.,
using a dynamic multicast tree. There is also much previous work here that could
be leveraged, including collective communication from HPC [86] and peer-to-peer
networking systems such as BitTorrent [162].

The ownership work in Chapter 4 describes the mechanism for data movement,
while the Exoshuffle work in Chapter 5 extends this design with more sophisticated
policies on when to move data. In the latter chapter, we design system optimizations
such as data locality and pipelining of task execution with data movement. An
additional reference that may be of interest is the Hoplite work [219], which introduces
a dynamic collective communication system for pass-by-reference RPC.

Memory pressure. First-class references allow the system to control how much
memory is used by the arguments of concurrent requests (Section 2.3). However,
this is not enough to ensure available memory, as the size of a request’s outputs are
not known until run time. Thus, barring user annotations, the system must have

CHAPTER 2. DISTRIBUTED FUTURES AND RPC 27

a method for detecting and handling when additional memory is required by the
application.

The system could: 1) throw an out-of-memory error, 2) kill and re-schedule a
memory-hungry request, or 3) swap out memory (at an object granularity) to ex-
ternal storage. Options 1 and 2 are simple but cannot guarantee progress. Option
3, a standard feature in big data frameworks [205, 212, 163], guarantees progress
but can impose high performance overheads. In some cases, simply limiting request
parallelism can guarantee progress without having to resort to swapping. One chal-
lenge is in designing a scheduler that can efficiently identify, avoid, and/or handle
out-of-memory scenarios.

The ownership work in Chapter 4 supports option 1, the most minimal of the
options. The Exoshuffle work in Chapter 5 extends the system to support option 3.
Supporting option 2 without adding undue overheads remains an open question for
the future.

2.6.2 Fault tolerance

Failures are arguably the most complex part of introducing a shared address space, as
it implies that a reference and its value can have separate failure domains. As such,
the main body of this thesis focuses on the problem of providing fault tolerance in a
distributed futures system. In particular, our goal is to provide a spectrum of recovery
vs. run-time tradeoffs, analogous to the spectrum of RPC failure handling options
ranging from at-most-once to exactly-once semantics. However, because we also want
to support data-intensive applications, the problem contains an additional dimension:
the data passed may be large and the computation may be resource-intensive. This
necessitates additional solutions for failure handling, e.g., to record large intermediate
values efficiently. To illustrate these differences, we examine each of the commonly
used semantics for RPC and discuss how adding a shared address space affects the
design space.

A minimal RPC implementation guarantees at-most-once semantics: the system
detects failures for in-flight requests and returns an error to the application. The
difference with pass-by-reference is that failures can occur even after the original
function has completed successfully, as the value may be created then lost from the
distributed object store.

RPC libraries often support automatic retries, or at-least-once semantics. This
is enough to transparently recover idempotent functions. The key difference in a
pass-by-reference API is that, in addition to the failed RPC, any arguments passed
by reference may also require recovery. Many systems in Table 2.2 support this
through lineage reconstruction [148, 145, 171], replication [206], and/or persistence.
Compared to pass-by-value RPC, these methods require storing and maintaining ad-
ditional system state, as an object may be referenced well past the RPC invocation
that created it.

CHAPTER 2. DISTRIBUTED FUTURES AND RPC 28

Both of these semantics are supported in the ownership work in Chapter 4.
As described above, we use the ownership system to assign each reference an owner
process that manages reclamation for the value. Similarly, the owner also coordinates
failure detection, and if specified, recovery via recursive task re-execution.

However, for functions that return nondeterministic values and/or that have
side effects, applications may benefit from systems that can provide exactly-once
semantics. The challenges of doing so efficiently and at scale are much the same as
with RPC without a shared address space [117]. One difference is that because it is
assumed that data passed by reference may be large, the cost of recording values may
be higher. In this thesis, this problem is first studied in the lineage stash work in
Chapter 3. The lineage stash is an efficient, decentralized, and fault-tolerant technique
for recording sources of nondeterminism as part of the data lineage.

While the use of pass-by-reference may complicate the problem of providing
exactly-once semantics compared to pure RPC, the use of futures also provides unique
opportunity. In particular, the dataflow graph that is expressed via futures provides
some application information to the system before execution begins. We explore this
idea in the Exoflow work in Chapter 6. Exoflow extends distributed futures with
annotations for side effects and nondeterminism. These annotations allow Exoflow
to decouple the unit of execution from the unit of recovery, as they give the system
necessary information for deciding the optimal way to recover each task’s results.

2.7 Conclusion and Lessons Learned

Memory management is a key part of all distributed systems and is especially impor-
tant in data-intensive applications. This chapter addresses the first goal of this thesis:
to extract a common API from recent data-intensive systems that can be used to fac-
tor out problems in distributed memory management. The result is pass-by-reference
RPC and in particular the distributed futures primitive. We argue that distributed
futures should be used as a unified abstraction for “virtual memory” in distributed
applications, enabling interoperability and faster development of future applications.

In particular, the key lessons learned in this chapter are:

1. First-class references, as opposed to raw pointers, are necessary for factoring
out distributed memory management into a common system.

2. Achieving good performance for specific application domains with a general-
purpose pass-by-reference RPC system hinges on co-design of the task scheduler
and memory management subsystems.

3. Achieving fault tolerance is complicated by the diverse space of possible appli-
cation semantics and physical properties.

29

Chapter 3

Lineage Stash: Transparent
recovery for low-latency
applications

Section 1.1 laid out the two major categories of system models used to support
data analytics: batch vs. stream processing. Meanwhile, the previous chapter shows
how we might build a common system core for these models based on the distributed
futures interface. In this chapter, we begin to address some of the challenges in
providing transparent recovery for such a system.

Batch vs. stream processing systems for data analytics generally employ one of
two rollback recovery approaches for fault tolerance: lineage reconstruction vs. check-
pointing. Lineage reconstruction exhibits low overhead during recovery but higher
overhead during normal operation, while checkpointing makes the opposite tradeoff.
Resolving this tradeoff will become a common theme in this thesis and in the study
of fault tolerance techniques in general.

In this chapter, we present a first attempt at resolving this tradeoff. We propose
the lineage stash, a decentralized causal logging [78] technique that significantly re-
duces the run-time overhead of lineage-based approaches without impacting recovery
efficiency. With the lineage stash, instead of recording the task’s information before
the task is executed, we record it asynchronously and forward the lineage along with
the task. This makes it possible to support large-scale, low-latency (millisecond-level)
data processing applications with low run-time and recovery overheads. Experimental
results for applications in distributed training and stream processing show that the
lineage stash provides task execution latencies similar to checkpointing alone, while
incurring a recovery overhead as low as traditional lineage-based approaches.

CHAPTER 3. LINEAGE STASH 30

3.1 Introduction

Mapper 1

Mapper 2
Reducer

(a) Logical.
Ti

m
e

Check-
point

Mapper 1

2

3

2
2

3

Logging +
Lineage

reconstruction

1
1 1

Mapper 2 Reducer

Global checkpointing

(b) Physical.

Figure 3.1: A streaming mapreduce. (a) Logical representation. Mappers compute a
stateless function over each record (rounded box) in the input and output the results
to a Reducer. (b) Physical representation, as a dynamic dataflow. Solid arrows show
data dependencies (record batches). White arrows show stateful dependencies [145],
determined by the execution order on a given process. Mappers do not have applica-
tion state, but they are stateful because they can buffer records and dynamically push
them to Reducer by submitting tasks, which get executed in a nondeterministic order.
Reducer fails during task 3 (red), and outlined tasks must be re-executed to preserve
exactly-once semantics. Lineage reconstruction (green) exactly reconstructs Reducer
by replaying its inputs since the last checkpoint in the same order. Global check-
pointing (blue) re-executes all processes’ tasks since the last checkpoint, possibly in
a different order (e.g., Reducer may execute task 3 before 2).

Recent data processing applications in domains ranging from stream process-
ing [56, 146] to reinforcement learning [145] have become increasingly online and
user-facing, making the need for low latency as critical as the need for high through-
put. The dynamic dataflow graph [148, 145] is a flexible computation model that
is ideal for developing large-scale online data processing applications because it can
support both batch processing [148] and fine-grained stateful computation [145]. In
this model, a program expresses task parallelism through asynchronous function in-
vocations, called tasks, that return the distributed futures described in Chapter 2.
Tasks may be stateless, i.e. free of side effects, or stateful, i.e. bound to a specific
process. The directed graph of tasks forms a dataflow graph, and we call it dynamic
because the graph may be created based on results returned by previous tasks [148].
Figure 3.1 shows an example stream processing application as a dynamic dataflow in
which operators can dynamically push records to downstream operators.

CHAPTER 3. LINEAGE STASH 31

Guaranteeing fault tolerance without sacrificing low latency during normal oper-
ation is an open challenge for dynamic dataflows when tasks are fine-grained, i.e. mil-
liseconds long. This is a challenge because many applications require exactly-once
semantics, i.e. all data inputs are reflected in the final output exactly once, for global
consistency.

There are two general techniques for guaranteeing global consistency after a
failure: global checkpointing and logging (Fig 3.1b). With global checkpointing, the
system takes periodic application checkpoints, and in the event of failure, reruns the
job from the latest checkpoint to a consistent but possibly different state (due to
nondeterministic execution). With logging, the system durably logs events during
execution, and in the event of failure, exactly replays the events to recover lost state,
without needing to rollback any process that did not fail1.

These differences have fundamental implications for the run-time and recovery
overheads for data processing applications. In general, logging-based techniques incur
a higher overhead during normal operation because they must record information
during execution, but lower overhead during recovery, as they can use this information
to reduce the amount of computation that must be replayed (Fig 3.1b). In particular,
all sources of nondeterminism must be durably logged to ensure consistency after re-
execution. In data processing, the computation is often logically deterministic, e.g.,
a program like WordCount should always return the same result given the same
inputs. However, the physical computation may employ nondeterminism to improve
performance, in particular when choosing which batch of data to process next. For
instance, in the stream processing system shown in Fig 3.3a, processes A and B submit
tasks concurrently to C, where they can be executed in any order to improve output
latency. Logging would be a poor choice because it requires durably recording these
events, which may occur at a millisecond time scale. Meanwhile, batch processing
systems such as MapReduce and Apache Spark partition the dataset before execution
and log only the lineage, or the computation graph, that produces each partition; this
allows them to process partitions in any order and reduce the run-time overhead of
logging, at the cost of having to reconstruct lost intermediate data in case of failure.

Still, the run-time overhead of lineage-based reconstruction has so far restricted
its applicability to coarse-grained tasks that operate over large-enough partitions.
This is a poor fit for latency-sensitive applications that often require processing in
batches that are smaller and created on the fly. While this type of application can
be easily expressed using dynamic dataflow, direct application of lineage-based recon-
struction would add significant overhead. Global consistency requires that the lineage
of each task be durably logged before execution, which requires replication to at least
one remote node to tolerate non-transient failures.

Many systems for fine-grained data processing, including Naiad [146] and Flink [56],

1Note that in practice, logging techniques also use checkpointing, as an optimization to avoid
replaying from the beginning.

CHAPTER 3. LINEAGE STASH 32

rely on global checkpointing because it is simpler and adds low run-time overhead
for nondeterministic choices in batching and ordering. Other than the overhead of
the checkpoint itself [179], which can be reduced through asynchronous checkpoint-
ing [60, 57, 113], this approach adds minimal run-time overhead because there is no
need to record nondeterministic events. On the other hand, recovery requires a co-
ordinated global rollback of the entire system to the latest checkpoint [78], which is
expensive at large scale [194]. This is because even previous work that is unaffected
by the failure must be rolled back for consistency (Fig 3.1b), and new work cannot
be accepted until recovery is complete. Also, because global checkpointing alone does
not promise exact re-execution, guaranteeing exactly-once semantics for interactions
with the outside world adds significant run-time overhead, since every such interaction
requires a checkpoint to ensure it is never rolled back [78].

In this chapter, we introduce the lineage stash, a decentralized logging technique
for dynamic dataflows that simultaneously achieves low recovery overhead and low
run-time overhead. Like previous lineage-based systems, we rely on lineage recon-
struction for fast recovery and low downtime. However, unlike these systems, the
lineage stash doesn’t require a task’s lineage to be stored before the execution of
the task. This removes the lineage overhead from the critical path during normal
operation, allowing nondeterministic choices in batching and ordering to be made
cheaply.

The main idea behind the lineage stash is that instead of storing the lineage in a
reliable store on the critical path of execution, one can forward the full lineage along
with every task invocation. Then, if the system needs to execute a task with a missing
input (e.g., because of a failure), the worker running the task has full information
about which upstream tasks need to be re-executed to reconstruct the missing input.
Of course, this straw man solution is not practical as the lineage can grow very large,
and the overhead of forwarding it can be prohibitive. To make this solution practical,
we asynchronously store the lineage and forward only the most recent part which has
not been durably stored yet. In particular, each worker keeps a lineage stash in local
memory containing all tasks that it has seen recently. Each worker then runs a local
protocol to flush its stash to a remote reliable store. Since flushing is asynchronous,
it has negligible impact on application latency during normal operation.

The lineage stash is an example of causal logging [80, 27], a class of recovery
techniques for message-passing systems in which processes asynchronously log non-
deterministic events. The key challenge is to identify the minimum set of events that
need to be logged such that we can guarantee global consistency after recovery while
also guaranteeing predictably low task latency during normal operation. A naive log-
ging approach could add prohibitive run-time overhead. For instance, one could log
all messages, but in data processing, these messages can be arbitrarily large. The
lineage stash minimizes the amount logged by exploiting the fact that the compu-
tation in data processing is usually deterministic, while the nondeterministic events
can usually be encapsulated by the order of execution. For example, in Fig 3.1b,

CHAPTER 3. LINEAGE STASH 33

the application’s map and reduce functions are deterministic, but the order of task
submission and execution is not.

In the lineage stash work, we extend ideas from both lineage reconstruction and
causal logging to make them practical for large-scale, low-latency data processing.
In particular, we identify the nondeterministic events that must be logged for appli-
cation correctness and design an efficient protocol to store this information off the
critical path of execution. We implement the lineage stash on Ray [145], a distributed
framework for dynamic dataflows, and demonstrate the benefit on two representative
applications in stream processing and distributed training. Whereas previous systems
for these applications can achieve either low latency or low recovery time, we show
that the lineage stash can achieve both. Thus, we present the following contributions:

1. An analysis of the nondeterministic events that must be logged in data process-
ing applications.

2. A log storage architecture that enables simple, scalable protocols for flushing
the stash and recovery.

3. The lineage stash: a causal logging technique that achieves low run-time and
recovery overheads for fine-grained data processing applications.

3.2 Background

We present a case study of a stream processing application, which represents an
important class of large-scale online data processing applications. We show how such
applications can be expressed and executed as a dynamic dataflow, and present the
open challenges in the proposed approach.

3.2.1 Case Study: Stream Processing

Stream processing provides the abstraction of continuous operators that compute a
long-running computation over an infinite stream of data items, or records. Each
operator consumes one or more input streams and produces an output stream. This
imposes a set of requirements that is representative of large-scale fine-grained data
processing applications.

First, stream processing applications have stringent performance requirements
during normal operation, requiring both high-throughput data processing, because of
the often large data ingest, and low latency, as the computation result will change
over time and is generally desired as soon as possible.

Second, because stream processing applications often run online and compu-
tation results are needed as soon as possible, applications are sensitive to recovery

CHAPTER 3. LINEAGE STASH 34

time. Especially at large scale, when the chance of a failure is greater, it is critical
that applications experience little downtime after partial failures.

Finally, the types of computation performed vary widely even in a single appli-
cation, which has implications on recovery correctness [107]. While much of the data
processing computation may be deterministic (i.e. a function of the input stream),
typically a stream processing application will also include local state, such as a sink
operator that maintains computation results, as well as interactions with the external
world, such as a sink operator that triggers an alert after a specified computation
result. A deterministic computation can be safely re-executed many times, but com-
putations with side effects on the outside world often require exactly-once semantics,
since the outside world in general cannot be rolled back.

3.2.2 System Model and Challenges

Existing systems for stream processing fall under two categories. Systems like Flink [56]
and Naiad [146] use global checkpointing for fault tolerance and instantiate physical
instances of continuous operators, each of which consumes and produces buffers, or
batches, of records. This allows for low-latency, record-at-a-time processing. In con-
trast, systems like Spark Streaming [213], execute synchronous stages over fixed-size
partitions of the input stream, and record the lineage of each stage for fault tolerance.

Stream processing applications can be represented as a dynamic dataflow (Fig 3.1),
with both continuous operators, as in Flink [56] or Naiad [146], and lineage-based re-
covery, as in Spark Streaming [213]. Each continuous operator is instantiated as a
process with local state that can execute tasks, also known as methods or message
handlers, submitted by upstream operators. Each task’s argument is a record batch.
Processes execute tasks as input batches become available (Reducer in Fig 3.1), and
can flush batches to downstream processes by dynamically submitting tasks (Mappers
in Fig 3.1), e.g., based on the maximum output buffer size.

The lineage in this model is recorded at the granularity of a batch. This is in
contrast to Spark Streaming [213], which records lineage at the granularity of parti-
tions, each of which may span many batches. In Fig 3.1, we show how the lineage of
each batch is tracked, through data dependencies (solid arrows), and stateful depen-
dencies (white arrows). Data dependencies are specified by the application through
task arguments, while stateful dependencies are created between tasks that execute
consecutively on the same process. The use of lineage can reduce downtime during
recovery, as intact operators can continue processing records while lost operators can
be replayed exactly from the lineage.

To execute this dataflow graph, we adopt the system model introduced by
Ray [145], in which a distributed scheduler dispatches tasks to local worker processes
based on their data and stateful dependencies (Fig 3.2a). Each Ray node can host
multiple worker processes, which may be stateful (known as actors [145]). Worker
processes on the same node also share an in-memory object store, which can be used

CHAPTER 3. LINEAGE STASH 35

Node 1

Lineage stash
A B
A1 B1

Node 2

Lineage stash
A B
A1

Global store

B1

A1B1

Shard 1 Shard 2 Shard 3

Object store Object store
A B

(a)

D

A

B

C

E3

12

123

3 12123

GF H
1234 1234

(b)

Figure 3.2: (a) Lineage stash architecture, on top of a decentralized dataflow sched-
uler. A and B are processes that can submit tasks to each other (e.g., A1 submits
B1). Dotted arrows show the protocols used to communicate between nodes. (b)
Stream processing. D is a nondeterministic operator that reads dynamically sized
batches (buffers) from multiple input sources (A, B, C) in any order and outputs
results to downstream operator E. G is a deterministic operator that reads statically
sized batches from a single source, F .

to cache immutable copies of large task outputs. System metadata, such as task de-
scriptions and object locations, is stored in a logically centralized global store, which
can be sharded for scalability and replicated for durability.

There are a number of challenges in applying lineage reconstruction to this set-
ting. First, the granularity at which lineage is recorded is much finer than in previous
lineage-based systems, at the level of batches that can take milliseconds to process,
compared to synchronous stages that can take seconds. Since the lineage is both sig-
nificantly larger and updated more frequently than in existing lineage-based systems,
the common approach of logging lineage to a centralized location [72, 205, 212] on
the critical path of task execution would affect both task latency and throughput.

Second, the lineage is not only larger, it must also be updated at runtime to
guarantee exactly-once record processing. This is because asynchronous record pro-
cessing introduces nondeterministic events when an operator processes data from
multiple sources. For example, in Fig 3.2b, operator D processes data from operators
A, B, and C as they become available, then outputs results to E. If D fails but E
remains active, then we must guarantee that when reconstructing D’s outputs, we
do so in an order consistent with what E has seen so far. This necessitates reliably
recording the order in which D processed its inputs during execution, which adds
latency if this must be done before E can process the results. Note that this is not
an issue in lineage-based systems that execute in synchronous stages [213]; in such

CHAPTER 3. LINEAGE STASH 36

systems, D would block results to E until it has processed a predetermined number
of records from A, B, and C. Nor is it an issue when reading from a single input, as
G does in Fig 3.2b.

These problems motivate an asynchronous logging approach, in which task spec-
ifications are logged to a centralized reliable storage system, but off the critical path
of task execution. In particular, each node logs lineage directly to a local, in-memory
lineage stash (Fig 3.2a), which is asynchronously flushed to the global store. However,
this solution presents a third challenge: maintaining the decentralized state. The de-
centralized logging approach complicates both normal operation, as it creates local
state that must be flushed, and recovery, as a failed operator’s lineage is no longer
guaranteed to be in a centralized location. The final challenge is thus in designing
simple protocols for flushing local state and recovering after a failure.

In summary, the challenges are: (1) removing the cost of recording lineage from
the critical path of task execution, (2) efficiently recording nondeterministic events,
and (3) designing simple, scalable protocols for flushing and recovering lineage. In
the remainder of this paper, we describe the lineage stash design and how it meets
these challenges.

3.3 Lineage Stash Overview

The data processing applications that the lineage stash supports can be viewed logi-
cally as message-passing systems, a low-level abstraction in which a set of processes
with local state communicate with each other by sending and receiving messages. For
example, the continuous operators in a stream processing application can be viewed
as a set of processes where each message contains a single record. In this section, we
describe the relationship between a message and a task.

The lineage stash is a form of rollback recovery [78], in which information is
recorded during execution to minimize the amount of work that must be redone after
a failure. Informally, the lineage stash guarantees that if a process fails, then any
messages that it received since its last checkpoint will be replayed in the same order.
This implies that the system will recover to a globally consistent state–that is, for every
message that has been delivered to a process, the corresponding event is reflected at
the sender. This in turn implies exactly-once semantics for the application (e.g., every
record is processed once in stream processing). The lineage stash can also support
end-to-end exactly-once semantics for when the application outputs a result to the
external world. As is standard in rollback recovery [78], the lineage stash targets the
fail-stop model [177] and assumes that the application can identify and record any
nondeterministic events, as well as inputs and outputs to the external world.

At a high level, we use a causal logging approach for recording and replaying
computation. Causal logging [80, 27] is a technique that aims to lower both recovery
and runtime overhead by logging asynchronously to a stable storage system, i.e. the

CHAPTER 3. LINEAGE STASH 37

Ray system metadata store [145] or the Spark scheduler [212]. Each process buffers a
log of all nondeterministic events (e.g., “received message m”) that caused its current
state and piggybacks any volatile records onto its messages to other processes. If
a process fails, then it can retrieve logs from the remaining processes to guide its
recovery. Since all nondeterministic events from the initial execution can be replayed
from the logs, this guarantees global consistency.

However, practical use of causal logging in general message-passing applications
remains challenging due to the sheer variety of nondeterministic events that could
occur (e.g., writing to external memory, executing on a timer, etc.). Correctness
requires that all such events are logged during execution, which can be cumbersome,
expensive, or both. On the other hand, data processing applications by nature consist
of mostly pure computation, i.e. side effect-free and the outputs are a deterministic
function of the inputs. This makes causal logging a promising approach to providing
rollback recovery for decentralized data processing applications. The key system
challenge is then to identify and efficiently capture the sources of nondeterminism
that do occur in data processing applications. There are three questions to answer:
what information do we log, how do we log that information, and how do we recover
the initial execution from these logs?

What information should we log? A general logging approach is to reliably
record every message that every process receives, including the content and the ex-
ecution order. Then, assuming deterministic message handlers, recovery is simply a
matter of retrieving and replaying the logs.

However, this straw man approach is clearly expensive for data processing appli-
cations. The total message content in data processing applications can be much larger
than the description of the computation. This is true in communication primitives
like allreduce for large arrays, as the array is often much larger than the description
of the reduce function. Other data processing applications consist instead of many
small messages that all undergo the same computation on the receiver. An example
of this is stream processing: logically, operators execute record-at-a-time, but phys-
ically, many records are batched together for efficiency. In this case, the execution
order only needs to be logged at batch boundaries. In the allreduce case, the message
ordering is deterministic, so it need not be recorded at all.

Fortunately, the message content in data processing applications is often the
output of a deterministic computation performed by the sender. Thus, it can be
perfectly recomputed, assuming the same inputs and sender state. This allows for
a key optimization: recording the lineage instead of the raw data. In particular,
we reliably store a pointer to the application data, called an object, and a concise
description of the computation, called a task. Each task can take as input a process’s
local state and one or more objects, and can generate objects (return values) as well
as other tasks (nested functions). The lineage of an object comprises the task that
created it and the lineage of each of the task’s arguments. Since object values are

CHAPTER 3. LINEAGE STASH 38

deterministic, we can cache multiple immutable copies of the object across nodes. As
in previous systems [212], this comes at the cost of having to recompute objects during
recovery if all copies are lost. For small enough objects, the data can optionally be
inlined in the task specification.

In some cases, nondeterminism is actually key to application functionality and
performance. In particular, the ability to dynamically execute tasks based on data
availability at runtime is essential for low latency in applications where a single process
executes tasks from multiple other processes, such as in stream processing (Fig 3.2b).
In this case, if another process sees the result, then the task execution order must be
recorded in the lineage and made durable in case of failure. Otherwise, the nonde-
terministic process may recover to a state inconsistent with the witness, or orphan
process [78]. For instance, in Fig 3.3a, processes A and B submit tasks concurrently
to C, where they can be executed in any order, and the result is seen by D. If C
were to fail, we must replay the tasks from A and B in the same order as before to
guarantee consistency with D.

However, there are also applications where it is sufficient for a process to execute
tasks in a deterministic order. For example, communication primitives like allreduce
are fully deterministic because every process receives tasks from one other process.
Determinism can also be enforced for a process with multiple callers if tasks are
always executed in a specific order, e.g., round-robin. While this is more restrictive
to applications, it does allow for more efficient logging, since it is not necessary to
record task execution order. For instance, in Fig 3.4a, C is the only process to submit
tasks to A, so the order of tasks that A executes is deterministic and need not be
recorded. Note that it is possible to mix different logging levels in a single application,
i.e. one process may execute tasks dynamically while others are fully deterministic.

In rare cases, a process may also execute nondeterministic events during a task.
For instance, a stream processing application with strict latency requirements could
choose to release outputs based on a timer. To support this case, we also allow the
application to record such events as part of the task description so that they can be
replayed exactly after a failure. While we provide system support, it is up to the
application to identify and replay such events; in practice, we expect this to be done
in application-level libraries.

How should we log information? While recording the lineage rather than the
data greatly reduces the cost of logging, the rate at which tasks are generated can
still be very high for fine-grained, decentralized applications. Thus, storing a task
description reliably must be done off of the critical path. The main idea behind the
lineage stash is to use a causal logging approach, where instead of storing the lineage
reliably before the task is executed, we forward the lineage of each of the task’s inputs
with the task invocation. This way, the node executing the task has all the information
to reconstruct the task’s inputs, if necessary. Each node remembers the lineages of
tasks that it generated or received for execution in a local store, called the lineage

CHAPTER 3. LINEAGE STASH 39

...

A B C D

...

...

11

A2

B1

A1

C3

C1

C2

00

(a)

Node C
Lineage stash
C D

A2

B1

A1

C3

C1

C2

Node D
Lineage stash

C D

A2

B1

A1

C3

C1

C2

Lineage stash

A2

B1

A1

A2

B1

A1

C3

C1

C2

Lineage stash
C D

C3

C1

C2

C D

Node C Node D

(b)

Figure 3.3: (a) A nondeterministic application and (b) a failure scenario showing why
lineage must be forwarded. Because C executes tasks from A,B in a nondeterministic
order, it must retrieve its lineage from D after a failure, shown by the red dashed
arrows.

A B C

A1

B2

C1 B1

A2C2

00 0

(a)

Node A

Lineage stash
A

A1

A2

B

C1

C2

C

B2

B1

Node B

Lineage stash
B

A1

A2

00

Lineage stash
A

A1

A2

B

C1

C2 B2

Lineage stash
B

A1

A2

0

C

B1

0

Node A Node B

(b)

Figure 3.4: (a) A deterministic application and (b) a failure scenario showing what
lineage must be remembered. To recover B after a failure, A simply resubmits (red
dashed arrows) its previous tasks.

stash.
Only the nondeterministic events must be reliably recorded for recovery correct-

ness. Thus, in deterministic applications, the lineage need not be forwarded during
normal operation because it can be deterministically recreated after a failure. Each
process only needs to remember the tasks that it has submitted, by storing them in its
local lineage stash. If a process fails, then it recovers by simply asking the remaining
processes to resubmit their stashed tasks. Figure 3.4b shows this for the deterministic
application example in Fig 3.4a: during normal operation, A remembers the tasks
that it submits to B in its local lineage stash. When B dies, A resubmits its stashed
tasks (A1, A2) to recover B.

In nondeterministic applications, each process must also forward the lineage that
it has seen so far. This is because task descriptions are updated during execution

CHAPTER 3. LINEAGE STASH 40

based on nondeterministic events, such as the order of task execution. If a process
fails, then it must recover the most recent copy of its tasks. For example, in Fig 3.3a,
because C executes tasks in a nondeterministic order, it must also forward its own
lineage to D during execution. This is so that if C dies, as in Fig 3.3b, D can resubmit
these tasks to C in the correct order.

While this simple scheme of remembering and forwarding recent lineage removes
the lineage store from the critical path of a task’s execution, unfortunately it will not
scale for realistic applications as the lineage can become very large and forwarding it
can be prohibitive. Thus, timely flushing of the local stash is critical to maintaining
predictably low task latency. Traditionally in rollback recovery systems, each process
can asynchronously flush its volatile log to an individual stable storage system, which
may be remote [80, 166, 78]. However, this requires each process to garbage-collect
its stable storage and can lead to an unpredictably large storage footprint if a task is
forwarded many times.

We simplify garbage collection by asynchronously flushing each stash to a global
but physically decentralized (sharded) stable storage system, in which each task has
a unique identifier and any process may read or append to any task (§3.4.2.2). This
means that only a single copy of each task is reliably stored, and garbage collection of
the stable storage can be handled by a single background process, which erases tasks
previous to the last global checkpoint. Although it is not our focus in this work, this
also facilitates logging for stateless tasks that are not bound to a specific process.

Because processes can die before they flush their lineage, task descriptions can
be lost entirely before they are written to the global store. However, we guarantee
that during normal execution, if a task is not yet in the global store, then all nodes
that execute dependent tasks must have the task in their stash. Therefore, if we
lose all nodes that have stashed a particular task, we can still guarantee consistency
because no live node will have seen the result of the task.

How do we recover the logs? To recover a failed process to a globally consistent
state, we must retrieve and re-execute its lineage. As noted above, for deterministic
processes, it is enough for the other processes to remember the lineage of tasks that
they have submitted so far. These can be resubmitted along with any stashed lineage
during recovery (Fig 3.4b).

For nondeterministic processes, we must also recover the initial execution order,
as well as any nondeterministic events that occured during a task’s execution. For
example, in Fig 3.3a, if C fails and its lineage has not yet been written to the global
store, it must retrieve its lineage from D before it can accept further tasks from A
and B. For an arbitrary application, the relevant lineage could reside at any process,
so a failed process would have to retrieve and reconcile a subgraph of its lineage from
every other process [80]. This can be expensive and complicated, especially when
there are multiple simultaneous failures.

CHAPTER 3. LINEAGE STASH 41

We can simplify the lineage recovery protocol with the global lineage store. Upon
a failure, each remaining process simply flushes its local stash to the global store
and replies to the recovering process once all writes have been acknowledged. The
recovering process can then retrieve its lineage by walking the task dependencies in
the global store, starting from the tasks resubmitted by the other processes. Because
the global store is indexed by task rather than process, retrieving the lineage is
likely slower than if the process’s log were stored contiguously. While this may affect
recovery performance, it allows for a simple recovery protocol; our implementation
required only 125 lines of code (§3.5).

We can further optimize the recovery protocol by leveraging a property common
to decentralized data processing applications: most processes send tasks to only a
small set of other processes, which changes infrequently. Thus, we only need to
contact this set, which is often much smaller than the total set of processes. For
example, in Fig 3.3b, C only needs to retrieve lineage from D.

3.4 Lineage Stash Implementation

First, we expand on the architecture presented in Fig 3.2a and introduce the lineage
stash protocols, which we present in §3.4.2 along with their guarantees. A process
can send a task to a remote process using the lineage stash protocols for forwarding
and remembering lineage (§3.4.2.1). Processes can also send or receive objects to or
from remote processes through their in-memory object stores. We assume a fail-stop
model: if a node fails, then its object store and lineage stash will be lost.

Each lineage stash flushes to a logically centralized global lineage store, a reliable
key-value store that maps task ID to specification. All operations are over a single
task, and we do not assume sequential consistency across tasks, i.e., operations on
different tasks from the same node may be processed in any order. This allows us
to shard the global store by task ID for horizontal scalability, as in Fig 3.2a. Each
node communicates with the global store independently to flush its local stash and
retrieve lineage during recovery (§3.4.2.2). As an optimization, each node can request
an acknowledgement when a given task has been written to the global store.

3.4.1 Definitions

Next, we describe the lineage structure. All processes, tasks, and objects are assigned
a unique identifier (ID), which can be deterministically recomputed during recovery.
The task ID is a hash of the sender and receiver IDs and the number of tasks sent
between the pair so far (Table 3.1), The object ID is a concatenation of the ID of the
task that created it and the number of objects that the task has created so far.

The task specification (Table 3.1) can be monotonically updated to record non-
deterministic events. The predecessorId is initially the ID of the previous task that

CHAPTER 3. LINEAGE STASH 42

Field Type Description

id TaskID hash(receiver, sender, taskCounter)
version int # of updates to the task specification
receiver ProcessID ID of process that receives the task
sender ProcessID ID of process that sent the task
taskCounter int # of tasks sent from sender to receiver
applicationLog string[] nondeterministic events during task
parentId TaskID id of task that submitted this task
predecessorId TaskID hash(receiver, sender, taskCounter − 1)
argumentIds ObjectID[] object IDs of task arguments
dependencies TaskID[] [parentId, predecessorId] + argumentIds

Table 3.1: Task specification (version, predecessorId and applicationLog may be up-
dated after task creation to record nondeterminism)

the sender submitted to the destination process. It may be overwritten once, before
execution, to the task that the destination process executed immediately beforehand,
to reflect the task order. During task execution, the application can also append
nondeterministic events to the applicationLog. Each of these updates increments
the task’s version. To define global consistency, we first define a total order on tasks
with the same ID. This also makes it safe to flush any version of a task; the global
store simply rejects older versions.

Definition 3.1 (Task order). For tasks T and T ′ where T.id = T ′.id, T ≤ T ′ if
T.version ≤ T ′.version, T.applicationLog is a prefix of T ′.applicationLog, and either
T.predecessorId = T ′.predecessorId or T.predecessorId and T.version are equal to
their initial values (Table 3.1).

Definition 3.2 (Lineage). The lineage of a task T consists of T itself and the lineage
of all of its dependencies (Table 3.1). For convenience, we will also say that the
lineage of an object is the lineage of the task that created it, and the lineage of a
process is the lineage of the last task that it executed.

Lineage(T) = {T}
⋃

T ′∈T.dependencies

Lineage(T ′)

Recovery correctness is defined via global consistency [60], i.e., every message
received by a process is also reflected in the sender’s history. In terms of lineage, this
means that for every task that a process has executed, if the same task appears in
some other process’s lineage, then the process that executed the task must have the
most recent version.

Definition 3.3 (Lineage consistency). For any processes p, q, if Tp.id = Tq.id, p
executed Tp, and Tq ∈ Lineage(q), then Tq ≤ Tp.

CHAPTER 3. LINEAGE STASH 43

def GetUncommittedLineage(stash, T):

lineage = {}

for D in T.dependencies:

if D in stash:

lineage.add(D)

lineage.update(GetUncommittedLineage(stash, D))

return lineage

(a) Getting uncommitted lineage from the local stash.

def AddUncommittedLineage(stash, T, lineage):

for D in T.dependencies:

if D in lineage and D not in stash:

stash.add(D); AddUncommittedLineage(stash, D, lineage)

(b) Receiving uncommitted lineage in the local stash.

Figure 3.5: Lineage stash methods for getting and receiving a task’s uncommitted
lineage (Definition 3.5). A practical implementation can easily avoid forwarding du-
plicate lineage by recording which tasks have been sent to which nodes.

We also define task durability.

Definition 3.4 (Durability). A task T is durable if it can be found in a live process’s
local stash or in the global store.

Lineage consistency after failure of a process p is guaranteed as follows: if T is
the last task executed by p that is in the lineage of any live process, then all tasks in
Lineage(T) are durable. We ensure this property by forwarding uncommitted lineage
with each submitted task.

Definition 3.5 (Uncommitted lineage of T). The tasks in Lineage(T) that are not
yet committed in the global store.

3.4.2 Protocol

3.4.2.1 Forwarding Lineage

We describe the protocol for submitting a task from one process to another, first
without flushing. For processes hosted by separate nodes, this requires a minimum
of one message to send the task itself. We design the lineage stash protocol so that

CHAPTER 3. LINEAGE STASH 44

def SubmitTask(T):

stash.add(T); FlushTask(T)

AssignTask(T, T.receiver, GetUncommittedLineage(stash, T)

if P.NONDETERMINISTIC else {})

(a) Submit a task and forward uncommitted lineage.

def AssignTask(T, P, uncommitted_lineage):

if P.NONDETERMINISTIC:

T.predecessorId = P.lastTaskId; P.lastTaskId = T.id

T.version += 1; FlushTask(T)

stash.add(T)

AddUncommittedLineage(stash, T, uncommitted_lineage)

(b) Assign a task and add the forwarded lineage.

Figure 3.6: Node methods for task execution. AssignTask also records nondetermin-
istic execution order by updating the task’s predecessorId. Nondeterministic events
during task execution are recorded by appending to the task’s applicationLog (not
shown).

all additional information needed for recovery correctness, i.e. the task’s lineage, can
be computed locally by the sender and piggy-backed on this message.

As described in §3.3, only the nondeterministic events need to be forwarded to
receiving nodes. If the application is deterministic, i.e. the task specifications are
immutable, then it is only necessary to remember tasks that have been submitted so
far, by adding these tasks to the local stash (Fig 3.6a).

For nondeterministic processes, the sender process retrieves the task’s lineage
from its local stash (Fig 3.5a) and forwards the result along with the task (Fig 3.6a).
As in previous work [80], it is only necessary to forward new uncommitted lineage
that has not yet been forwarded to the receiving process (not shown). Next, the
receiver adds the forwarded lineage to its own stash (Fig 3.5b) before assigning the
task (Fig 3.6b). If an added task is already present in the receiver’s lineage stash, the
more recent version is used (not shown). The task submission protocol is illustrated
in Fig 3.7a.

The SubmitTask and AssignTask procedures maintain lineage consistency dur-
ing normal execution, assuming no flushing yet.

Invariant 3.1 (Lineage durability without flushing). For each process p and task T
that p has executed or submitted, T ’s lineage is durable.

We include a brief informal proof by induction on the global state (all process
and lineage stash state). The base case is the first task T submitted, from p1 to p2.

CHAPTER 3. LINEAGE STASH 45

Node A
Lineage stash

A B
A1

A2

B1

B2

Node B
Lineage stash

A B

A2 B2

A1 B1

A

B2A2

A1

B

B1

A

B2A2

A1

B

B1

Node B
Lineage stash

B2

A1

A2

A B

B1

Node A
Lineage stash

B2

B
A1

A2

B1

A

A

B2A2

A1

Global store

B

B1

Node A
Lineage stash

B2A2

B1

A B

Node B
Lineage stash

B2A2

A B

B1

(a) (b) (c)
Figure 3.7: Forwarding and flushing lineage. (a) Task A2 submits task B2, forwards
the uncommitted lineage (A2) to B, and asynchronously flushes B2. (b) A and B
receive commit acknowledgements for A1 and B2. A1 can be evicted because it has
no dependencies, but B2 cannot. (c) A and B receive commit acknowledgements for
the remaining tasks and it is safe to evict all tasks.

T has no dependencies and T is added to both p1 and p2’s stash. If either process
fails, the other process will still have T in its local stash. If both processes fail, then
we need not guarantee durability; this is equivalent to restarting from the beginning.
The induction step assumes that the invariant is true, and p1 submits T to p2. In this
case, GetUncommittedLineage returns T ’s full lineage, which is added to p2’s stash.
Similarly, in any failure case, T ’s lineage will remain in at least one live process’s
stash, or it is unnecessary to guarantee durability because all affected processes will
also have failed.

3.4.2.2 Flushing the Stash

To prevent lineage stashes from growing indefinitely, each process flushes its stash to
the shared global store. Because task versions are ordered, each lineage stash could
safely flush any task that it sees. However, to avoid overloading the global store
with many writes of the same task, we choose to instead flush a task every time it
is updated, i.e., its version (Table 3.1) is incremented. When a task is submitted
(Fig 3.6a), the sender asynchronously flushes the initial version of the task, as A
does for B2 in Fig 3.7a. When the execution order is nondeterministic, the node
updates the assigned task’s specification to reflect its predecessor task and flushes
again (AssignTask in Fig 3.6b). If a task executes a nondeterministic event, the
node adds the application-provided entry to the task applicationLog and flushes
again (not shown).

Each node receives commit acknowledgements for particular task versions from

CHAPTER 3. LINEAGE STASH 46

def FlushTask(T):

global_store.Write(T, TryEvict)

def TryEvict(stash, T):

if T.version >= stash[T.id].version:

for D in T.dependencies:

if D in stash: return

stash.erase(T)

Figure 3.8: Lineage stash methods for flushing to the global store. FlushTask writes
a task asynchronously to the global store with the callback TryEvict. Once a task (or
a newer version) is committed and its dependencies have been evicted, it is evicted
in TryEvict (TryEvict also tries to evict any dependent tasks, not shown).

the global store and evicts tasks from its stash accordingly (TryEvict in Fig 3.8) .
TryEvict only evicts a task if it has been committed and if its dependencies have
also been evicted from the local stash. This is to guarantee that for every task still
in the local stash, there is a connected subgraph in the stash that contains the task’s
uncommitted lineage, to ensure GetUncommittedLineage correctness when flushing
is enabled.

As an example, in Fig 3.7b, both processes receive acknowledgements for tasks
A1 and B2. Note that these acknowledgements can arrive in any order since we do
not assume sequential consistency from the global store. Both stashes can evict A1
because A1 does not have any dependencies. However, B2 cannot be evicted yet
because it has uncommitted dependencies A1 and B1. This ensures that GetUncom-
mittedLineage will correctly return the uncommitted lineage for B2 or any future
tasks dependent on B2.

The FlushTask and TryEvict procedures maintain the same invariant as above,
but for uncommitted lineage. The remaining lineage is in the global store and therefore
durable.

Invariant 3.2 (Lineage durability with flushing). For each process p and task T that
p has executed or submitted, T ’s uncommitted lineage is in p’s local stash.

3.4.2.3 Recovery Protocol

During the recovery protocol, the failed process retrieves and re-executes the lineage
of the last task that it executed before failure that exists in another live process’s
lineage. Note that this may differ from the last task that the failed process actually
executed but is enough to guarantee global consistency.

First, each process that submitted a task to the failed process resubmits its last
submitted task. Step 5 in Figure 3.9b shows this for operator C from the application
example in Fig 3.3a. For a deterministic process, the lineage does not change after it

CHAPTER 3. LINEAGE STASH 47

A2

B1

A1

Lineage stash
C D

C3

C1

C2

C

1

4

Node C Node D
Global store

A2

A1

C D

C3

C2

B1 C1

2
3

5

Node C

A2

B1

C

5

C

Node C

A1

Global store

A2

A1

C D

C3

C2

B1 C16

7

B1

A2

(a) (b) (c)
Figure 3.9: Recovery procedure for the nondeterministic process from Fig 3.3 in detail.
(a) (1) C contacts downstream process D, (2) D flushes its lineage, (3) D receives all
acknowledgements, (4) D replies to C. (b) Processes A and B (not shown) resubmit
their last submitted tasks (A2, B1) to C. This may happen concurrently with steps
1-4. (c) After steps 1–5, C recovers the lineage of A2 and B1, which includes the
initial execution order, from the global store.

is generated, so the resubmission step with Invariant 3.2 is enough to guarantee global
lineage consistency (after re-execution). Invariant 3.2 implies that any uncommitted
lineage will be forwarded with the resubmitted task. All other lineage can be retrieved
from the global store.

When the execution is nondeterministic, the failed process must also retrieve
the latest version of each task that it executed. We adopt a standard causal logging
procedure [80], in which the failed process contacts other processes to retrieve their
stashed lineage. However, rather than have the processes reply directly with the
uncommitted lineage, each process instead flushes its entire local stash to the global
store (via FlushTask, Fig 3.8), waits for all tasks to commit (via TryEvict, Fig 3.8),
then acknowledges to the recovering process, which can then retrieve the flushed
lineage from the global store (Fig 3.9). Using Invariant 3.2 and the fact that the global
store only accepts writes for higher task versions, this guarantees lineage consistency
(after re-execution).

The recovering process can then re-execute its tasks based on the lineage re-
trieved from the global store, for both deterministic and nondeterministic applica-
tions. The process may resubmit tasks that have already executed, which get added
to its stash as during normal execution to guarantee that Invariant 3.2 will hold after
recovery completes. Receiving processes can easily deduplicate these tasks with a
counter.

CHAPTER 3. LINEAGE STASH 48

3.4.3 Failure Model

The protocols in §3.4.2 guarantee exactly-once semantics within an application. They
can also support end-to-end exactly once semantics, e.g., if a sink operator in a stream
processing application outputs to an external system. The lineage stash can support
a task that outputs to the external world by first flushing the task and its local
uncommitted lineage (§3.4.2.2), then waiting for the commit acknowledgements from
the global store. This guarantees that if the operator fails later on, it will replay its
execution in the same order and restore to a state consistent with the external world.
In contrast, a global checkpointing approach alone must take a checkpoint during
every such interaction to guarantee that the execution will not be rolled back [79, 4].

Like other rollback recovery systems, we target a fail-stop model [78]. Each
node’s local state (processes, in-memory object store, and lineage stash) can be re-
built after a failure, possibly on a different physical node. As in previous causal logging
work [26], we also allow the user to configure the maximum number of times that an
uncommitted task is forwarded to lower-bound f , the number of simultaneous failures
tolerated. f may be greater than the task forwarding limit depending on application
properties: communication structure (e.g., in acyclic graphs [26]) and the mix of de-
terministic versus nondeterministic processes. We discuss further application-specific
failure handling considerations here.

Checkpointing. Long-running applications must still take checkpoints to bound
re-execution time after a failure. In theory, the application can take inconsistent
checkpoints with the lineage stash. However, as prior work has shown [79], it is
much simpler to take globally consistent checkpoints, to avoid coordination between
processes for garbage collection of the global store. Since many applications today,
e.g., distributed training [18] and stream processing [57], already provide support for
efficient global checkpointing, we recommend adopting these methods to simplify and
roughly bound recovery. The lineage stash can be used in conjunction to further
guarantee exact replay, to reduce recovery time and runtime overheads for end-to-end
exactly-once semantics.

Intermediate State. In general, logging approaches collect state during execution
in order to reduce recovery overheads and garbage-collect the state after a checkpoint.
Therefore, in every logging approach, it is possible for this intermediate state to exceed
storage capacity.

For the lineage stash, there are three types of intermediate state. First, for the
lineage in the local stash, the node can apply backpressure on the local processes
until enough tasks have been flushed, via the protocol in §3.4.2.2. Second, for the
lineage in the global store, the options are to scale up the capacity (e.g., by adding
shards), force an application checkpoint, or fall back to a global rollback in case of
failure. Third, there are the objects in the local in-memory store. This is unique to

CHAPTER 3. LINEAGE STASH 49

0 5 10 15 20
Task latency (ms)

0.00

0.25

0.50

0.75

1.00

CD
F

WriteFirst+0ms
WriteFirst+1ms
WriteFirst+5ms
Lineage stash+0ms
Lineage stash+1ms
Lineage stash+5ms

(a) Deterministic.

0 5 10 15 20
Task latency (ms)

0.00

0.25

0.50

0.75

1.00

CD
F

WriteFirst+0ms, f=64
WriteFirst+1ms, f=64
WriteFirst+5ms, f=64
Lineage stash+0ms, f=64
Lineage stash+1ms, f=64
Lineage stash+5ms, f=64

(b) Nondeterministic, unlimited forward-
ing.

0 5 10 15 20
Task latency (ms)

0.00

0.25

0.50

0.75

1.00

CD
F

WriteFirst+0ms, f=64
WriteFirst+1ms, f=64
WriteFirst+5ms, f=64
Lineage stash+0ms, f=8
Lineage stash+1ms, f=8
Lineage stash+5ms, f=8

(c) Nondeterministic, forward up to 8
nodes.

Figure 3.10: Task latency for deterministic and nondeterministic applications, with
lineage stash vs WriteFirst. A ring of 64 processes is instantiated, one on each
node. Each process submits no-op tasks with a unique token to its successor. Task
latency is the time before the process receives its token again divided by the number
of processes. For Fig 3.10c, we forward an uncommitted task up to f=8 times.

the lineage stash because we decouple the object metadata (i.e., the lineage) from the
object data. The options are similar: spill to external storage, force a checkpoint, or
evict some objects and fall back to a global rollback.

3.5 Evaluation

We study the performance of the lineage stash compared to a WriteFirst method,
which persists tasks to a global store before execution. We also evaluate the perfor-
mance of the lineage stash on two end-to-end applications, distributed model training
with ring allreduce and stream processing, and show that the lineage stash can provide
faster recovery than a checkpoint-only solution with little to no additional runtime
overhead. In summary, we study:

1. What is the latency overhead of the WriteFirst method compared to the lin-

CHAPTER 3. LINEAGE STASH 50

0 25 50 75 100
Task duration (ms)

0

20

40

60

Un
co

m
m

itt
ed

lin
ea

ge
 si

ze f=8
f=16
f=32
f=64

Figure 3.11: Median (and first and third quartiles) size of the forwarded uncommitted
lineage, varying task duration for different values of f , the maximum number of
concurrent failures tolerated. Above 10ms tasks, the uncommitted lineage size is
stable.

eage stash?

2. How can an application maintain a stable amount of uncommitted lineage?

3. How does the lineage stash benefit data processing applications vs a global
checkpoint-only approach?

We ran all experiments on Amazon EC2 (instance types inline). We imple-
mented the lineage stash in 1k LoC (C++) on Ray [145], a low-latency system for
distributed dynamic dataflows that normally uses WriteFirst. The recovery pro-
tocol for nondeterministic applications (§3.4.2.3) was implemented in an additional
125 LoC. For each Ray cluster, we used one non-replicated Redis instance per global
store shard and one m5.8xlarge node separate from the workers to host the shards.
In benchmarks that simulate global store write latency, we modified Ray to submit
writes on a timer.

3.5.1 Microbenchmarks

Task latency distribution. We measure the latency of the lineage stash relative
to WriteFirst. We also simulate global store latencies of +1 and +5ms. In Fig 3.10,
each process in a ring of 64 processes simultaneously submits a no-op task to its
successor in the ring with a unique token, and we measure task latency based on
the round-trip time of each token. Because of the ring structure, every task’s lineage
includes nearly every other task executed so far.

Figure 3.10a shows the latency distribution for applications with deterministic
lineage. While WriteFirst can achieve p50=0.96ms and p99=1.12ms latency, it suf-
fers greatly with simulated delays of +1 and +5ms (maximum of ¿6ms). Meanwhile,

CHAPTER 3. LINEAGE STASH 51

the lineage stash achieves p50=0.48ms and p99=0.58ms latency, even with +5ms of
simulated delay. This is because each node only needs to remember uncommitted
tasks that it submitted in its local stash (§3.3).

For nondeterministic applications, both systems flush each task a second time,
before dispatch to the process, to record the execution order (§3.4.2). For the lineage
stash, in Figures 3.10b and 3.10c, we forward uncommitted tasks infinitely many and
up to 8 times, to tolerate up to f=64 (the number of nodes) or f=8 simultaneous
failures, respectively.

As expected, logging execution order doubles WriteFirst latency compared to
deterministic applications (p50=1.72ms at +0ms; p50=11.07ms at +5ms). For the
lineage stash with f=64 (Fig 3.10b), the latency is much higher than for deterministic
applications (p50=4ms and p99=11ms at +5ms). This is because every process has
a path to every other process, which causes the uncommitted lineage to grow too
large when the task duration is too short relative to the global store latency. Once we
limit the number of times a task can be forwarded (Fig 3.10c), latency is stable. The
lineage stash’s p50 latency at +5ms delay is 0.70ms, 15× lower than WriteFirst’s
at +5ms and lower even than WriteFirst’s at +0ms.

Uncommitted lineage. The amount of forwarded uncommitted lineage depends
on: (1) the global store latency, (2) the task arrival rate, (3) f , the number of simul-
taneous failures tolerated, and (4) the application structure (§3.4.3). For instance, if
a process submits one task every T seconds to another process and the global store
latency is 10T , then we expect each task to forward an average of 10 tasks.

In Fig 3.11, we vary task duration as a proxy for task arrival rate and report
the forwarded lineage size, per submitted task. We also vary the maximum number
of times an uncommitted task can be forwarded, to demonstrate how to cap the
forwarded lineage at the cost of only tolerating f failures (§3.4.3). The workload
is a ring of 64 nondeterministic processes as in Fig 3.10, with a simulated global
store latency of 100ms. This communication structure is challenging for the lineage
stash because each process has a path to every other process, so each task must be
forwarded to f other nodes to tolerate f failures. Also, the global store should have
much lower latency in practice, but we configure this to accurately show the effect of
millisecond task durations.

Below task duration 11ms, the forwarded lineage in all cases grows unbounded
and is capped only by f . This has consequences on the task latency: 61 forwarded
tasks translates to 3.4ms latency, versus 1.1ms latency for 8.8 forwarded tasks. In-
terestingly, no matter the value of F , all configurations converge on 8-9 forwarded
tasks at task duration 11ms. This suggests that for a given application structure and
global store latency, there is a maximum task arrival rate under which the uncom-
mitted lineage will remain stable.

CHAPTER 3. LINEAGE STASH 52

10 100 1000
Array size (MB)

102

103

Du
ra

tio
n

(m
s)

OpenMPI
WriteFirst+5ms
WriteFirst+0ms
Lineage stash+5ms
Lineage stash+0ms

(a) Allreduce latency.

275 280 285 290 295
Iteration

100

101

102

Ite
ra

tio
n

tim
e

(s
)

OpenMPI
WriteFirst
Lineage stash

(b) Allreduce recovery.

(c) SGD recovery.

Figure 3.12: (a) Allreduce duration on 64 workers (m5.2xlarge), averaged over 20
trials (with std. deviation). WriteFirst and the lineage stash use ring allreduce, with
simulated global store latency as labeled. (b) Allreduce recovery time for lineage stash
vs WriteFirst vs OpenMPI, with checkpoints to disk every 150 iterations. We kill
and restart a worker at iteration 284. (c) Distributed SGD on the lineage stash vs
Horovod v0.16.1, on 16 p3.8xlarge. Both use TensorFlow v1.12 on Resnet-101 with
synthetic data and batch size 64. The lineage stash uses the same ring allreduce as
in §3.5.2.1. Each worker checkpoints the model to disk every 640 iterations (˜7min).
We kill and restart a worker at iteration 1200.

CHAPTER 3. LINEAGE STASH 53

Allreduce Distributed SGD Streaming WC
OpenMPI LS Horovod LS Flink LS

Mean latency 530 550 684 674 79 92
w/o failure
Mean latency 79,012 19,557 417,655 124,296 8,869 435
during failure

Table 3.2: Summary of mean latencies in milliseconds during normal operation and
during recovery for Ray with the lineage stash (LS) compared to baseline systems on
a variety of applications. For latency during a failure in streaming (§3.5.2.3), we take
the mean of all reported latencies between the failure time to when the latency for
new inputs converges to normal operation. For the other applications, we report the
maximum latency.

3.5.2 End-to-end Applications

3.5.2.1 Ring allreduce

Allreduce is an important collective communication routine commonly used in high-
performance computing in which all processes start with an input element and end
with the reduced sum of the inputs. Ring allreduce is an implementation optimized
for large arrays, in which a ring of P processes exchange inputs over 2(P − 1) rounds
of communication with P messages (tasks) each. The runtime of this algorithm is es-
pecially important for machine learning, where it is used in data-parallel synchronous
distributed training to exchange gradients between copies of the model. Ring allreduce
can be written as a deterministic application on the lineage stash. Also, because the
application data is large, we cache all object data in Ray’s per-node shared-memory
store.

In Fig 3.12a, we compare the runtime of ring allreduce on the lineage stash
against the same implementation but with WriteFirst and against OpenMPI v1.10 [86].
We show that the latency with the lineage stash is comparable to that of OpenMPI
and consistently lower than WriteFirst. On 100MB arrays, the mean duration on
the lineage stash is 550ms versus 530ms on OpenMPI. The lineage stash outperforms
OpenMPI on 1GB arrays but is 5× worse on 10MB, in both cases possibly because
of OpenMPI’s use of a different allreduce algorithm. Meanwhile, the lineage stash is
1.26× faster than the WriteFirst method on 100MB. With a global store delay of
5ms, the lineage stash iteration time stays constant, since it is insensitive to global
store latency, while the WriteFirst iteration time increases to 1184ms.

We also compare recovery in Fig 3.12b on an application that iteratively calls
allreduce on a 100MB array on 64 workers. We checkpoint the allreduce data to

CHAPTER 3. LINEAGE STASH 54

0 250 500
Latency (ms)

0.0

0.5

1.0

CD
F Flink

WriteFirst
Lineage stash

(a) Latency without failure.

20 40 60 80 100
Time (s)

101

102

103

104

La
te

nc
y

(m
s)

(b) Latency during failure.

20 40 60 80 100
Time (s)

0
1
2
3
4
5

Th
ro

ug
hp

ut

(1
00

k
re

co
rd

s/
s)

(c) Throughput during failure.

Figure 3.13: (a) Latency CDF for a streaming wordcount on 32 m5.xlarge work-
ers at 400k records/s (4M words/s). Latency is sampled once every 1000 records.
Both systems used a parallelism of 32 (per source, map, reduce, sink) and check-
points to disk every 30s. (b, c) Failure and recovery for streaming wordcount on 32
m5.xlarge nodes at 300k records/s, checkpoints to disk every 30s. A worker is killed
and restarted at t=˜45s (vertical red line), ˜15s after the first checkpoint. We report
(b) median latencies seen by a single sink (with 1st and 3rd quartiles), x-axis is the
record timestamp, and (c) total throughput, x-axis is physical time. The throughput
drop at t=˜80s is due to checkpointing.

disk every 150 iterations (˜1min), kill and restart a node near iteration 280, and
measure the time to recover all of the allreduce outputs since the last checkpoint.
For OpenMPI, we restart the benchmark from the latest checkpoint on failure. For
the lineage-based systems, the failed process retrieves all lost allreduce outputs since
the last checkpoint from the remaining nodes’ in-memory stores and replays the last
allreduce iteration from the lineage. Figure 3.12b shows that the lineage stash (and
WriteFirst) achieves 4× better recovery time than OpenMPI with only a small
runtime overhead during normal operation (Table 3.2).

3.5.2.2 Distributed Training

Data-parallel distributed training is an increasingly important workload in which
many copies of a model train on different batches of a dataset. In synchronous
training, all workers iteratively compute a local gradient (in 100s of ms on GPUs),

CHAPTER 3. LINEAGE STASH 55

sum gradients with allreduce, and apply the summed gradient to their model copy.
Thus, fast allreduce is critical for distributed training throughput. While distributed
training is often long-running, meaning that fast recovery may be less important than
in an online application, we show that the lineage stash can provide faster recovery
than state-of-the-art systems with no perceivable runtime overhead.

In Fig 3.12c, we compare distributed stochastic gradient descent (SGD) on Ray
with the lineage stash vs Horovod v0.16 [178] (both with Tensorflow [18] v0.12) and
show that we can achieve a similar mean iteration time of 674ms, compared to 684ms
on Horovod, during normal operation (Table 3.2). Also, we show that we can re-
cover from the failure at iteration 1200 in 124s, more than 3× faster than Horovod
(417s). Approximately half of the lineage stash’s recovery time is due to TensorFlow
initialization, which could be reduced with a standby worker, while the rest is spent
recovering and reapplying the lost gradients to the restored model.

3.5.2.3 Stream Processing

In this section, we measure the benefits of the lineage stash for an online stream pro-
cessing workload. Stream processing at scale requires low-latency scheduling across
many nodes. Since applications are also long-running, the chance of a failure is high,
so reducing downtime during recovery is critical. Finally, these applications often
interact with the external world, which in general cannot be rolled back, so exact
replay is important for end-to-end exactly-once semantics.

We implement a streaming wordcount application on top of Ray with and with-
out the lineage stash, with one long-running actor per mapper and reducer instance.
Each actor batches records in the stream and submits one task per batch to a down-
stream actor. Mapper tasks compute over an input batch and contain only the lineage
(no application data), while reducer tasks contain inlined task arguments. Reducers
execute tasks nondeterministically, i.e. they process tasks from the mappers in order
of arrival. This order is recorded in the lineage, as described in §3.4.1. To test the
overhead of the lineage stash for nondeterministic processes, we record the latency
for each reducer at a different node, so that the reducer must forward any uncommit-
ted lineage to a remote node. We also implement asynchronous, globally consistent
checkpointing, using the same algorithm as Flink [57].

Latency without failures. In Fig 3.13a, we show that the lineage stash on Ray
can achieve similar latencies as Flink (v1.8.1) at a throughput of 400k records/s
(4M words/s) on 32 nodes. The p50 and p90 latency for Flink is 79ms and 125ms,
respectively, vs. 92ms and 132ms for the lineage stash. Meanwhile, WriteFirst

cannot keep up with the target throughput because the global store is a bottleneck.

Recovery time. In Figures 3.13b and 3.13c, we run the same workload at 300k
records/s and kill a worker ˜15s after the first checkpoint. For both systems, we

CHAPTER 3. LINEAGE STASH 56

immediately restart the worker so that Flink has enough resources to continue.
For Flink, because the entire job must roll back and play forward again, new

records are blocked by recovery and throughput drops to 0 (t=48-60s in Fig 3.13c).
Once all lost work has been replayed, at t=61s in Fig 3.13c, the system can process
new records that entered the stream during recovery. Because the system is overpro-
visioned for the target load, the system is able to use the extra capacity to eventually
catch up to the input stream, returning to normal throughput at t=101s in Fig 3.13c.
Note that the higher the expected load during normal operation, the more the sys-
tem must be overprovisioned for failure, or else the system will never catch up with
the input stream after recovery. The records that are processed during this period
(t=48-100s in Fig 3.13b) all experience higher latency than normal (¿15s) since their
processing was blocked by the global rollback (Table 3.2).

For Ray with and without the lineage stash, the failed node has one source,
mapper, reducer, and sink, each of which is replayed after the failure. The mapper
can skip most tasks during replay since it is stateless, but the reducer must recompute
its state from its last checkpoint. While new records scheduled to the recovering
operators are delayed by task replay, those scheduled to intact operators can be
safely processed. Thus, the total throughput drops only slightly after the failure,
to ˜280k records/s (t=48-65s in Fig 3.13c). Once the failed operators have finished
re-execution, they process the new records (t=66-80s in Fig 3.13c). During this
period, the total throughput increases (to ˜320k records/s), as in Flink, but much
less additional capacity is needed. Also, although the maximum per-record latency is
about the same as for Flink, since the maximum work replayed by any single process
is the same, most of the record latencies during recovery (t=48-80s in Fig 3.13b)
are actually the same as during normal operation, since they were not blocked by
recovery (Table 3.2).

3.6 Related work

Message-passing systems. Because almost any distributed application could be
logically viewed as a message-passing system [78], there are many framework ex-
amples, including parallel computing frameworks [86], distributed training frame-
works [178, 18], low-latency data processing frameworks [146, 56], and actor frame-
works [195, 54]. Out of these systems, the ones that provide explicit fault tolerance
support [146, 56, 178, 18] use global checkpointing alone, most likely because this
is the simplest to implement and understand and adds low and predictable runtime
overhead. Previous work has studied techniques for asynchronous global checkpoint-
ing [60] that are optimize runtime overheads for particular applications, such as stream
processing [56, 115]. However, in general, a global checkpoint-only approach intro-
duces higher recovery overheads, as well as high runtime overhead when end-to-end
exactly once semantics are needed [78], i.e., when outputting to the external world.

CHAPTER 3. LINEAGE STASH 57

Causal logging [80, 27] is a general class of techniques in which processes log non-
deterministic events asynchronously and piggyback volatile records onto messages to
other processes. Potentially because of protocol complexity and difficulty in guaran-
teeing low runtime overhead in practice, causal logging is not used in any practical
application that we are aware of. A primary difficulty in any logging approach, causal
or otherwise, is that all possible sources of nondeterminism must be logged, which is
complicated for a general application that can make system calls, share memory, etc.
Our primary contribution is in identifying distributed data processing as a promising
application for causal logging and describing how to efficiently capture the necessary
nondeterministic events. We also present a system architecture for the stable log stor-
age system that reflects the design of modern cloud storage systems, which are often
highly available and horizontally scalable but guarantee only eventual consistency
and do not promise low latency [59, 73, 61].

Lineage-based systems. MapReduce [72], Apache Hadoop [205], and Apache
Spark [212] implement a bulk synchronous parallel model in which the user speci-
fies data parallelism through a lineage graph of coarse-grained transformations that
apply the same operation to each item in an arbitrarily sized dataset. A centralized
scheduler then schedules tasks in each stage to execute over a data partition. For fault
tolerance, the lineage is stored reliably at a centralized location, usually the scheduler,
on the critical path of task execution. Drizzle [194] amortizes the scheduler overhead
for applications where the lineage is known a priori, as in stream processing [213].
However, this does not solve the problems inherent to BSP systems, namely that the
job must proceed in synchronous stages and each stage must be statically sized (e.g.,
the static microbatch size in Spark Streaming [213]).

CIEL [148], Ray [145], and Noria [89] are examples of lineage-based systems
that support dynamic dataflows, but again with synchronous logging to a centralized
location. More importantly, none of these systems support exact replay of nonde-
terministic execution. They target only computations that can be rolled back and
replayed without side effects on the external world. Noria guarantees exactly-once se-
mantics for client reads, but at the cost of rolling back and replaying all computation
downstream of the failed node.

Transactional systems. Our work is closely related to logging and recovery in
database systems, with a long history of work on “write-ahead logging” methods
in which changes are durably logged before the transaction commits [141]. This
technique is widely applicable and has also been used to reduce recovery time and
guarantee exactly-once semantics for large-scale stream processing in MillWheel [21],
at the cost of higher latency during execution. MillWheel writes all operator state
and intermediate records to a persistent storage system [61] on the critical path of
execution, while the lineage stash logs only the lineage to persistent storage and does

CHAPTER 3. LINEAGE STASH 58

so off of the critical path.
There is a complementary line of work on data provenance or lineage in the

database community. While this work has not yet impacted the design of recovery
protocols, it has been used towards incremental view maintenance, such as in differ-
ential dataflow [138]. In the future, there may be opportunity to apply the lineage
stash towards recovery in such systems as well.

3.7 Conclusion and Lessons Learned

We introduce the lineage stash, a causal logging technique for simultaneously achiev-
ing predictably low latency during normal execution and rapid recovery after a failure.
While others [78, 194, 56] have shown that there is a fundamental tradeoff between
these axes, we show here that the tradeoff need not affect the application. We achieve
this by recording lineage off the critical path of task execution and replaying the lin-
eage to reconstruct lost data after a failure. We evaluate the concept empirically
on end-to-end applications in machine learning and stream processing, and show how
the lineage stash enables large-scale, online data processing with fine-grained dynamic
dataflows.

However, this chapter also serves to demonstrate the significant obstacles in
providing efficient recovery for a generic, dynamic, and fine-grained interface such as
distributed futures. While the lineage stash can provide efficient recovery, its fully
decentralized design adds significant complexity and it does not fully address related
problems in fault tolerance including: garbage collection and availability of recovery
metadata, dealing with tasks with side effects in the external world, and conflict
prevention during concurrent task failures and re-executions.

Thus, the key lessons learned are:

1. For distributed memory systems, fault tolerance must be designed holistically
with other memory management operations such as garbage collection.

2. The recovery techniques needed for deterministic vs. nondeterministic applica-
tions vary greatly, to the point that they often necessitate disparate systems.
Thus, providing recovery flexibility is in itself a substantial research challenge.

These lessons are incorporated in Chapters 4 and 6, respectively.

59

Chapter 4

Ownership: A Distributed Futures
System for Fine-Grained Tasks

In the remainder of this thesis, we will turn our focus to the works overviewed
in Figure 1.3. In the previous chapter, we attempted to provide transparent recovery,
low run-time overhead, and low recovery overhead in a single general-purpose system.
Here, we instead take a layered approach to address the fault tolerance needs of
different classes of applications. These classes are based roughly on the execution
semantics required, i.e. at-most-once, at-least-once, or exactly-once, as described in
Section 2.6.2.

In this chapter, we will present ownership, an architecture for distributed futures
that will serve as the system foundation for the following chapters. Following from
this role, ownership will provide the strongest performance and the weakest recovery
guarantees out of the systems presented in this thesis, as this promotes application
generality. In particular, ownership provides an alternative method of decentraliza-
tion compared to the lineage stash, and provides 1ms latency for tasks, faster and
more accurate failure recovery, and greater scalability. To achieve these properties,
ownership focuses on providing exactly-once semantics for applications with deter-
ministic and idempotent tasks, and at-most-once or at-least-once semantics for all
others.

4.1 Introduction

RPC is a standard for building distributed applications because of its generality and
because its simple semantics yield high-performance implementations. The origi-
nal proposal uses synchronous calls that copy return values back to the caller (Fig-
ure 4.2a). As discussed in Chapter 2, several recent systems [145, 148, 171, 12] have
extended RPC so that, in addition to distributed communication, the system may

CHAPTER 4. OWNERSHIP 60

1 a_future = compute()
2 b_future = compute()
3 c_future = add(a_future, b_future)
4 c = system.get(c_future)

Figure 4.1: A distributed futures program. compute and add are stateless. a future,
b future, and c future are distributed futures.

also manage data movement and parallelism on behalf of the application.

Data movement. Pass-by-value semantics require all RPC arguments to be sent
to the executor by copying them directly into the request body. Thus, performance
degrades with large data. Data copying is both expensive and unnecessary in cases like
Figure 4.2a, where a process executes an RPC over data that it previously returned
to the same caller.

To reduce data copies, some RPC systems use distributed memory [153, 155, 76,
116, 148]. This allows large arguments to be passed by reference (Figure 4.2b), while
small arguments can still be passed by value. In the best case, arguments passed by
reference to an RPC do not need to be copied if they are already on the same node
as the executor (Figure 4.2b). Note that, like traditional RPC, we make all values
immutable to simplify the consistency model and implementation.

Parallelism. RPCs are traditionally blocking, so control is only returned to the
caller once the reply is received (Figure 4.2a). Futures are a popular method for
extending RPC with asynchrony [36, 129], allowing the system to execute functions
in parallel with each other and the caller. With composition [129, 148], i.e., passing
a future as an argument to another RPC, the application can also express the paral-
lelism and dependencies of future RPCs. For example, in Figure 4.2c, add is invoked
at the beginning of the program but only executed by the system once a and b are
computed.

Distributed futures are an extension of RPC that combines futures with dis-
tributed memory: a distributed future is a reference whose eventual value may be
stored on a remote node (Figure 4.2d). An application can then express distributed
computation without having to specify when or where execution should occur and
data should be moved. As discussed in Section 2.4, this is an increasingly popular
interface for developing distributed applications that manipulate large amounts of
data [148, 145, 12, 171].

As with traditional RPC, a key goal is generality. To achieve this, the system
must minimize the overhead of each function call [44]. For example, the widely used

CHAPTER 4. OWNERSHIP 61

a=f()a=f()

Driver Worker 1 Worker 2

b=f()

a=f()

c=add(
 a,b)

a

b

c

ba

Pass by value
Pass by reference

(Distributed memory)

B
lo

ck
in

g
R

PC
s

N
on

bl
oc

ki
ng

 R
PC

s
(F

ut
ur

es
)

(a)

(c)

(b)

(d)

Driver Worker 1 Worker 2

b=f()

c=add(
 a,b)

a

b

ba

c

a

Driver Worker 1 Worker 2

b=f()

b

Driver Worker 1 Worker 2

b=f()

a=f()

c=add(
 a,b)

a

b

c

a

c

c=add(
 a,b)

cc

a

Figure 4.2: Example executions of the program from Figure 4.1. (a) With RPC. (b)
With RPC and distributed memory, allowing the system to reduce data copies. (c)
With RPC and futures, allowing the system to manage parallel execution. (d) With
distributed futures.

CHAPTER 4. OWNERSHIP 62

gRPC provides horizontal scalability and sub-millisecond RPC latency, making it
practical to execute millions of fine-grained functions, i.e. millisecond-level “tasks”,
per second [9].

Similarly, there are emerging examples of large-scale, fine-grained applications of
distributed futures, including reinforcement learning [145], video processing [99, 161],
and model serving [187]. These applications must optimize parallelism and data move-
ment for performance [152, 161, 187], making distributed futures apt. Unfortunately,
existing systems for distributed futures are limited to coarse-grained tasks [148].

In this chapter, we present a distributed futures system for fine-grained tasks.
While others [145, 148, 171] have implemented distributed futures before, our contri-
bution is in identifying and addressing the challenges of providing fault tolerance for
fine-grained tasks without sacrificing performance.

In particular, the problem of interest is: if a task holds a reference to a distributed
future, can we guarantee that it will eventually be able to dereference the value? This
requires tracking the lifetime of each distributed future, i.e. determining when it is
still in scope and how physical failures may have affected any reference holders and/or
locations of the physical value. The challenge comes in doing this efficiently, in terms
of both run-time and recovery overheads, and in the presence of failures.

Distributed futures make this problem more challenging than in traditional RPC
because they introduce shared state between processes. In particular, an object and
its metadata are shared by its reference holder(s), the RPC executor that creates the
object, and its physical location(s). To ensure that each reference holder can deref-
erence the value, the processes must coordinate, a difficult problem in the presence
of failures. In contrast, traditional RPC has no shared state, since data is passed by
value, and naturally avoids coordination. This property is critical to scalability and
low latency in RPC systems.

For example, in the traditional RPC model shown in Figure 4.2a, once worker
1 copies a to the driver, it does not need to be involved in the execution of the
downstream add task. In contrast, worker 1 stores a in Figure 4.2d, so the two
workers must coordinate to ensure that a is available long enough for worker 2 to
read. Also, worker 1 must garbage-collect a once worker 2 executes add and there
are no other references. Finally, the processes must coordinate to detect and recover
from the failure of another process.

The common solution in previous systems is to use a centralized master to store
system state and coordinate these operations [148, 145]. A simple way to ensure fault
tolerance is to record and replicate metadata at the master synchronously with the
associated operation. For example, in Figure 4.2d, the master would record that add
is scheduled to worker 2 before dispatching the task. Then, if worker 2 fails, it is
simple to detect c’s failure; because the metadata write happened synchronously and
at a centralized location, it is quick and trivial to decide that c was indeed executing
on worker 2 when the failure occurred. However, this design adds significant overhead
for applications with a high volume of fine-grained tasks.

CHAPTER 4. OWNERSHIP 63

Thus, decentralizing the system state is necessary for scalability. The question is
how to do so without requiring coordination and undue complexity. The key insight
in our work is to exploit the application structure: a distributed future may be shared
by passing by reference, but most distributed futures are shared within the scope of
the caller. For example, in Figure 4.1, a future is created then passed to add in the
same scope.

We thus propose ownership, a method of decentralizing system state across the
RPC executors. In particular, the caller of a task is the owner of the returned future
and all related metadata. In Figure 4.2d, the driver owns a, b, and c.

This solution has three advantages. First, for horizontal scalability, the applica-
tion can use nested tasks to “shard” system state across the workers. Second, since a
future’s owner is the task’s caller, task latency is low because the required metadata
writes, though synchronous, are local. This is in contrast to an application-agnostic
method of sharding, such as consistent hashing. Third, each worker becomes in effect
a centralized master for the distributed futures that it owns. The owner coordinates
all system operations such as reference counting, for memory safety, and lineage re-
construction, for recovery, for the futures that it owns. Thus, failure handling remains
simple.

Of course, it is also possible that the owner itself fails. In this case, we must
ensure that when recovering the owner, any remaining reference holders can eventually
dereference the value. One option is to durably record the reference holders during
execution and reconcile them with the recreated owner during recovery. However,
this can add both run-time overhead and recovery complexity.

Instead, we rely on lineage reconstruction and a second key insight into the ap-
plication structure: in many cases, the references to a distributed future are held
by tasks that are descendants of the failed owner. The failed task can be recreated
through lineage reconstruction by its owner, and the descendant tasks will also be
recreated in the process. Therefore, if reference holders fate-share with the future’s
owner1, we can achieve two desirable properties: a) while owner failures may cause
other tasks to rollback, the tree structure ensures that the blast radius will be min-
imized, and b) during recovery, the new owner and descendant tasks will naturally
be consistent with each other via the normal execution path, without any need for
additional protocols. As we expect failures to be relatively rare, we argue that this
reduction in system overheads and complexity outweighs the cost of additional re-
execution upon a failure.

In summary, our contributions are:

• A decentralized system for distributed futures with transparent recovery and
automatic memory management.

• A lightweight technique for transparent recovery based on lineage reconstruction

1Note that reference holders fate-share with their owner, but not vice versa.

CHAPTER 4. OWNERSHIP 64

and fate sharing.

• An implementation in the Ray system [145] that provides high throughput, low
latency, and fast recovery.

4.2 Distributed Futures

4.2.1 API

The key benefit of distributed futures is that the system can transparently manage
parallelism and data movement on behalf of the application. Here, we describe the
API (Table 4.1).

To spawn a task, the caller invokes a remote function that immediately returns
a DFut (Table 4.1). The spawned task comprises the function and its arguments,
resource requirements, etc. The returned DFut refers to the object whose value will
be returned by the function. The caller can dereference the DFut through get, a
blocking call that returns a copy of the object. The caller can delete the DFut,
removing it from scope and allowing the system to reclaim the value. Like other
systems [148, 145, 171], all objects are immutable.

After the creation of a DFut through task invocation, the caller can create other
references in two ways. First, the caller can pass the DFut as an argument to another
task. DFut task arguments are implicitly dereferenced by the system. Thus, the task
will only begin once all upstream tasks have finished, and the executor sees only the
DFut values.

Second, the DFut can be passed or returned as a first-class value [98], i.e. passed
to another task without dereferencing. Table 4.1 shows how to cast a DFut to a
SharedDFut, so the system can differentiate when to dereference arguments. We call
the process that receives the DFut a borrower, to differentiate it from the original
caller. Like the original caller, a borrower may create other references by passing the
DFut or casting again to a SharedDFut (creating further borrowers).

Like recent systems [145, 12, 171], we support stateful computation with actors.
The caller creates an actor by invoking a remote constructor function. This imme-
diately returns a reference to the actor (an ARef) and asynchronously executes the
constructor on a remote process. The ARef can be used to spawn tasks bound to
the same process. Similar to DFuts, ARefs are first-class, i.e. the caller may return
or pass the ARef to another task, and the system automatically collects the actor
process once all ARefs have gone out of scope.

4.2.2 Applications

Typical applications of distributed futures are those for whom performance requires
the flexibility of RPC, as well as optimization of data movement and parallelism. We

CHAPTER 4. OWNERSHIP 65

Operation Semantics
f(DFut x) → DFut Invoke the remote procedure f, and pass x by reference.

The system implicitly dereferences x to its Value before
execution. Creates and returns a distributed future, whose
value is returned by f.

get(DFut x) →
Value

Dereference a distributed future. Blocks until the value is
computed and local.

del(DFut x) Delete a reference to a distributed future from the caller’s
scope. Must be called by the program.

Actor.f(DFut x) →
DFut

Invoke a stateful remote procedure. f must execute on the
actor referred to by Actor.

shared(DFut x) →
SharedDFut

Returns a SharedDFut that can be used to pass x to an-
other worker, without dereferencing the value.

f(SharedDFut x) →
DFut

Passes x as a first-class DFut: The system dereferences x

to the corresponding DFut instead of the Value.

Table 4.1: Distributed futures API. The full API also includes an actor creation call.
A task may also return a DFut to its caller (nested DFuts are automatically flattened).

describe some examples here and evaluate them in Section 4.5.2.
Distributed futures have previously been explored for data-intensive applica-

tions [148, 145]. Ciel identified the key ability to dynamically specify tasks during
execution, e.g., based on previous results, rather than specify the entire graph up-
front [148]. This makes it simple to express task-parallel algorithms, making dis-
tributed futures an especially good fit for iterative and recursive algorithms that
contain data-dependent control flow.

Our goal is to expand the application scope to include those with fine-grained
tasks that run in the milliseconds. We also explore the use of actors and first-class
distributed futures.

Model serving. The goal is to reduce request latency while maximizing through-
put, often by using model replicas. Depending on the model, a latency target might
be 10-100ms [95]. Typically, an application-level scheduling policy is required, e.g.,
for staged rollout of new models [175].

Figure 4.3a shows an example of a GPU-based image classification pipeline. Each
client passes its input image to a Preprocess task, e.g., for resizing, then shares the
returned DFut with a Router actor. Router implements the scheduling policy and
passes the DFut by reference to the chosen Model actor. Router then returns the
results to the clients.

Actors improve performance in two ways: (1) each Model keeps weights warm

CHAPTER 4. OWNERSHIP 66

Model

Preprocess

Router

Request

Invocation

Legend

Task (RPC)

Data dependency

State dependency

(a) Model serving

frame3

transform’transform

frame2

frame1

frame0

Decode Flow CumSum Smooth Sink

.
.
.

(b) Video processing

Figure 4.3: Distributed futures applications.

in its local GPU memory, and (2) Router buffers the preprocessed DFuts until it has
a batch of requests to pass to a Model, to leverage GPU parallelism for throughput.
With dynamic tasks, the Router can also choose to flush its buffer on a timeout, to
reduce latency from batching.

First-class distributed futures are important to reduce routing overhead. They
allows the Router to pass the references of the preprocessed images to the Model

actors, instead of copying these images. This avoids creating a bottleneck at the
Router, which we evaluate in Figure 4.15a. While the application could use an
intermediate storage system for preprocessed images, it would then have to manage
additional concerns such as garbage collection and failures.

Online video processing. Video processing algorithms often have complex data
dependencies. For example, video stabilization (Figure 4.3b) works by tracking ob-
jects between frames (Flow), taking a cumulative sum of these trajectories (CumSum),
then applying a moving average (Smooth). Frame-to-frame dependencies are com-
mon, such as the video decoding state stored in an actor in Figure 4.3b. Each stage
runs in 1-10s of milliseconds per frame.

Safe and timely garbage collection in this setting can be challenging because a
single object (e.g., a video frame) may be referenced by multiple downstream tasks.
Live video processing is also latency-sensitive: output must be produced at the same
frame rate as the input. Low latency relies on pipeline parallelism between frames,
as the application cannot afford to wait for multiple input frames to appear before
beginning execution, and stateful computation, i.e. the video decoder state. Finally,
for online applications, low downtime during a failure is an important requirement.

Data-parallel batch processing systems such as Apache Spark [212] can provide

CHAPTER 4. OWNERSHIP 67

fast recovery by only recovering the intermediate data that was lost during a failure,
but they are not suited to efficient execution of video processing algorithms. Batch
processing systems generally require stateless transforms, and transforms that cannot
be expressed as one-to-one operations may require the intermediate dataset to be
materialized. Thus, direct application of a batch processing system towards video
processing would add significant overheads [99, 161]

In principle, these requirements can be met by data-parallel stream processing
systems such as Apache Flink [56] of Naiad [146], which are well-suited to expressing
the stateful and complex inter-frame dependencies found in video processing algo-
rithms. However, simultaneously achieving low downtime is difficult. Most stream
processing systems use global checkpointing for fault tolerance, which can lead to
long pauses during recovery due to rollback.

With distributed futures, the application can specify the logical task graph dy-
namically, as input frames appear, making it simple to express inter-frame depen-
dencies. Concurrent video streams can easily be supported using nested tasks, one
“driver” per stream. Meanwhile, the system manages all aspects of the physical execu-
tion, including pipelining tasks, garbage collection of objects, and recovery. Previous
work has shown that it is possible to achieve low latency with such a system [145];
what is missing is simultaneously achieving fast recovery.

4.3 Overview

4.3.1 Requirements

The system guarantees that each DFut can be dereferenced to its value. This involves
three problems related to object lifetime tracking: automatic memory management,
failure detection, and failure recovery.

The key question is where and when to record the system metadata needed
for these operations such that the metadata is consistent2 and fault-tolerant. By
consistent, we mean that the system metadata matches the current physical state of
the cluster. By fault-tolerant, we mean that the metadata should survive individual
node failures.

We briefly describe the implications of distributed futures and failures on the
design of these operations.

Automatic memory management is a system for dynamic memory allocation
and reclamation of objects. The system must decide at run time whether an object
is currently referenced by a live process, e.g., through reference counting [160].

2Unrelated to the popular definition of replica consistency [190].

CHAPTER 4. OWNERSHIP 68

Distributed memory Distributed futures

a

Driver Worker 1 Worker 2

b=f()a=f()

c=add(
 a,b)

b

Driver Worker 1 Worker 2

b=f()

a=f()

c=add(
 a,b)

a

b

a?

?

(a) (b)

Figure 4.4: Failure detection. (a) a’s location is known by the time worker 2 receives
the reference. (b) a’s location may not be known when worker 2 receives add, so
worker 2 cannot detect the failure.

Failure detection is the minimum functionality needed to ensure progress in the
presence of failures. The system detects when a DFut cannot be dereferenced due to
worker failure.

With distributed memory but no futures, this is straightforward because the
location of the value is known by the time the reference is created. In Figure 4.4a,
for example, the driver learns that a is stored on worker 1 and could then attach the
location when passing a to worker 2. Then, when worker 2 receives add, it can detect
a’s failure.

The addition of futures complicates failure detection because references can be
created before the value. Even the future location of the value may not be known
at reference creation time. Of course, the system could wait until a task has been
scheduled before returning the reference to the caller. However, this would defeat
the purpose of futures as an asynchronous construct. It is also impractical because a
realistic scheduler must be able to update its decision at run time, e.g., according to
changes in the environment such as resource availability and worker failures.

Thus, it is possible that there are no locations for a when worker 2 receives the
add RPC in Figure 4.4b. Then, worker 2 must decide whether f is still executing, or
if it has failed. If it is the former, then worker 2 should wait. But if there is a failure,
then the system must recover a. To solve this problem, the system must record the
locations of all tasks , i.e. pending objects, in addition to created objects.

Failure recovery. The system must also provide a method of recovering from a
failed DFut. The minimum requirement is to throw an error to the application if
it tries to dereference a failed DFut. We further provide an option for transparent
recovery, i.e. the system will recover a failed DFut’s value.

CHAPTER 4. OWNERSHIP 69

Futures

a

Driver Worker 1 Worker 2

a=f()b=f()

c=add(
 a,b)

b

Distributed futures
Driver Worker 1 Worker 2

b=f()a=f()

c=add(
 a,b)

a
b

ba

c=add(
 a,b)

ba

c

(a) (b)
Figure 4.5: Failure recovery. (a) Data is passed by value, so the driver recovers by
resubmitting add. (b) b is also lost. f’s description must be recorded during runtime
so that b can be recomputed.

With futures but no distributed memory, if a process fails, then we will lose
the reply of any pending task on that process. Assuming idempotence, this can be
recovered through retries, a common approach for pass-by-value RPC. For example,
in Figure 4.5a, the driver recovers by resubmitting add(a,b). Failure recovery is
simple because all data is passed by value.

With distributed memory, however, tasks can also contain arguments passed by
reference. Therefore, a node failure can cause the loss of an object value that is still
referenced, as b is in Figure 4.4b. A common approach to this problem is to record
each object’s lineage, or the subgraph that produced the object, during runtime [132,
212, 78]. The system then walks a lost object’s lineage and recursively reconstructs
the object and its dependencies through task re-execution. This approach reduces the
runtime overhead of logging, since the data itself is not recorded, and the work that
must be redone after a partial failure, since objects cached in distributed memory do
not need to be recomputed. Still, achieving low run-time overhead is difficult because
the lineage itself must be recorded and collected at run time and it must survive
failures.

Note that we focus specifically on object recovery and, like previous systems [148,
145, 212], assume idempotence for correctness. Thus, our techniques are directly ap-
plicable to idempotent functions and actors with read-only, checkpointable, or tran-
sient state, as we evaluate in Figure 4.15c. Although it is not our focus, these tech-
niques may also be used in conjunction with known recovery techniques for actor
state [78, 145] such as recovery for nondeterministic execution [200].

Metadata requirements. In summary, during normal operation, the system must
at minimum record (1) the location(s) of each object’s value, so that reference holders

CHAPTER 4. OWNERSHIP 70

W1 W2 W3

A B C

Master
Obj Task Loc

X B() W2

Y C(X) W3

(b) Centralized
master

C
B

(a) Application

Task submission

Data dependency

A

B CX Y

def A():
 y = C(B())

...

Obj Task Loc

X B() W2

Y C(X) W3

Lease Manager

W1 W2 W3

(c) Distributed
leases

A B C

Obj Task Loc

X B() W2

Y C(X) W3

Worker1

W2 W3

(d) Ownership

A

B C

Figure 4.6: Distributed futures systems. (a) An application. (b) Master manages
metadata and object failures. (c) Workers write metadata asynchronously, coordi-
nate failure handling with leases. (d) Workers manage metadata. Worker 1 handles
failures for workers 2 and 3. Worker 1 failure is handled by A’s owner elsewhere in
the cluster.

can retrieve it, and (2) whether the object is still referenced, for safe garbage collec-
tion. For failure detection and recovery, the system must further record, respectively,
(3) the location of each pending object, i.e. the task location, and (4) the object
lineage.

We must decide both where, i.e. which processes, and when, i.e. before or asyn-
chronous with, to record these operations. In some cases, it is safe for metadata to
be asynchronously updated, i.e. there is a transient mismatch between the system
metadata and the system state. For example, the system may transiently believe
that an object x is still on node A even though it has been removed. This is safe
because a reference holder can resolve the inconsistency by asking A if it has x.

On the other hand, metadata needed for failure handling should ideally be syn-
chronously updated. For example, the metadata should never say that a task T is on
node A when it is really on node B. In particular, if node A then fails, the system
would incorrectly conclude that T has failed. As we will see next, synchrony simplifies
fault tolerance but can add significant runtime overhead if done naively.

4.3.2 Existing solutions

Centralized master. Failure handling is simple with a synchronously updated
centralized master, but this design can also add significant runtime overhead. For
example, failure detection requires that the master record a task’s scheduled location
before dispatch (Figure 4.6b). Similarly, the master must record every new reference
before it can be used. This makes the master a bottleneck for scalability and latency.

The master can be sharded for scalability, but this can complicate operations
that coordinate multiple objects, such as garbage collection and lineage reconstruc-

CHAPTER 4. OWNERSHIP 71

tion. Also, the latency overhead is fundamental. Each task invocation must first
contact the master, adding at minimum one round-trip to the critical path of execu-
tion, even without replicating the metadata for fault tolerance. This overhead can be
detrimental when the task itself is milliseconds long, and especially so if the return
value is small enough to be passed by value. Small values may be stored in the master
directly as an optimization, but still require 1 RTT for retrieval [150].

Distributed leases. Decentralization can remove such bottlenecks, but often leads
to complex coordination schemes. One approach is to use distributed leases [92]. This
is similar to a centralized master that is updated asynchronously.

As an example, consider asynchronous task location updates (Figure 4.6c). To
account for a possibly stale master, the worker nodes must coordinate to detect task
failures, in this case using leases. Each worker node acquires a lease for each locally
queued task and repeatedly renews the lease until the task has finished. For example,
in Figure 4.6c, worker 3 can detect a failure of B by waiting for worker 2’s lease to
expire.

This design is horizontally scalable through sharding and reduces task latency,
since metadata is written asynchronously. However, the reliance on timing to reconcile
system state can slow recovery (Figure 4.14). Furthermore, this method of decentral-
ization introduces a new problem: the workers must also coordinate on who should
recover an object, i.e. re-execute the creating task. This is trivial in the centralized
scheme, since the master coordinates all recovery operations.

4.3.3 Our solution: Ownership

The key insight in our work is to “shard” the centralized master, for scalability, but to
do so based on the application structure, for low run-time overhead and simple failure
handling. In ownership, the worker that calls a task stores the metadata related to
the returned DFut. Like a centralized master, it coordinates operations such as task
scheduling, to ensure it knows the task location, and garbage collection. For example,
in Figure 4.6d, worker 1 owns X and Y.

The reason for choosing the task’s caller as the owner is that in general, it is the
worker that accesses the metadata most frequently. The caller is involved in the initial
creation of the DFut, via task invocation, as well as the creation of other references,
by passing the DFut to other RPCs. Thus, task invocation latency is minimal because
the scheduled location is written locally. Similarly, if the DFut stays in the owner’s
scope, the overhead of garbage collection is low because the DFut’s reference count can
be updated locally when the owner passes the DFut to another RPC. These overheads
can be further reduced for small objects, which can be passed by value as if without
distributed memory (see Section 4.4.2).

Of course, if all tasks are submitted by a single driver, as in BSP programs,
ownership will not scale beyond the driver’s throughput. Nor indeed will any sys-

CHAPTER 4. OWNERSHIP 72

tem for dynamic tasks. However, with ownership, the application can scale hori-
zontally by distributing its control logic across multiple nested tasks, as opposed to
an application-agnostic method such as consistent hashing (Figure 4.12e). Further-
more, the worker processes hold much of the system metadata. This is in contrast
to previous solutions that push all metadata into the system’s centralized or per-
node processes, limiting the vertical scalability of a single node with many worker
processes (Figure 4.12).

However, there are problems that are simpler to solve with a fully centralized
design, assuming sufficient performance:

First-class futures. First-class futures (Section 4.2) allow non-owning processes
to reference a DFut. While many applications can be written without first-class
futures (Figure 4.3b), they are sometimes essential for performance. For example,
the model serving application in Figure 4.3a uses first-class futures to delegate task
invocation to a nested task, without having to dereference and copy the arguments.

A first-class DFut may leave the owner’s scope, so we must account for this during
garbage collection. We avoid centralizing the reference count at the owner, as this
would defeat the purpose of delegation. Instead, we use a distributed hierarchical
reference counting protocol (Section 4.4.2). Each borrower stores a local reference
count for the DFut on behalf of the owner (Table 4.2) and notifies the owner when
the local reference count reaches zero. The owner decides when the object is safe to
reclaim. We use a reference counting approach as opposed to tracing [160] to avoid
global pauses.

Owner recovery. If a worker fails, then we will also lose its owned metadata. For
transparent recovery, the system must recover the worker’s state on a new process
and reassociate state related to the previously owned DFuts, including any copies of
the value, reference holders, and pending tasks.

We choose a minimal approach that guarantees progress, at the potential cost of
additional re-execution on a failure: we fate share the object and any reference holders
with the owner, then use lineage reconstruction to recover the object and any of the
owner’s fate-shared children tasks (Section 4.4.3). This method adds minimal run-
time overhead and is correct, i.e. the application will recover to a previous state and
the system guarantees against resource leakage. A future extension is to persist the
owner’s state to minimize recovery time at the cost of additional recovery complexity
and run-time overhead.

4.4 Ownership Design

Each node in the cluster hosts one to many workers (usually one per core), one sched-
uler, and one object store (Figure 4.7). These processes implement future resolution,

CHAPTER 4. OWNERSHIP 73

Field Value
*ID The ObjectID. Also used as a distributed memory key.
*Owner Address of the owner (IP address, port, WorkerID).
*Value (1) Empty if not yet computed, (2) Pointer if in distributed mem-

ory, or (3) Inlined value, for small objects (Section 4.4.2).
*References A list of reference holders: Number of dependent tasks and a list

of borrower addresses (Section 4.4.2 and Appendix A.1).
Task Specification for the creating task. Includes the ObjectIDs and

Owners of any DFuts passed as arguments.
Locations If Value is empty, the location of the task. If Value is a pointer

to distributed memory, then the locations of the object.

Table 4.2: Ownership table. The owner stores all fields. A borrower (Section 4.3.2)
only stores fields indicated by the *.

resource management, and distributed memory, respectively. Each node and worker
process is assigned a unique ID.

Workers are responsible for the resolution, reference counting, and failure han-
dling of distributed futures. Each worker executes one task at a time and can invoke
other tasks. The root task is executed by the “driver”.

Each task has a unique TaskID that is a hash of the parent task’s ID and the
number of tasks invoked by the parent task so far. The root TaskID is assigned
randomly. Each task may return multiple objects, each of which is assigned an Ob-

jectID that concatenates the TaskID and the object’s index. A DFut is a tuple of
the ObjectID and the owner’s address (Owner).

The worker stores one record per future that it has in scope in its local ownership
table (Table 4.2). A DFut borrower records a subset of these fields (* in Table 4.2).
When a DFut is passed as an argument to a task, the system implicitly resolves the
future’s value, and the executing worker stores only the ID, Owner, and Value for the
task duration. The worker also caches the owner’s stored Locations.

An actor is a stateful task that can be invoked multiple times. Like objects,
an actor is created through task invocation and owned by the caller. The ownership
table is also used to locate and manage actors: the Location is the actor’s address.
Like a DFut, an ARef (an actor reference) is a tuple of the ID and Owner and can be
passed as a first-class value to other tasks.

A worker requests resources from the scheduling layer to determine task place-
ment (Section 4.4.1). We assume a decentralized scheduler for scalability: each sched-
uler manages local resources, can serve requests from remote workers, and can redirect
a worker to a remote scheduler.

The distributed memory layer (Section 4.4.2) consists of an immutable dis-
tributed object store (Figure 4.7d) with Locations stored at the owner. The Loca-

tions are updated asynchronously. The object store uses shared memory to reduce

CHAPTER 4. OWNERSHIP 74

Node

Worker

Object Store

Obj Owner ...

A

Scheduler

Worker

 …

Object Store

Scheduler

Worker

 …

Distributed
memory

Resource
management

Future
resolution

(Ownership)

b

c

a

f

e

d

Figure 4.7: Architecture and protocol overview. (a) Task execution. (b) Local task
scheduling. (c) Remote task scheduling. (d) Object transfer. (e) Task output
storage and input retrieval. Ownership layer manages distributed memory garbage
collection and recovery. (f) Scheduler fetches objects in distributed memory to fulfill
task dependencies.

copies between reference holders on the same node.
Workers store, retrieve, reclaim, and recover large objects in distributed mem-

ory (Figure 4.7f). The scheduling layer sends requests to distributed memory to fetch
objects between nodes according to worker requests (Figure 4.7g).

4.4.1 Task scheduling

We describe how the owner coordinates task scheduling. At a high level, the owner
dispatches each task to a location chosen by the distributed scheduler. This ensures
that the task location in the ownership table is updated synchronously with dispatch.
We assume an abstract scheduling policy that takes in resource requests and returns
the ID of a node where the resources should be allocated. The policy may also update
its decision, e.g., due to changes in resource availability.

Figure 4.8c shows the protocol to dispatch a task. Upon task invocation, the
caller, i.e. the owner of the returned DFut, first requests resources from its local
scheduler3. The request is a tuple of the task’s required resources (e.g., {"CPU":
1}) and arguments in distributed memory. If the policy chooses the local node, the
scheduler accepts the request: it fetches the arguments, allocates the resources, then
leases a local worker to the owner. Else, the scheduler rejects the request and redirects
the owner to the node chosen by the policy.

In both cases, the scheduler responds to the owner with the new location: either
the ID of the leased worker or the ID of another node. The owner stores this new

3The owner can also choose a remote scheduler, e.g., for data locality.

CHAPTER 4. OWNERSHIP 75

Node 2

Worker

Scheduler

Node 1

Worker

Scheduler

A1

2

Master
Obj Task Loc

X B() N2 3

B

5

4

(a)

Node 2

Worker

Scheduler

Node 1

Worker

Scheduler

A
1

Lease manager
Obj Task Loc

X B() N2

B

3

2

(b)

Node 1 Node 2

Worker

Obj Task Loc

X B() N2 Worker

A

SchedulerScheduler

1 2

3

4 5

B
6

(c)

Node 1 Node 2

Worker

Obj Task Loc

Y C(X) N2 Worker

SchedulerScheduler

C
2

A

1

(d)

Node Local RTTs Remote RTTs
Master Local 1 1

Remote 1 1
Leases Local 1 0

Remote 1 0.5
Owner- Local 0.5 or 1.5 0

ship Remote 0 or 1 0.5 or 1.5

(e)

Figure 4.8: Task scheduling and the method of recording a task’s location for the pro-
gram in Figure 4.6a. (a) Centralized master. (b) Distributed leases. (c) Scheduling
with ownership. (1-2) Local scheduler redirects owner to node 2. (3) Update task
location. (4-5) Remote scheduler grants worker lease. (6) Task dispatch. (d) Direct
scheduling by the owner, using the worker and resources leased from node 2 in (c).
(e) Length of critical path of local and remote task execution, in terms of local and
remote RTTs.

CHAPTER 4. OWNERSHIP 76

location in its local ownership table before dispatching the task to that location. If
the request was granted, the owner sends the task directly to the leased worker for
execution; otherwise, it repeats the protocol at the next scheduler.

Thus, the owner always dispatches the task to its next location, ensuring that
the task’s pending Location (Table 4.2) is synchronously updated. This also allows
the owner to bypass the scheduler by dispatching a task directly to an already leased
worker, if the task’s resource requirements are met. For example, in Figure 4.8d,
worker 1 reuses the resources leased from node 2 in Figure 4.8c to execute C. The
owner returns the lease after a configurable expiration time, or when it has no more
tasks to dispatch. We currently do not reuse resources for tasks with different dis-
tributed memory dependencies, since these are fetched by the scheduler. We leave
other policies for lease revocation and worker reuse for future work.

The worst-case number of RTTs before a task executes is higher than in previous
solutions because each policy decision is returned to the owner (Figure 4.8e). However,
the throughput of previous solutions is limited (Figure 4.12) because they cannot
support direct worker-to-worker scheduling (Figure 4.8d). This is because workers
do not store system state, and thus all tasks must be routed through the master or
per-node scheduler to update the task location (Figures 4.8a and 4.8b).

Actor scheduling. The system schedules actor constructor tasks much like normal
tasks. After completion, however, the owner holds the worker’s lease until the actor
is no longer referenced (Section 4.4.2) and the worker can only execute actor tasks
submitted through a corresponding ARef.

A caller requests the actor’s location from the owner using the ARef’s Owner field.
The location can be cached and requested again if the actor restarts (Section 4.4.3).
The caller can then dispatch tasks directly to the actor, as in Figure 4.8d, since the
resources are leased for the actor’s lifetime. For a given caller, the actor executes
tasks in the order submitted.

4.4.2 Memory management

Allocation. The distributed memory layer consists of a set of object store nodes,
with locations stored at the owner (Figures 4.9b to 4.9d). It exposes a key-value
interface (Figure 4.9a). The object store may replicate objects for efficiency but is
not required to handle recovery: if there are no copies of an object, a Get call will
block until a client (i.e. a worker) Creates the object.

Small objects may be faster to copy than to pass through distributed memory,
which requires updating the object directory, fetching the object from a remote node,
etc. Thus, at object creation time, the system transparently chooses based on size
whether to pass by value or by reference.

Objects over a configurable threshold are stored in the distributed object store (step
1, Figure 4.9b) and returned by reference to the owner (step 2). This reduces the

CHAPTER 4. OWNERSHIP 77

Operation Semantics
Create(ObjID Store an object.
o, Value v)

Pin(ObjID o, NodeID

loc)→ bool

Pin o on loc until released.
Returns false if loc failed.

Release(ObjID o) Object o is safe to evict.
Get(ObjID o)→ Value Get the object value. May

fetch copy from remote node.

(a)

Node 2

Object
Store

X

Worker

Node 1

Worker

Obj Val Loc

X N2

Y

A
BX: N2

2

1. Create(X)
 Pin(X)

(b)

Node 1

Worker

Obj Val Loc

X *X N2

Y N3

A

Node 2

Object
Store

X

Worker

Node 3

Worker

Object
Store

Obj O. Val

X W1 *X

X

C

3

5

Y6

4. Get(X)

(c)

Node 1

Worker

Obj Val Loc

X *X N2,
N3

Y ...

A

Node 3

Object
Store

Worker

X

Node 2

Object
Store

Worker

X

8. Release(X)

7

(d)

Figure 4.9: (a) Distributed memory store API, and (b-d) Memory management for
the program in Figure 4.6a. (1-2) B returns a large object X in distributed memory.
The primary copy is pinned until all references have been deleted. (3) Worker 1
dispatches C once X is available. (4-5) Get the value from distributed memory (location
lookup not shown). (6) C returns a small object Y directly to the owner. (7-8) Object
reclamation.

CHAPTER 4. OWNERSHIP 78

total number of copies, at the cost of requiring at least one IPC to the distributed
object store for Get (steps 4-5, Figure 4.9c). Small objects are returned by value to
the owner (step 6, Figure 4.9c), and each reference holder is given its own copy. This
produces more copies in return for faster dereferencing.

The initial copy of a large object is known as the primary. This copy is pinned (step
1, Figure 4.9b) until the owner releases the object (step 8, Figure 4.9d) or fails. This
allows the object store to treat additional capacity as an LRU cache without hav-
ing to consult the owners about which objects are safe to evict. For example, the
secondary copy of X created on node 3 in Figure 4.9c is cached to reduce Get and
recovery time (Section 4.4.3) but can be evicted under memory pressure.

Dereferencing. The system dereferences a task’s DFut arguments before execution.
The task’s caller first waits for the Value field in its local ownership table to be
populated (Figure 4.9b), then copies the Value into the dispatched task description.
The executing worker then copies the received Value into its local table (Figure 4.9c).
For large objects, the sent value is a pointer to distributed memory, so the worker
must also call Get to retrieve the actual value (step 4, Figure 4.9c).

If the task’s caller is also the owner of its DFut arguments, the above protocol
is sufficient. If the task’s caller is borrowing an argument, then it must populate the
Value field through a protocol with the owner. Upon receiving a DFut, the borrower
sends the associated Owner a request for the Value. The owner replies with the Value
(either the inlined value or a pointer) once populated. The borrower populates its
local Value field by copying the reply.

Reclamation. The owner reclaims the object memory once there are no more ref-
erence holders (Figure 4.9d) by deleting its local Value field (step 7) and, if necessary,
calling Release on the distributed object store (step 8). An object’s reference holders
are tracked with a distributed reference count maintained by the owner and borrowers.

Each process with a DFut instance keeps a local count of submitted tasks (Refer-
ences, Table 4.2). The task count is incremented each time the process invokes a
dependent task and decremented when the task completes. Each process also keeps
a local set of the worker IDs of any borrowers that it created, by passing the DFut

as a first-class value. This forms a tree of borrowers with the owner at the root (see
Appendix A.1). The owner releases the object once there are no more submitted
tasks or borrowers anywhere in the cluster.

Actors. Actors are reference-counted with the same protocol used to track borrow-
ers of a DFut. Once the set of reference holders is empty, the owner of the actor
reclaims the actor resources by returning the worker lease (Section 4.4.1).

CHAPTER 4. OWNERSHIP 79

Node 1

Worker
A

Node 2

Object
Store

X

Worker

Node 3

Worker

Object
Store

Obj O. Val

X W1 *X

X

C

Obj Task Val Loc

X B() *X N2

Y C(X) N3

(a) Failure detection.

Node 1

Worker
A

Node 4

Object
Store

X

Worker

Obj Task Val Loc

X B() N4

Y C(X) N3

B

1

2

X: N43

(b) Lineage reconstruction.

Figure 4.10: Object recovery.

Node 1

Worker
A

Node 2

Object
Store

X

Worker

Node 3

Worker

Object
Store

Obj O. Val

X W1 *X

X

C

Obj Task Val Loc

X B() *X N2

Y C(X) N3

...

(a) Failure detection.

Node 2

Object
Store

X

Worker

Node 3

Worker

Object
Store

Obj O. Val

X W1 *X

C
A...

(b) Fate sharing.

Figure 4.11: Owner recovery.

4.4.3 Failure recovery

The system guarantees that any reference holder will eventually be able to resolve
the value in the presence of failures.

Failure detection. Failure notifications containing a worker or node ID are pub-
lished to all workers. Workers do not exchange heartbeats; a worker failure is pub-
lished by its local scheduler. Node failure is detected by exchanging heartbeats be-
tween nodes, and all workers fate-share with their node.

Upon receiving a node or worker failure notification, each worker scans its local
ownership table to detect a DFut failure. A DFut is considered failed in two cases: 1)
loss of an owned object (Figure 4.10a), by comparing the Location field, or 2) loss
of an owner (Figure 4.11a), by comparing the Owner field. We discuss the handling
for these two cases next, using lineage reconstruction and fate sharing, respectively.

Note that a non-owner does not need to detect the loss of an object. For example,
in Figure 4.10a, node 2 fails just as worker 3 receives C. When worker 3 looks up X

at the owner, it may not find any locations. From worker 3’s perspective, this means
that either node 2’s write to the directory was delayed, or node 2 failed. Worker 3

CHAPTER 4. OWNERSHIP 80

does not need to decide which it is; it simply waits for X’s owner to handle the failure.

Object recovery. The owner recovers a lost value through lineage reconstruction.
During execution, the owner records the object’s lineage by storing each invoked
Task in its ownership table (Table 4.2). Then, upon detecting a DFut failure, the
owner resubmits the corresponding task (Figure 4.10b). The task’s arguments are
recursively reconstructed, if needed.

Like previous systems [212, 148, 145], we can avoid lineage reconstruction if
other copies of a required object still exist. Thus, when reconstructing an object, the
owner will first try to locate and designate a secondary copy as the new primary. To
increase the odds of finding a secondary copy, object reclamation (Section 4.4.2) is
done lazily: the owner releases the primary copy once there are no more reference
holders, but the copy is not evicted until there is memory pressure.

Often, the owner of an object will also own the objects in its lineage (Sec-
tion 4.5.2). Thus, upon failure, the owner can locally determine the set of tasks
to resubmit, with a recursive lookup of the Task fields. In some cases, an object’s
lineage may also contain borrowed references. Then, the borrower requests recon-
struction from the owner.

The owner can delete the Task field once the task has finished and all objects
returned by reference will never be reconstructed again. When a worker returns an
object by value, the owner can immediately delete the corresponding Task field. This
is safe because objects passed by value do not require reconstruction (Section 4.3.1).

For an object passed by reference, the owner keeps a lineage reference count to
determine when to collect the Task. The count is incremented each time the DFut is
passed to another task and decremented when that Task is itself collected. The owner
collects a record after collecting both the Task and Value (Section 4.4.2) fields. We
also plan to support object checkpointing to allow the lineage to be collected early.

Owner recovery. An owner failure can result in a “dangling pointer”: a DFut that
cannot be dereferenced. This can happen if the object is simultaneously lost from
distributed memory. For example, C in Figure 4.11a will hang if node 2 also fails.

We use fate sharing to ensure that the system can make progress upon an owner’s
failure. First, all resources held by the owner and any reference holders are reclaimed.
Specifically, upon notification of the owner’s failure, either the distributed object store
frees the object (if it exists) or the scheduling layer reclaims the worker lease (if the
object is pending), shown in Figure 4.11b. All reference holders, i.e. borrowers and
dependent tasks, also fate-share with the owner.

Then, to recover the fate-shared state, we rely on lineage reconstruction. In
particular, the task or actor that was executing on the failed owner must itself have
been owned by another process. That process will eventually resubmit the failed
task. As the new owner re-executes, it will recreate its previous state, with no system

CHAPTER 4. OWNERSHIP 81

intervention needed. For example, the owner of A in Figure 4.11a will eventually
resubmit A (Figure 4.11b), which will again submit B and C.

For correctness, we show that all previous reference holders are recreated, with
the address of the new owner. Consider task T that computes the value of a DFut

x. T initially executes on worker W and re-executes on W ′ during recovery. The
API (Section 4.2) gives three ways to create another reference to x: (1) pass x as a
task argument, (2) cast x to a SharedDFut then pass as a task argument, and (3)
return x from T .

In the two former cases, the new reference holder must be a child task of T .
In case (2), when x is passed as a first-class value, the child task can create addi-
tional reference holders by passing x again. All such reference holders are therefore
descendants of T . Then, when T re-executes on W ′, W ′ will recreate T ’s descendants.

T can also return x, which can be useful for returning a child task’s result without
dereferencing with get. Suppose T returns x to its parent task P . Then, P ’s worker
becomes a borrower and will fate-share with W . In this case, P is recovered by its
owner, and again submits T and receives x.

Thus, because any borrower of x must be a child or ancestor of T , fate-sharing
and re-execution guarantees that the borrower will be recreated with W ′ as the new
owner. Note that for actors, this requires that an actor not store borrowed DFuts in
its local state. Of course, this is only required for transparent recovery; the applica-
tion may also choose to handle failures manually and rely on the system for failure
detection only.

While fate-sharing and lineage reconstruction add minimal run-time overhead,
the combination is not suitable for all applications. In particular, the application will
fate-share with the driver. In fact, this is the same failure model offered by some
BSP systems [10], which can be written as a distributed futures program in which the
driver submits all tasks. As shown by these systems, this approach can be extended to
reduce the re-execution needed during recovery. We leave such extensions, including
application-level checkpointing (Section 4.5.2), and persistence of the ownership table,
for future work.

Actor recovery. Actor recovery is handled through the same protocols. If an actor
fails, its owner restarts the actor through lineage reconstruction, i.e. resubmitting the
constructor task. If the owner fails, the actor and any ARef holders fate-share.

Unlike functions, actors have local state that may require recovery. This is out
of scope for this work, but is an interesting future direction. Ownership provides the
infrastructure to manage and restart actors, while other methods can be layered on
top for transparent recovery of local state [78, 145, 200].

CHAPTER 4. OWNERSHIP 82

0.05 0.00 0.05
0.050

0.025

0.000

0.025

0.050 Pass by
value
Leases
Centralized
Ownership 20 40 60 80 100

Worker nodes
0

50k
100k
150k
200k

Th
ro

ug
hp

ut
(ta

sk
s/

s)

(a) Small objects,
colocated.

20 40 60 80 100
Worker nodes

0
50k

100k
150k
200k

Th
ro

ug
hp

ut
(ta

sk
s/

s)

(b) Small objects,
spread.

20 40 60 80 100
Worker nodes

0
50k

100k
150k
200k

Th
ro

ug
hp

ut
(ta

sk
s/

s)

(c) Large objects,
colocated.

20 40 60 80 100
Worker nodes

0
50k

100k
150k
200k

Th
ro

ug
hp

ut
(ta

sk
s/

s)

(d) Large objects,
spread.

0 1 2 4 8
nested tasks

0

10k

20k

30k

Th
ro

ug
hp

ut
(ta

sk
s/

s)

(e) Single node,
nested tasks.

Figure 4.12: Throughput and scalability. (a-d) Task submission is divided across
multiple intermediate drivers, either colocated on the m5.8xlarge head node or spread
with one m5.8xlarge node per driver. 1 intermediate driver is added per 5 worker
nodes. Each task returns either a small (short binary string) or large (1MB blob)
object. (e) Scaling task submission using nested tasks and first-class distributed
futures.

CHAPTER 4. OWNERSHIP 83

4.5 Evaluation

We study the following questions:
1. Under what scenarios is distributed futures beneficial compared to pass-by-value

RPC?
2. How does the ownership architecture compare against existing solutions for

distributed futures, in terms of throughput, latency, and recovery time?
3. What benefits does ownership provide for applications with dynamic, fine-

grained parallelism?
We compare against three baselines: (1) a pass-by-value model with futures

but no distributed memory, similar to Figure 4.2c, (2) a decentralized lease-based
system for distributed futures (Ray v0.7), and (3) a centralized master for distributed
futures (Ray v0.7 modified to write to a centralized master before task execution). All
distributed futures systems use sharded, unreplicated Redis for the global metadata
store, with asynchronous requests. All systems use the Ray distributed scheduler
and (where applicable) distributed object store. Ownership and pass-by-value use
gRPC [9] for worker-to-worker communication. All benchmarks schedule tasks to
predetermined nodes to reduce scheduling variation.

All experiments are run on AWS EC2. Global system metadata, such as an
object directory, is hosted on the same node as the driver, where applicable. Unless
stated otherwise, this “head node” is an m5.16xlarge instance. Other node configu-
ration is listed inline. All benchmark code is available at [202].

4.5.1 Microbenchmarks

Throughput and scalability. The driver submits one nested task for every 5
worker nodes (m5.8xlarge). Each intermediate “driver” submits no-op tasks to its 5
worker nodes. We report the total throughput of the leaf tasks, which return either a
short string (Figures 4.12a and 4.12b) or a 1MB blob (Figures 4.12c and 4.12d). The
drivers are either colocated (Figures 4.12a and 4.12c) on the same m5.8xlarge node
as the root driver, or spread (Figures 4.12b and 4.12d), each on its own m5.8xlarge
node. We could not produce stable results for pass-by-value with large objects due
to the lack of backpressure in our implementation.

At <60 nodes, the centralized and lease-based architectures achieve about the
same throughput because the centralized master is not yet a bottleneck. In general,
ownership achieves better throughput than either because it distributes some system
operations to the workers. In contrast, the baselines handle all system operations in
the global or per-node processes.

The gap between ownership and the baselines is more significant with small
return values (Figures 4.12a and 4.12b). For these, ownership matches pass-by-value
because small objects are returned directly to their owner. The baseline systems

CHAPTER 4. OWNERSHIP 84

could implement a similar optimization, e.g., by inlining small objects in the object
directory (Section 4.4.2), but this would still require at minimum one RPC per read.

When the drivers are spread (Figures 4.12b and 4.12d), ownership and leases
both scale linearly. Ownership scales better than leases in Figure 4.12b because
more work is offloaded onto the worker processes. Ownership and leases achieve
similar throughput in Figure 4.12d, but the ownership system also includes memory
safety (Section 4.4.2). The centralized design (2 shards) scales linearly to ∼60 nodes.
Adding more shards would raise this threshold, but only by a constant amount.

When the drivers are colocated (Figures 4.12a and 4.12c), both baselines flatline
because of a centralized bottleneck: the scheduler on the drivers’ node. Ownership
also shows this, but there is less scheduler load overall because the drivers reuse re-
sources for multiple tasks (Section 4.4.1). A comparable optimization for the baselines
would require each driver to batch task submission, at the cost of latency. Through-
put for ownership is lower in Figure 4.12c than in Figure 4.12a due to the overhead
of garbage collection.

Thus, because ownership decentralizes system state among the workers, it can
achieve vertical (Figures 4.12a and 4.12c) and horizontal (Figures 4.12b and 4.12d)
scalability. Also, it matches the performance of pass-by-value RPC while enabling
new workloads through distributed memory (Section 4.2.2).

Scaling through borrowing. We show how first-class futures enable delegation.
Figure 4.12e shows the task throughput for an application that submits 100K no-op
tasks that each depend on the same 1MB object created by the driver. The tasks are
submitted either by the driver (x=0) or by a number of nested tasks that each borrow
a reference to the driver’s object. All workers are colocated on an m5.16xlarge node.

For all systems, the throughput with a single borrower (x=1) is about the same
as when the driver submits all tasks directly (x=0). Distributing task submission
across multiple borrowers results in a 2× improvement for ownership and negligi-
ble improvement for the baselines. Thus, with ownership, an application can scale
past the task dispatch throughput of a single worker by delegating to nested tasks.
This is due to (1) support for first-class distributed futures, and (2) the hierarchi-
cal distributed reference counting protocol, which distributes an object’s reference
count among its borrowers instead of centralizing it at the owner (Section 4.4.2). In
contrast, the baselines would require additional nodes to scale.

Latency. Figure 4.13 measures task latency with a single worker, hosted either on
the same node as the driver (“local”), or on a separate m5.16xlarge node (“remote”).
The driver submits 3k tasks that each take the same 1MB object as an argument and
that immediately returns a short string. We report the average duration before each
task starts execution.

First, distributed memory achieves better latency than pass-by-value in all cases

CHAPTER 4. OWNERSHIP 85

local
actors

local
tasks

remote
actors

remote
tasks

0

1

2

3

4

La
te

nc
y

(m
s) Pass by

value
Centralized

Leases
Ownership

Figure 4.13: Task latency. Local means that the worker and driver are on the same
node. Error bars for standard deviation (across 3k tasks).

0 500 1000
Task duration (ms)

1

5
10

Re
la

tiv
e

tim
e

(lo
g)

(a) Small objects.

0 500 1000
Task duration (ms)

1

5
10

Re
la

tiv
e

tim
e

(lo
g)

Pass by value
Pass by value;
failure
Leases
Leases;
failure
Ownership;
failure

(b) Large objects.

Figure 4.14: Total run time (log-scale), relative to ownership without failures. The
application is a chain of dependent tasks that execute on one node. Each task sleeps
for the duration on the x-axis (total 10s) and returns either (a) a short binary string,
or (b) a 10MB blob.

because these systems avoid unnecessary copies of the task argument from the driver
to the worker.

Second, compared to centralized and leases, ownership achieves on average 1.6×
lower latency. This is due to (1) the ability to write metadata locally at the owner
instead of a remote process, and (2) the ability to reuse leased resources, in many
cases bypassing the scheduling layer (Section 4.4.1).

Recovery. This benchmark submits a chain of tasks that execute on a remote
m5.xlarge node. Each task depends on the previous, sleeps for the time on the x-axis
(total duration 10s), and returns either a short binary string (Figure 4.14a) or a 10MB
blob (Figure 4.14b). We report the run time relative to ownership without failures.
To test recovery, the worker node is killed and restarted 5s into the job (1s heartbeat
timeout). We do not include centralized due to implementation effort.

CHAPTER 4. OWNERSHIP 86

0 1000 2000 3000
Latency (ms)

0.0

0.5

1.0

CD
F Ownership -borrow

Centralized
Ownership

0 1000 2000 3000
Latency (ms)

0.95
0.96
0.97
0.98
0.99
1.00

CD
F

(a)

0 1000 2000
Latency (ms)

0.0

0.5

1.0

CD
F Leases

Centralized
Ownership

(b)

0 10 20
Latency (s)

0.90

0.95

1.00

CD
F L; WF

O
O; WF

O; OF
O+CP
O+CP; OF

(c)

Figure 4.15: End-to-end benchmarks. (a) Image classification latency (right is p95-
p100). (b) Online video stabilization latency. (c) Online video stabilization la-
tency with failures (starting at p90). L=leases; O=ownership; CP=checkpointing;
WF=worker failure; OF=owner failure.

CHAPTER 4. OWNERSHIP 87

Normal run time for leases is up to 1.18× faster than ownership, but recovery
time is more than double, worse than restarting the application. This is because a
task’s lease must expire before it can be re-executed, adding delay for short tasks. The
recovery delay for longer tasks is also high because the implementation (Ray v0.7)
repeatedly doubles a lease’s expiration time to reduce renewal overhead. A shorter
lease interval would reduce recovery delay but can be unstable.

Ownership recovers within 2× the normal run time. Recovery time is the same
as pass-by-value for small objects because only in-flight tasks are re-executed (Fig-
ure 4.14a). For large objects (Figure 4.14b), ownership achieves better normal run
time than pass-by-value because arguments are passed by reference; the gap decreases
as task execution dominates.

Thus, ownership can achieve the same or better normal run-time performance
as leases and pass-by-value, while also guaranteeing timely recovery through lineage
reconstruction.

4.5.2 End-to-end applications

Model serving. We implement Figure 4.3a. Figure 4.15a shows the latency on 4
p3.16xlarge nodes, each with 1 Router and 8 ResNet-50 [100] Models. We use a GPU
batch size of 16 and generate 2300 requests/s. Ownership and centralized achieve the
same median latency (54ms), but the tail latency for centralized is 9× higher (1s vs.
108ms). We also show the utility of first-class distributed futures: in “-borrow”, the
Router receives the image values and must copy these to the Model. As expected,
the Router is a bottleneck (p50=80ms, p100=3.2s).

Online video processing. We implement Figure 4.3b with 60 concurrent videos.
The tasks for each stream are executed on an m5.xlarge “worker” node (1 per stream)
and submitted by a driver task on a separate m5.xlarge “owner” node. Each owner
node hosts 4 drivers. Each video source uses an actor to hold frame-to-frame decoder
state. However, tasks are idempotent: a previous frame may be reread with some
latency penalty. We use a YouTube video with a frame rate of 29 frames/s and a
radius of 1s for the moving average.

Figure 4.15b shows latency without failures. All systems achieve similar median
latency (∼65ms), but leases and centralized have a long tail (1208ms and 1923ms,
respectively). Figure 4.15c shows latency during an injected failure, 5s after the start,
of the Decoder actor (Figure 4.3b). Lease-based recovery is slow because the decoder
actor must replay all tasks, and each task accumulates overhead from lease expiration.
Checkpointing the actor was infeasible because the leases implementation does not
safely garbage-collect lineage.

Figure 4.15c also shows different failure scenarios for ownership, with a failure af-
ter 10s. The owner uses lineage reconstruction to recover quickly from a worker failure
(1.9s in O;WF). Owner recovery is slower because the failed owner must re-execute

CHAPTER 4. OWNERSHIP 88

from the beginning (8.8s in O;OF). To bound re-execution, we use application-level
checkpoints (O+CP, checkpoints to a remote Redis instance once per second). Each
checkpoint includes all intermediate state needed to transform the given frame, such
as the cumulative sum so far (Figure 4.3b). When the sink receives the transformed
frame, it “commits” the checkpoint by writing the frame’s index to Redis. This results
in negligible overhead (O vs. O+CP) and faster recovery (1.1s in O+CP;OF).

4.6 Related Work

Distributed futures. Several systems [148, 171, 145, 12, 186, 200] have imple-
mented a distributed futures model. Most [148, 171] use a centralized master (Sec-
tion 4.3.2). In contrast, ownership is a decentralized design that stores system state
directly in the workers that invoke the tasks. Ray [145] shards the centralized state,
but must still write to the centralized store before task execution and does not support
automatic memory management. Lineage stash [200] is a complementary technique
for recovering nondeterministic execution; ownership provides infrastructure for fail-
ure detection and memory management.

Other dataflow systems. Distributed data-parallel systems provide high-throughput
batch computation and transparent data recovery [72, 205, 108, 212]. Many of
our techniques build on these systems, in particular the use of distributed mem-
ory [212, 108] and lineage re-execution [72, 205, 108, 212]. Indeed, a data-parallel
program is equivalent to a distributed futures program with no nested functions.

Most distributed data-parallel systems [72, 205, 108, 212] employ some form of
centralized master, a bottleneck for applications with fine-grained tasks [194, 164,
135]. Naiad [146, 147] and Canary [164] support fine-grained tasks but, like other
data-parallel systems, implement a static task graph, i.e. all tasks must be specified
upfront. In contrast, distributed futures are an extension of RPC, which allows tasks
to be dynamically invoked. Nimbus [135] supports both fine-grained and dynamic
tasks with a centralized controller by leveraging execution templates for iterative
computations. In contrast, ownership distributes the control plane and schedules
tasks one at a time. These approaches are complementary; an interesting future
direction is to apply execution templates to distributed futures.

Actor systems. Distributed futures are compatible with the actor model [104, 31].
Other actor frameworks [42, 2] already use futures for asynchrony, but with pass-by-
value semantics, making it expensive to process large data. Actors can be extended
with distributed memory to enable pass-by-reference semantics. Since distributed
memory is immutable, it does not violate the condition of no shared state.

Our fault tolerance model is inspired by supervision in actor systems [31]. In
this model, a supervisor actor delegates work to its children actors and is responsible

CHAPTER 4. OWNERSHIP 89

for handling any failures among its children. By default, an actor also fate-shares
with its supervisor. Our contribution is in extending the supervision model, which
focuses on actor-level recovery, to task- and object-level recovery.

Parallel programming systems. MPI [86] exposes a low-level pass-by-value inter-
face. In contrast, distributed futures supports pass-by-reference and heterogenerous
processes.

Distributed futures are more similar in interface to other parallel programming
runtimes [45, 40, 184, 133, 98]: the user annotates a sequential program to designate
procedures that can be executed in parallel. Out of these systems, ownership is
perhaps most similar to Legion [40], in that the developer specifies a task hierarchy
that dictates system behavior. Our contribution is in identifying and addressing the
challenges of failure detection and recovery for distributed futures.

Distributed memory. Distributed shared memory [153] provides the illusion of a
single globally shared and mutable address space across a physically distributed sys-
tem. Transparency has historically been difficult to achieve without adding exorbitant
runtime overhead. Mutability makes consistency a major problem [153, 41, 111, 123],
and fault tolerance has never been satisfactorily addressed [153].

More recent distributed memory systems [155, 76, 37, 116, 28] implement a
higher-level key-value store interface. Most target a combination of performance,
consistency, and durability. Similar to our use of distributed memory (Section 4.4.2),
in-memory data replicas are used to improve durability and recovery time. Indeed,
many of these systems could likely be used in place of our distributed memory sub-
system.

However, the requirements of our distributed memory subsystem are minimal
compared to previous work, e.g., durability is only an optimization. This is because
we target an even higher-level interface that integrates directly with the programming
language: unlike a key, a DFut is a first-class reference that can be used to express rich
application semantics to the system, such as an RPC’s data dependencies. Also, like
previous data processing systems [72, 212, 148], data is immutable. Thus, fine-grained
mutations are expensive, but consistency is not a problem.

4.7 Discussion

4.7.1 Programming languages

The ownership architecture for distributed futures is directly inspired by the concept
of ownership types [66] from programming languages, popularized by languages such
as Rust [17]. A key application of ownership types is in automatic memory safety: by
only allowing a single owner for an object at a time, it becomes feasible at compile

CHAPTER 4. OWNERSHIP 90

time to guarantee that, at run time, objects will only be reclaimed when they go out
of scope. Similarly, we apply the concept of having a single owner towards automatic
distributed memory safety: by only allowing a single owner for an object at a time,
we can guarantee with minimal coordination that objects will only be reclaimed when
they are out of scope in the cluster. Thus, our work can also be considered an exten-
sion of ownership types to the distributed setting, studying how ownership relates to
distributed systems design and how failures affect the problem of memory safety.

There are two key differences in our work: 1) ownership cannot be transferred,
and 2) we use distributed reference counting to reclaim objects instead of inserting
reclamation calls at compile time. These were practical decisions, and neither is
fundamental.

Supporting ownership transfer would help mitigate unnecessary fate-sharing, but
so far proved to be unnecessary for the evaluated applications. It would be important,
however, for passing data across application boundaries while keeping failure domains
isolated from each other. An interesting possibility in the distributed setting that does
not appear in the language runtime setting is that of a “global” owner that is highly
available and lives forever. This can be useful, for example, in cases where the user
wants to manually decide when to delete the objects, e.g.., when storing persistent
datasets.

The primary reason for choosing distributed reference counting is that it works
for both interpreted and compiled languages. Because the primary frontend language
in Ray is Python, distributed reference counting is a good fit. Supporting compile-
time ownership checks in the frontend language is an interesting avenue for future
work: it could be used, for example, to avoid distributed reference counting, to sup-
port ownership transfer while minimizing protocol complexity, and potentially even
to enforce stronger fault tolerance guarantees. As an example of possible fault toler-
ance guarantees, ownership type checking could inform the system of the visibility of
a particular result; this can be an important bit of information when deciding how to
safely rollback computation after a failure. We have begun to explore these types of
guarantees in Chapter 6, but a true compiler for a distributed futures language could
unlock many more possibilities.

4.7.2 Impact on Ray

Ownership is the basis of the Ray architecture in v1.0+ [14], implemented in ∼14k
C++ LoC. Previously, Ray used a sharded global metadata store [145]. There were
two problems with this approach: (1) latency, and (2) worker nodes still had to
coordinate for operations such as failure detection. Ray v0.7 introduced leases (Sec-
tion 4.3.2) and an experimental version of the lineage stash that is described in Chap-
ter 3, which solved the latency problem but not coordination. It became impractical
to introduce additional distributed protocols needed for operations such as garbage
collection. We designed ownership as a simpler and more efficient system for both

CHAPTER 4. OWNERSHIP 91

garbage collection and failure detection, and eventually it replaced Ray’s previous
control plane entirely.

4.8 Conclusion and Lessons learned

At first glance, the fault tolerance properties that ownership provides seem weaker
than those described earlier in [145] and Chapter 3: it does not handle automatic
state recovery for actors and when owners fail, it can cause other tasks to exit as
well. Critically, however, ownership provides efficient and reliable failure detection
and garbage collection, both necessary features. It also provides transparent object
recovery as an option for pure functions, meaning that only applications that need
such an option pay the cost.

This shows the importance of designing holistically for necessary fault tolerance
features first. Meanwhile, failure masking and faster recovery should be considered
optimizations, albeit important ones. Because of this, the ownership-based architec-
ture turned out to be more general than previous versions of Ray, more suited to
production use, and longer-lasting. Thus, one of the key lessons learned from Ray’s
history is:

1. The end-to-end principle as applied to fault tolerance: Carefully reducing the
provided recovery guarantees can paradoxically produce a more powerful sys-
tem.

The concept of fate-sharing in the ownership system is an excellent example of
the end-to-end principle as applied to fault tolerance. When deciding how to handle
failed owners, there is an alternative option of recording the children during execu-
tion, and reconciling the recreated owner with the remaining children after a failure.
However, this brings up both protocol complexity (e.g. guaranteeing that there are
no inconsistencies when multiple processes fail simultaneously) as well as limitations
on the application. In particular, a recreated owner would have to deterministically
recreate its children tasks, whereas in the ownership architecture, it is safe for the
recreated owner to create a completely different task subtree, as long as its final task
output is deterministic. Thus, by “giving up” a feature, in this case improved failure
resilience, we gain much more in return.

The key idea behind fate-sharing and the overall ownership architecture is that
the design is based on the structure of distributed futures applications, i.e. the tree
formed by nested function calls. In contrast, previous versions of Ray were in a sense
designed for a totally flat application structure: any process could talk to any other
process, and all processes were equal. For example, the design described in [145] is
completely decentralized, with all worker processes performing the same role. This
design is general and fits the traditional message-passing model [78], and yet it is
unnecessary here, as we know that the application is not flat and that most processes

CHAPTER 4. OWNERSHIP 92

will only communicate with a handful of other processes. Meanwhile, the flat design
also leads to coordination overhead for garbage collection and failure detection. The
ownership architecture shows that we can avoid such problems by using a different
decentralization scheme:

2. Decentralized systems do not imply decentralized decision making. Structuring
the system according to the structure of the application can simplify the system.

Finally, one concept that is visited both here and in the previous chapter is the
idea that after failures, only outputs that are visible to others need special recovery
handling. In this work, we leverage this to handle owner failures, by requiring the
children to fate-share, effectively rolling back the lost outputs’ visibility. In the lineage
stash work, each process stashes the lineage that is visible to it, i.e. upstream in the
lineage DAG. Thus, when considering how to provide transparent recovery for an
application, it is crucial to consider what outputs the application has and who may
view them when. This is a lesson that we formalize and leverage further in Chapter 6:

3. During failures, outputs that are not visible to others are safe to roll back.
Rolling back is often simpler and improves run-time overhead, but it generally
increases recovery time.

In the following chapters, we build upon the ownership work. Chapter 5 stud-
ies one category of applications that benefits directly from the transparent recovery
provided by ownership. Meanwhile, for more complex end applications, we note that
achieving efficient run-time and recovery may require significant application informa-
tion and higher-level functionality. We study this idea in Chapter 6, where we build
upon ownership to also support applications with impure functions.

93

Chapter 5

Exoshuffle: An Extensible Shuffle
Architecture

One of the primary goals of the distributed futures interface is to factor out dis-
tributed execution and memory management from data-intensive cluster computing
frameworks, thus reducing system development effort and converting previously siloed
frameworks into libraries. In this chapter, we extend and build upon the ownership
architecture to show how this can be done for one class of distributed applications:
MapReduce [72] applications.

The key primitive in MapReduce applications is shuffle, the all-to-all data trans-
fer from mappers to reducers. We choose to focus on this primitive because it is
one of the most expensive communication primitives in distributed data processing
and is difficult to scale. This is evidenced by the many prior works on address-
ing shuffle scalability challenges, all of which are built into a monolithic shuffle sys-
tem [167, 217, 182, 34].

In this chapter, we present Exoshuffle, a library for distributed shuffle that offers
competitive performance and scalability as well as greater flexibility than monolithic
shuffle systems. Exoshuffle does so by decoupling the shuffle control plane from the
shuffle data plane. Exoshuffle libraries implement the shuffle control plane, defining
a logical shuffle schedule for tasks and data movement, and depend on the ownership
architecture as their data plane, which handles data movement, recovery, and pipelin-
ing with execution. Here, we also extend the ownership architecture presented in the
previous chapter to include support for out-of-core data processing via object spilling.
With these components, we are able to (1) rewrite previous shuffle optimizations as
application-level libraries with an order of magnitude less code, (2) achieve shuffle
performance and scalability competitive with monolithic shuffle systems, and break
the CloudSort record as the world’s most cost-efficient sorting system, and (3) enable
new applications such as ML training to easily leverage scalable shuffle.

This chapter is based on the published work [130] and includes significant con-

CHAPTER 5. EXOSHUFFLE 94

tributions of the coauthors Frank Sifei Luan et al.

5.1 Introduction

Shuffle is a fundamental operation in distributed data processing systems. It refers to
the all-to-all data transfer from mappers to reducers in a MapReduce-like system [72].
Shuffle is one of the most expensive communication primitives in these systems and
is difficult to scale. Scaling shuffle requires efficiently and reliably moving a large
number of small blocks from each mapper to each reducer across memory, disk, and
network. It requires both high I/O efficiency, and robustness to failures and data
skew. Furthermore, as the data size increases, the number of shuffle blocks grows
quadratically, making shuffle the most costly operation in some workloads.

The difficulty of scaling shuffle has inspired many solutions from both the in-
dustry and research community. These shuffle implementations improve the per-
formance and reliability of large-scale shuffle by optimizing I/O in different storage
environments, such as HDD, SSD and disaggregated storage [167, 217, 182, 34]. Since
performance at scale is a priority, these prior solutions are built as monolithic shuffle
systems from scratch using low-level system APIs. However, these systems are costly
to develop and integrate. For example, cloud providers each have to build propri-
etary services to support shuffle on their own storage services [34, 23, 185]. Magnet,
a push-based shuffle system for Spark [182], took 19 months between publication and
open-source release in the Spark project [75] because it required significant changes
to system internals [181].

Furthermore, the above shuffle systems generally expose a batch execution API,
often used to support end applications written with SQL or dataframes. Most of
these systems are synchronous in nature: the results are available only after the en-
tire shuffle operation completes. This poses challenges for applications that require
fine-grained integration with the shuffle operation to improve their performance by
processing data as it is being shuffled, i.e., pipeline data processing with the shuffle
operation. For example, ML training often requires repeatedly shuffling the training
dataset between epochs to improve learning quality [140, 139]. Doing this efficiently
requires fine-grained pipelining between shuffle and training: ML trainers should con-
sume partial shuffle outputs as soon as they become ready. Today’s ML developers
are faced with two undesirable choices: (1) they either rebuild shuffle from scratch,
once again dealing with the performance challenges of large-scale shuffle, or (2) inter-
face with existing shuffle systems through the synchronous APIs: the shuffle results
can only be consumed after all partitions are materialized, leaving pipelining oppor-
tunities on the table.

To simplify the development of new shuffle optimizations targeting different
environments, and to provide fine-grained pipelining for new applications, we pro-
pose an extensible architecture for distributed shuffle that enables flexible, efficient,

CHAPTER 5. EXOSHUFFLE 95

Distributed Futures API

Shuffle System A
Pre-shuffle-

merge

(a) Monolithic design. (b) LibShuffle design.

Data Plane

Data Processing Frameworks General Applications:
 Data Processing, ML Training, …

Pre-shuffle-merge

Data Plane

Shuffle System B

Push-based
Shuffle

Data Plane

Push-based
Shuffle

E
xo

sh
uf

fle

(a) Monolithic shuffle systems.

Distributed Futures API

Shuffle System A
Pre-shuffle-

merge

(a) Monolithic design. (b) LibShuffle design.

Data Plane

Data Processing Frameworks General Applications:
 Data Processing, ML Training, …

Pre-shuffle-merge

Data Plane

Shuffle System B

Push-based
Shuffle

Data Plane

Push-based
Shuffle

E
xo

sh
uf

fle

(b) Exoshuffle.

Figure 5.1: Exoshuffle builds on an extensible architecture. Shuffle as a library is
easier to develop and more flexible to integrate with applications. The data plane
ensures performance and reliability.

and scalable implementations. Unlike previous solutions built as monolithic sys-
tems (Fig 5.1a), we propose building distributed shuffle as a library (Fig 5.1b). Such
an architecture allows: (1) shuffle builders to easily develop and integrate new shuf-
fle designs for new environments, and (2) a broader set of applications to leverage
scalable shuffle in a more flexible manner.

How can we implement shuffle at the application level (as a library) while pro-
viding high performance? To answer this question, we first identify the optimizations
in past shuffle systems that are key to performance and reliability. (1) Coordination:
managing the timing and placement of mapper and reducer tasks, and implementing
optimizations such as merging intermediate shuffle blocks. (2) Efficient data transfer:
pipelining I/O with computation to maximize throughput, and spilling data to disk to
accommodate larger-than-memory datasets. (3) Fault tolerance: guaranteeing data
is reliably transferred to reducers via retries or replication.

Our key observation is that we can split these optimizations between a control
and a data plane. Optimizations for coordinating shuffle are implemented by the
control plane at the application layer, while the data plane provides efficient data
transfer and fault tolerance at the system layer. This enables developers to easily
implement a variety of shuffle solutions at the application layer, while having the
underlying system handle efficient data transfer and fault tolerance.

The next question is what interface should the data plane provide to the ap-
plication. Our answer is of course distributed futures. As described in Chapter 2,
distributed futures extend RPC with an immutable shared address space, by allowing
callers to pass objects by reference regardless of their physical location in the cluster.
This abstraction allows the application to specify remote task invocations, while a
common dataplane implements the physical data transfers. Distributed futures can
also be passed before the data object is created, allowing the system to parallelize

CHAPTER 5. EXOSHUFFLE 96

remote calls and pipeline data transfer with task execution. We show that this ab-
straction can express a variety of shuffle algorithms, including dynamic strategies to
handle data skew and stragglers (§5.3).

Although many distributed futures implementations exist, none of the these
systems have been able to match the scale and performance of a monolithic shuffle
system. CIEL [148] is the first to show MapReduce programs can be implemented
using distributed futures, but it lacks an in-memory object store which is crucial for
efficient pipelining and data transfers. Dask [171], another distributed futures-based
dataframe system, supports in-memory objects but cannot scale beyond hundreds of
GBs (§5.5.3.1). Previous versions of Ray [145] support shuffle within the capacity
of its distributed shared memory object store, but lack disk spilling mechanisms and
therefore do not support out-of-core processing.

In this work, we extend Ray with the necessary features to support large-scale
shuffle (§5.4). These include: (1) locality scheduling primitives to enable colocating
tasks to better exploit shuffle data locality; (2) a full distributed memory hierarchy
with disk spilling and recovery; (3) asynchronous object fetching to pipeline task
execution with disk and network I/O. We present Exoshuffle, a flexible and scalable
library for distributed shuffle built on top of Ray. We demonstrate the advantages of
this extensible shuffle architecture by showing that (§5.5):

• A variety of previous shuffle optimizations can be written as distributed futures
programs in Exoshuffle, with an order of magnitude less code.

• The Exoshuffle implementations of these shuffle optimizations match or exceed
the performance of their monolithic counterparts.

• Exoshuffle can scale to 100 TB, outperforming Spark and Magnet by 1.8×, and
breaking the CloudSort record as the world’s most cost-efficient sorting system.

• Exoshuffle can easily integrate with a diverse set of applications such as dis-
tributed ML training, improving end-to-end training throughput by 2.4×.

5.2 Motivation

In this section, we overview two lines of previous work in building shuffle systems to
illustrate the challenges in simultaneously achieving shuffle scalability and flexibility.

5.2.1 Shuffle Systems

In a MapReduce operation with M map tasks and R reduce tasks, shuffle creates
M×R intermediate blocks. Each of these blocks must be moved across memory, disk,
and network. As the number of tasks grow, the number of blocks increases and the

CHAPTER 5. EXOSHUFFLE 97

3XOO�EDVHG�VKXIIOH 5LIIOH &RVFR�DQG�0DJQHW

H<K

M@?P>@
H@MB@

M@?P>@

H<K

H@MB@

M@?P>@

H<K

(a) “Simple” shuffle [72].

3XOO�EDVHG�VKXIIOH 5LIIOH &RVFR�DQG�0DJQHW

H<K

M@?P>@
H@MB@

M@?P>@

H<K

H@MB@

M@?P>@

H<K

(b) Pre-shuffle merge [217].

3XOO�EDVHG�VKXIIOH 5LIIOH &RVFR�DQG�0DJQHW

H<K

M@?P>@
H@MB@

M@?P>@

H<K

H@MB@

M@?P>@

H<K

(c) Push-based shuffle [182, 47, 197].

Figure 5.2: Shuffle algorithms for various applications. Exoshuffle uses distributed
futures to execute these DAGs.

Storage target Shuffle systems

Hard disk Sailfish [167], Riffle [217], Magnet [182]
SSD Zeus [38]
Cloud storage Alibaba E-MapReduce Shuffle [23],

AWS Glue Shuffle [34],
Google Cloud Dataflow Shuffle [185]

Table 5.1: Different shuffle systems are built to optimize shuffle for deployment in
different storage environments.

block size decreases both quadratically. At terabyte scale, this can result in hundreds
of millions of very small blocks. This creates great challenges for I/O efficiency,
especially for hard drives with low IOPS limits. Many shuffle systems have been
built to optimize I/O efficiency in different storage environments. Table 5.1 shows an
incomplete list of these systems, grouped by their target storage environments.

Previous I/O optimizations fall under two general categories: (1) reducing the
number of small and random I/O accesses by merging intermediate blocks into larger
ones at various stages [217, 47, 182] (Figures 5.2b and 5.2c), and (2) using pipelining
to overlap I/O with execution [182, 97]. For example, push-based shuffle [197, 96]
involves pushing intermediate outputs directly from the mappers to the reducers,
allowing network and disk I/O to be overlapped with map execution, and optionally
merging results on the reducer (Figure 5.2c) to improve disk write efficiency [182, 47].

While these solutions can improve throughput, they also come with high de-

CHAPTER 5. EXOSHUFFLE 98

6KXIIOH�V\VWHP

0/�WUDLQLQJ
0HPRU\�EXIIHU

6KXIIOH�V\VWHP

0/�WUDLQLQJ

0DS� 5HGXFH�

7UDLQ�

0DS� �«

0HPRU\�EXIIHU
5HGXFH� 0DS�

7UDLQ�

0DS�

7UDLQ�

0DS�0DS�

7UDLQ�

6KXIIOH�V\VWHP

0/�WUDLQLQJ
0HPRU\�EXIIHU

7UDLQ� 7UDLQ� ����7UDLQ�

�L�

�LL�

�LLL�
0�

���5�
���0�

���5�
���0�

���5�
� 0�

���5�
���0�

���5�
���«

5�
����«

0�
���5�

���0�
���5�

���0�
����5�

�

5�
���5�

����5�
�5�

���5�
����5�

�

Figure 5.3: Pipelining data preprocessing and shuffle with GPU tasks in an ML
training application.

velopment cost. Each new operation, such as reduce-side merge, requires building
additional protocols for managing block transfers. However, although the ideas may
be system-agnostic, the physical artifacts are often tightly integrated with proprietary
storage systems, making them difficult to port to open-source frameworks. For exam-
ple, many cloud providers build proprietary shuffle services to work with their own
disaggregate storage offerings [34, 23, 185]; meanwhile, Magnet [182] is open-sourced
as part of Spark but has yet to support disaggregated storage.

Furthermore, large-scale shuffle systems often come with more complicated de-
ployment models. They are often deployed as auxiliary services to existing data
processing systems. Shuffle services decouple block lifetimes from task executors to
minimize interruptions upon executor failures [207], which are more frequent in large
clusters. Shuffle services are also used to coordinate more sophisticated shuffle proto-
cols, such as push-based shuffle and reduce-side merge [182]. However, because these
shuffle services are only necessary at very large scale, they are not enabled by default
in systems like Spark and require a separate deployment process.

Thus, while there has been significant innovation in new shuffle designs, few of
these are widely deployed. Furthermore, it is difficult for an application to choose
on the fly whether to use a particular shuffle algorithm; it requires both a priori
knowledge of the application scenario and potentially an entirely different system
deployment.

5.2.2 Random Shuffle in ML Training Pipelines

While much of the existing shuffle literature has focused on large-scale batch process-
ing, there is also a need for performant shuffle in other application scenarios, such as
online aggregation [67] and pipelining with downstream applications. An example of
the latter is the random shuffle operation commonly used in machine learning train-

CHAPTER 5. EXOSHUFFLE 99

ing jobs. Note that by random shuffle, we mean the application-level transform that
randomly permutes the rows of a dataset, rather than the generic system-level shuffle
that is used to execute MapReduce applications.

To improve model convergence in deep learning, it is common practice to ran-
domly shuffle the training dataset before feeding into GPU trainers to avoid bias on
the order of the data [140, 139]. In some cases, the data must be shuffled on every
epoch. To minimize GPU pauses, the shuffle should be pipelined with the training
execution (Section 5.1). Furthermore, it is desirable for developers to be able to trade
off between performance and accuracy: they might wish to run shuffle in a smaller
window to reduce training latency, at the cost of overall end model accuracy.

These differences make it difficult for ML pipelines to directly leverage existing
monolithic shuffle systems. Systems like Hadoop and Spark are highly optimized for
global shuffle operations, but are not designed to pipeline the shuffle with downstream
executions: shuffle results cannot be read until the full shuffle is complete [67]. The
results must be written out to an external store before they can be read by the
training workers (Section 5.1i). However, this leads to either high memory footprint,
as it requires holding an additional copy of the dataset, or higher I/O overhead, if
the shuffled data is written to disk before transfer to the GPU.

Fine-grained pipelining can improve efficiency. Section 5.1ii shows an example in
which the reduce tasks for a particular epoch are pipelined with the training compu-
tation. This allows results to be used as they become available while limiting memory
footprint to a single partition. Alternatively, the application can also choose to shuffle
the dataset in windows (Section 5.1iii), improving pipelining at the cost of accuracy.
Unfortunately, existing shuffle systems are not built for such fine-grained pipelining,
and most big data systems that offer high-performance shuffle use an execution model
that is incompatible with deep learning systems [69].

Instead, ML training frameworks often end up re-implementing shuffle within
specialized data loaders and thus run into known problems that have been solved
by traditional shuffle systems. Typically, data loaders are implemented with a pool
of CPU-based workers colocated with the GPU trainers [149, 192, 93]. Each worker
loads a partition of the dataset from storage (e.g., Amazon S3), preprocesseses it,
and feeds the resulting data into the colocated trainers. To support random shuffle,
the workers may read a random partition of the dataset on each epoch. However, to
improve I/O efficiency, data must still be read in batches. Thus, to de-correlate data
within the same batch, workers further shuffle the data by mixing records within a
fixed-size local memory buffer. This effectively ties the shuffle window size to the
size of the memory buffer. Setting the buffer size too large results in out-of-memory
errors and poor pipelining, but if the buffer is too small, data de-correlation may be
insufficient. In Appendix B.3.6, we demonstrate how Exoshuffle can bring distributed
shuffle optimizations to ML training applications, achieving both high performance
and flexibility.

CHAPTER 5. EXOSHUFFLE 100

5.3 Shuffle with Distributed Futures

For distributed futures to serve as an intermediate abstraction layer for shuffle, they
should: (1) abstract out the common implementation details of different shuffle im-
plementations, (2) be general enough to allow heterogeneous end applications to in-
terface with the shuffle library, and (3) provide the same performance and reliability
as monolithic shuffle systems. This narrow waist for distributed shuffle would enable
both faster development for new shuffle implementations and extensibility to new
application use cases.

Monolithic shuffle systems use messaging primitives, like RPC, as an intermedi-
ate abstraction layer. RPC is both general-purpose and high-performance, but it is
too low-level to be a useful intermediate layer for shuffle. Integrating push-based shuf-
fle into Spark, for example, required 1k+ LoC for the RPC layer changes alone [181].
Much of this development effort lies in implementing new inter-task protocols for data
transfer and integrating them alongside existing ones.

In contrast, distributed futures decouple the shuffle control plane from the data
plane. This abstraction enables different shuffle libraries to share a common data
plane. Optimizations like push-based shuffle can be implemented in an order of
magnitude less code as a result (§5.5.2).

In this section, we briefly overview the expression of known shuffle optimiza-
tions and application-specific shuffle variants as application-level libraries with the
distributed futures API. These simplified examples capture the logical execution DAG
of the shuffle. A full description and evaluation of the libraries can be found in Ap-
pendix B.

5.3.1 The Distributed Futures API

A distributed futures program invokes remote functions, known as tasks, that execute
and return data on a remote node. When calling a remote function, the caller imme-
diately gets a distributed future that represents the eventual return value. The future
is “distributed” because the return value may be stored anywhere in the cluster, e.g.,
at the node where the task executes. This avoids copying return values back to the
caller, which can become expensive for large data.

The caller can make use of a distributed future in two ways. First, it can create
a DAG by passing a distributed future as an argument to another task. The system
ensures that the dependent task runs only after all of its arguments are computed.
Note that the caller can specify such dependencies before the value is computed
and that the caller need not see the physical values. This gives the system control
over parallelism and data movement, e.g., pipelining task execution with dependency
fetching for other tasks, and allows the caller to manipulate data larger than local
memory. Second, the caller can get the value of a distributed future using a get call,
which fetches the value to the caller’s local memory. This is useful when consuming

CHAPTER 5. EXOSHUFFLE 101

the output of a shuffle, as it allows the caller to pipeline its own execution with the
shuffle. The caller can additionally use a wait call, which blocks until a set of tasks
complete (without fetching the return values), for synchronization and for avoiding
scheduling too many concurrent tasks.

5.3.2 Expressing Shuffle with Distributed Futures

Listing 1 demonstrates how these APIs can be used to express various shuffle opti-
mizations (Fig 5.2) as application-level programs. We use Ray’s distributed futures
API for Python [145] for illustration. The @ray.remote annotation designates remote
functions, and the .remote() operator invokes tasks.

1 def simple_shuffle(M, R, map, reduce):
2 map_out = [map.remote(m) for m in range(M)]
3 return ray.get([
4 reduce.remote(map_out[:,r]) for r in range(R)]
5

6 def shuffle_riffle(M, R, F, map, reduce, merge):
7 map_out = [map.remote(m) for m in range(M)]
8 merge_out = [
9 merge.remote(map_out[i*F:(i+1)*F, :])

10 for i in range(M/F)]
11 return ray.get([
12 reduce.remote(merge_out[:,r]) for r in range(R)]
13

14 def shuffle_magnet(M, R, F, map, reduce, merge):
15 map_out = [map.remote(m) for m in range(M)]
16 merge_out = [
17 [merge.remote(map_out[i*F:(i+1)*F, r])
18 for i in range(M/F)] for r in range(R)]
19 return ray.get(
20 [reduce.remote(merge_out[:,r]) for r in range(R)]

Listing 1: Shuffle algorithms as distributed futures programs.

As an illustrative example, we discuss how “simple shuffle” is implemented with
distributed futures. In Listing 1, simple shuffle shows a straightforward imple-
mentation of the MapReduce paradigm illustrated in Figure 5.2a. The shuffle routine
takes a map function that returns a list of map outputs, and a reduce function that
takes a list of map outputs and returns a reduced value. M and R are the numbers of
map and reduce tasks respectively. The two statements produce the task graph shown
in Figure 5.2a. Note that the .remote() calls are non-blocking, so the entire task
graph can be submitted to the system without waiting for any one task to complete.

This is effectively pull-based shuffle, in which shuffle blocks are pulled from the
map workers as reduce tasks progress. Assuming a fixed partition size, the total

CHAPTER 5. EXOSHUFFLE 102

number of shuffle blocks grows quadratically with the total data size. Section 5.5.1
shows empirical evidence of this problem: as the number of shuffle blocks increases,
the performance of the naive shuffle implementation drops due to decreased I/O effi-
ciency. Prior work [217, 182, 47] have proposed solutions to this problem; a full study
of adapting these strategies with distributed futures can be found in Appendix B.

5.4 System Architecture

Section 5.3 shows how shuffle DAGs can be expressed as distributed futures programs.
However, achieving high performance shuffle also requires a set of critical system
facilities. In this section, we describe the architecture of Exoshuffle via a realistic
implementation of the push-based shuffle described in Appendix B.1.2. We describe
the additional system APIs used by Exoshuffle (§5.4.2), and the transparent features
provided by the underlying distributed futures implementation (§5.4.3) that are key
to performance.

5.4.1 Example: Push-based Shuffle

Listing 2 implements push-based shuffle (Appendix B.1.2) for a cluster of NUM -

WORKERS nodes. The library takes a map and a reduce function as input. The re-
maining constants are chosen by the library according to the user-specified number
of input and output partitions.

Lines 11–25 comprise the map and merge stage, in which map results are shuffled,
pushed to the reducer nodes, and merged. This stage pipelines between CPU (map
and merge tasks), network (to move data between map and merge), and disk (to write
out merge results). The map and merge tasks are scheduled in rounds for pipelining:
Lines 18–19 ensures that there is at most one round of merge tasks executing, and
that they can overlap with the following round’s map tasks. Each round submits one
merge task per worker node. Each merge task takes in one intermediate result from
each map task from the same round and returns as many merged results as there are
reduce partitions on that worker.

Once all map and merge tasks are complete, we schedule all reduce tasks (lines
28–31) and return the distributed future results. Each reduce task performs a final
reduce on all merge results for its given partition. To minimize unnecessary data
transfer, the reduce tasks are co-located with the merge tasks whose results they
read.

5.4.2 Scheduling Primitives

For complex applications like distributed shuffle, it is difficult for a general-purpose
system to make optimal decisions in every context. For instance, optimally scheduling

CHAPTER 5. EXOSHUFFLE 103

1 def push_based_shuffle(map, reduce):
2 @ray.remote
3 def merge(*map_results):
4 for results in zip(*map_results):
5 yield reduce(*results)
6

7 merge_results = numpy.empty((NUM_WORKERS,
8 NUM_ROUNDS, NUM_REDUCERS_PER_WORKER))
9

10 # Map and shuffle.
11 for rnd in range(NUM_ROUNDS):
12 for i in range(NUM_TASKS_PER_ROUND):
13 map_results = [
14 map.options(num_returns=NUM_WORKERS).remote(
15 parts[rnd * NUM_TASKS_PER_ROUND + i])
16 for i in range(NUM_TASKS_PER_ROUND)]
17

18 if rnd > 0:
19 ray.wait(merge_results[:, rnd - 1, :])
20

21 for w in range(NUM_WORKERS):
22 merge_results[w, rnd, :] = merge.options(
23 worker=w, num_returns=NUM_REDUCERS_PER_WORKER
24).remote(*map_results[:, w])
25 del map_results
26

27 # Reduce.
28 return flatten(
29 [[reduce.remote(*merge_results[w, :, rnd])
30 for rnd in range(NUM_REDUCERS_PER_WORKER)]
31 for w in range(NUM_WORKERS)])

Listing 2: Implementation of two-stage shuffle.

a computation DAG on a set of nodes is NP-hard [55]. It is therefore more robust
to allow the application or library developer to apply domain-specific knowledge to
achieve better performance.

By default, Ray provides a two-level distributed scheduler that balances between
bin-packing vs. load-balancing [145]. This is sufficient for map and reduce tasks in
simple shuffle, as these can be executed anywhere in the cluster. However, more
advanced shuffle strategies (Appendices B.1.1 and B.1.2) require more careful place-
ment and scheduling of tasks to improve performance. In this section, we describe
the additional APIs designed to give the shuffle library more control over the physical
execution of the shuffle DAG.

CHAPTER 5. EXOSHUFFLE 104

(66

$SSOLFDWLRQ�GULYHU

0DSSHU�QRGH

([HFXWRU
,Q�PHPRU\�
EORFN�VWRUH

2Q�GLVN�
VKXIIOH�ILOHV

5HGXFHU�QRGH

([HFXWRU
,Q�PHPRU\�EORFN�

VWRUH

2Q�GLVN�
VKXIIOH�ILOHV(66

H<K M@?P>@

0DJQHW�QRWHV�WR�PHQWLRQ�
� 3XVKLQJ�EORFNV�WR�UHGXFHU�QRGHV
� ,QWHUPHGLDWH�PHUJH�E\�(66
� (66�FDQ�VHUYH�EORFNV�HYHQ�ZKHQ�H[HFXWRU�GLHV
�)DOO�EDFN�WR�QRUPDO�UHGXFH�LI�IDLO�WR�PHUJH�EORFNV���XVH�6SDUN¶V�5''�UHFRQVWUXFWLRQ�WR�UHFRYHU�ORVW�EORFNV

(a) Example of a monolithic shuffle architecture.

1RGH0DQDJHU

$SSOLFDWLRQ�GULYHU

0DSSHU�QRGH

([HFXWRU

,Q�PHPRU\�EORFN�VWRUH

2Q�GLVN�EORFN�VWRUH

5HGXFHU�QRGH

1RGH0DQDJHU
,Q�PHPRU\�EORFN�VWRUH

2Q�GLVN�EORFN�VWRUH

([HFXWRU
H<K

M@?P>@

0DJQHW�RQ�5D\�QRWHV�WR�PHQWLRQ�
� 6KDUHG�PHPRU\�EORFN�VWRUH�WR�FRRUGLQDWH�EORFN�WUDQVIHUV
� ,QWHUPHGLDWH�PHUJH�DW�DSSOLFDWLRQ�OHYHO
� 1RGH0DQDJHU��UD\OHW��FDQ�VHUYH�EORFNV�HYHQ�ZKHQ�H[HFXWRUV��3\WKRQ�ZRUNHUV��GLH
� 'ULYHU�UHFRYHUV�ORVW�EORFNV�LI�D�1RGH0DQDJHU�EORFN�VWRUH�GLHV��FLWH�RZQHUVKLS�

72'2��0D\EH�ODEHO�DUURZV�ZLWK����������HWF�VR�ZH�FDQ�UHIHUHQFH�VWHSV�IURP�WKH�WH[W"

([HFXWRU H@MB@

(b) Exoshuffle.

Figure 5.4: Comparing a monolithic vs. application-level shuffle architecture. (a)
implements all coordination and block management through an external shuffle service
on each node, in this case implementing the Magnet shuffle strategy (Appendix B.1.2).
(b) shows the same shuffle strategy but implemented as an application on a generic
distributed futures system.

CHAPTER 5. EXOSHUFFLE 105

5.4.2.1 Scheduling for Data Locality

Ray provides automatic locality-based scheduling when possible. For example in
Listing 2, lines 28–31, Ray automatically schedules the reduce tasks on the workers
on which the upstream merge results reside. In some other cases, hints must be
provided to the system to achieve better data locality. For example, a group of merge
tasks must be colocated with the downstream reduce task, but this is impossible for
the system to determine because the reduce task’s dependency is not known to the
system yet. To handle this problem, we introduce node-affinity scheduling in Ray,
which allows the application to pin tasks to a particular node. For example, Listing 2
uses this in line 23 to colocate merge tasks for the same reducer. Node affinity is soft,
meaning that Ray will choose another suitable node if the specified node fails.

5.4.2.2 Scheduling for Task Pipelining

The map and merge tasks should be pipelined to allow map results to be shuffled
concurrently with map execution. This task-level pipelining is challenging for a dis-
tributed futures system to determine automatically: Too many concurrent map tasks
will reduce resources available to downstream merge tasks, and scheduling the wrong
set of map and merge tasks concurrently prevents map outputs from being consumed
directly by merge tasks, resulting in unnecessary disk writes. The shuffle library is
better placed to determine that it should apply backpressure by limiting the number
of concurrent map and merge tasks. The library can also determine that a round of
merge tasks should be executed concurrently with the following round of map tasks.
Exoshuffle achieves this with the wait API (Listing 2, line 19), which blocks until a
task completes.

5.4.2.3 Controlling Redundancy with Reference Counting

Distributed futures are reference-counted in Ray. While an object reference is in
scope, Ray attempts to ensure its value exists in the cluster. By selecting which
references to keep or drop, the shuffle library can make tradeoffs between reducing
write amplification and improving data redundancy. For example, line 25 of Listing 2
deletes the intermediate map results from the current round. This reduces write
amplification, as the map results can be immediately dropped from memory without
spilling to disk, but requires additional re-execution upon failure. Alternatively, the
shuffle library can instead keep the intermediate references, resulting in additional
disk writes but improved data redundancy.

5.4.3 Transparent System Facilities

The actual data transfer, or shuffle, is managed by the distributed futures system
according to the application specifications. For example in Listing 2, lines 23–25

CHAPTER 5. EXOSHUFFLE 106

specifies that one column of the distributed futures in map results should be sent to
one merge task. This prompts the data plane to transfer the corresponding physical
data to the merge task’s location. In this section, we describe the transparent storage
and I/O mechanisms provided by the distributed futures system to facilitate this data
movement.

5.4.3.1 Shared Memory Object Store

Previous monolithic shuffle systems implement distributed coordination via an ex-
ternal shuffle service, a specialized process deployed to each node that orchestrates
block transfers (Fig 5.4a). This process is external to the executors, decoupling block
transfers from map and reduce task execution. In Exoshuffle, we replace this ser-
vice with a generic node manager that is responsible for both in-memory and spilled
objects (Fig 5.4b).

We build on Ray’s shared memory object store [145] for immutable objects.
Each node manager hosts a shared memory object store shared by all executors on
that node (Fig 5.4b). This decouples executors from blocks: once a task’s outputs
are stored in its local object store, the node manager manages the block. This keeps
executors stateless and allows them to execute other tasks or exit safely while the
node manager coordinates block movement. Shared memory enables zero-copy reads
of object data on the same node, which avoids CPU and memory overhead. By
making objects immutable, we also avoid consistency concerns between object copies.

Next, we describe extensions to the original Ray architecture [145] made in
this work that improves pipelining disk and network I/O with task execution. These
improvements are made at the system level without knowledge of the application-level
shuffle semantics, and thus can benefit a wide range of data-intensive applications.

5.4.3.2 Pipelined Object I/O

Object Allocation and Fetching. There are two categories of object memory
allocations: new objects created for task returns (e.g., map task outputs), and copies
of objects fetched remotely as task arguments (e.g., merge task inputs). The mem-
ory subsystem queues and prioritizes object allocations to ensure forward progress
while keeping memory usage bounded to a limit. This is critical for reducing thrash-
ing within the object store, caused by requesting objects for too many concurrent
requests, while leaving sufficient heap memory for task executors.

All memory allocations on a Ray worker node go into an allocation queue for
fulfillment. If there is spare memory, the allocation is fulfilled immediately. Oth-
erwise, requests are queued until the spilling process or garbage collection frees up
enough memory. If memory is still insufficient, Ray falls back to allocating task out-
put objects on the filesystem to ensure liveness. Spare memory besides the memory
allocated to executing task arguments and returns is used to fetch the arguments

CHAPTER 5. EXOSHUFFLE 107

of queued tasks. This enables pipelining between execution and I/O, i.e. restoring
objects from disk or fetching objects over the network. For example, at line 28 in
Listing 2, all merge results are already spilled to disk and all reduce tasks are submit-
ted at once. While earlier reduce tasks execute, the system uses any spare memory
to restore merge results for the next round of reduce tasks from disk.

Object Spilling. Object spilling is transparent, so the application need not specify
if or when it should occur. When the memory allocation subsystem has backlogged
requests, the spilling subsystem migrates referenced objects to disk to free up memory.
When a spilled object’s data is required locally for a task, e.g., because it is the
argument of a queued task, the node manager copies it back to memory as described
above. When requested by a remote node, the spilled object is streamed directly from
disk across the network to the remote node manager. To improve I/O efficiency, Ray
coalesces small objects into larger files before writing to the filesystem.

5.4.3.3 Fault Tolerance

Exoshuffle relies on lineage reconstruction for distributed futures to recover objects
lost to node failures [201], a similar mechanism to previous shuffle systems [72, 212].
In Ray, the application driver stores the object lineage and resubmits tasks as needed
upon failure. This process is transparent to Exoshuffle, which runs at the application
level. Still, Exoshuffle can use object references (§5.4.2.3) to specify reconstruction
or eviction for specific objects.

Executor process failures are much more common than node failures; executors
can fail due to transient application errors and/or out-of-memory errors, whereas
nodes should only fail if there is a critical system bug or machine failure. If recon-
struction is required each time an executor fails, it can impede progress [207, 182].
Many previous shuffle systems use an external shuffle service to ensure map output
availability in the case of executor failures or garbage collection pauses. Similarly, in
Exoshuffle, executor process failures do not result in the loss of objects, because the
object store is run inside the node manager as a separate process.

More sophisticated shuffle systems require additional protocols such as dedupli-
cation to ensure fault tolerance [47]. Distributed futures prevent such inconsistencies
because they require objects to be immutable, task dependencies to be fixed, and
tasks to be idempotent.

To reduce the chance of data loss, some shuffle system uses on-disk [182] or in-
memory [47] replication of intermediate blocks to guard against single node failures. In
Ray, objects are spilled to disk and transferred to remote nodes where they are needed,
which also results in multiple copies as long as the object is in scope. The application
can also disable this optimization by deleting its references to the object (Listing 2,
L25). In the future, we could allow the application to more finely tune the number
of replicas kept, e.g., by passing this as a parameter during task invocation.

CHAPTER 5. EXOSHUFFLE 108

5.5 Evaluation

We study the following essential questions in the evaluation:

• Can Exoshuffle libraries achieve performance and scalability competitive with
monolithic shuffle systems? (§5.5.1)

• Is it easier to implement shuffle optimizations in Exoshuffle? (§5.5.2)

• How do the features in the distributed futures backend contribute to Exoshuffle
performance? (§5.5.3)

A more complete evaluation can be found in Appendix B, which further eval-
uates the performance and scalability of Exoshuffle libraries as well as the benefits
for end applications, including CloudSort, online aggregation and ML training (Ap-
pendix B.3.3).

5.5.1 Shuffle Performance

5.5.1.1 Setup

We create test environments on Amazon EC2 using VMs targeted at data warehouse
use cases. We test on a HDD cluster of d3.2xlarge instances (8 CPU, 64 GiB RAM,
6× HDD, 1.1 GB/s aggregate sequential throughput, 18K aggregate IOPS, 15 Gbps
network), and a SSD cluster of i3.2xlarge instances (8 CPU, 61 GiB RAM, NVMe SSD,
720 MB/s throughput, 180K write IOPS, 10 Gbps network).

Workload. We run the Sort Benchmark (a.k.a. TeraSort or CloudSort) [180], as it
is a common benchmark for testing raw shuffle system performance. This benchmark
requires sorting a synthetic dataset of configurable size, consisting of 100-byte records
with 10-byte keys.

Baselines. We compare to the push-based shuffle service in Spark, a.k.a. Magnet,
and a theoretical baseline.

Magnet is integrated into Spark in its 3.2.0 release as an external push-based
shuffle service. We run Spark 3.2.0 on Hadoop 3.3.1 with Magnet shuffle service en-
abled. We disable compression of shuffle files according to the rules of TeraSort. This
allows for a fair comparison in terms of total bytes of disk I/O.

For the theoretical baseline, we assume disk I/O is the bottleneck since empiri-
cally we find that disk I/O takes longer than networking and CPU processing in this
benchmark. The baseline is calculated by T = 4D/B, where D is the total data
size and B is the aggregate disk bandwidth. D is multiplied by 4 because each da-
tum needs to be read twice and written twice, a theoretical minimum for external
sort [168].

CHAPTER 5. EXOSHUFFLE 109

2000 1000 500
Number of Partitions

0

1000

2000

Jo
b

T
im

e
(s

)

(a) 1 TB sort on 10 HDD nodes.

2000 1000 500
Number of Partitions

0

500

1000

1500

Jo
b

T
im

e
(s

)

Magnet

ES-simple

ES-merge

ES-push

ES-push*

(b) 1 TB sort on 10 SSD nodes. Semi-shaded bars are runs with failures (§5.5.3.3).

Figure 5.5: Comparing job completion times on the Sort Benchmark. The dashed
lines indicate the theoretical baseline (§5.5.1.1). Exoshuffle is abbreviated as ES.

CHAPTER 5. EXOSHUFFLE 110

Exoshuffle variants. We run Exoshuffle on Ray 1.11.0. We compare implementa-
tions of the following shuffle libraries:

• ES-simple, the simple shuffle variant (§5.3.2).

• ES-merge, pull-based shuffle with pre-shuffle merge, similar to that in Riffle
(Appendix B.1.1).

• ES-push, push-based shuffle similar to Magnet (Appendix B.1.2).

• ES-push*, push-based shuffle further optimized to reduce write amplification
(§5.4.1).

5.5.1.2 Performance Comparison of Shuffle Libraries

Performance on HDD. Figure 5.5a shows the job completion times of Exoshuffle
variants running 1 TB sort on 10 HDD nodes. ES-simple shows the well-known scal-
ing problem: performance degrades as the number of partitions increases, because the
intermediate shuffle blocks become more in number and smaller in size both quadrat-
ically, quickly reaching disk IOPS limit. The push-based shuffle variants (ES-push,
-push*) achieve better performance regardless of the number of partitions, thanks to
the merging of shuffle blocks to increase disk I/O efficiency and the pipelining of disk
and network I/O. ES-merge runs slower than -simple because merging the map output
blocks incurs additional disk writes, which outweighs the I/O efficiency savings when
the number of partitions is small, and only shows benefits when the number of par-
titions increases. The Magnet baseline shows comparable performance. In summary,
Exoshuffle libraries demonstrate performance benefits that match the characteristics
of their monolithic counterparts.

Performance on SSD. Figure 5.5b shows the same benchmark and variants run-
ning on the SSD cluster. All variants of Exoshuffle outperform the PBS baseline, and
display similar trends as on the HDD cluster. The run times of the optimized versions
of Exoshuffle are also close to the theoretical baseline. Since the NVMe SSD supports
much higher random IOPS, the I/O efficiency gains are less pronounced.

For additional performance and scalability benchmarks, see Appendix B.

1Total lines of code in org.apache.spark.shuffle.
2As reported by Zhang et al. [217]
3Total added lines in https://github.com/apache/spark/pull/29808/files.

https://github.com/apache/spark/pull/29808/files

CHAPTER 5. EXOSHUFFLE 111

Shuffle Algorithm System LoC Exoshuffle LoC

Simple (§5.3.2) 2600 (Spark1) 215
Pre-shuffle merge (Appendix B.1.1) 4000 (Riffle2) 265
Push-based shuffle (Appendix B.1.2) 6700 (Magnet3) 256

with pipelining (§5.4.1) – 256

Table 5.2: Approximate lines of code for implementing shuffle algorithms in Exoshuffle
versus in specialized shuffle systems.

5.5.2 Implementation Complexity

In Exoshuffle, shuffle is expressed as application-level programs. Table 5.2 compares
the amount of code of several monolithic shuffle systems with the lines of code needed
to implement the corresponding shuffle algorithms in Exoshuffle. Exoshuffle libraries
may not provide all the production features of the monolithic counterparts, but many
shuffle optimizations can be implemented in Exoshuffle with an order of magnitude
less code, while keeping the same performance benefits. By offering shuffle as a library,
Exoshuffle also allows applications to choose the best shuffle implementation at run
time without deploying multiple systems.

5.5.3 System Microbenchmarks

The Exoshuffle architecture requires high-performance components from the dis-
tributed futures system to deliver good performance. In this section, we study the
the impact of these system components on shuffle performance.

5.5.3.1 Shared-Memory Object Store

We study the effect of a shared-memory object store that decouples objects from
executors by comparing Dask (v2021.4.0) and Ray (v1.11.0). Dask and Ray are both
distributed futures systems, but they differ in architecture. Ray uses a shared-memory
object store that is shared by multiple executor processes on the same node (§5.4.3.1).
Dask stores objects in executor memory and requires the user to choose between
multiprocessing and multithreading. With multithreading, multiple Dask executor
threads share data in a heap-memory object store, but the Python Global Interpreter
Lock can severely limit parallelism. Dask in multiprocessing mode avoids this issue
but uses one object store per worker process, so objects must be copied between
workers on the same node. Thus, the lack of a shared-memory object store results
in either reduced parallelism (multithreading) or high overhead for sharing objects
(multiprocessing). It is also less robust as objects are vulnerable to executor failures.

We study these differences by running the same Dask task graph on Dask and
Ray backends [198]. Figure 5.6 shows dataframe sorting performance on a single node

CHAPTER 5. EXOSHUFFLE 112

1 10 20 100
Data Size (GB)

101

102

103

104

Jo
b

T
im

e
(s

)

X X X

Dask (32 x 1)

Dask (8 x 4)

Dask (1 x 32)

Dask-on-Ray

Figure 5.6: Comparing shuffle time in Dask and Ray. Legends show number of
processes × threads.

100KB 500KB 1MB
Object Size

0

500

1000

1500

2000

I/
O

T
im

e
(s

)

Write (default)

Write (no fusing)

Read (default)

Read (no prefetching)

Figure 5.7: Effect of I/O optimizations in Ray.

CHAPTER 5. EXOSHUFFLE 113

(32 CPU, 244 GB RAM, 100 partitions). For Dask, we vary the number of executor
processes and threads to show the tradeoff between memory usage and parallelism.
Ray requires no configuration and uses 32 executor processes, 1 per CPU.

On small data sizes, Dask with multiprocessing achieves about the same perfor-
mance as Ray, but it is 3× slower with multithreading due to reduced parallelism. On
larger data sizes, Dask with multiprocessing fails due to high memory pressure from
extra object copies. Meanwhile, Ray’s shared-memory object store enables better
stability and lower run time on all data sizes.

5.5.3.2 Small I/O Mitigations

Ray implements two system-level optimizations for mitigating the small I/O prob-
lem: fusing writes of spilled objects to avoid small disk I/O, and prefetching task
arguments to hide network and disk latency (§5.4.3.2). To show the impact of these
optimizations, we run a single-node microbenchmark that creates 16 GB total objects
in a 1 GB object store, forces them to spill to disk, then restores the objects from
disk. We use object sizes ranging from 100 KB to 1 MB, as these are comparable to
the shuffle block sizes. We use a sc1 HDD disk since the disk I/O bottleneck is more
pronounced on slower storage.

Fusing Writes. Ray fuses objects into at least 100 MB files then writes them to
disk. Figure 5.7 shows the total run time stays constant across object sizes with
default fusing. When fusing is off, the run time is 25% slower for 1 MB objects, and
up to 12× slower when spilling 100 KB objects.

Prefetching Task Arguments. Ray prefetches task arguments in a pipelined
manner so that arguments are ready on a worker by the time the task is sched-
uled. Figure 5.7 shows that pipelined fetching of task arguments reduces the run
time by 60–80%, comparing with a baseline implementation that only starts fetching
objects after the task is scheduled.

5.5.3.3 Fault Tolerance

To test fault recovery, we fail and restart a random worker node 30 seconds after the
start of the run. This results in both executor failure and data loss, as the worker’s
local object store is also lost. In all cases, we rely on the distributed futures system to
re-execute any lost tasks and to reconstruct any lost objects. Lineage reconstruction
(§5.4.3.3) minimizes interruption time during worker failures. Figures 5.5a and 5.5b
show run times with failures indicated with semi-shaded bars. For ES-simple and
-merge, a known bug in Ray currently prevents fault recovery from completing. For
ES-push and -push*, recovering from a worker failure adds 20–50 seconds to the job

CHAPTER 5. EXOSHUFFLE 114

completion time. The system uses this time to detect node failures and re-execute
tasks to reconstruct lost objects.

5.6 Related Work

Shuffle in Data Processing Systems. Many solutions to shuffle have been pro-
posed [167, 96, 203, 121, 169, 168] since MapReduce [72] and Hadoop [205], with a fo-
cus on optimizing disk I/O and pipelining. Sailfish [167] is a notable example deployed
at Yahoo which depends on a modified filesystem to batch disk I/O. Many recent shuf-
fle systems have been built in industry for large-scale use cases [217, 47, 182, 38], but
few have been open-sourced. Today’s cloud providers often offer managed shuffle ser-
vices [23, 185, 34]. However these are tightly integrated with proprietary cloud data
services and are not accessible by other shuffle applications.

Hardware Environments. Hardware typically poses a range of constraints on
shuffle design. For example, compute and memory may be either disaggregated [217,
47, 163] or colocated [167, 207, 182]. Disk constraints also affect system design, e.g.,
SSDs provide better random IOPS than HDDs but wear out more quickly. Many
existing shuffle systems have been motivated by such hardware differences. In Ex-
oshuffle, because the distributed futures API abstracts block management, a shuffle
developer can plug in different storage backends and optimize shuffle at the applica-
tion level.

Other Shuffle Applications. Machine learning research [140, 139] shows that
SGD-based model training benefits from random shuffling of the training dataset.
Both TensorFlow [149] and PyTorch [192] have built specialized systems designed
specifically to pipeline data loading with ML training. These data loaders, in addition
to Petastorm [93], support distributed data loading and random shuffling but shuffling
is limited to a local buffer capped by worker memory (Appendix B.3.6).

Dataframes [204, 171, 159] are another class of applications in data science that
depend on shuffle for operations such as group-by. While systems like Dask [171] and
Spark [214] provide distributed dataframes, developers continue to build new engines
that optimize for specific application scenarios, such as multi-core [74], out-of-core
performance [48], or supporting SQL [85]. These new dataframe libraries, along with
new embedded query engines such as DuckDB [165] and Velox [158], can directly use
Exoshuffle to support distributed query processing.

Distributed Programming Abstractions for Shuffle. CIEL [148] is the first to
propose using distributed futures to express iterative distributed dataflow programs,
including MapReduce. Its implementation does not include features critical to large-
scale shuffle performance, including intra-node parallelism, in-memory object storage,

CHAPTER 5. EXOSHUFFLE 115

and automatic garbage collection [150]. Dask [171] is another distributed futures-
based system that has trouble scaling shuffle due to the lack of shared-memory objects
(§5.5.3.1). While we build on Ray’s design, such as a shared-memory object store [145]
and lineage reconstruction [201], previous versions are not sufficient to support large-
scale shuffle as they do not include spilling to disk or pipelining between execution
and I/O. Thus, while others have implemented shuffle on distributed futures before,
ours is the first that we know of to reach the scale, performance, and reliability of
monolithic shuffle systems.

Serverless functions, as used in Locus [163], are one alternative to distributed
futures. While Locus leverages an existing serverless cache and persistent storage, it
still must manage block movement manually. In contrast, distributed futures abstract
block management in full and manage execution, memory, and disk collectively on
each node.

Hoplite [219] shows that it is possible to provide a high-performance and fault-
tolerant collective communication layer on top of distributed futures, supporting op-
erations such as scatter, gather, and reduce. Shuffle in MapReduce-like systems is
a more challenging problem because it involves scheduling arbitrary compute tasks
along with all-to-all communication. In this work we show that a distributed futures
system can support shuffle at TB+ scale and provide competitive performance and
reliability.

5.7 Discussion

Extensible Architectures. The decoupling of control and data planes in software-
defined networking [137] has led to great innovations in the past two decades [82].
Operating systems research also advocates for extensible architectures to build OS
kernels, such as microkernels [209] and exokernels [81]. We hope our work can drive
more innovations in shuffle designs and applications through an extensible architecture
for distributed shuffle.

Distributed Futures. Distributed futures are rising in popularity due to their
ease of use and flexibility [148, 145, 199]. However, the question of flexibility versus
performance remains. Large-scale shuffle is one of the most challenging problems in
big data processing, inspiring years of work. By showing that large-scale shuffle is
possible on a generic and flexible distributed futures system, we hope to show that
other complex applications can be built on this framework, too.

Limitations. The ability to specify arbitrary tasks and objects with distributed
futures is the key to its flexibility, but it is also the primary obstacle to performance.
The system assumes that each task is independent for generality and stores metadata
separately for each task and object. In contrast, monolithic shuffle systems have

CHAPTER 5. EXOSHUFFLE 116

semantic information and can share metadata for tasks and objects in the same stage.
Currently metadata overhead is the main limitation to executing Exoshuffle at larger
scales. We plan to address this in the future by “collapsing” shared metadata, i.e.,
keeping one metadata entry for multiple outputs of a task.

Architecturally, the primary limitation in Exoshuffle is the fact that an object
must be loaded in its entirety into the local object store before it can be read (§5.4.3.1).
Generators allow tasks to “stream” large outputs by breaking them into many smaller
physical objects; future improvements include the described metadata optimizations
and/or introducing APIs to stream objects larger than the object store, similar to
Ciel [148]. Another limitation is in scheduling. Currently the distributed futures
system may require hints from the shuffle library to determine which tasks should
be executed concurrently and where to place tasks (§5.4.2). A more sophisticated
scheduler may be able to determine these automatically.

Finally, Exoshuffle does not yet address the problem of providing a single shuffle
solution that can meet the requirements of all applications. Doing so would require
automatically picking the best shuffle algorithm and parameters based on application,
environment, and run-time information. Instead, we focus on the problem of shuffle
evolvability, a necessary step towards this overarching goal.

5.8 Conclusion and Lessons Learned

The history of Exoshuffle begins from the early days of Ray, when we showed how
one could write MapReduce programs using distributed futures, with the same “sim-
ple shuffle” algorithm shown in Listing 1. While this version of shuffle did “run”, it
predated the ownership architecture and thus there were significant limitations, in-
cluding the lack of memory safety, reliable failure detection and recovery, out-of-core
processing, and pipelined execution. The former two were addressed in the owner-
ship architecture in Chapter 4, while Exoshuffle deals with the latter two. These new
features open the door to many applications beyond shuffle systems. In particular,
the combination of low (millisecond-level) overheads and generic, dynamically defined
tasks opens up two important possibilities: (1) low-latency streaming execution with
fine-grained rollback recovery, and (2) the ability to pipeline between heterogeneous
resources. Thus, one of the key lessons learned in Exoshuffle is:

1. Implementing generic performance optimizations such as millisecond-level task
pipelining can produce a step change in the class of applications that are prac-
tical to execute.

In building Exoshuffle, the sheer range of possibilities in shuffle system design
became clear. While at first the goal was simply to leverage the ownership system
to show that distributed futures could be used to execute MapReduce applications
efficiently, later the goals expanded to include shuffle system extensibility. Of course,

CHAPTER 5. EXOSHUFFLE 117

extensibility turns out to be an important goal in all sufficiently complicated systems.
Thus, a second key lesson learned in this chapter was:

2. In addition to deduplicating effort and promoting interoperability across ap-
plication domains, having a common interface such as distributed futures is
also important for improving system extensibility within a single application
domain.

118

Chapter 6

Exoflow: A Universal Workflow
System for Exactly-Once DAGs

The ownership architecture provides low performance overheads and fast recov-
ery for distributed futures applications composed of millisecond-level dynamic tasks.
However, it also has two key limitations: (1) to guarantee exactly-once semantics,
tasks must be deterministic and idempotent, and (2) it does not provide automatic
durability, i.e. recovered tasks are re-executed from the beginning. Taken together,
these properties mean that nontrivial applications may still require developers to
implement significant parts of recovery. This can become especially challenging if
applications are composed together, even if some sub-applications can indeed meet
ownership’s assumptions.

We address these limitations in Exoflow. Exoflow provides end-to-end exactly
once semantics for distributed workflow applications, i.e. DAGs that compose arbi-
trary application tasks, each of which may itself be a distinct distributed application.
This can be easily accomplished by a strawman recovery strategy that materializes
and saves all task outputs before making them visible to others, thus imposing high
performance overheads on each workflow task. Instead, Exoflow’s goal is to enable a
flexible choice of recovery vs. performance tradeoffs.

Exoflow accomplishes this by decoupling the unit of execution from the unit of
recovery. To do so, Exoflow uses and extends the distributed futures interface to
gain application semantics that inform the choice of recovery strategy for each task.
In particular, similar to the works presented in previous chapters, we first use the
distributed futures interface to capture the application’s dataflow graph. This gives
the system freedom to choose how the moved data should be saved and recovered.
Second, we extend the distributed futures interface to include task annotations that
allow the system to identify and recover tasks that are nondeterministic and/or that
have external effects.

Exoflow thus generalizes recovery for existing workflow applications ranging from

CHAPTER 6. EXOFLOW 119

ETL pipelines to stateful serverless workflows. This greater flexibility in recovery
strategy enables Exoflow to match or exceed the run-time and recovery performance
of other workflow systems, even ones that are application-specific. For example,
Exoflow can achieve a 3× reduction in job run time for ETL workflows compared
to Apache Airflow, as well as a 2× reduction in task latency for serverless workflow
systems.

This chapter is based on the published work [220] and includes significant con-
tributions of the coauthors Siyuan Zhuang et al.

6.1 Introduction

A key requirement for distributed applications is fault tolerance, i.e. the appearance
of execution without failures even when failures occur. In general, there is a tradeoff
between recovery and run-time overhead. For example, logging generally adds higher
execution overhead but reduces recovery time by allowing the system to only re-
execute computations that failed [78]. Meanwhile, checkpointing reduces execution
overhead but can impose higher recovery overhead as the system must roll back
additional computation after a failure.

Current distributed systems often choose different tradeoff points between re-
covery and performance based on the application. For example, Apache Spark uses
lineage-based logging for batch processing [212], and Apache Flink uses checkpointing
for stream processing [57].

However, it is becoming increasingly common for different applications to be
composed into heterogeneous pipelines. For example, a machine learning pipeline
might use batch ingest to build a training dataset, then stream the data to a batch
distributed training job to reduce latency and memory overhead. If we use a single
recovery strategy for the entire pipeline, performance and recovery may be suboptimal
because different recovery strategies are suited to different applications. Thus, to
optimize end-to-end performance and recovery, we need to compose different recovery
strategies.

Implementing multiple, interoperable recovery techniques within the same sys-
tem, let alone a single one, is challenging. For example, Spark introduced “continuous
processing” to reduce performance overheads for stream processing applications, but
this mode does not yet provide exactly-once semantics during failures [29]. On the
other hand, Flink has added a batch processing mode, but this required building an
entirely separate recovery system from the streaming path [58].

Overall, these challenges have led to patchy support for applications that have
diverse requirements in the recovery-performance tradeoff space. Users must choose
between: (1) building on a single system, and face a fixed choice of performance
vs. recovery overheads, or (2) stitching together multiple systems that offer differ-
ent application-specific tradeoffs. The latter, however, is challenging and requires

CHAPTER 6. EXOFLOW 120

coordinating the flow of data, control, and recovery across disparate systems. This
is true even in a single system, if using disparate execution modes such as batch
vs. streaming.

In this chapter, we propose a universal workflow system that enables a flexible
choice of recovery vs. performance tradeoffs, even within the same application. A
workflow is a directed acyclic graph (DAG) of tasks, where each task encapsulates
a function call and edges between tasks represent data dependencies. Workflows
are used to orchestrate execution across systems and thus prioritize generality. The
DAG API is popular because it allows arbitrary application code in each task, from
submitting a Spark job to invoking a microservice.

In contrast to other workflow systems, however, we decouple the unit of execu-
tion from the unit of recovery. In particular, Exoflow guarantees fault tolerance by
durably logging the workflow DAG and coordinating task checkpoint and recovery,
while execution of the DAG is handled by a generic “backend”. This has three key
benefits. First, it enables heterogeneous application pipelines that need multiple re-
covery strategies for performance. Second, it augments existing distributed execution
frameworks that provide only at-most-once or at-least-once semantics with strong
exactly-once semantics. Third, it disaggregates the execution backend from recovery,
allowing independent deployment and scaling.

Previous workflow systems provide exactly-once semantics but with significant
limitations. For generality, workflow systems such as Apache Airflow [5] assume that
each task is nondeterministic and may have side effects on external systems that
in general cannot be rolled back. Thus, each task must synchronously checkpoint
its outputs before they can be made visible to any downstream tasks. Otherwise,
the system may have to re-execute the task in case of a failure. If the re-execution
produces a different result, this can cause an inconsistent view among downstream
tasks and external systems.

Thus, by assuming the worst, the workflow system has only one option of en-
suring fault tolerance: no task can start before its upstream tasks have finished
checkpointing all of their outputs. This limits the workflow system’s ability to in-
corporate key optimizations often employed by application-specific frameworks that
exploit the application’s semantics. For example, large datasets passed between tasks
can often be deterministically regenerated, making checkpointing unnecessary. In ad-
dition, while some tasks may indeed have external effects, e.g., starting a transaction
on an external database, some effects can also be rolled back, e.g., by aborting the
transaction.

Our goal is to hand control over recovery to Exoflow and ultimately the end
user. Thus, we use two key interfaces to enable awareness of application semantics.
First, we extend the typical workflow DAG API with pluggable first-class references
to enable more flexible workflow-internal communication. A workflow task can re-
turn references to its outputs, which the workflow system then passes to downstream
tasks. In contrast, current workflow systems require the application to pass data by

CHAPTER 6. EXOFLOW 121

explicitly copying and checkpointing, which can be expensive for large data, or im-
plicitly through external storage, which makes it difficult to guarantee exactly-once
semantics. By using references to capture arbitrary data movement between workflow
tasks, Exoflow leverages third-party systems’ existing communication and recovery
mechanisms while retaining control over workflow-level recovery.

Second, we introduce user annotations that specify relevant task semantics, i.e.
whether to checkpoint a task, whether the outputs are deterministic, and whether the
task has externally visible outputs. Before execution, Exoflow checks the safety of
the user’s specification. During execution, Exoflow synchronizes task execution and
checkpointing. During recovery, Exoflow coordinates rollback, e.g., deletion of outputs
from a previous execution, and task replay. For example, before executing a task with
an externally visible output, Exoflow will first synchronize upstream checkpoints to
commit any nondeterministic outputs, i.e. ensure they will never be rolled back. This
allows the user to flexibly and safely optimize the recovery technique.

Exoflow is built on Ray [145] and consists of a per-workflow centralized con-
troller, a pluggable checkpoint storage, and a pluggable execution backend. Central-
izing controller logic makes it simple to guarantee recovery correctness. Meanwhile,
checkpointing and execution are fully disaggregated, allowing these to be scaled in-
dependently of the controller.

We demonstrate the benefits of Exoflow with two execution backends, the Ray
framework and AWS Lambdas, both distributed frameworks that provide at-most-
once or at-least-once tasks. We show that references can enable ∼5× speedup for
Spark data processing workflows compared to Apache Airflow, while task annota-
tions enable 51% lower latency for transactional serverless workflows compared to
Beldi [216]. These optimizations are possible because correctness is ultimately guar-
anteed by Exoflow. These results also demonstrate Exoflow’s universality, as the
system is not specific to data processing or serverless environments. In summary, our
contributions are:

1. Decoupling execution from recovery to enable a flexible tradeoff between per-
formance and fault tolerance.

2. Designing a universal workflow system that guarantees exactly-once DAG exe-
cution.

3. Demonstrating benefits for a diverse set of applications, including an ML pipeline,
serverless transactions, and graph processing that mixes stream and batch ex-
ecution.

CHAPTER 6. EXOFLOW 122

6.2 Motivation

6.2.1 Overview of recovery strategies

We use exactly-once semantics as our correctness condition. This condition often im-
plies application-specific correctness properties, such as global consistency in message-
passing systems [78] or linearizability in storage systems [103].

More precisely, exactly-once semantics require all outputs to appear consistent
with a physical execution where all inputs were processed without failures. In a
workflow setting, the inputs are the DAG and the root task arguments. Outputs are
values produced by a task that are viewed by others.

Output visibility can be internal or external. For example, values passed be-
tween tasks in Figure 6.1a are internal because they are viewed only by other tasks.
Meanwhile, (key,val) is external because it is sent to a key-value store. Once out-
puts are made external, the workflow system no longer has control over how they will
be used, e.g., via reads from external key-value store clients. Outputs can also be
either deterministically or nondeterministically generated.

Output visibility and determinism are important because together they de-
termine the recovery procedures that will guarantee exactly-once semantics (Fig-
ure 6.1b). For example, consider the cases if A is nondeterministic and we do not
checkpoint a out in Figure 6.1a. Suppose C views an initial value a out1 and pro-
duces c out1, but we lose a out1 due to a failure. If we re-execute A to produce a out2

and pass this to B, the outputs of B and C will not be consistent with a failure-free
execution. To handle this case, we also need to “rollback” c out1 and re-execute C

on a out2.
We encounter additional problems in the opposite case where B finishes and we

then lose a out1. B has already made (key,val) external and these values may de-
pend on a out1. If we execute C on a out2, c out will be inconsistent with (key,val).
Thus, the only way to guarantee correctness in this case is to either: (1) “commit”
a out1 before executing B, e.g., by checkpointing it, or (2) gain application semantics
about how to roll back visibility of (key,val).

Meanwhile, deterministic outputs are safe to view as long as the task can be
replayed on its original inputs and recomputed outputs can be deduplicated. The
external output in Figure 6.1a can for example be deduplicated by attaching a deter-
ministic req id.

Solution space. Handling nondeterministic outputs is generally done in two ways:
(1) global checkpointing and rollback on failure, or (2) logging and deterministic
replay on failure [78]. Both “commit” a prefix of a failure-free execution by saving
the outputs of a task frontier, allowing recovery to resume execution from a consistent
set of intermediate outputs. Global checkpointing advances this frontier several tasks
at a time and upon failure, rolls back to the last frontier to undo partially visible

CHAPTER 6. EXOFLOW 123

A(args) B(a_out)

C(a_out)
args

a_out

D(args,
b_out, c_out)

c_out
d_out

External state

root()

b_out

put(key, val)

(a) Workflow DAG
Internal External

Nondeterministic Commit output OR on failure, roll-
back visibility

Commit output before visibility OR
if possible, rollback visibility on fail-
ure

Deterministic Replay failed task(s) on previous in-
puts, dedupe outputs

Also dedupe external outputs

(b) Recovery strategies for workflow DAGs

Figure 6.1: (a) An example workflow with internal outputs (e.g., a out) and external
outputs (e.g., put(key,val)). (b) The most efficient recovery strategy depends on
output visibility and nondeterminism.

nondeterministic outputs. For outputs that cannot be rolled back, however, upstream
nondeterministic outputs must first be committed by taking a global checkpoint.
Logging-based methods advance the frontier one task at a time by committing each
nondeterministic output before making it visible, thus avoiding additional rollback
on failure.

Note that rollback and durability options vary based on output visibility. Ex-
ternal outputs may be impossible to roll back, e.g., a transaction commit cannot be
undone, or make durable, as third-party system context is not always serializable.

Current workflow systems guarantee exactly-once semantics by: (1) durably
checkpointing each internal output before making it visible, and (2) requiring the
developer to make external outputs idempotent and durable. This one-size-fits-all
approach does not leverage application-specific recovery methods (Figure 6.1b). Fur-
thermore, existing workflow systems have fundamental limits on internal outputs,
usually because they must be sent between tasks through the workflow controller.
Apache Airflow uses a database to coordinate tasks, which imposes a maximum out-
put size on the order of MBs [5], and direct task communication in FaaS is limited [84].
Together, these force developers to use external outputs for much of their task com-
munication [84, 163].

Our goal is to support different recovery methods in a single workflow system and
even within a single application. The key insight behind Exoflow is that knowing the
DAG structure makes it simple to identify a consistent execution frontier, allowing the
recovery methods before and after the frontier to be decoupled. For example, a out

CHAPTER 6. EXOFLOW 124

A

table_name C

write(RDD,
 table_name)

External DB
RDD = read(
 table_name)

B

(a)

External DB

A
B

C

Sharing a cached Spark RDD
across workflow tasks

● Use an actor to hold Spark
context

● Async actor checkpoint,
which internally uses Spark
API to materialize to
external DB (or use native
checkpoint API)

● B and C can share the RDD
cached in-memory

● Mark execB and execC
tasks as idempotent, so
rollback is not required on
recovery.

RDD

(b)

Ingest

Dataset augmentation

Distributed training
pathname

Distributed FS

write(dataset,
 pathname)

dataset = read(pathname)

(c)

Distributed
FS

dataset
1

dataset
2

dataset
3

TF workers

TF workers

Ingest augmentData

augmentData

augmentData

train

train

train

model
1

model
2

model
3

dataset

(d)

Figure 6.2: (a) ETL workflow today, using external outputs for communication. (b)
The same ETL workflow with internal outputs only. (c) ML training workflow today,
with external outputs and manual orchestration within a task. (d) The same ML
workflow with internal outputs only, and orchestration is handled by the workflow
system. Third-party framework state (TF workers) can be passed between workflow
tasks.

is internal to the outlined sub-DAG in Figure 6.1a and thus its recovery method can
be chosen flexibly as long as the inputs (args) and outputs (b out,c out,key,val)
are consistent.

Thus, our solution consists of two parts. First, references enable Exoflow to
capture a broader range of inter-task communication as internal outputs, without
being involved in the physical communication. This encourages recovery flexibility
within a sub-DAG and recovery independence across sub-DAGs. References enable
efficient passing of task outputs of any size and location as well as outputs that may
not be serializable.

Second, we support annotations to specify task semantics (checkpointing, non-
determinism, output visibility). These allow the system to determine recovery cor-
rectness before execution. The system “commits” the application to this specification
by durably logging the DAG before execution, then coordinates and synchronizes task
checkpoints during execution. The annotations are set to a safe default, i.e. each task’s
output(s) must be checkpointed, is assumed to be nondeterministic, and any exter-
nal outputs must be made idempotent. This produces write-ahead logging behavior
equivalent to that of a workflow system such as Apache Airflow.

CHAPTER 6. EXOFLOW 125

6.2.2 Applications

We use three representative applications to show the value of: (1) making workflow-
internal outputs more flexible, and (2) exposing application semantics to the workflow
controller:

1. Extract-transform-load (ETL) pipelines: Using references to pass large data as
internal outputs.

2. Machine learning (ML) pipelines: Using references to pass large data and lever-
aging application semantics.

3. Serverless workflows: Leveraging application semantics to reduce recovery over-
heads, in a way that is agnostic to external systems.

ETL pipelines. Workflow systems such as Apache Airflow are commonly used to
orchestrate extract-transform-load (ETL) pipelines composed of data processing jobs.
Figure 6.2a shows an example in which a Spark job A performs batch data cleaning
and writes the data to an external database, e.g., Delta Lake [30]. Jobs B and C then
load the data for querying.

Current practice for exactly-once workflow execution requires all of A’s outputs
to be made durable before executing B and C. Synchronous checkpointing adds high
overhead for large and distributed data. In addition, B and C must each reload the
data, imposing an unnecessary memory copy. This is of course unnecessary if A is
deterministic. Execution systems such as Spark leverage this property to natively
support distributed in-memory caching. Ideally, A should pass its output as a cached
RDD [212] to B and C (Figure 6.2b), avoiding the round trip to external storage,
allowing B and C to share physical memory, and enabling asynchronous checkpointing.

Building such optimizations into a workflow system would enable orchestration
of arbitrary DAGs and third-party frameworks. However, even with awareness of task
determinism, current workflow systems cannot execute Figure 6.2b due to limitations
in workflow-internal data passing.

ML pipelines. Machine learning (ML) pipelines are similar to ETL pipelines, but
with an ML application as the end consumer. This requires composition of traditional
ETL systems with distributed ML frameworks for training and inference. Figure 6.2c
shows a typical ML training workflow, in which training data is extracted and trans-
formed in the Ingest task, then consumed by a distributed training job. Loading
data into the training job may itself require complex and possibly distributed data
processing, with computations such as random transforms to augment datasets [149].
Furthermore, datasets are often large enough that preprocessing must be pipelined
with training to maximize GPU utilization.

Current workflow systems cannot effectively orchestrate within the training task,
as training data and worker state must be passed through distributed memory. Ex-
panding workflow-internal outputs would enable workflows such as Figure 6.2d. To

CHAPTER 6. EXOFLOW 126

beginTxn commitOr
Abort(txn)

reserve(hotel)

reserve(flight) reserved?

placeOrder(
hotel, flight)

ok?txn: {id, …,}

Transaction buffer
or write-ahead log

Figure 6.3: Serverless workflow systems [188, 216, 110] guarantee exactly-once se-
mantics by interposing on all communication to external storage, e.g., through a
transaction buffer, and explicitly managing visibility of these external effects.

reduce the overhead of recovery, however, the workflow system also requires appli-
cation semantics, such as whether dataset augmentation is deterministic. Also, the
model output can be consumed in a variety of ways, from local one-off testing during
development to deployment on an ML serving system during production. All of these
factors affect the optimal correct recovery strategy.

Serverless workflows. In the functions-as-a-service (FaaS) model, the user breaks
their application into small functions that can be transparently executed and scaled
without explicit resource provisioning. Serverless functions have a limited lifetime,
all local state is transient, and failure handling is usually limited to function retries.
This makes it challenging to build fault-tolerant nontrivial applications directly on
FaaS [101].

Recently, serverless workflow systems [52, 188, 216] have gained popularity as
a solution, especially for stateful applications. A common strategy for guaranteeing
exactly-once execution is to provide fault-tolerant APIs to capture external outputs.
For example, Figure 6.3 shows an example of a trip reservation workflow [87] that
places the order if and only if both the hotel and flight were successfully reserved. Sys-
tems such as Aft [188], Beldi [216], and Boki [110] guarantee exactly-once semantics
by providing a transactional key-value store to manage external output visibility.

However, each system offers different isolation levels that require different recov-
ery strategies. Aft buffers uncommitted writes, which are safe to rollback, while Beldi
and Boki use write-ahead logging. Thus, each system implements their own recovery
procedures, e.g., durability and task re-execution.

Exoflow factors out workflow recovery to enable flexibility and optimizations.
Instead of providing opinionated APIs for external outputs, we treat external sys-
tems such as the transaction buffer in Figure 6.3 as a black box. Exoflow does not
interpose on the communication to this external system and instead requires that
the application can specify task semantics such as whether the external effect can be
rolled back. These semantics can be specified by a particular transaction system, i.e.
Aft or Beldi.

CHAPTER 6. EXOFLOW 127

Workflow API Semantics

f.options(Opts).bind(Value

| WorkflowDAG) →
WorkflowDAG

Create a workflow task f. Creates and returns a WorkflowDAG, whose
value is lazily evaluated. The caller may pass the WorkflowDAG to
another task. The return value of f can be a WorkflowDAG, i.e. a
nested workflow.

run(WorkflowDAG w, str

name) → Value

Run the workflow w and return the result. Optionally take a string
identifier for this workflow.

run async(WorkflowDAG w,

str name) → Fut

Run the workflow w asynchronously and return a future that can be
used to retrieve the result.

Ref.get() → Value Used by the application to dereference to a value. Ref construction
is backend-specific.

bool Opts.checkpoint=True True if the task’s output should be saved.
bool

Opts.deterministic=False

True if outputs are deterministically generated.

bool Opts.can -

rollback=False

True if task has no external outputs, or if they can be rolled back.
If False, the task must be idempotent.

Fn Opts.rollback=null If external outputs can be rolled back, a function to do so. The
function must be idempotent, and any WorkflowDAG arguments must
be a subset of the original workflow task f’s arguments.

Ref. id() → ID Used by the workflow system to compare equality.
Ref. checkpoint() →
Fut[Value]

Used by the workflow system to coordinate checkpointing. The
Value is the checkpoint data or metadata.

Ref. restore(Value) Used by the workflow system to reload from a saved checkpoint.

Table 6.1: Workflow API. Top: API calls exposed to the application. Middle: Task
annotations specified by application or third-party library. Bottom: Exoflow-internal
Ref API, pluggable by execution backend.

6.3 API

6.3.1 Overview and requirements

Exoflow is a general workflow layer that abstracts a workflow backend, i.e. a dis-
tributed framework providing at-least-once and/or at-most-once remote function in-
vocation. We overview the application-facing API (Table 6.1) and requirements. The
application must be able to: (1) differentiate deterministic tasks, and (2) for tasks
with external outputs, ensure that the task is idempotent or specify an idempotent
rollback function.

DAG interface. The application invokes workflow tasks and specifies arguments
using f.bind (Table 6.1). The caller receives a WorkflowDAG that represents the task’s
output and that can be passed to other tasks as dependencies. Workflow execution
is lazy : to evaluate a WorkflowDAG, the developer must run it. This is to simplify

CHAPTER 6. EXOFLOW 128

recovery, as the workflow system can check DAG-level properties before executing it.
The workflow backend should implement an RPC-like interface. Within a task,

the application can invoke arbitrary local or distributed execution. For greater gen-
erality, we also adopt the dynamic task model [148]: tasks can dynamically invoke
exactly-once nested workflows by returning a WorkflowDAG.

Task annotations. The application specifies semantics relevant to recovery at task
invocation time (Table 6.1). The workflow system uses these to ensure correctness
of: (1) coordination of distributed workflow checkpoints during execution, and (2)
output rollback and task re-execution upon failure.

First, the application specifies whether to skip checkpointing a task’s output.
Note that the workflow system guarantees correctness, so this can be considered an
optimization hint, e.g., to avoid recomputation for long tasks,

Next, the application can specify whether a task’s outputs (both internal and
external) are deterministic. This allows the workflow system to minimize rollback
during recovery.

Finally, the application specifies whether a task can be rolled back and if yes,
how to do so. Tasks with no external outputs, such as the data processing tasks in
Figure 6.2, should set can rollback=True. Tasks that have external outputs that
cannot be rolled back should set can rollback=False and ensure idempotence, as
recovery may require re-execution.

Non-idempotent tasks with external outputs that can be rolled back should
set can rollback=True and the rollback callback. On failure, Exoflow executes
these rollback “tasks” in reverse dependency order before resuming execution. The
rollback task can take any arguments available to the original workflow task, but the
application must additionally guarantee that the rollback task is idempotent. For
example, to implement the transaction in Figure 6.3, rollback for the beginTxn and
reserve tasks could simply abort.

On run, Exoflow checks the WorkflowDAG for specification errors and throws
an exception if any are found. In particular, correctness requires the application to
set checkpoints between each nondeterministic task and each downstream task with
external output. Section 6.3.3 makes this precise.

Internal outputs. Direct task outputs are subject to limits of the execution back-
end. For greater flexibility, Exoflow allows outputs to include Refs created by the
task. Refs are (optionally) pluggable by the execution backend. They are intended
to capture volatile outputs that would be expensive or complex to natively support
in Exoflow, e.g., large distributed data or third-party framework context. For an
AWS Lambdas backend, for example, values can be stored in an external (volatile)
key-value store and the key can be passed in a Ref. Other tasks can dynamically get

the value, which can throw an error if the value is irretrievable due to failure.

CHAPTER 6. EXOFLOW 129

beginTxn
acquire(txn,

hotel) commitOr
Abort(txn)acquire(txn,

flight)

reserve(txn,
hotel)

reserve(txn,
flight)

acquired?

reserved?

placeOrder(
hotel, flight)

ok?

txn: {id, …,}

Deterministic, no external outputs
Nondeterministic

External outputs can be rolled back
External outputs cannot be rolled back

rollback_acquire(txn, hotel)

rollback_acquire(txn, flight)

Rollback tasks. Only
executed if acquire tasks
must be rolled back

Examples of acceptable vertex cuts that, when their outputs are
checkpointed, “commit” the workflow’s nondeterministic outputs

(a)

dataset
2

dataset
1

…

Ingest

augmentData train

augmentData

model
2

…

TF workers

train

(b)

init generate_df

Spark DF

A

Bexec(B)

Cexec(C)

(c)

Figure 6.4: (a) Task annotations. Edge cuts represent checkpoint=True. (b) Pass-
ing references (small boxes) in an ML workflow. Blue Refs are actors that wrap
TensorFlow worker state. (c) Passing an ActorRef in an ETL workflow. B and C call
read-only methods on the Spark context actor.

Refs are uniquely identifiable objects typically containing backend-specific meta-
data. A task can only return Refs that it created or that were passed to it by an
upstream task. Then, upon failure, Exoflow can either restore the Ref from a check-
point, or trace the DAG back to the creating task. On re-execution, the task need
not return the same Refs as its original execution. For example, with the annotation
deterministic=True, it is only necessary that the value of a returned Ref is deter-
ministic; the Ref itself may have a nondeterministic ID. This is safe because Exoflow
simply cancels tasks using the previous Refs and re-executes with the new Refs.

By default, Ref values are immutable. This improves recovery efficiency, as
it simplifies checkpointing and minimizes task rollback. To capture task outputs
that are expensive or impossible to materialize, we also support stateful references,
i.e. actors [104]. An ActorRef extends Refs with application-defined methods that

CHAPTER 6. EXOFLOW 130

execute on the actor’s state (Listing 3). However, mutable state is more complex to
recover efficiently and correctly. Thus, compared to Refs, we limit how ActorRefs

can be passed between workflow tasks (Section 6.3.4).

6.3.2 Model

We present a formal model of workflows to more precisely capture the API and
assumptions. A workflow G = (V,E) is a directed acyclic graph with vertices V and
edges E. Each vertex vi has:

• Fi: An associated function
• Ni: A function representing a (potential) source of nondeterminism
• Ri: An optional rollback function
• The set of annotations described in Table 6.1.

A workflow execution produces one internal and one external output per vertex,
both optional. For brevity, the presented model only considers tasks with single
outputs, although the system in reality supports multiple outputs.

We denote an execution’s outputs by OInt and OExt. O is a mapping from
vertex to a single output value o, and the subscripts Int and Ext denote internal and
external outputs, respectively. Fi outputs oExt by adding it to a global set W , which
can be read by other tasks and by external processes.

Each Fi takes as inputs:

• argsi: Direct arguments, one for each vertex with an edge to vi.
• wi: A set of external outputs.
• ni: A nondeterministic value. If Fi’s output does not depend on ni, then Fi is

deterministic.

In other words, an edge (vi, vj) indicates that vi’s internal output is passed to
task vj. Internal outputs passed between vertices are analogous to messages passed
between processes in a message-passing model [78], except that the application must
declare the “messages” (dependencies) before execution.

Ni captures nondeterministic inputs. For example, if Fi depends on the current
time, then Ni returns the current time. We assume that if Ni reads some external
state, the external state will not be rolled back (unless Fi is also rolled back via Ri).

We define a failure-free execution of G as one where the individual output of
each task vi corresponds to an execution of Fi over inputs such that:

• The direct arguments are the internal outputs produced by vertices with an
edge to vi. Formally, this can be written as argsi = {OInt [j] | (vj, vi) ∈ E}.

• The set of external outputs is equal to the external outputs of all tasks that
precede vi in G. Formally, this can be written as wi = {OExt[j] | vj <G vi}.

CHAPTER 6. EXOFLOW 131

• The nondeterministic value is one returned by Ni, i.e. ni = Ni().

The correctness condition says that to an external process, it must appear as if
the DAG has executed failure-free. Thus, we also define W : a sequence of snapshots
of the external outputs produced so far by the DAG execution. W represents a series
of reads of W made by an external process during execution. Then, we just need to
make sure that once an external output is visible, i.e. it appears in a snapshot w in
W , it should be visible in all following snapshots in W . In other words, W must be
monotonic.

This definition is analogous to global consistency in message-passing [78], i.e.
that every visible output has a corresponding task that created it. The goal is to
provide a consistent execution under a crash failure model. Formally, we can define
this as:

Definition 6.1 (Consistency). OInt, OExt are consistent with a workflow G = (V,E)
if for all possible W , W is monotonic and the outputs OInt and OExt correspond to a
failure-free execution of G.

The application assumptions are as follows. For each vi:

1. We assume that if vi and vj cannot be ordered in the graph, then they cannot
read each other’s external outputs. Formally, if vi 6<G vj and vj 6<G vi, then
Fi(IInt, wi, ni) = Fi(IInt, wi \ {OExt[j]}, ni). If the application requires vi to
depend on a task vj’s external output, then the ordering should be specified as
part of the task graph. If this is not possible, then to ensure consistency, vj’s
external output should be considered part of vi’s nondeterministic input, and
the application must set can rollback=False for vj.

2. Tasks that set deterministic=true must produce outputs that are a deter-
ministic function of their internal and external outputs, i.e. Fi is not dependent
on the value returned by Ni.

3. If the oExt returned by Fi is not null, then either can rollback=False or Ri is
not null.

(a) If can rollback=False, then Fi is idempotent. That is, if an invocation
of Fi produces an external output oExt, and Fi is run again on the same
internal outputs and a later snapshot of W , then Fi should still produce
the same external output.

(b) If Ri is provided, then it is a deterministic and idempotent function of the
task’s internal inputs only. Intuitively, R removes the previous external
output from the external world. Formally, this means that if the first
invocation of Fi(IInt, w, ni) produces (oInt, oExt), then Ri(IInt) removes
oExt from all past reads of W .

CHAPTER 6. EXOFLOW 132

Regarding (3b), note that the meaning of removing oExt from past reads is
application-dependent. For example, suppose Fi executes a transaction andRi aborts
the transaction; if uncommitted reads are allowed, then Ri does not need to roll back
the reader.

Nested tasks and references. While not explicitly captured in the above model,
nested tasks can be thought of as tasks that expand into a sub-workflow. Refs and
ActorRefs are native data types that can be returned in a function’s internal output.
Because actors are mutable, ActorRefs are versioned: if a caller writes to an actor
by calling a method on its ActorRef, the caller’s resulting ActorRef is of a different
version. This becomes relevant in Section 6.3.4, which discusses the rules that the
application must follow to ensure exactly-once semantics when ActorRefs are passed
between workflow tasks.

6.3.3 Guaranteeing exactly-once execution

Task annotations simplify the decision of when to commit task outputs. To illustrate
this, we use Figure 6.4a, a modified version of the workflow described in Figure 6.3.
We show the annotations for a workflow using an external two-phase locking (2PL)
transaction system. beginTxn generates a transaction context with a random txn id.
The acquire tasks each attempt to acquire a lock on an external table row. If this
is successful, we attempt to reserve the flight and hotel if available, then finally
commit the transaction and place the order if both succeed. The cuts in Figure 6.4a
indicate checkpoint=True.

As an example, we first consider the acquire and commitOrAbort tasks. ac-

quire tasks are nondeterministic because they depend on the run-time state of the
external table. commitOrAbort has can rollback=False because it is impossible to
abort a committed transaction and vice versa. Although acquire can be rolled back
(e.g., by aborting the transaction and releasing the lock), once we have started the
commitOrAbort task, it is no longer safe to do so because the transaction may already
be committed. Thus, we must ensure that both acquire outputs are saved before
commitOrAbort starts. We can generalize this rule for the application as follows:

Invariant 6.1 (External output commit). For each workflow task vi with deter-

ministic=False, let G be the minimal subgraph that contains vi and all downstream
tasks (tasks for which there is a path from vi). Then, for each workflow task vj with
can rollback=False in G, there must exist a vertex cut that partitions vi from vj
such that all tasks in the cut have checkpoint=True.

Intuitively the vertex cut (green shaded box in Figure 6.4a) of the sub-DAG
defines a commit point for the nondeterministic output of vi. There may exist mul-
tiple such cuts. For example, another acceptable specification in Figure 6.4a is the
righthand vertex cut, which instead checkpoints the reserve outputs.

CHAPTER 6. EXOFLOW 133

Exoflow guarantees that at least one task frontier is fully checkpointed by the
time commitOrAbort (vj) starts. Interestingly, this also tells us that we do not need to
commit the acquire outputs synchronously. In particular, the reserve tasks in this
case are deterministic, as their outputs depend only on whether the lock was acquired
and the value stored in the external table, which cannot be modified while locked.
Furthermore, their external outputs are not visible while the lock is held. Thus, in this
case, it is safe to annotate the reserve tasks with deterministic=True and can -

rollback=True. Together, these annotations allow Exoflow to overlap the checkpoint
of acquire’s outputs with execution of the reserve tasks, as long as the checkpoints
are synchronized before commitOrAbort.

There is a similar requirement for rollback tasks. The rollback tasks in Fig-
ure 6.4a are conditionally invoked by the workflow system to undo external outputs
of the acquire tasks. We must ensure that all inputs to the original acquire task
are recoverable before execution. Otherwise, if the rollback task and its inputs fail
simultaneously, it will be impossible to finish rollback. Thus, in Figure 6.4a, the
application must set checkpoint=True for beginTxn, and Exoflow synchronizes this
checkpoint before executing the acquire tasks.

Invariant 6.2 (Rollback durability). For each path beginning at a task vi with de-

terministic=False and ending at a task vj that has a rollback function Rj, there
must exist at least one vertex along the path with checkpoint=True.

Unlike Invariant 6.1, here we only require checkpointing a single task to handle
nondeterminism, as the availability of a rollback function Rj means that we do not
need to commit to the original output. The checkpointed task can also be a task
other than vi or vj. For example, if there were additional deterministic tasks between
beginTxn (T) and rollback acquire (R), then checkpointing any is sufficient.

Both invariants can be easily checked by walking the DAG passed to run. If
an invariant is not met, the system throws an exception to the user. Annotations
do therefore require user cooperation, but note that a user with minimal perfor-
mance needs can use the defaults in Table 6.1. This specification trivially satisfies
the invariants and indeed corresponds to current workflow systems that commit all
task outputs. Section 6.4 describes how Exoflow leverages the invariants to improve
run-time performance for more sophisticated specifications.

Note that the system will not durably record a nested workflow returned by
a task with checkpoint=False. To simplify recovery, we disallow sub-tasks with
checkpoint=True, as we may lose all references to these checkpoints upon failure.
We also disallow can rollback=False and rollback, as these are challenging to
recover without workflow durability.

6.3.4 References

CHAPTER 6. EXOFLOW 134

@ray.remote

class SparkActor:

def __init__(self):

self.spark_context = connect(); self.df = None

def generate_df(self):

self.df = generate_df(self.spark_context).cache()

@const

def exec(self, seed: int) -> int:

return exec(self.df, seed=seed).count()

def _checkpoint(self):

return self.spark_context.save(self.df)

def _restore(self, path):

self.df = self.spark_context.load_df(path)

Listing 3: Psuedocode for passing a Spark DataFrame by actor. The execution backend
implements the actor. Public methods are user-defined. Methods prepended by are called
internally by Exoflow.

Immutable Refs enable efficient passing of large and distributed data between
workflow tasks. For example, Figure 6.4b shows how the Ingest task from Figure 6.2d
can use Refs to return distributed in-memory data. Exoflow tracks inter-task Ref

dependencies for recovery purposes, while the execution backend handles intra-task
execution (e.g., get).

Some cases require stateful actors for performance. For example, the blue boxes
passed between train tasks in Figure 6.4b are ActorRefs representing a training
worker’s state, e.g., a Distributed TensorFlow session. This helps avoid expensive
materialization, such as the worker’s local model copy.

Guaranteeing exactly-once semantics for state is challenging. If one task writes
the ActorRef’s state, the output is visible to any other task holding a reference to
the same actor. This can cause cascading rollbacks on failure depending on how Ac-

torRefs are passed. Furthermore, checkpointing is more challenging if multiple tasks
write concurrently to the actor, as the system must ensure that the actor checkpoint
is consistent.

To simplify recovery, we limit ActorRef passing to two patterns, analogous to a
read-write lock. By default, the ActorRef is in “write” mode. In this mode, only one
workflow task may have a reference to the actor at a time. That task can call any actor
methods as long as they finish before the task returns. For example, in Figure 6.4b,
only one train task refers to each actor at a time. Exoflow can then checkpoint the
actors’ state between tasks, and on failure, roll back the actors with the workflow.
This pattern is useful for abstracting and checkpointing distributed workers in third-
party frameworks such as Distributed TensorFlow [18] and Flink [58].

CHAPTER 6. EXOFLOW 135

a b

c

Persistent storageWorkflow controller

Ex
ec

ut
or

 1

Ex
ec

ut
or

 2

A()
B(a)

C(a)
D(b,c)

x x

ID Args Output Placeholders Ckpted?

A [] Ref(be5) {} False

B [a] Ref(d1a) { :Ref(e02)} True

C [a] Ref(1bf) - PENDING

D [b,c] - - -

C(a)

Ckpt loc Value

/w0/A/spec …

/w0/B/spec …

/w0/B/output

/w0/B/x

… …

b

ID Value

B

x

b

Execution backends

Custom
application
checkpoints

Workflow storage

x

Figure 6.5: Workflow architecture. The controller and executors are RPC-like services
built using Ray actors. Each invocation on these services returns a distributed future
(system-internal Refs).

If there are multiple concurrent workflow tasks with a reference to the same
actor, however, the tasks are restricted to read-only methods annotated by the user,
as shown in Listing 3. Figure 6.4c shows an expanded Figure 6.2b in which we use
an ActorRef to capture a Spark DataFrame. Initially, A has the only ActorRef, so it
can write to the actor’s state (generate df). B and C share the actor concurrently,
however, and so they are limited to read-only methods (exec). Invoking a write
method such as generate df would throw a run-time error.

Similar to a read-write lock, Exoflow can only provide correctness if the applica-
tion respects certain conditions. In particular, the workflow tasks must explicitly pass
ActorRefs through their outputs and arguments. Any other ActorRefs cannot be
tracked by Exoflow and exactly-once semantics is not guaranteed, similar to reading a
variable without holding the lock. Also, while methods may be called asynchronously
on an ActorRef, a workflow task must synchronize any outstanding calls to an actor
before returning.

CHAPTER 6. EXOFLOW 136

6.4 Architecture

The Exoflow architecture (Figure 6.5) comprises a logically centralized workflow con-
troller, a pluggable execution backend, and a pluggable persistent storage system.

The Exoflow controller is a long-running service that can be sharded by work-
flow (Figure 6.5). Persistent storage can be implemented by any durable blob storage
supporting puts and gets with read-after-write consistency, such as Amazon S3. The
execution backend should implement a remote function invocation interface, used by
the controller to scale checkpointing and task execution. The backend should provide:
(1) ability to detect and report task and Ref failures, and (2) guarantee no resource
leaks for failed task execution and Refs.

The controller runs as an event loop with the following events: task or checkpoint
completes, and task or checkpoint failed. All critical workflow state, such as the
workflow DAG, is cached by the workflow controller and written-through to persistent
storage, making it simple to also recover the workflow controller. Checkpointing is
carried out asynchronously by background threads on the executors, enabling parallel
and distributed checkpoints that are not bottlenecked by the centralized controller.
The Exoflow controller coordinates checkpoint synchronization during execution as
needed, according to the user-defined annotations. Then, on restart, the controller
simply scans the storage for any unfinished workflows, coordinates rollback as needed,
and re-runs to completion.

See Appendix C for a full description of the execution and recovery procedures,
including correctness arguments and implementation details.

6.5 Evaluation

Our evaluation covers the following questions:

1. How can applications leverage first-class references and task annotations to have
greater flexibility in recovery?

2. How does this flexibility in recovery strategy affect performance during execu-
tion and recovery?

Appendix C includes additional end application evaluation, as well as microbench-
marks evaluating:

1. What overheads does Exoflow add to at-least-once or at-most-once execution
backends?

We compare primarily against these baselines: (1) exactly-once workflow sys-
tems: Airflow [5], “standard mode” AWS Step Functions [50], and the serverless

CHAPTER 6. EXOFLOW 137

1x 2x 3x 4x
Dataset Size

0
200
400
600
800

1000
D

ur
at

io
n

(s
)

Cluster Ingest data Train actor Aug. task Aug. data
Failure Type

0
250
500
750

1000
1250

D
ur

at
io

n
(s

)

Selective AsyncCkpt NoCkpt AsyncCkpt SyncCkpt Workflow Tasks

Figure 6.6: End-to-end duration for the ML workflow application shown in Fig-
ures 6.2d and 6.4b. Left: End-to-end duration without failure. Right: End-to-
end duration with different failure types. The shadow represents the execution time
without failure.

workflow system Beldi [216]; and (2) at-least-once distributed DAG systems: “ex-
press mode” AWS Step Functions [50] and Ray [145].

Given the high execution overheads of exactly-once workflow systems such as
Airflow (Appendix C.3.2), to fairly address questions (1) and (3), we also compare
against the following Exoflow modes:

1. SyncCkpt: Task outputs are synchronized before executing downstream tasks.
This is used to simulate the recovery strategy of exactly-once workflow systems
such as Airflow.

2. NoCkpt: All task outputs except the final are skipped. This is used to simulate
the recovery strategy of an at-least-once or at-most-once system. The applica-
tion must guarantee that all tasks are deterministic and idempotent to achieve
exactly-once semantics.

3. AsyncCkpt: The default mode of Exoflow. Task outputs are only synchronized
where necessary, to provide exactly-once semantics.

We conduct all of the experiments using the AWS cloud, specifically in the us-
east-1 region. Exoflow and execution backends are hosted on EC2 and use Amazon
S3 (or EFS in Section 6.5.2) for persistent storage.

6.5.1 ML training pipelines

We show how Exoflow enables a flexible recovery-performance tradeoffs for the work-
flow in Figure 6.2d. We use an image classification example adapted from Azure
MLOps [7]. An ETL Ingest task (1 r3.2xlarge node) downloads the compressed data
from S3. “1×” in Figure 6.6 indicates one data copy with 569 raw image files and

CHAPTER 6. EXOFLOW 138

total size 225MB. The task loads the images into memory, and performs data clean-
ing and normalization with at-least-once parallel Ray tasks. The dataset (1.4GB of
memory per data copy) is partitioned and passed using Refs to the dataset augmen-
tation tasks, via Ray’s shared-memory object store. Dataset augmentation again uses
Ray at-least-once tasks to apply random cropping, flipping, and color adjustments
to the base dataset, once per epoch. Dataset augmentation requires repeatedly pro-
cessing the same dataset in a tight loop with training. Therefore, the dataset aug-
mentation stage accumulates a total intermediate and checkpoint size of 67GB and
18GB respectively, per data copy. Training tasks are colocated and pipelined with
dataset augmentation (1 g4dn.12xlarge node, 4 NVIDIA T4 GPUs). We use PyTorch
data-parallel distributed training and the ConvNeXt Tiny (28.6M parameters) model.
PyTorch workers are passed using ActorRefs.

Figure 6.6L shows end-to-end duration of 25 epochs without failures of different
Exoflow recovery modes, as a function of dataset size. Here, we also include Selec-

tive AsyncCkpt (skip checkpointing dataset augmentation outputs) and Workflow

Tasks (include at-least-once Ray tasks for data processing in the workflow DAG in-
stead of passing volatile Refs).

Duration predictably grows approximately linearly with the dataset size for all
strategies. The overhead of Workflow Tasks is high because each data processing
task is durably (and unnecessarily) logged as part of the workflow. For the same
workflow graph, the overhead for larger data varies depending on the recovery strat-
egy. NoCkpt represents the best possible performance, where only the final model is
checkpointed. SyncCkpt represents existing workflow systems (Figure 6.2c) and its
overhead grows the most because checkpointing overhead grows faster than computa-
tion overhead. AsyncCkpt’s overhead grows less because checkpointing of augmented
datasets is overlapped with training tasks. Selective AsyncCkpt has nearly identi-
cal duration as NoCkpt because the Ingest checkpoint is perfectly overlapped with
training tasks.

Meanwhile, Figure 6.6R shows end-to-end duration in different failure scenar-
ios compared to normal run-time execution (dark): whole cluster failure (including
the Exoflow controller); in-memory ingest data lost; PyTorch worker actor lost; aug-
mentation task lost; and in-memory augmented data lost. Here, we see the tradeoff
between recovery and performance. SyncCkpt has similar or better recovery time over-
head than NoCkpt for cluster and ingest data failures because it avoids re-executing
the Ingest task, but overall it does worse because of high normal run-time overhead.
Selective AsyncCkpt checkpoints the Ingest data asynchronously, so recovering
from cluster and ingest data failures is fast because it simply restores the Refs from
the checkpoint. Together, Figure 6.6L and R demonstrate how the developer can
flexibly choose the best recovery strategy.

Figure 6.6R also demonstrates Exoflow’s broad failure coverage and ability to
integrate with Ray’s built-in recovery : Ray automatically reconstructs deterministic
data processing results but does not handle persistence or actor recovery [201]. Thus,

CHAPTER 6. EXOFLOW 139

100 200 300 400 500 600 700 800 900 1000
Throughput (request/second)

0

200

400

600

800

1000

1200

1400

1600
La

te
nc

y
(m

s)
ExoFlow 50p
ExoFlow 99p
ExoFlow 50p w/ failure
ExoFlow 99p w/ failure
Beldi 50p
Beldi 99p

(a)

Method
0

100

200

300

400

500

600

La
te

nc
y

(m
s)

Beldi
-WAL
+parallel
+async
-async

(b)

Figure 6.7: (a) Response latency percentile for a serverless travel reservation bench-
mark [87]. (b) Median latency of the trip reservation request from the travel reser-
vation benchmark. Error bar represents 99-percentile latency.

Exoflow handles the first four failures, while Ray handles the last. Recovery for the
last two failures is fast because rollback and checkpoint restore are unnecessary.

6.5.2 Stateful serverless workflows

We compare Exoflow on a travel reservation benchmark [87] to Beldi [216], a recent
system for fault-tolerant and transactional stateful serverless workflows that uses
intent logging to ensure exactly-once semantics. Our implementation uses Beldi’s
APIs for reading and writing state but the Exoflow controller with an AWS Lambdas
backend for workflow execution and recovery. We use a single m5.16xlarge instance
to host Exoflow and EFS for persistent storage, which provides lower latency than S3.
The benchmark procedure follows [216], and we report response latency in Figure 6.7a.

Exoflow achieves about 51% lower p50 latency than Beldi for request rates up
to 400, despite using the same execution system (AWS Lambdas) and state APIs
(Beldi). This is because most of the workflows have deterministic computation and
no external effects (i.e. read-only), so the additional logging used by Beldi is unnec-
essary for correctness. Furthermore, Beldi schedules an additional Lambda function
to orchestrate others, while Exoflow directly schedules Lambdas1. When requests/s

1Note that unlike Beldi, Exoflow requires a server. However, because Exoflow’s controller is
fault-tolerant and horizontally scalable, it would be straightforward to deploy Exoflow as a serverless
system using any autoscaling container orchestrator.

CHAPTER 6. EXOFLOW 140

is higher than 700, Exoflow’s median latency is greater than Beldi’s. This is due to
the Lambdas invocation bottleneck at the Exoflow controller node and can be easily
removed through sharding across workflows. The Lambdas gateway used in Beldi is
likely sharded internally.

The use of Exoflow as a Lambdas gateway has benefits in recovery time. Fig-
ure 6.7a also shows latency with a 10% failure rate for all Lambdas. Exoflow directly
invokes Lambdas, so it can detect failures and recover virtually instantaneously, re-
sulting in 0-31% extra overhead in p99 latency. In contrast, Beldi is fully decentralized
and relies on timeouts for recovery correctness. Thus, although Beldi-style logging
may reduce re-execution on recovery, the actual recovery time would be lower-bounded
by a timeout ([216] evaluates 1min as a possible lower bound).

Figure 6.7b further demonstrates the performance benefit of exposing application
semantics to the workflow system. We report latency of the most complex workflow
in the benchmark, the trip reservation request described in Figure 6.3. Beldi imple-
ments the transaction using two-phase locking (2PL). We demonstrate progressive
improvement over the original solution by varying the execution and recovery strat-
egy. First, we eliminate Beldi logs for dynamic task invocation, as the DAG can be
easily specified upfront, reducing p50 and p99 latency by 17% and 25% respectively
(-WAL). Next, we parallelize the hotel and flight reservation tasks, further reducing
p50 and p99 latency by 17% and 15% respectively (+parallel). Beldi executes these
tasks sequentially because asynchronous invocation does not allow retrieval of the
reply. Finally, we split each reservation task into two steps: lock acquisition and
reservation, as seen in Figure 6.4a. -async shows that with synchronous checkpoints,
this actually increases latency due to the added task. However, +async shows that by
overlapping checkpointing with execution, we can further reduce p50 and p99 latency
by 34% and 16% respectively, without compromising correctness.

6.6 Related Work

Workflow systems. Industry workflow systems [11, 5, 8, 50] orchestrate execution
and recovery for distributed applications by durably logging the workflow, check-
pointing task outputs and replaying failed tasks. However, they require external
outputs to be idempotent and significantly limit how tasks can pass data to each
other (Section 6.2).

Many workflow systems for FaaS focus on stateful serverless workflows. Several
provide a fault-tolerant transactional key-value store interface [216, 188, 186]. Exoflow
is agnostic to external state APIs and implementation and factors out execution and
recovery orchestration from such systems.

Some stateful workflow systems offer a fault-tolerant actor programming model [52,
16, 51]. A common recovery technique is event sourcing, i.e. durably logging nonde-
terministic events. However, this requires the developer to use special APIs for non-

CHAPTER 6. EXOFLOW 141

deterministic code and can add higher overheads than necessary when deterministic
replay is not required for application correctness [78, 146]. Exoflow also supports
pluggable actors but only with coarse-grained logging (i.e. recording the workflow
DAG) and checkpoint-based recovery (Section 6.3.4). This is intentionally minimal,
as it enables composition of both log- and checkpoint-based actor implementations.

Exoflow is similar to DARQ [126]: both use composable atomic steps (tasks)
and asynchronous checkpointing. Unlike DARQ, Exoflow exposes references and an-
notations to avoid materializing and/or persisting outputs where possible.

Dataflow systems. Many dataflow systems use the DAG model [72, 108, 212].
Several use lineage reconstruction for recovery, a form of logging that records the
DAG but not the data, to reduce run-time overhead. CIEL [148, 150] also introduces
dynamic tasks, which we adopt. However, these systems target data processing ap-
plications in which all tasks are stateless and deterministic. Ray proposes a unified
API for DAGs and actors [145], which we also adopt, but cannot support exactly-
once semantics or persistence [201]. Tachyon [119] proposes a method of optimizing
checkpoints for lineage-based systems; this could be applied to a future version of
Exoflow.

Other systems such as Naiad [146], Apache Flink [56] and Canary [164] imple-
ment both batch and streaming dataflow with message passing and global checkpoints
at run time for recovery. This produces lower latency but requires more rollback on
failure; it can also add more overhead for applications with frequent external out-
puts [78]. Exoflow augments log- and checkpoint-based systems by orchestrating
recovery across systems with different internal strategies (Appendix C.3.1).

Falkirk Wheel [90] targets efficient and flexible recovery for batch and streaming.
It uses logical message timestamps to transparently determine the minimum to roll
back on failure. Exoflow provides practical recovery for black-box functions (tasks)
by asking semantics from the developer through references and task annotations.

Actor systems. The actor model is a distributed programming model where pro-
cesses communicate through asynchronous method calls [104]. Most systems do not
guarantee exactly-once semantics [31, 2, 54, 201]. Exoflow provides a limited exactly-
once actor model to support workflows that pass actors between tasks. Meanwhile,
the application has full flexibility of existing actor systems within a task.

Message-passing systems. Message-passing systems are a generalization of actors
in which processes communicate through message sends and receives. There is a
large body of work on recovery for message passing, primarily focusing on logging
vs. checkpointing [78]. Our work adapts these techniques to the distributed workflow
setting and aims to compose log- and checkpoint-based applications.

CHAPTER 6. EXOFLOW 142

6.7 Discussion

References for framework interoperability. Like other dataflow systems, Ex-
oflow captures the logical data movement in an application. Exoflow also aims to
enable interoperability across distributed execution frameworks, unlike data process-
ing abstractions such as RDDs [212] or timely dataflow [146] that are tightly coupled
to a specific execution framework. This motivates some of the differences between
Refs and ActorRefs vs. other dataflow abstractions: they can be used to capture
third-party data and context, they are serializable, and they do not impose a partic-
ular model of parallelism.

These decisions are intentional. Pluggability for data movement is important for
allowing applications to decide the best way to move data from one place to another.
Actors are important because many execution frameworks have some type of context
that should be passed between logical steps of an end-to-end workflow, e.g., the driver
state in Spark. Neither of these is necessary in an execution framework that natively
handles all worker communication and process state.

Serializability is of course important for moving any type of data across process
boundaries. Supporting serializable references further allows moving large and po-
tentially distributed data by reference instead of needing to first copy the values into
one central location. In contrast, serializing an RDD or timely dataflow graph makes
little sense; the deserialized copy may be useless if the receiver is not in the same
cluster.

Finally, using a generic task parallelism model allows references to be flexibly
passed between applications. In contrast, consuming data within a typical dataflow
system often requires the consumer to be expressed as part of the dataflow graph, or
else for the system to provide special data connectors to third-party systems.

Limitations. Using Exoflow effectively requires developer effort. Exoflow offers
recovery flexibility but the developer must choose the right tradeoff for their appli-
cation. For example, the developer must decide how large a workflow task should
be, and whether checkpointing the output is desirable. Currently task annotations
are also very coarse-grained, which makes the system general-purpose but also makes
it more challenging for an application to achieve optimal performance and recovery
overheads.

There are a number of future directions towards improving Exoflow’s interfacing
with external systems. First, while Refs allow the application to efficiently pass
data between workflow tasks, reading and writing a Ref’s data may still require data
movement to or from an external framework. Second, currently Exoflow does not
support transactions, i.e. there is no way to specify that a task should be rolled back
if another task fails. In this case, the developer must manually roll back the effects
of both tasks, e.g., in a final commitOrAbort task. Finally, for cases where tasks

CHAPTER 6. EXOFLOW 143

read and write external state, capturing more fine-grained semantics could reduce
developer burden and improve performance. For example, native support for popular
types of external state (e.g., a database) could be added.

6.8 Conclusion and Lessons Learned

Many existing distributed systems provide specialized, efficient, and transparent re-
covery for specific application domains. Exoflow has an orthogonal and complemen-
tary goal. To unify heterogeneous applications, we must provide general and inter-
operable recovery methods. The greatest challenge is to gain sufficient application
semantics without sacrificing flexibility. Exoflow presents one approach that strikes
a balance between usability (minimal annotations, compile-time safety checks) and
functionality (flexible Refs, automatic recovery). In doing so, we hope to provide
universal recovery that matches a universal API: the workflow DAG.

Initially, this work focused mainly on data-intensive workflows and did not in-
clude support for serverless microservices workflows nor a solution involving user
annotations. However, eventually it became clear that the same techniques that were
being used in data workflow systems such as Apache Airflow were also being used in
serverless workflow systems; despite significant differences in programming interfaces,
all were based on a dataflow graph combined with some form of write-ahead logging.
Thus we began to investigate what was needed to additionally support serverless work-
flows. This led to the introduction of user annotations, as serverless workflows are
likely to interact with the external world more frequently than ETL or ML pipelines.

Thus, the key lessons learned from the Exoflow work are:

1. Although previous work, including the lineage stash work in Chapter 3, has
shown us that implementing different recovery strategies in the same system is
hard, the right abstraction can yield a core system for recovery that is common
to many different applications.

2. Broadening application support does not necessarily require adding features;
sometimes providing lower system overheads and increasing interoperability
with other systems is enough.

144

Chapter 7

Conclusion

7.1 Related Work

There have been many attempts to design flexible systems for distributed computing.
While some have been successful, the emergence of data-intensive applications has
shown how current solutions are lacking. Here, we discuss some of the models that
have been used by previous systems, many of which are listed in Table 1.2.

7.1.1 Distributed dataflow

Data analytics. In data analytics, popular examples include MapReduce [72],
Dryad/ DryadLINQ [108, 83], Apache Hadoop [205], Apache Spark [212], Apache
Flink [58], and Naiad [146]. The common paradigm among these systems is that the
application specifies a static dataflow graph, i.e. a DAG of data transforms in which
each transform is applied in a data-parallel fashion over a dataset. Some [72, 108,
205, 212] are designed for batch processing, while the latter three [213, 58, 146] are
designed to support both batch and stream processing.

These systems provide a powerful common set of features needed by data pro-
cessing applications. In particular, they scale transparently to larger datasets and
clusters. The developer does not need to manage allocation or placement of data or
compute. Fault tolerance is also provided, either through lineage-based reconstruc-
tion [72, 212] or global checkpointing and rollback [60, 56, 57, 146].

Machine learning. However, due to the differences described in Section 1.1, these
systems have not been suitable for ML applications, which require fundamentally dif-
ferent parallelism patterns. ML-specific systems focus on training and inference for
deep learning models and thus offer native support for GPU-based execution. Sim-
ilar to data processing systems, they offer an advanced feature set and manage all

CHAPTER 7. CONCLUSION 145

resources on behalf of the developer. Fault tolerance is supported through check-
pointing and manual reloads [18].

Combining data analytics and machine learning. Where both categories of
systems fall short is at the interface between the two. For example, in distributed
training, it is often necessary to preprocess and randomly shuffle input data during
training. Efficiently shuffling a distributed dataset by row is a challenging problem
that has been solved by data analytics systems but not machine learning systems, as
described in the Exoshuffle work in Chapter 5. Meanwhile, simply deploying both
systems is also unsatisfactory, as it would require overlapping execution, moving data,
and sharing resources between two different frameworks.

The fundamental cause of this difficulty is that dataflow systems expose a coarse-
grained unit of execution: a dataflow graph applied to a dataset. This is what makes
it possible to provide a high level of performance and fault tolerance, as it affords
the systems full command over execution and recovery within the graph. However,
only exposing higher-level APIs also introduces impedance mismatch and makes it
difficult to interoperate between frameworks at a finer granularity of execution. In
the online data preprocessing for training case, for example, passing the preprocessed
data between a batch processing system and an ML training system would require
large amounts of memory for data buffering.

Fine-grained dataflow. A notable example of a dataflow system that exposes a
finer-grained unit of execution is Ciel [148]. Ciel offers task parallelism instead of
data parallelism. As discussed in Chapter 2, Ciel implements a distributed futures
interface that allows computations to be expressed at the unit of a single function
call over a fixed value(s), rather than a single function call over many records of
a dataset. However, the lack of a stateful API in Ciel also makes the API less
suitable to interoperating with other frameworks compared to APIs such as RPC or
streaming dataflow (which often supports stateful operators). For example, to support
third-party libraries that have context that cannot be materialized, Ciel would need
to re-initialize the context on each function call, which can be expensive, e.g., in
reinforcement learning [152].

Another use of a distributed futures-like API is PyTorch RPC [12], a lower-level
primitive that is used within PyTorch Distributed to implement model parallelism
strategies. Similar to distributed futures, PyTorch RPC “remote references” are used
to abstract data placement and movement and are reference-counted. Compared
to the implementation described in this thesis, PyTorch RPC is designed with ML
applications specifically in mind, offering features such as automatic differentiation
and multiple transport options that can leverage specialized GPU links. However,
references cannot tolerate failures, and physical data movement operations must be
explicitly specified by the application, which allows greater control but also imposes

CHAPTER 7. CONCLUSION 146

greater burden on the developer.

Distributed programming and consistency. A major difficulty in building dis-
tributed systems is the problem of data consistency, i.e. when there are multiple
views of the same logical piece of data, what guarantees can be made about the dif-
ferences between the views compared to the history of data operations? In distributed
dataflow systems such as Noria [89], Bloom [25] and Hydroflow [65], data consistency
is a first-class concept. The use of dataflow eliminates complex consistency and/or
performance bugs that can occur in distributed applications that are written in an
imperative style. Unlike offline dataflow systems such as MapReduce, these systems
are also well-suited to online workloads where timely access to incremental results is
critical.

Thus far, data consistency has not been a focus in this work. In the distributed
futures and actors model, all memory is either mutable but private (i.e. actors) or
shared but immutable (i.e. distributed future values). There is no built-in replication
for actors. Thus, we see the presented model as an intermediate building block
upon which others can build replicated systems that may implement varying levels of
consistency. An interesting line of future work lies in investigating the performance
opportunities and gaps for such an approach, compared to using a lower-level primitive
such as RPC directly. This is analogous to the Exoshuffle work in Chapter 5, which
provides an alternative building block to RPC for building MapReduce systems.

7.1.2 RPC and actors

Actors are heavily used in many applications of the ownership architecture and Ex-
oflow. Chapter 2 covers the main difference between distributed futures vs. RPC and
actors; here we discuss the additional differences between RPC and actors to motivate
the decision to use actors for expressing stateful computation.

RPC and actors were both intended as constructs for building distributed sys-
tems. RPC was initially designed as a paradigm for communicating between two
disparate programs over the network [151, 44]. Concurrency is controlled by creat-
ing and destroying the communicating processes. Meanwhile, the actor model was
conceived as a computation model for concurrent applications, in which units of com-
putation (actors) can asynchronously send and receive messages [104, 19]. Thus,
in the context of developing an end-to-end distributed application that may involve
multiple communicating entities, RPC can be considered a lower-level building block,
while actor systems often provide a more fully-featured runtime.

Since their inception, however, some interface features of RPC and actors have
converged. Notably, RPC was originally proposed as a synchronous interface but has
since been extended to support asynchrony, often via futures [129]. Modern RPC
implementations also no longer try to hide partial failures, which are inevitable in
the distributed setting and had been incorporated early on in actor systems dating

CHAPTER 7. CONCLUSION 147

back to Erlang. Conversely, while actor systems such as Erlang are based strictly
on message-passing, modern implementations such as Akka and Orleans also support
request-response interaction much like RPC.

Today, RPC and actor systems see significant overlap in their use cases. Both
are a popular choice for building web service backends. For example, the actor system
Orleans is used as the backend for Microsoft’s Halo cloud services [42], while gRPC
is often used as an alternative to REST in microservices. In fact, the Ray system
described in this thesis uses gRPC to implement an actor API.

In our view, the remaining fundamental differences between RPC and actors are
in lifecycle management of services and application interoperability. By lifecycle man-
agement, we refer to the responsibility of creating, deleting, and recovering services.
This is an important consideration in developing online applications that must remain
highly available, respond to changing load, and be upgraded on the fly. In keeping
with their origin as a model for developing end-to-end concurrent applications, actor
systems typically offer explicit APIs for lifecycle management. Some actor systems
such as Orleans also handle actor lifecycles entirely transparently, through a virtual
actor interface [42]. In contrast, RPC is a paradigm for communication only and
thus RPC implementations have no control over the lifetime of services. This respon-
sibility is typically left to some cluster manager such as Kubernetes that deploys the
RPC application.

As low-level APIs that expose execution at the granularity of a function call
(or message) and that support remotable state, both RPC and actors are highly
flexible in their use with third-party systems. As a communication paradigm, however,
RPC affords applications innate interoperability and decoupling. Any program can
communicate with an RPC service as long as it uses the same protocol. The client
and server programs may be decoupled from one another, as long as they agree
on the protocol. Meanwhile, actor deployments are fully encapsulating. Features
that are supported within one actor deployment may not be supported across two
different deployments, even when the same underlying actor system is used. A pair
of sender and receiver actors is coupled together, as they share the same code and
physical deployment. Note that this is not necessarily a negative; coupling may reduce
autonomy between the sender and receiver but it also prevents developer errors such
as mismatched versions during upgrades.

As an actor system, Ray shares the same properties in lifecycle management
and interoperability. For example, the ownership architecture follows the supervision
model proposed by Erlang [195] (Chapter 4) to manage failures for both actors and
(stateless) tasks. Also, as of this thesis, a distributed future created within one Ray
cluster would have to be copied by value for use in another Ray cluster, even if the
two clusters share the same physical resources.

There has also been a long line of work on fault tolerance in RPC and actor
systems, in particular studying how to provide at-most-once, at-least-once, and/or
exactly-once message delivery. RPC has long had a debate on whether and how to

CHAPTER 7. CONCLUSION 148

expose failures [196, 191]. Recently, given the popularity of RPC for microservices,
there have been several works on providing exactly-once semantics for RPC [117, 22].
In practice, however, deployments continue to prefer at-least-once or at-most-once
semantics, likely due to the performance overheads and application restrictions im-
posed by exactly-once semantics. Actor systems such as Akka [2] typically rely on
supervision, as proposed in Erlang [195], and provide at-least-once or at-most-once
semantics. Virtual actor systems [42] can be considered a special case of supervi-
sion, in which all actors are supervised and automatically restarted by the system.
Out of these, Orleans provides optional persistence and at-most-once or at-least-once
message delivery, while Ambrosia [91] provides exactly-once delivery.

Compared to these works, the main contribution of this thesis is in showing
how distributed futures can provide unique opportunities in efficient and flexible fault
tolerance. First, the ownership work in Chapter 4 draws from the actor supervision
model but further extends it to provide efficient task- and object-level recovery. Sec-
ond, the Exoflow work in Chapter 6 uses the DAG produced by distributed futures
programs to show how one can compose applications that use a mix of different ex-
ecution semantics. In contrast, past work on actor and RPC systems typically focus
on providing a single type of execution semantics for a particular deployment.

7.1.3 High-performance computing (HPC)

High-performance computing (HPC) refers to a class of systems supporting compu-
tationally intensive problems often found in the scientific domain, such as physics
simulation. Traditionally, HPC focuses on bare-metal execution on supercomputers
that are specially designed for massively parallel compute, with many cores and high-
speed interconnects. This is in contrast to cloud computing offerings, which generally
consist of much cheaper commodity hardware and can offer customers a dynamically
sized resource allocation through VMs.

Recently, HPC systems have gained widespread popularity through ML use
cases, which are also computationally intensive and require collective communica-
tion primitives such as allreduce. MPI [86] for example has long been a standard
for HPC application development and has been used directly in machine learning
systems such as Horovod [178]. The single program, multiple-data (SPMD) pro-
gramming model often used in MPI has also been adopted in other popular machine
learning frameworks [18, 70].

Two of the main limitations found in the MPI model are a lack of dynamicity, as
the participating programs must be specified before execution, and fault tolerance, as
a single process failure will terminate all other processes. These are acceptable in the
supercomputer scenario, where resources are fixed and machine failure is uncommon,
but become significant obstacles in cloud computing scenarios.

Some parallel computing systems offer native support for dynamicity. These
include Cilk [45] and Legion [40], both of which offer the ability to dynamically

CHAPTER 7. CONCLUSION 149

spawn nested tasks, i.e. function calls, similar to Ray. Cilk-NOW [46] provides a
distributed runtime for the Cilk API and fault tolerance through checkpointing. As
shown by later dataflow-based systems, checkpointing alone is often undesirable for
data-intensive applications that may produce large amounts of intermediate data.

Compared to Cilk, Legion additionally offers explicit support for data-intensive
applications; developers specify their data partitioning and placement with logical
regions while Legion handles the physical data movement. This has a similar goal
as distributed futures of shifting data movement responsibilities from the application
to the system. Unlike distributed futures, the data partitioning must be specified
before execution and each Legion task must specify its data privileges and coherence
requirements, in addition to the input regions that each task will access. Data local-
ity is also explicitly controlled by the developer through Legion’s mapping interface.
Thus, Legion’s data partitioning API offers developers greater control but also re-
quires greater effort. Providing failure transparency also remains an open challenge
for Legion. This is due to the extra bookkeeping, coordination, and data persis-
tence required for recovery, which can impose significant complexity and performance
overheads when tasks are both dynamic and fine-grained.

Legion shines in building high-performance applications on heterogeneous par-
allel architectures such as multicore NUMA and/or multi-GPU machines. Ray does
not offer such a high level of architecture portability but it reduces the developer ef-
fort required to scale to multiple machines and it provides interoperability with other
distributed applications. Taken together, Legion and Ray could produce a powerful
combination for building high-performance distributed applications. An interesting
line of future work is in the development of a deeper integration between the two sys-
tems, e.g., to allow ownership handoff of memory regions from one system to another.

7.1.4 Distributed shared memory (DSM)

Distributed shared memory (DSM) is a paradigm that aims to abstract the physically
distributed memory of a cluster to provide the illusion of a shared address space [122,
153]. This allows the application to be written as a multithreaded program, as if for
a single machine, but executed on a cluster of machines. Thus, DSM’s goal is closely
aligned with the goals of this thesis. However, DSM systems failed to abstract away
distributed memory with suitable overheads and system complexity and is generally
believed to have failed for two reasons [32].

First, while the goal of complete transparency would have simplified applica-
tion development, the choice of programming model turned out to be inappropriate.
Performance transparency was unattainable for local vs. remote memory, as remote
memory access latency continues to be an order of magnitude or more higher. Thus,
much of the DSM efforts were aimed towards the coherence mechanism [153], and good
performance was only possible if data and threads were carefully placed to minimize
sharing and communication [41, 111]. The same lessons were learned and incorpo-

CHAPTER 7. CONCLUSION 150

rated into successful paradigms such as RPC and actors, both of which require the
developer to explicitly specify remote execution and neither of which provide a shared
address space. Meanwhile, distributed futures support memory sharing between dis-
tributed threads, but with two key differences compared to DSM: (1) shared memory
is immutable, and (2) sharing is not global and must be made explicit through the use
of references. The former avoids the overheads of coherence experienced by DSM sys-
tems, and the latter enables more efficient bookkeeping and placement for distributed
memory.

Second, fault tolerance proved to be an essential property for scalable cloud
computing applications, which are susceptible to failures and variable network latency.
Transparent recovery of DSM applications would have required huge performance
overheads, as the unit of execution is extremely fine-grained, at the level of individual
memory accesses. In contrast, the programming model targeted in this thesis is
coarser-grained, at the level of function calls, and more structured, as the program
specifies a dataflow DAG ahead of execution. The latter property is critical towards
applying the layered approach to fault tolerance proposed in this thesis; it is unclear
how such an approach could be applied to a multithreaded programming model,
where each thread’s data access pattern is arbitrary and opaque to the system until
execution.

7.1.5 Disaggregated memory

Disaggregated memory architectures decouple memory from processors [20]. This is
in contrast to traditional server architectures where the ratio and amount of CPUs
vs. RAM on each node is fixed. The goal is to allow both processors and memory
to be more efficiently utilized, by increasing memory sharing between processors and
right-sizing each application’s physical allocation. Systems for disaggregated memory
typically disallow memory sharing by distributed threads. Thus, compared to DSM,
disaggregated memory systems similarly aim to share distributed memory but do not
attempt to provide the illusion of a shared address space.

Many systems for disaggregated memory aim to leverage remote memory to
expand a single processor’s available memory beyond that of a typical server. This
can be done entirely transparently to applications, by implementing remote memory
support at the hardware or OS level [94, 120], or semi-transparently, by providing
APIs to mark regions of memory as remotable [172].

Distributed futures could be used as a disaggregated memory API in the latter
approach. A key difference in the distributed futures interface is that it also gives
the system control over task placement. This advantage is typically lacking in dis-
aggregated memory systems that focus mainly on memory placement. Compared to
previous solutions, distributed futures would thus offer the system greater opportu-
nity to leverage optimizations such as moving execution to the data or overlapping
execution with data movement between servers, as implemented in Exoshuffle (Chap-

CHAPTER 7. CONCLUSION 151

ter 5).
Furthermore, the distributed futures architectures proposed in Chapters 4 and 6

address fault tolerance holistically, recovering both execution and data. While this
makes the problem more complex, it also offers greater flexibility in the recovery
approach. For example, all of the works in this thesis rely on the ability to choose
between logging data vs. lineage, i.e. the execution that produced the data.

Finally, thus far the benefits of memory pooling via physically disaggregated
memory have been shown for small pools (8-16 CPU sockets) only [120], and in general
a scalability limitation is likely to persist due to physical constraints. This makes
integration of disaggregated memory inside a more scalable distributed futures system
a promising approach towards supporting large-scale data-intensive applications.

7.1.6 Serverless

Serverless execution is a recent paradigm in which developers execute their appli-
cations in the cloud without needing to provision VMs. Instead, they specify their
applications as the code to run and a description of dependencies. The code is then
transparently deployed and autoscaled by the cloud provider.

Typically, the code to run must be a short (minutes-long) and stateless function,
and the functions-as-a-service (FaaS) provider guarantees at-most-once or at-least-
once semantics. These requirements significantly simplify deployment and autoscal-
ing, as tasks are only allowed to hold resources while running, the duration of the run
is limited, and the execution semantics can be guaranteed in the presence of failures
through retries. However, unsurprisingly these restrictions have also turned out to
be limiting for applications [101]. We see the distributed futures and actors model as
a potential higher-level programming layer for FaaS applications. In particular, the
Exoflow chapter (Chapter 6) explores what extensions are needed for the model to
adequately wrap FaaS backends to help overcome two of their key limitations.

First, the cost of requiring all function state to be materialized and copied be-
tween functions can be significant. This has inspired a number of works that aim to
make state and/or storage a first-class citizen in FaaS APIs, such as Cloudburst [186],
Pocket [112], and Azure’s Durable Functions [52]. The same trends can be seen in
this thesis: distributed futures provide a FaaS-like API but promote physical mem-
ory sharing between functions, while actors provide a stateful API. In the Exoflow
work (Chapter 6), we show how such an API can be backed by a serverless execution
backend.

Second, the weak execution semantics offered by popular FaaS solutions can
be difficult to build upon in the presence of failures. This has led to a number of
systems that provide exactly-once semantics transparently to serverless applications,
often by providing exactly-once APIs for reads and writes of external state [188, 216,
110]. Such systems can be used in conjunction with Exoflow (Chapter 6), which
also aims to provide exactly-once semantics but with an additional goal of making

CHAPTER 7. CONCLUSION 152

recovery more flexible. In particular, in Exoflow we observe that there is a spectrum
of how individual functions in a serverless application may interact with external
state, ranging from no interaction to requiring exactly-once operations. Thus, an
application using a fault-tolerant serverless system such as Beldi or Aft could use
Exoflow’s annotations to describe which tasks will use the custom APIs and with
what semantics, and Exoflow would ensure that end-to-end exactly-once semantics
are met while minimizing re-execution upon failure.

7.1.7 Cluster managers

Cluster managers such as Apache Mesos [105], Borg and Kubernetes [53] can be
considered a type of OS for the cloud. They are responsible for application deploy-
ment and resource allocation in multinode environments. Typically, the interface is a
YAML-style static configuration that specifies the application’s entrypoint, software
dependencies, and system-level configuration such as resource requirements, place-
ment constraints, and networking configuration. Often, the unit of execution is a
container.

Cluster managers are powerful tools that are widely used for managing multi-
tenant clusters hosted in the cloud. Because the unit of execution is a container,
they are extremely general-purpose. The tenants of these clusters can range from
deployments of multi-node systems such as Ray to individual microservices.

However, the choice of a container as an API also means that cluster managers
are intentionally limited in the performance and fault tolerance features that they
can provide to the end application code. In fact, cluster managers have no visibility
into the application code. Thus, features such as dynamic creation and destruction of
containers based on application-defined control flow are complex to support natively.
It is also the application’s responsibility to manage any cross-container interactions,
including managing dependencies between containers and how data should be moved
across container boundaries.

These limitations are logical in the context of cluster managers, which are tar-
geted towards DevOps and cluster administrators. However, as large-scale applica-
tions are becoming more prevalent and complex, we are also seeing that developers
need more direct control over cluster resources and placement. This in part motivates
this thesis, which targets end developers and offers cluster management features that
are embedded in the application code.

In particular, the system proposed here offers a subset of container-like features
but at the granularity of tasks and actors (i.e. functions and classes), including run-
time dependency management, autoscaling, and resource requests and limits. Some
of these features require significant implementation work compared to containers,
which enjoy native support from the OS and modern cluster managers. However, we
believe that the investment is worthwhile, as application preference for finer-grained
execution units is also seen in other trends such as serverless execution. The finer-

CHAPTER 7. CONCLUSION 153

grained interface also affords the system greater visibility into and control over the
application. Thus, we believe that natively providing such system-level features will
be an important feature of future cloud systems.

At the time of this thesis, there is a well-defined boundary between cluster man-
agers and distributed execution frameworks. However, we hypothesize that execution
frameworks in the future will take on more of the current role of cluster managers,
as finer-grained resource management and application interoperability become more
important. We see this trend in other domains as well, such as in microservices
frameworks [88]. The precise way in which this will play out, and affect both cluster
managers and distributed execution frameworks, remains remains an open question.

7.2 Discussion

7.2.1 Broader Impact: History of Ray as an open-source
project

The open-source project Ray [13] is the realization of the goals and ideas described in
this thesis. Ray started in 2016 as a system for distributed Python. The first versions
of the RLlib [127] and Tune [128] libraries, for distributed reinforcement learning and
hyperparameter search, respectively, were released soon after. Since then, Ray has
evolved into an ecosystem of distributed Python libraries that can be composed to
build end-to-end data processing and machine learning applications. Many of the
works in this thesis have been instrumental towards this journey.

While Ray saw some success with early users of RLlib and Tune, especially
among academic researchers, the “core” backend system was not yet stable. In 2017,
we rewrote the Ray core based on lessons learned from the initial versions. Some of
the major changes included coupling the scheduler and the object store processes,
an initial implementation of the lineage stash system described in Chapter 3, and a
switch from C to C++. Importantly, Ray core continued to use the same decentralized
control plane architecture described in [145].

As the rest of the system matured, this fully decentralized design become an in-
creasingly significant obstacle when it came to further improving system performance
and robustness. Two major robustness features were sorely lacking at this time: (1)
garbage collection or reference counting of application objects, and (2) failure detec-
tion and recovery of application objects. Both procedures needed to be fault-tolerant,
correct, and timely. As Ray was ultimately meant to be a production-ready system,
this also called for simple solutions. Meanwhile, Ray’s then-decentralized design also
proved to add significant complexity and performance overheads, requiring convo-
luted paths through various nodes and system processes just to execute a single task.
This prevented the development of high-performance libraries such as model serving
on top of the Ray core.

CHAPTER 7. CONCLUSION 154

Initially, the hope was to solve the performance problem for small actor-to-
actor messages only, the prevalent pattern in early Ray libraries compared to non-
actor tasks. This would be done by introducing a fast path for actor task execution,
allowing actor tasks to be scheduled and executed in a single round trip. It also would
have added significant complexity, as it essentially would have required two separate
systems.

Thus, one motivating goal of the ownership architecture was to improve perfor-
mance for all application paths, not just in the special case. Fortunately, it turned
out that this design requirement simplified the rest of the system as well.

In particular, ownership was a comprehensive solution for the three most pressing
problems at the time: object garbage collection, object failure recovery, and actor task
performance. By centralizing system state at the workers, we were able to simplify
and harden object management protocols while also reducing task overheads. Both
actor and non-actor tasks were executed with essentially the same codepath, and still
in a single round trip. Thus in 2019, we rewrote the Ray backend a second time, this
time to use the ownership design, spurring the first major release of the Ray project.

As Ray’s object management and recovery protocols stabilized, it became pos-
sible to build on top of these to achieve more sophisticated memory management
features and applications. One of these features was to extend Ray’s object store
with disk spilling, to support larger-than-memory workloads. Exoshuffle (Chapter 5)
became a driving application for this feature. Another of these features was to extend
Ray’s fault tolerance capabilities with application durability, to optimize recovery
time after a failure and to be able to survive total cluster failure in addition to partial
failures. This ultimately led to the Exoflow work described in Chapter 6.

7.2.2 Lessons Learned

Here I summarize some of the personal lessons learned over the course of this thesis,
both in the broader design of systems and on the road to practical adoption.

1. Fault tolerance is not one thing. Fault tolerance is often listed as one of
the key requirements for a distributed system. While many (including me) speak
of it as if it is a single concept, the actual meaning has a depth of nuance, to the
point that saying that a system is “fault-tolerant” alone says very little. The diffi-
culty is that there are many scenarios and assumptions (application model, failure
model), desired properties (execution semantics, consistency, durability, availability),
and metrics (run-time overheads, recovery overheads) to consider. In stating a fault
tolerance goal, it is critical to be precise.

For example, in this thesis, we use the crash failure model throughout, but by
necessity of building a general-purpose system, we must assume a wide variety of
applications, desired properties, and metrics. In particular, regarding the application
model, we differentiate techniques based on data-intensive vs. not (e.g., varying the

CHAPTER 7. CONCLUSION 155

strategy for small vs. large objects in Chapter 4), as well as deterministic vs. non-
deterministic computation. Most of the chapters in this thesis aim for exactly-once
execution semantics; Exoflow further aims for durability and availability. Consistency
is considered out of scope as there is no native support for replication of mutable data.
Finally, for metrics, low run-time overhead is overall prioritized, but a constant theme
of the thesis is how to achieve this simultaneously with low recovery overhead. This
culminates in the Exoflow work, which allows exploring a spectrum of tradeoffs.

Given this huge application variety, tackling all of the desired properties and
metrics in one all-encompassing system design is likely impossibly complex in practice.
At the same time, the system design has to consider fault tolerance from the start,
as fault tolerance properties cannot be easily bolted on after the fact. Thus, one of
the key insights that drove this thesis was that fault tolerance for a general-purpose
distributed system should be designed through a layered approach.

To illustrate this, we point out that indeed the fault tolerance goal from the
lineage stash to the ownership chapters became narrower in scope. Rather than pro-
vide transparent exactly-once semantics for all distributed future-based applications,
the ownership design only does so for deterministic and idempotent tasks. Critically,
however, the ownership design does guarantee fast and reliable failure recovery for
pure functions, as well as fast and reliable failure detection for all other tasks. These
were not easily accomplished in the lineage stash work due to the lack of a centralized
task control plane. Meanwhile, speed and reliability made it possible to efficiently
build other system layers on top of the ownership work, including Exoflow, which
handles failures detected by the ownership layer, including for applications that are
nondeterministic and/or that have side effects.

This design is an application of the end-to-end principle: in cases where effi-
cient run time or recovery depends on application-specific features, the endpoints
(end applications or Exoflow) should handle recovery rather than the system (the
ownership architecture). There is furthermore a practical extensibility argument in
this approach. In industrial settings, many users will often share a particular cluster
deployment of a system. Thus, upgrading or forking a low-level cluster framework is
a nontrivial task, as it requires coordinating among the many different applications
built on top. However, if the system core is more minimal in scope, then services tra-
ditionally provided by the system can be provided as a library instead and are more
easily modified by end users as needed. This is the key idea behind both Exoshuffle
and Exoflow, which provide distributed shuffle and recovery as a library, respectively.
Thus, the ownership design can be considered an exokernel [81] for distributed appli-
cations that exports the distributed future as its primitive.

2. Systems must provide minimum features first, but remain future-proof.
The industrial success of the ownership architecture, compared to previous versions
of the Ray backend, can be explained by the focus on providing minimum features
first. Note that this is not equivalent to giving up on fault tolerance entirely; indeed

CHAPTER 7. CONCLUSION 156

it is the opposite. As we learned in the first lesson, there are many types of fault
tolerance, and some are more essential than others. Case in point, ownership focused
on providing fault-tolerant memory safety first, while allowing for the possibility of
building more complex recovery optimizations on top.

Another example of this is in the original motivation for the ownership archi-
tecture. As described above, reducing performance overheads for small actor tasks
was one of the motivating goals for the ownership work. The impact of reducing
performance overheads cannot be overstated; reducing performance overheads by a
magnitude or more is practically guaranteed to expand the feasible applications for a
system. However, doing so at the cost of significant system complexity is also risky
because it prevents future optimizations. If we had opted to introduce the special
execution path for actor tasks only, it likely would have become increasingly difficult
to introduce similar optimizations for non-actor tasks. Meanwhile, the ability to mix
actor and non-actor tasks, though unpopular at the beginning of the Ray project, is
one of the most powerful features of the system today.

In addition to performance, flexibility continues to be a primary goal for the
Ray system and of course for OSes in general. In some cases, this was at odds with
fault tolerance. For example, early versions of Ray only allowed a single caller for
actors, so as to facilitate transparent state recovery for actors. However, this was a
significant limitation that made it impossible to support many applications. Mean-
while, the applications in distributed training that we were evaluating at the time all
used synchronous checkpointing and did not even need transparent state recovery!
Thus, we made the decision to allow multiple callers and forego transparent state
recovery for actors, as we believed that this flexibility was the more necessary fea-
ture and that state recovery could be reasonably implemented by end applications.
Note that the decision was to forego transparent state recovery as part of the own-
ership architecture; we later adopted the idea in the Exoflow work, but this time at
a higher-level API where enforcing a single caller was practical. This again shows
the importance of prioritizing minimum features first, but without closing the door
to future optimizations.

3. For practical adoption, interoperability over completeness. From its
inception, the Ray project had an ambitious goal of becoming the default execution
engine of cloud applications. While its success in this ultimate goal is yet to be
determined, we have already seen substantial adoption among machine learning and
data processing applications. Many of the lessons here may be obvious but cannot
be overstated: (1) preserving a simple API, even while the system implementation
continues to evolve, and (2) ensuring that these APIs enable specific application niches
that have the potential to grow. For example, distributed reinforcement learning was
very much a niche application at the start of the Ray project, but it also exhibited
potential for growth, had as of yet no canonical framework, and was able to use the
early distributed futures APIs to achieve something useful (in this case, scale-out with

CHAPTER 7. CONCLUSION 157

distributed execution). Thus RLlib [127] was developed and adopted even while we
rewrote the Ray core multiple times.

Another lesson learned on the road to adoption was the value of interoperability
with other applications and systems over feature completeness. As Ray was designed
as a platform, there was significant overlap with both existing data processing frame-
works such as Apache Spark, as well as cluster managers such as Kubernetes. The
similarities and differences compared to these systems are discussed in more detail in
Sections 7.1.1 and 7.1.7, respectively, but such boundaries were not as well-defined at
the beginning of this work.

As evidence of this, Ray had no standard way of interoperating with most other
systems until relatively recently. This proved to be a significant obstacle to adoption,
especially in the case of Kubernetes, which was and still is the most popular method
of deploying cloud applications in industry settings. Without a Ray operator for
Kubernetes, many larger-scale users could not easily adopt Ray even if they had
wanted to. One of the reasons for this delay was that Ray had not been designed
with containerization in mind – autoscaling for example was initially designed at the
granularity of VMs.

For data processing systems like Spark and Dask that were already popular with
Python users, it also took years to define data processing applications that were: (a)
not already well supported, or (b) well-supported but where Ray could achieve a
better result. Thus, there was little incentive for existing Spark and Dask users to try
out Ray. It was not until projects such as Exoshuffle and Ray Data [193], which could
handle last-mile data preprocessing for ML training more efficiently than Spark, and
Dask-on-Ray, which could execute Dask Dataframes applications more efficiently than
Dask could, that Ray began to gain traction among data processing applications.

What worked in these instances was to define the successful application use cases
incrementally, and to prioritize interoperability first, so that at least it was simple
for end users to extract and load data between Ray and other more mature data pro-
cessing systems. For example, the Spark-on-Ray project allowed Spark applications
to be executed on Ray clusters. The advantage of such a project was that Ray-based
ML applications could take full advantage of Spark’s more advanced data processing
support, while also sharing resources.

As one more piece of evidence of this, we can contrast RPC vs. actor systems.
Compared to RPC, actor systems are certainly more fully featured, but they are also
less interoperable, as discussed in Section 7.1.2. This may explain why libraries such
as gRPC are the overwhelming choice over actor systems.

One could argue that by prioritizing interoperability and widespread adoption
over feature completeness, one runs the danger of never having enough compelling
features to add to the table. Among academic circles, there is perhaps a related
concern about the novelty and contribution of such a system that appears to not
be as comprehensive. But I believe that these concerns can be avoided as long as
system designers persist in their aim to enable specific and new end application use

CHAPTER 7. CONCLUSION 158

cases. This aim defines the necessary features, the interfaces that should be provided
to interoperate with other systems, and often the lasting contributions of the work.
Prioritizing adoption ensures that the aim stays true. For me personally, the question
of the right way to design something new while remaining practical and interoperable
is indeed where some of the most interesting research can be found.

7.2.3 Limitations and future work

Some of Ray’s current most successful applications include: reinforcement learning,
ML training including hyperparameter search and last-mile data loading and prepro-
cessing, ML inference both batch and online, and large-scale shuffle via Exoshuffle.
In all of these cases, Ray’s enhanced flexibility proved to be a significant edge, e.g.,
by enabling expression of complex control flow loops in reinforcement learning, hy-
perparameter search, and large-scale shuffle. In all but reinforcement learning, the
Ray dataplane described throughout this thesis also proved to be critical.

Given the eventual and ambitious goal of building an OS for distributed appli-
cations, there are of course several limitations. Some of the application areas where
Ray has substantial room to improve are: the composition of different applications
both within Ray and with other systems, high-performance ML applications, and
online stateful applications. Some shared requirements among these applications in-
clude: low-latency distributed execution (tasks that are a few milliseconds or less),
efficient memory sharing, and heterogeneity, both in hardware and computation pat-
terns. Here, I will expand upon some of the existing gaps for these applications, with
potential approaches emphasized in italics.

Performance. The current performance overheads in Ray are well understood and
are described in more detail in Chapter 4. In general, one can expect on average 1-2
round-trips per task execution, with actor tasks requiring fewer than non-actor tasks.
This is because each task is dynamically scheduled, and scheduling decisions are
usually made one task at a time. Tasks that take distributed futures as arguments
further require 0-1 IPCs to get the values, plus additional round-trips for object
transfer if the value is not already local. The actual execution latency can therefore
vary widely depending on task placement, which affects locality with inputs, queuing
delay, and resource interference with other tasks.

The current overhead is reasonable for tasks ranging in the 10s of ms or more
and/or for objects that are MBs or larger, but becomes significant for extremely
low-latency applications in online web serving or ML inference. For large-scale ML
model serving, for example, executing a single forward pass on one layer of a model
may take only a few milliseconds. For web serving and microservices, Ray will also
share the same performance problems as RPC systems, such as high overheads from
serialization and communication [88].

CHAPTER 7. CONCLUSION 159

The root cause of these overheads is scheduling and dispatching tasks and their
associated object transfers one at a time. This adds to the number of operations per
task (i.e. how many protocol messages must be sent to transfer an object), reduces
chance of pipelining operations (e.g., overlapping the transfer of an object dependency
with the scheduling decision for the task), and requires more metadata per task.

A promising approach to reduce these overheads is to employ a combination
of distributed system optimizations and JIT compilation. System-level optimizations
may be taken to mitigate execution overheads, but they are difficult to apply in gen-
eral given the variety of applications and the dynamic nature of both the application
logic and the cluster configuration. For example, one could preallocate mutable ob-
ject buffers that could be reused for multiple DAG executions, but this is only likely
to improve run time if the task dependencies and object sizes remain the same. JIT
compilation could therefore be used to identify such cases where system-level opti-
mizations are more likely to succeed. In particular, one could imagine JIT-compiling
DAG fragments that are repeatedly generated by a program, with fallback to a com-
pletely dynamic path if a new fragment is generated.

Another future direction is to improve scheduler extensibility. Variation in task
execution overhead often comes from the schedluer policy for task placement. Unfor-
tunately, simultaneously achieving policy completeness, performance, and evolvability
for the system scheduler is a difficult problem, much as we saw for fault tolerance
in this thesis. Works such as ESCHER [43] for distributed futures or DCM [189]
for container placement provide some ideas, but the fine granularity and breadth of
distributed applications continue to be challenges. For example, both ML and web
serving often have application-specific request routing and scaling policies. Some
of these policies can be expressed in Ray with significant manual effort, using the
low-level scheduling primitives that were introduced in the Exoshuffle work, such as
specifying hard or soft affinity to a particular node. However, ensuring that such
scheduling primitives are specified correctly and will not interact poorly with other
concurrent resource requests or cluster changes at run time is a difficult problem.

A promising approach for enabling scheduler extensibility is to apply domain-
specific languages for controlling task scheduling and placement. Currently, the schedul-
ing primitives exposed by Ray and other lower-level cluster frameworks such as Ku-
bernetes are analogous to an “assembly language”: they offer basic functionality such
as node affinity for tasks or hinting when data can be freed. Specifying application-
or cluster-wide policies, such as guaranteeing a certain level of resource utilization,
can require significant application or framework developer effort and complexity. In-
troducing DSLs for scheduling or object management policies could allow for greater
extensibility and reduced developer effort.

The remaining Ray overheads come mainly from the dataplane (the object store).
First, objects must be entirely in memory before they can be read, which can add
undue memory pressure and prevent pipelining. Exoshuffle works around this by
slicing task inputs and outputs into small enough objects that the execution’s pipeline

CHAPTER 7. CONCLUSION 160

granularity can maximize disk and network bandwidth. However, at large enough
scale, this will eventually lead to excessive object metadata, which itself adds memory
pressure. Here again, we may explore a range of solutions spanning systems and
programming language design. To support more flexibility in object reads, one could
introduce programming interfaces for large objects that support slicing and streaming.
With these additional semantics, opportunities for system-level optimizations include
the object transfer policy, e.g., prefetching data for streamed objects, and leveraging
specialized hardware, e.g., remote memory or programmable networks.

Finally, objects are always immutable, which simplifies the design but can be
inefficient for applications requiring low latency and fine-grained mutations. Inter-
estingly, because distributed futures are immutable, we can consider the initial dis-
tributed futures program to be an intermediate representation that follows static sin-
gle assignment (SSA). Thus, we can preserve reference immutability but apply static or
dynamic program analysis to determine when physical object buffers may be reused.

Fault tolerance. For offline workloads, we believe that the combination of fault
tolerance provided by ownership and Exoflow is generally sufficient. However, this
is not yet the case for online workloads, where Ray will again share many of the
same limitations as RPC and actor systems, namely the lack of state persistence and
efficient and transparent exactly-once semantics.

Thus, one of the main extensions of the current work will involve enhancing
fault tolerance properties for online and stateful workloads. In particular, there are
open questions on what the interface should be between a workflow orchestrator
such as Exoflow and database systems that are commonly used to persist application
state. Currently, orchestration systems treat such databases as a black box. While
Exoflow additionally supports annotation for application semantics that are relevant
to recovery strategy, the annotation process is manual and potentially error-prone.

Therefore, an interesting direction for the future is exploring how we can more
deeply integrate application semantics into a distributed programming language for
workflows, to unlock new run-time and recovery optimizations. Exoflow’s annota-
tions already rely on compile-time checks to optimize the recovery approach. In the
future, stronger guarantees in fault tolerance and performance could be guaranteed
through additional compile-time checks. For example, instead of marking all tasks
that interact with an application database as having a side effect, one could imagine
representing a database with an interface that captures the properties of different
queries. Then, Exoflow could automatically induce a finer-grained task DAG based
on which interfaces a task uses, instead of requiring the developer to specify the DAG
explicitly and with coarse-grained semantics.

Interoperability and emerging hardware. While Ray’s dataplane is critical to
the success of many of its current applications, it is currently targeted to commodity

CHAPTER 7. CONCLUSION 161

hardware, i.e. tasks executing on the CPU and objects passed through host mem-
ory. Although Ray supports heterogeneous resources, and indeed execution across
heterogeneous CPU-GPU clusters is one of its key motivations and advantages, it
does not for example have GPU-native execution: application-level code is required
to schedule individual kernels to GPUs and to pass distributed future values to and
from a GPU. GPU-GPU communication is typically offloaded to a high-performance
ML-specific framework such as Distributed TensorFlow.

The main benefit of supporting heterogeneous memory is to make it simpler
to develop more complex distributed and heterogeneous applications. Among dis-
tributed GPU applications, for example, developers are currently limited by restric-
tive SPMD programming models, which make it difficult to support elasticity, fault
tolerance, dynamic scheduling, GPU multiplexing, and GPU heterogeneity (e.g., net-
work asymmetry or use of different GPU types) [39].

Another benefit is to share common functionality around memory management
and task scheduling in a common “operating system”. This will become especially
important in the future as we continue to develop a greater variety of accelerators
and advanced memory technologies to deal with hardware limitations in CPU perfor-
mance and memory bandwidth, respectively. Adoption of such technologies is often
a chicken-and-egg problem, in that ease of application development is necessary for
adoption, but adoption in turn depends on building a critical mass of target appli-
cations. Thus, a common operating system that accelerates distributed application
development will be critical for leveraging new hardware technologies.

A first step towards this goal is to expose pluggable APIs for supporting het-
erogeneous memory in distributed futures systems. However, simply exposing a file
interface as a traditional OS would is insufficient. The power of the distributed futures
model relies on specifying data and tasks together. Thus, plugging in heterogeneous
memory requires integration with both the virtual memory and task scheduling sys-
tems. For example, in some cases, a task may be able to run on different kinds of
hardware, and the best choice depends on availability at run time. To unlock this
use case, the system must be aware of cost tradeoffs between moving the data vs. the
computation.

In a distributed memory system, the transport mechanism is also important
and often should be customized to the application. Some cases may require a choice
between multiple transports, e.g., if there is network asymmetry or multiple paths
available. Heterogeneous hardware also often requires specialized transports that may
not be easily captured with a typical send/recv API. For example, communication
collectives such as allreduce operations in ML have unique properties that are not
possible to express in the distributed futures API as described in this thesis: they
involve both communication and computation that mutates the data, and they require
gang scheduling to avoid deadlock.

A related problem in building dataplanes for distributed futures is interoper-
ability. Previous work provides key pieces of a solution to data interoperability:

CHAPTER 7. CONCLUSION 162

RPC provides communication while Apache Arrow provides zero-copy deserialization
and language interoperability. This thesis partially addresses the problem of reduc-
ing overheads between distributed applications that share large data, by providing
a common system for distributed memory management. However, the problem of
interoperability with other systems persists.

Currently, data passing between a distributed futures system and a third-party
framework is likely to incur serialization and/or copying overheads. While zero-copy
and language-interoperable serialization formats such as Apache Arrow alleviate this
problem, they are not sufficient. For example, many data processing jobs must of-
ten convert data between other formats, e.g., to support UDFs and because different
frameworks will often use different internal serialization formats. While individual
frameworks can use query optimizers to elide unnecessary format conversions, there
is no way to do so across frameworks. One approach to solve this problem is to have
frameworks externalize their internal serialization steps, e.g., through a DAG inter-
mediate representation, and then optimize across different frameworks to determine
the best format to use at the boundaries.

Another problem is the ownership and mutability of the data being passed.
As data is passed out of one system and into another, ideally we would like the
latter system to have full control over the physical memory: it should be able to
mutate the data as it wants and be able to decide when to deallocate it. This is
true for frameworks that communicate via RPC but only because copies are made.
This is also true for distributed futures systems, but only for applications running
on the same distributed futures cluster. Supporting it for arbitrary compositions
of distributed applications likely requires ownership semantics for distributed futures
(e.g., moveable references) and coordinated memory management across frameworks,
possibly via a separately managed distributed memory pool. It is also interesting to
consider how to leverage trends such as disaggregated memory, as they can help to
avoid copying and serialization overheads, and how to scale their benefits to larger
clusters.

Debugging. In most respects, distributed futures systems will have the same chal-
lenges and opportunities in distributed debugging tools as other distributed program-
ming systems such as actor runtimes. One of the unique opportunities in distributed
futures systems is that the system handles both the compute and the data, which
opens an opportunity for performance debugging in data-intensive applications. In
actor and RPC systems, the system controls compute and network (for small mes-
sages), but has little visibility into or control over memory or disk usage between
messages. Meanwhile, in Exoshuffle (Chapter 5), the distributed futures system is
responsible for pipelining data movement across the producing and consuming tasks,
memory, disk, and network. One could then adapt this system, for example, to probe
for performance bottlenecks, e.g., by virtually speeding up one of the resources [68].
This decomposition of distributed applications into separate resource units has been

CHAPTER 7. CONCLUSION 163

proposed before by the monotasks work [156], which rearchitected the Spark RDD
engine to execute decomposed tasks. Distributed futures can be seen as a more
generic realization of the same idea that bakes resource decomposition directly into
the programming API.

Security and isolation. The security model used in all works in this thesis is that
the cluster operator and all other users of the same cluster are trusted. Of course, this
model is not sufficient for multitenant clusters that are shared by larger organizations
or by multiple distinct organizations.

Regarding confidentality for distributed futures, an interesting avenue is to aug-
ment distributed futures with capabilities. Distributed futures already have an ad-
vantage over raw pointers in distributed shared memory in that they are first-class
references and typically a task will only access distributed futures that are explicitly
passed to it. Enforcing access is therefore more straightforward than for raw pointers.

Resource isolation is also a highly relevant issue for multitenant clusters. As
described, the evaluations in this thesis assume that each application has full access to
all resources in the cluster. If multiple applications share the same cluster, it can lead
to resource starvation and interference. Thus, a future direction of work is to provide
distributed resource sandboxes for applications, analogous to a cgroup in Linux. In
fact, such an approach is even useful for resource management of single applications
that are made up of multiple distinct workloads, such as an online training loop
consisting of both training and inference, or a distributed hyperparameter search
with a shared data loader.

Broader themes. A core thesis of this work is that the set of distributed applica-
tions will continue to expand in scale and diversity. Thus, a common theme in some
of the above challenges is in maintaining performance and especially evolvability with
an increasingly complex system core and expanding application set. Evolvability will
become particularly important as so far the applications we have targeted have had
similar latency budgets (>10ms per task) and thus passing data through shared host
memory carried sufficiently low overhead. Extending the system to push this envelope
further will likely require significantly different scheduling and memory management
policies, as well as more control over accelerator memory and execution.

Therefore, when we compare Ray to modern OSes, one of the most significant
gaps we have seen is pluggability. For example, Ray’s dataplane currently supports
a “virtual memory” stack, consisting of worker heap memory, shared object store
memory, and swap space on disk. It does not support any kind of “device” memory,
such as GPUs. Similarly, there is no way to safely hand control of the core scheduling
and memory management policies to an application, analogous to eBPFs, FUSE
filesystems, or user-level scheduling and networking [106, 134].

A promising broader direction towards tackling this challenge of supporting

CHAPTER 7. CONCLUSION 164

increasing application and hardware heterogeneity is to leverage programming lan-
guages. Many of the performance limitations discussed here are evidence that we
are reaching the boundaries of an eagerly executed and general-purpose distributed
execution system. Thus, I believe that the way forward towards greater generality
and evolvability is to leverage programming languages and their interface with the
distributed execution system.

So far, this has been a little explored area of distributed futures systems. CIEL
introduces a compiler to support lazy evaluation, but it requires a special-purpose
language and is limited to stateless applications. JIT compilation is heavily used in
distributed ML frameworks, but for ML-specific distributed futures systems such as
PyTorch RPC, the operations are still eagerly executed and require the user to man-
ually specify scheduling and placement. There are many ways in which programming
language techniques could be applied, and above I have discussed a few:

1. Applying ownership types [66] to enhance fault tolerance in both single- and
cross-application settings (see Section 4.7).

2. Just-in-time compilation to preserve the dynamicity of distributed futures but
expand to lower-latency settings and execution on heterogeneous hardware.

3. Domain-specific languages to enable system extensibility in a safe and correct
manner, with low developer effort required.

4. Integrating application semantics such as nondeterminism and side effects into
the programming language, to provide more automatic and efficient recovery as
compared to Exoflow (see Section 6.7).

5. Designing intermediate representations for distributed frameworks, to improve
efficiency for cross-framework workflows.

7.3 Conclusion

This thesis presents the first steps towards an “operating system” for distributed and
data-intensive applications. We introduce the distributed futures API and a system
architecture that implements “virtual memory” for distributed futures applications.
Through this architecture, we demonstrate an end-to-end approach to fault tolerance
for distributed futures. This architecture has reached broad impact through the open-
source distributed futures system Ray, which is being used today as a platform for ML
and data processing applications. We conclude with directions for future work that
aim to grow the generality and evolvability of the operating system, with a focus on
composite distributed applications, increasingly heterogeneous clusters, and codesign
of the programming language with the execution system.

165

Bibliography

[1] Airflow XComs. https://airflow.apache.org/docs/apache-airflow/
stable/concepts/xcoms.html. Accessed: 2022-12-13.

[2] Akka. https://akka.io/.

[3] Akka Persistence. https://doc.akka.io/docs/akka/current/typed/index-
persistence.html.

[4] An Overview of End-to-End Exactly-Once Processing in Apache Flink (with
Apache Kafka, too!). https://flink.apache.org/features/2018/03/01/
end-to-end-exactly-once-apache-flink.html.

[5] Apache Airflow. https://airflow.apache.org/.

[6] Apache thrift. https://thrift.apache.org/.

[7] End-to-end mlops pipeline example on azure. https://github.com/
microsoft/MLOps/tree/master/examples/KubeflowPipeline.

[8] Google Cloud Composer. https://cloud.google.com/composer.

[9] gRPC. https://grpc.io.

[10] Improved Fault-tolerance and Zero Data Loss in Apache Spark Stream-
ing. https://databricks.com/blog/2015/01/15/improved-driver-fault-
tolerance-and-zero-data-loss-in-spark-streaming.html.

[11] Kubeflow. https://www.kubeflow.org/.

[12] PyTorch - Remote Reference Protocol. https://pytorch.org/docs/stable/
notes/rref.html.

[13] Ray. https://github.com/ray-project/ray.

[14] Ray v1.0. https://github.com/ray-project/ray/releases/tag/ray-1.0.0.

[15] Taming the OOM killer. https://lwn.net/Articles/317814/.

https://airflow.apache.org/docs/apache-airflow/stable/concepts/xcoms.html
https://airflow.apache.org/docs/apache-airflow/stable/concepts/xcoms.html
https://akka.io/
https://doc.akka.io/docs/akka/current/typed/index-persistence.html
https://doc.akka.io/docs/akka/current/typed/index-persistence.html
https://flink.apache.org/features/2018/03/01/end-to-end-exactly-once-apache-flink.html
https://flink.apache.org/features/2018/03/01/end-to-end-exactly-once-apache-flink.html
https://airflow.apache.org/
https://thrift.apache.org/
https://github.com/microsoft/MLOps/tree/master/examples/KubeflowPipeline
https://github.com/microsoft/MLOps/tree/master/examples/KubeflowPipeline
https://cloud.google.com/composer
https://grpc.io
https://databricks.com/blog/2015/01/15/improved-driver-fault-tolerance-and-zero-data-loss-in-spark-streaming.html
https://databricks.com/blog/2015/01/15/improved-driver-fault-tolerance-and-zero-data-loss-in-spark-streaming.html
https://www.kubeflow.org/
https://pytorch.org/docs/stable/notes/rref.html
https://pytorch.org/docs/stable/notes/rref.html
https://github.com/ray-project/ray
https://github.com/ray-project/ray/releases/tag/ray-1.0.0
https://lwn.net/Articles/317814/

BIBLIOGRAPHY 166

[16] Temporal. https://temporal.io/.

[17] Understanding Ownership - Rust. https://doc.rust-lang.org/book/ch04-
00-understanding-ownership.html.

[18] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
TensorFlow: A system for large-scale machine learning. In Proceedings of the
12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI). Savannah, Georgia, USA, 2016.

[19] Gul Agha. Actors: a model of concurrent computation in distributed systems.
MIT press, 1986.

[20] Marcos K Aguilera, Emmanuel Amaro, Nadav Amit, Erika Hunhoff, Anil
Yelam, and Gerd Zellweger. Memory disaggregation: why now and what are
the challenges. ACM SIGOPS Operating Systems Review, 57(1):38–46, 2023.

[21] Tyler Akidau, Alex Balikov, Kaya Bekiroğlu, Slava Chernyak, Josh Haberman,
Reuven Lax, Sam McVeety, Daniel Mills, Paul Nordstrom, and Sam Whittle.
Millwheel: fault-tolerant stream processing at internet scale. Proceedings of the
VLDB Endowment, 6(11):1033–1044, 2013.

[22] Remzi Can Aksoy and Manos Kapritsos. Aegean: replication beyond the client-
server model. In Proceedings of the 27th ACM Symposium on Operating Systems
Principles, pages 385–398, 2019.

[23] Alibaba. Emr remote shuffle service: A powerful elastic tool of serverless
spark - alibaba cloud community. https://www.alibabacloud.com/blog/emr-
remote-shuffle-service-a-powerful-elastic-tool-of-serverless-

spark 597728, may 2021. (Accessed on 02/01/2022).

[24] Peter Alvaro, Tyson Condie, Neil Conway, Khaled Elmeleegy, Joseph M Heller-
stein, and Russell Sears. BOOM Analytics: exploring data-centric, declarative
programming for the cloud. In Proceedings of the 5th European conference on
Computer systems, pages 223–236. ACM, 2010.

[25] Peter Alvaro, Neil Conway, Joseph M. Hellerstein, and William R. Marczak.
Consistency analysis in bloom: a CALM and collected approach. In CIDR 2011,
Fifth Biennial Conference on Innovative Data Systems Research, Asilomar, CA,
USA, January 9-12, 2011, Online Proceedings, pages 249–260. www.cidrdb.org,
2011.

[26] Lorenzo Alvisi and Keith Marzullo. Trade-offs in implementing causal message
logging protocols. In Proceedings of the fifteenth annual ACM symposium on
Principles of distributed computing, pages 58–67. Citeseer, 1996.

https://temporal.io/
https://doc.rust-lang.org/book/ch04-00-understanding-ownership.html
https://doc.rust-lang.org/book/ch04-00-understanding-ownership.html
https://www.alibabacloud.com/blog/emr-remote-shuffle-service-a-powerful-elastic-tool-of-serverless-spark_597728
https://www.alibabacloud.com/blog/emr-remote-shuffle-service-a-powerful-elastic-tool-of-serverless-spark_597728
https://www.alibabacloud.com/blog/emr-remote-shuffle-service-a-powerful-elastic-tool-of-serverless-spark_597728

BIBLIOGRAPHY 167

[27] Lorenzo Alvisi and Keith Marzullo. Message logging: Pessimistic, optimistic,
causal, and optimal. IEEE Transactions on Software Engineering, 24(2):149–
159, 1998.

[28] David G Andersen, Jason Franklin, Michael Kaminsky, Amar Phanishayee,
Lawrence Tan, and Vijay Vasudevan. Fawn: A fast array of wimpy nodes.
In Proceedings of the ACM SIGOPS 22nd symposium on Operating systems
principles, pages 1–14, 2009.

[29] Michael Armbrust. SPARK-20928: Continuous Processing Mode for Structured
Streaming. https://issues.apache.org/jira/browse/SPARK-20928, 2017.

[30] Michael Armbrust, Tathagata Das, Liwen Sun, Burak Yavuz, Shixiong Zhu,
Mukul Murthy, Joseph Torres, Herman van Hovell, Adrian Ionescu, Alicja
 Luszczak, et al. Delta lake: high-performance acid table storage over cloud
object stores. Proceedings of the VLDB Endowment, 13(12):3411–3424, 2020.

[31] Joe Armstrong. Making reliable distributed systems in the presence of software
errors. PhD thesis, Mikroelektronik och informationsteknik, 2003.

[32] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau. Operating Systems:
Three Easy Pieces. Arpaci-Dusseau Books, 1.00 edition, August 2018.

[33] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny.
Workload analysis of a large-scale key-value store. In Proceedings of the 12th
ACM SIGMETRICS/PERFORMANCE joint international conference on Mea-
surement and Modeling of Computer Systems, pages 53–64, 2012.

[34] Anubhav Awasthi, Rajendra Gujja, and Mohit Saxena. Introducing amazon s3
shuffle in aws glue. https://aws.amazon.com/blogs/big-data/introducing-
amazon-s3-shuffle-in-aws-glue/, Nov 2021. (Accessed on 10/16/2022).

[35] Henry C. Baker, Jr. and Carl Hewitt. The incremental garbage collection of
processes. In Proceedings of the 1977 Symposium on Artificial Intelligence and
Programming Languages, pages 55–59, New York, NY, USA, 1977. ACM.

[36] Henry C Baker Jr and Carl Hewitt. The incremental garbage collection of
processes. ACM SIGART Bulletin, (64):55–59, 1977.

[37] Mahesh Balakrishnan, Dahlia Malkhi, Vijayan Prabhakaran, Ted Wobbler,
Michael Wei, and John D Davis. {CORFU}: A shared log design for flash
clusters. In Presented as part of the 9th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 12), pages 1–14, 2012.

https://issues.apache.org/jira/browse/SPARK-20928
https://aws.amazon.com/blogs/big-data/introducing-amazon-s3-shuffle-in-aws-glue/
https://aws.amazon.com/blogs/big-data/introducing-amazon-s3-shuffle-in-aws-glue/

BIBLIOGRAPHY 168

[38] Mayank Bansal and Bo Yang. Zeus: Uber’s highly scalable and distributed
shuffle as a service - databricks. https://databricks.com/session na20/

zeus-ubers-highly-scalable-and-distributed-shuffle-as-a-service,
July 2020. (Accessed on 02/01/2022).

[39] Paul Barham, Aakanksha Chowdhery, Jeff Dean, Sanjay Ghemawat, Steven
Hand, Daniel Hurt, Michael Isard, Hyeontaek Lim, Ruoming Pang, Sudip Roy,
et al. Pathways: Asynchronous distributed dataflow for ml. Proceedings of
Machine Learning and Systems, 4:430–449, 2022.

[40] Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. Legion: Ex-
pressing locality and independence with logical regions. In SC’12: Proceedings
of the International Conference on High Performance Computing, Networking,
Storage and Analysis, pages 1–11. IEEE, 2012.

[41] John K Bennett, John B Carter, and Willy Zwaenepoel. Munin: Distributed
shared memory based on type-specific memory coherence. In Proceedings of
the second ACM SIGPLAN symposium on Principles & practice of parallel pro-
gramming, pages 168–176, 1990.

[42] Phil Bernstein, Sergey Bykov, Alan Geller, Gabriel Kliot, and Jorgen Thelin.
Orleans: Distributed virtual actors for programmability and scalability. Tech-
nical Report MSR-TR-2014-41, March 2014.

[43] Romil Bhardwaj, Alexey Tumanov, Stephanie Wang, Richard Liaw, Philipp
Moritz, Robert Nishihara, and Ion Stoica. Escher: expressive scheduling with
ephemeral resources. In Proceedings of the 13th Symposium on Cloud Comput-
ing, pages 47–62, 2022.

[44] Andrew D Birrell and Bruce Jay Nelson. Implementing remote procedure calls.
ACM Transactions on Computer Systems (TOCS), 2(1):39–59, 1984.

[45] Robert D Blumofe, Christopher F Joerg, Bradley C Kuszmaul, Charles E Leiser-
son, Keith H Randall, and Yuli Zhou. Cilk: An efficient multithreaded runtime
system. Journal of parallel and distributed computing, 37(1):55–69, 1996.

[46] Robert D Blumofe, Philip A Lisiecki, et al. Adaptive and reliable parallel
computing on networks of workstations. In USENIX 1997 Annual Technical
Conference on UNIX and Advanced Computing Systems, pages 133–147, 1997.

[47] Dmitry Borovsky and Brian Cho. Cosco: An efficient facebook-scale shuffle ser-
vice - databricks. https://databricks.com/session/cosco-an-efficient-
facebook-scale-shuffle-service, May 2019. (Accessed on 01/19/2022).

[48] Maarten A. Breddels and Jovan Veljanoski. Vaex: big data exploration in the
era of gaia. Astronomy & Astrophysics, 618:A13, oct 2018.

https://databricks.com/session_na20/zeus-ubers-highly-scalable-and-distributed-shuffle-as-a-service
https://databricks.com/session_na20/zeus-ubers-highly-scalable-and-distributed-shuffle-as-a-service
https://databricks.com/session/cosco-an-efficient-facebook-scale-shuffle-service
https://databricks.com/session/cosco-an-efficient-facebook-scale-shuffle-service

BIBLIOGRAPHY 169

[49] Benjamin Brock, Aydın Buluç, and Katherine Yelick. Bcl: A cross-platform
distributed data structures library. In Proceedings of the 48th International
Conference on Parallel Processing, pages 1–10, 2019.

[50] Jyothi Prasad Buddha and Reshma Beesetty. Step functions. In The Definitive
Guide to AWS Application Integration, pages 263–342. Springer, 2019.

[51] Sebastian Burckhardt, Badrish Chandramouli, Chris Gillum, David Justo, Kon-
stantinos Kallas, Connor McMahon, Christopher S Meiklejohn, and Xiangfeng
Zhu. Netherite: Efficient execution of serverless workflows. Proceedings of the
VLDB Endowment, 15(8):1591–1604, 2022.

[52] Sebastian Burckhardt, Chris Gillum, David Justo, Konstantinos Kallas, Connor
McMahon, and Christopher S Meiklejohn. Durable functions: semantics for
stateful serverless. Proc. ACM Program. Lang., 5(OOPSLA):1–27, 2021.

[53] Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and John
Wilkes. Borg, omega, and kubernetes. Communications of the ACM, 59(5):50–
57, 2016.

[54] Sergey Bykov, Alan Geller, Gabriel Kliot, James R Larus, Ravi Pandya, and
Jorgen Thelin. Orleans: Cloud computing for everyone. In Proceedings of the
2nd ACM Symposium on Cloud Computing, page 16. ACM, 2011.

[55] Lingfeng Cai, Xianglin Wei, Changyou Xing, Xia Zou, Guomin Zhang, and
Xiulei Wang. Failure-resilient dag task scheduling in edge computing. Computer
Networks, 198:108361, 08 2021.

[56] Paris Carbone, Stephan Ewen, Gyula Fóra, Seif Haridi, Stefan Richter, and
Kostas Tzoumas. State management in Apache Flink: Consistent stateful dis-
tributed stream processing. Proc. VLDB Endow., 10(12):1718–1729, August
2017.

[57] Paris Carbone, Gyula Fóra, Stephan Ewen, Seif Haridi, and Kostas Tzoumas.
Lightweight asynchronous snapshots for distributed dataflows. arXiv preprint
arXiv:1506.08603, 2015.

[58] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. Apache flink: Stream and batch processing in a single
engine. Bulletin of the IEEE Computer Society Technical Committee on Data
Engineering, 36(4), 2015.

[59] Rick Cattell. Scalable sql and nosql data stores. Acm Sigmod Record, 39(4):12–
27, 2011.

BIBLIOGRAPHY 170

[60] K. Mani Chandy and Leslie Lamport. Distributed snapshots: Determining
global states of distributed systems. ACM Trans. Comput. Syst., 3(1):63–75,
February 1985.

[61] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wal-
lach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber.
Bigtable: A distributed storage system for structured data. ACM Transactions
on Computer Systems (TOCS), 26(2):4, 2008.

[62] DeQing Chen, Sandhya Dwarkadas, Srinivasan Parthasarathy, Eduardo Pin-
heiro, and Michael L Scott. Interweave: A middleware system for distributed
shared state. In International Workshop on Languages, Compilers, and Run-
Time Systems for Scalable Computers, pages 207–220. Springer, 2000.

[63] Jianmin Chen, Xinghao Pan, Rajat Monga, Samy Bengio, and Rafal Jozefowicz.
Revisiting distributed synchronous sgd. arXiv preprint arXiv:1604.00981, 2016.

[64] Raymond Cheng, Ji Hong, Aapo Kyrola, Youshan Miao, Xuetian Weng, Ming
Wu, Fan Yang, Lidong Zhou, Feng Zhao, and Enhong Chen. Kineograph:
taking the pulse of a fast-changing and connected world. In Proceedings of the
7th ACM european conference on Computer Systems, pages 85–98, 2012.

[65] Alvin Cheung, Natacha Crooks, Joseph M Hellerstein, and Matthew Milano.
New directions in cloud programming. 2021.

[66] David G Clarke, John M Potter, and James Noble. Ownership types for flexible
alias protection. In Proceedings of the 13th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications, pages 48–
64, 1998.

[67] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M. Hellerstein, Khaled
Elmeleegy, and Russell Sears. Mapreduce online. In Proceedings of the 7th
USENIX Conference on Networked Systems Design and Implementation, NSDI
’10, page 21, USA, 2010. USENIX Association.

[68] Charlie Curtsinger and Emery D Berger. Coz: Causal profiling.

[69] Jason Jinquan Dai, Yiheng Wang, Xin Qiu, Ding Ding, Yao Zhang, Yanzhang
Wang, Xianyan Jia, Cherry Li Zhang, Yan Wan, Zhichao Li, et al. Bigdl: A
distributed deep learning framework for big data. In Proceedings of the ACM
Symposium on Cloud Computing, pages 50–60, 2019.

[70] Pritam Damania, Shen Li, Alban Desmaison, Alisson Azzolini, Brian Vaughan,
Edward Yang, Gregory Chanan, Guoqiang Jerry Chen, Hongyi Jia, Howard
Huang, et al. Pytorch rpc: Distributed deep learning built on tensor-optimized
remote procedure calls. Proceedings of Machine Learning and Systems, 5, 2023.

BIBLIOGRAPHY 171

[71] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark
Mao, Marc’aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, et al. Large
scale distributed deep networks. Advances in neural information processing
systems, 25, 2012.

[72] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data processing
on large clusters. Commun. ACM, 51(1):107–113, January 2008.

[73] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakula-
pati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter
Vosshall, and Werner Vogels. Dynamo: amazon’s highly available key-value
store. In ACM SIGOPS operating systems review, volume 41, pages 205–220.
ACM, 2007.

[74] Polars Developers. Polars – user guide. https://pola-rs.github.io/polars-
book/user-guide/index.html, 2022. (Accessed on 10/16/2022).

[75] Spark developers. Spark release 3.2.0. https://spark.apache.org/releases/
spark-release-3-2-0.html, October 2021. (Accessed on 01/26/2022).

[76] Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro, and Orion Hod-
son. Farm: Fast remote memory. In 11th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 14), pages 401–414, 2014.

[77] Alexei A Efros. Data-driven approaches for texture and motion. University of
California, Berkeley, 2003.

[78] E. N. Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B. Johnson. A survey
of rollback-recovery protocols in message-passing systems. ACM Comput. Surv.,
34(3):375–408, 2002.

[79] Elmootazbellah N Elnozahy and Willy Zwaenepoel. On the use and implementa-
tion of message logging. In Proceedings of IEEE 24th International Symposium
on Fault-Tolerant Computing, pages 298–307. IEEE, 1994.

[80] Elmootazbellah Nabil Elnozahy. Manetho: fault tolerance in distributed systems
using rollback-recovery and process replication. PhD thesis, Rice University,
1994.

[81] D. R. Engler, M. F. Kaashoek, and J. O’Toole. Exokernel: An operating system
architecture for application-level resource management. In Proceedings of the
Fifteenth ACM Symposium on Operating Systems Principles, SOSP ’95, page
251–266, New York, NY, USA, 1995. Association for Computing Machinery.

https://pola-rs.github.io/polars-book/user-guide/index.html
https://pola-rs.github.io/polars-book/user-guide/index.html
https://spark.apache.org/releases/spark-release-3-2-0.html
https://spark.apache.org/releases/spark-release-3-2-0.html

BIBLIOGRAPHY 172

[82] Nick Feamster, Jennifer Rexford, and Ellen Zegura. The road to sdn: An
intellectual history of programmable networks. SIGCOMM Comput. Commun.
Rev., 44(2):87–98, apr 2014.

[83] Yuan Yu Michael Isard Dennis Fetterly, Mihai Budiu, Úlfar Erlingsson, and
Pradeep Kumar Gunda Jon Currey. Dryadlinq: A system for general-purpose
distributed data-parallel computing using a high-level language. Proc. LSDS-
IR, 8, 2009.

[84] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee, Chris-
tos Kozyrakis, Matei Zaharia, and Keith Winstein. From laptop to lambda:
Outsourcing everyday jobs to thousands of transient functional containers. In
2019 USENIX Annual Technical Conference (USENIX ATC 19), pages 475–
488, 2019.

[85] Apache Software Foundation. Apache arrow datafusion documentation. https:
//arrow.apache.org/datafusion/, 2022. (Accessed on 10/16/2022).

[86] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Don-
garra, Jeffrey M. Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett,
Andrew Lumsdaine, Ralph H. Castain, David J. Daniel, Richard L. Graham,
and Timothy S. Woodall. Open MPI: Goals, concept, and design of a next gen-
eration MPI implementation. In Proceedings, 11th European PVM/MPI Users’
Group Meeting, pages 97–104, Budapest, Hungary, September 2004.

[87] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan
Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, et al.
An open-source benchmark suite for microservices and their hardware-software
implications for cloud & edge systems. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming Languages
and Operating Systems, pages 3–18, 2019.

[88] Sanjay Ghemawat, Robert Grandl, Srdjan Petrovic, Michael Whittaker,
Parveen Patel, Ivan Posva, and Amin Vahdat. Towards modern development
of cloud applications. In Proceedings of the 19th Workshop on Hot Topics in
Operating Systems, pages 110–117, 2023.

[89] Jon Gjengset, Malte Schwarzkopf, Jonathan Behrens, Lara Timbó Araújo, Mar-
tin Ek, Eddie Kohler, M. Frans Kaashoek, and Robert Morris. Noria: dy-
namic, partially-stateful data-flow for high-performance web applications. In
13th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 18), pages 213–231, Carlsbad, CA, October 2018. USENIX Association.

https://arrow.apache.org/datafusion/
https://arrow.apache.org/datafusion/

BIBLIOGRAPHY 173

[90] Ionel Gog, Michael Isard, and Mart́ın Abadi. Falkirk wheel: Rollback recov-
ery for dataflow systems. In Proceedings of the ACM Symposium on Cloud
Computing, pages 373–387, 2021.

[91] Jonathan Goldstein, Ahmed Abdelhamid, Mike Barnett, Sebastian Burckhardt,
Badrish Chandramouli, Darren Gehring, Niel Lebeck, Christopher Meiklejohn,
Umar Farooq Minhas, Ryan Newton, Rahee Ghosh Peshawaria, Tal Zaccai,
and Irene Zhang. A.m.b.r.o.s.i.a: Providing performant virtual resiliency for
distributed applications. Proc. VLDB Endow., 13(5):588–601, jan 2020.

[92] Cary Gray and David Cheriton. Leases: An efficient fault-tolerant mechanism
for distributed file cache consistency. ACM SIGOPS Operating Systems Review,
23(5):202–210, 1989.

[93] Robbie Gruener, Owen Cheng, and Yevgeni Litvin. Introducing petastorm:
Uber atg’s data access library for deep learning. https://eng.uber.com/
petastorm/, September 2018. (Accessed on 01/19/2022).

[94] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury, and
Kang G Shin. Efficient memory disaggregation with infiniswap. In 14th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
17), pages 649–667, 2017.

[95] Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao, Antoine Kaufmann,
Ymir Vigfusson, and Jonathan Mace. Serving dnns like clockwork: Performance
predictability from the bottom up. In 14th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 20), pages 443–462, 2020.

[96] Yanfei Guo, Jia Rao, and Xiaobo Zhou. iShuffle: Improving hadoop perfor-
mance with Shuffle-on-Write. In 10th International Conference on Autonomic
Computing (ICAC 13), pages 107–117, San Jose, CA, June 2013. USENIX As-
sociation.

[97] Ajay Gupta. Revealing apache spark shuffling magic. https://medium.com/
swlh/revealing-apache-spark-shuffling-magic-b2c304306142, may
2020. (Accessed on 02/01/2022).

[98] Robert H Halstead Jr. Multilisp: A language for concurrent symbolic computa-
tion. ACM Transactions on Programming Languages and Systems (TOPLAS),
7(4):501–538, 1985.

[99] Brandon Haynes, Amrita Mazumdar, Armin Alaghi, Magdalena Balazinska,
Luis Ceze, and Alvin Cheung. Lightdb: A DBMS for virtual reality video.
Proc. VLDB Endow., 11(10):1192–1205, 2018.

https://eng.uber.com/petastorm/
https://eng.uber.com/petastorm/
https://medium.com/swlh/revealing-apache-spark-shuffling-magic-b2c304306142
https://medium.com/swlh/revealing-apache-spark-shuffling-magic-b2c304306142

BIBLIOGRAPHY 174

[100] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016.

[101] Joseph M Hellerstein, Jose Faleiro, Joseph E Gonzalez, Johann Schleier-Smith,
Vikram Sreekanti, Alexey Tumanov, and Chenggang Wu. Serverless computing:
One step forward, two steps back. In 9th Biennial Conference on Innovative
Data Systems Research (CIDR 2019), 2019.

[102] Joseph M. Hellerstein, Peter J. Haas, and Helen J. Wang. Online aggregation.
SIGMOD Rec., 26(2):171–182, jun 1997.

[103] Maurice P Herlihy and Jeannette M Wing. Linearizability: A correctness con-
dition for concurrent objects. ACM Transactions on Programming Languages
and Systems (TOPLAS), 12(3):463–492, 1990.

[104] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular actor
formalism for artificial intelligence. In Proceedings of the 3rd International Joint
Conference on Artificial Intelligence, IJCAI’73, pages 235–245, San Francisco,
CA, USA, 1973. Morgan Kaufmann Publishers Inc.

[105] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D.
Joseph, Randy Katz, Scott Shenker, and Ion Stoica. Mesos: A platform for fine-
grained resource sharing in the data center. In Proceedings of the 8th USENIX
Conference on Networked Systems Design and Implementation, NSDI’11, pages
295–308, Berkeley, CA, USA, 2011. USENIX Association.

[106] Jack Tigar Humphries, Neel Natu, Ashwin Chaugule, Ofir Weisse, Barret
Rhoden, Josh Don, Luigi Rizzo, Oleg Rombakh, Paul Turner, and Christos
Kozyrakis. ghost: Fast & flexible user-space delegation of linux scheduling.
In Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems
Principles, pages 588–604, 2021.

[107] J-H Hwang, Magdalena Balazinska, Alex Rasin, Ugur Cetintemel, Michael
Stonebraker, and Stan Zdonik. High-availability algorithms for distributed
stream processing. In 21st International Conference on Data Engineering
(ICDE’05), pages 779–790. IEEE, 2005.

[108] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly.
Dryad: Distributed data-parallel programs from sequential building blocks. In
Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on Com-
puter Systems 2007, EuroSys ’07, pages 59–72, New York, NY, USA, 2007.
ACM.

BIBLIOGRAPHY 175

[109] Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond data and model parallelism
for deep neural networks. Proceedings of Machine Learning and Systems, 1:1–13,
2019.

[110] Zhipeng Jia and Emmett Witchel. Boki: Stateful serverless computing with
shared logs. In Proceedings of the ACM SIGOPS 28th Symposium on Operating
Systems Principles, pages 691–707, 2021.

[111] Pete Keleher, Alan L Cox, Sandhya Dwarkadas, and Willy Zwaenepoel. Tread-
marks: Distributed shared memory on standard workstations and operating
systems. Distributed Shared Memory: Concepts and Systems, pages 211–227,
1994.

[112] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle,
and Christos Kozyrakis. Pocket: Elastic ephemeral storage for serverless ana-
lytics. In 13th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 18), pages 427–444, 2018.

[113] Richard Koo and Sam Toueg. Checkpointing and rollback-recovery for dis-
tributed systems. IEEE Transactions on software Engineering, (1):23–31, 1987.

[114] Jay Kreps, Neha Narkhede, Jun Rao, et al. Kafka: A distributed messaging
system for log processing. In Proceedings of the NetDB, volume 11, pages 1–7.
Athens, Greece, 2011.

[115] YongChul Kwon, Magdalena Balazinska, and Albert Greenberg. Fault-tolerant
stream processing using a distributed, replicated file system. Proc. VLDB En-
dow., 1(1):574–585, August 2008.

[116] Avinash Lakshman and Prashant Malik. Cassandra: a decentralized structured
storage system. ACM SIGOPS Operating Systems Review, 44(2):35–40, 2010.

[117] Collin Lee, Seo Jin Park, Ankita Kejriwal, Satoshi Matsushita, and John
Ousterhout. Implementing linearizability at large scale and low latency. In
Proceedings of the 25th Symposium on Operating Systems Principles, pages 71–
86, 2015.

[118] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network
dataset collection. http://snap.stanford.edu/data, June 2014.

[119] Haoyuan Li, Ali Ghodsi, Matei Zaharia, Scott Shenker, and Ion Stoica. Tachyon:
Reliable, memory speed storage for cluster computing frameworks. In Proceed-
ings of the ACM Symposium on Cloud Computing, pages 1–15, 2014.

http://snap.stanford.edu/data

BIBLIOGRAPHY 176

[120] Huaicheng Li, Daniel S Berger, Lisa Hsu, Daniel Ernst, Pantea Zardoshti,
Stanko Novakovic, Monish Shah, Samir Rajadnya, Scott Lee, Ishwar Agarwal,
et al. Pond: Cxl-based memory pooling systems for cloud platforms. In Pro-
ceedings of the 28th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 2, pages 574–587,
2023.

[121] Jingui Li, Xuelian Lin, Xiaolong Cui, and Yue Ye. Improving the shuffle of
hadoop mapreduce. In 2013 IEEE 5th International Conference on Cloud Com-
puting Technology and Science, volume 1, pages 266–273, Bristol, UK, 2013.
IEEE.

[122] Kai Li. Shared virtual memory on loosely coupled multiprocessors. Yale Univer-
sity, 1986.

[123] Kai Li. Ivy: A shared virtual memory system for parallel computing. ICPP
(2), 88:94, 1988.

[124] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed,
Vanja Josifovski, James Long, Eugene J Shekita, and Bor-Yiing Su. Scaling
distributed machine learning with the parameter server. In 11th USENIX Sym-
posium on operating systems design and implementation (OSDI 14), pages 583–
598, 2014.

[125] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng
Li, Adam Paszke, Jeff Smith, Brian Vaughan, Pritam Damania, et al. Pytorch
distributed: Experiences on accelerating data parallel training. arXiv preprint
arXiv:2006.15704, 2020.

[126] Tianyu Li, Badrish Chandramouli, Sebastian Burckhardt, and Samuel Madden.
Darq matter binds everything: Performant and composable cloud programming
via resilient steps. In Proceedings of the ACM on Management of Data, 2023.

[127] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken
Goldberg, Joseph E. Gonzalez, Michael I. Jordan, and Ion Stoica. RLlib: Ab-
stractions for distributed reinforcement learning. In International Conference
on Machine Learning (ICML), 2018.

[128] Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E Gonza-
lez, and Ion Stoica. Tune: A research platform for distributed model selection
and training. arXiv preprint arXiv:1807.05118, 2018.

[129] Barbara Liskov and Liuba Shrira. Promises: Linguistic support for efficient
asynchronous procedure calls in distributed systems. ACM SIGPLAN Notices,
23(7):260–267, 1988.

BIBLIOGRAPHY 177

[130] Frank Sifei Luan, Stephanie Wang, Samyukta Yagati, Sean Kim, Kenneth Lien,
Isaac Ong, Tony Hong, Sangbin Cho, Eric Liang, and Ion Stoica. Exoshuffle:
An extensible shuffle architecture. In Proceedings of the ACM SIGCOMM 2023
Conference, pages 564–577, 2023.

[131] Frank Sifei Luan, Stephanie Wang, Samyukta Yagati, Sean Kim, Kenneth Lien,
Isaac Ong, Tony Hong, SangBin Cho, Eric Liang, and Ion Stoica. Exoshuffle-
cloudsort. arXiv preprint arXiv:2301.03734, 2023.

[132] Nirmesh Malviya, Ariel Weisberg, Samuel Madden, and Michael Stonebraker.
Rethinking main memory oltp recovery. In 2014 IEEE 30th International Con-
ference on Data Engineering, pages 604–615. IEEE, 2014.

[133] Simon Marlow. Parallel and concurrent programming in Haskell: Techniques
for multicore and multithreaded programming. ” O’Reilly Media, Inc.”, 2013.

[134] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld, Sean
Bauer, Carlo Contavalli, Michael Dalton, Nandita Dukkipati, William C Evans,
Steve Gribble, et al. Snap: A microkernel approach to host networking. In Pro-
ceedings of the 27th ACM Symposium on Operating Systems Principles, pages
399–413, 2019.

[135] Omid Mashayekhi, Hang Qu, Chinmayee Shah, and Philip Levis. Execution
templates: Caching control plane decisions for strong scaling of data analytics.
In 2017 {USENIX} Annual Technical Conference ({USENIX}{ATC} 17), pages
513–526, 2017.

[136] Robert Ryan McCune, Tim Weninger, and Greg Madey. Thinking like a vertex:
a survey of vertex-centric frameworks for large-scale distributed graph process-
ing. ACM Computing Surveys (CSUR), 48(2):1–39, 2015.

[137] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Pe-
terson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. Openflow: En-
abling innovation in campus networks. SIGCOMM Comput. Commun. Rev.,
38(2):69–74, mar 2008.

[138] Frank McSherry, Derek Gordon Murray, Rebecca Isaacs, and Michael Isard.
Differential dataflow. In CIDR, 2013.

[139] Qi Meng, Wei Chen, Yue Wang, Zhi-Ming Ma, and Tie-Yan Liu. Convergence
analysis of distributed stochastic gradient descent with shuffling. Neurocomput.,
337(C):46–57, apr 2019.

[140] Konstantin Mishchenko, Ahmed Khaled, and Peter Richtarik. Random reshuf-
fling: Simple analysis with vast improvements. In H. Larochelle, M. Ranzato,

BIBLIOGRAPHY 178

R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural Informa-
tion Processing Systems, volume 33, pages 17309–17320, Virtual, 2020. Curran
Associates, Inc.

[141] C Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter Schwarz.
Aries: a transaction recovery method supporting fine-granularity locking and
partial rollbacks using write-ahead logging. ACM Transactions on Database
Systems (TODS), 17(1):94–162, 1992.

[142] Piero Molino, Yaroslav Dudin, and Sai Sumanth Miryala. Ludwig: a type-based
declarative deep learning toolbox, 2019.

[143] Luc Moreau. Hierarchical distributed reference counting. In Proceedings of the
1st international symposium on Memory management, pages 57–67, 1998.

[144] Philipp Moritz, Robert Nishihara, Ion Stoica, and Michael I Jordan. Sparknet:
Training deep networks in spark. arXiv preprint arXiv:1511.06051, 2015.

[145] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard
Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I. Jor-
dan, and Ion Stoica. Ray: A distributed framework for emerging AI applica-
tions. In 13th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 18), Carlsbad, CA, 2018. USENIX Association.

[146] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul
Barham, and Mart́ın Abadi. Naiad: A timely dataflow system. In Proceed-
ings of the Twenty-Fourth ACM Symposium on Operating Systems Principles,
SOSP ’13, pages 439–455, New York, NY, USA, 2013. ACM.

[147] Derek G. Murray, Frank McSherry, Michael Isard, Rebecca Isaacs, Paul
Barham, and Martin Abadi. Incremental, iterative data processing with timely
dataflow. Commun. ACM, 59(10):75–83, September 2016.

[148] Derek G. Murray, Malte Schwarzkopf, Christopher Smowton, Steven Smith,
Anil Madhavapeddy, and Steven Hand. CIEL: A universal execution engine for
distributed data-flow computing. In Proceedings of the 8th USENIX Conference
on Networked Systems Design and Implementation, NSDI’11, pages 113–126,
Berkeley, CA, USA, 2011. USENIX Association.

[149] Derek G. Murray, Jǐŕı Šimša, Ana Klimovic, and Ihor Indyk. Tf.data:
A machine learning data processing framework. Proc. VLDB Endow.,
14(12):2945–2958, jul 2021.

[150] D.G. Murray. A Distributed Execution Engine Supporting Data-dependent Con-
trol Flow. University of Cambridge, 2012.

BIBLIOGRAPHY 179

[151] Bruce Jay Nelson. Remote procedure call. 1981.

[152] Robert Nishihara, Philipp Moritz, Stephanie Wang, Alexey Tumanov, William
Paul, Johann Schleier-Smith, Richard Liaw, Mehrdad Niknami, Michael I. Jor-
dan, and Ion Stoica. Real-time machine learning: The missing pieces. In
Workshop on Hot Topics in Operating Systems, 2017.

[153] B. Nitzberg and V. Lo. Distributed shared memory: a survey of issues and
algorithms. Computer, 24(8):52–60, 1991.

[154] Brian Oki, Manfred Pfluegl, Alex Siegel, and Dale Skeen. The information
bus: an architecture for extensible distributed systems. In Proceedings of the
fourteenth ACM symposium on Operating systems principles, pages 58–68, 1993.

[155] John Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita Kejriwal, Collin Lee,
Behnam Montazeri, Diego Ongaro, Seo Jin Park, Henry Qin, Mendel Rosen-
blum, et al. The RAMCloud storage system. ACM Transactions on Computer
Systems (TOCS), 33(3):7, 2015.

[156] Kay Ousterhout, Christopher Canel, Sylvia Ratnasamy, and Scott Shenker.
Monotasks: Architecting for performance clarity in data analytics frameworks.
In Proceedings of the 26th Symposium on Operating Systems Principles, pages
184–200, 2017.

[157] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Al-
ban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,
and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 32, Red Hook, NY, USA, 2019. Curran Associates, Inc.

[158] Pedro Pedreira, Orri Erling, Maria Basmanova, Kevin Wilfong, Laith S. Sakka,
Krishna Pai, Wei He, and Biswapesh Chattopadhyay. Velox: Meta’s unified
execution engine. Proc. VLDB Endow., 15(12):3372–3384, 2022.

[159] Devin Petersohn, Stephen Macke, Doris Xin, William Ma, Doris Lee, Xiangxi
Mo, Joseph E. Gonzalez, Joseph M. Hellerstein, Anthony D. Joseph, and Aditya
Parameswaran. Towards scalable dataframe systems, 2020.

[160] David Plainfossé and Marc Shapiro. A survey of distributed garbage collection
techniques. In International Workshop on Memory Management, pages 211–
249. Springer, 1995.

BIBLIOGRAPHY 180

[161] Alex Poms, Will Crichton, Pat Hanrahan, and Kayvon Fatahalian. Scanner:
Efficient video analysis at scale. ACM Trans. Graph., 37(4):138:1–138:13, July
2018.

[162] Johan Pouwelse, Pawe l Garbacki, Dick Epema, and Henk Sips. The bittorrent
p2p file-sharing system: Measurements and analysis. In Peer-to-Peer Systems
IV: 4th International Workshop, IPTPS 2005, Ithaca, NY, USA, February 24-
25, 2005. Revised Selected Papers 4, pages 205–216. Springer, 2005.

[163] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. Shuffling, fast and slow:
Scalable analytics on serverless infrastructure. In 16th {USENIX} Symposium
on Networked Systems Design and Implementation ({NSDI} 19), pages 193–
206, 2019.

[164] Hang Qu, Omid Mashayekhi, David Terei, and Philip Levis. Canary: A
scheduling architecture for high performance cloud computing. arXiv preprint
arXiv:1602.01412, 2016.

[165] Mark Raasveldt and Hannes Mühleisen. Duckdb: An embeddable analytical
database. In Proceedings of the 2019 International Conference on Management
of Data, SIGMOD ’19, page 1981–1984, New York, NY, USA, 2019. Association
for Computing Machinery.

[166] Sriram Rao, Lorenzo Alvisi, and Harrick M Vin. The cost of recovery in message
logging protocols. IEEE Transactions on Knowledge and Data Engineering,
12(2):160–173, 2000.

[167] Sriram Rao, Raghu Ramakrishnan, Adam Silberstein, Mike Ovsiannikov, and
Damian Reeves. Sailfish: A framework for large scale data processing. In
Proceedings of the Third ACM Symposium on Cloud Computing, SoCC ’12,
New York, NY, USA, 2012. Association for Computing Machinery.

[168] Alexander Rasmussen, Vinh The Lam, Michael Conley, George Porter, Rishi
Kapoor, and Amin Vahdat. Themis: An i/o-efficient mapreduce. In Proceedings
of the Third ACM Symposium on Cloud Computing, SoCC ’12, New York, NY,
USA, 2012. Association for Computing Machinery.

[169] Alexander Rasmussen, George Porter, Michael Conley, Harsha V. Madhyastha,
Radhika Niranjan Mysore, Alexander Pucher, and Amin Vahdat. Tritonsort: A
balanced large-scale sorting system. In Proceedings of the 8th USENIX Confer-
ence on Networked Systems Design and Implementation, NSDI’11, page 29–42,
USA, 2011. USENIX Association.

[170] Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase,
Shuangyan Yang, Minjia Zhang, Dong Li, and Yuxiong He. {ZeRO-Offload}:

BIBLIOGRAPHY 181

Democratizing {Billion-Scale} model training. In 2021 USENIX Annual Tech-
nical Conference (USENIX ATC 21), pages 551–564, 2021.

[171] Matthew Rocklin. Dask: Parallel computation with blocked algorithms and
task scheduling. In Kathryn Huff and James Bergstra, editors, Proceedings of
the 14th Python in Science Conference, pages 130 – 136, 2015.

[172] Zhenyuan Ruan, Malte Schwarzkopf, Marcos K Aguilera, and Adam Be-
lay. {AIFM}: High-performance, application-integrated far memory. In
14th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 20), pages 315–332, 2020.

[173] Jerome H Saltzer, David P Reed, and David D Clark. End-to-end arguments
in system design. ACM Transactions on Computer Systems (TOCS), 2(4):277–
288, 1984.

[174] Salvatore Sanfilippo. Redis: An open source, in-memory data structure store.
https://redis.io/, 2009.

[175] Danilo Sato, Arif Wider, and Windheuser Christoph. Continuous delivery for
machine learning, Sep 2019.

[176] Peter Sbarski and Sam Kroonenburg. Serverless architectures on AWS: with
examples using Aws Lambda. Simon and Schuster, 2017.

[177] Richard D Schlichting and Fred B Schneider. Fail-stop processors: an approach
to designing fault-tolerant computing systems. ACM Transactions on Computer
Systems (TOCS), 1(3):222–238, 1983.

[178] Alexander Sergeev and Mike Del Balso. Horovod: fast and easy distributed
deep learning in tensorflow. arXiv preprint arXiv:1802.05799, 2018.

[179] Lior Shabtay and Adrian Segall. On the memory overhead of distributed snap-
shots. In Proceedings of the Thirteenth Annual ACM Symposium on Principles
of Distributed Computing, PODC ’94, pages 401–, New York, NY, USA, 1994.
ACM.

[180] Mehul A. Shah, Amiato, and Chris Nyberg. Cloudsort: A tco sort bench-
mark. http://sortbenchmark.org/2014 06 CloudSort v 0 4.pdf, June 2014.
(Accessed on 01/24/2022).

[181] Min Shen. Rpc implementation to support pushing and merging shuffle
blocks. https://issues.apache.org/jira/browse/SPARK-32915, Sep 2020.
(Accessed on 10/16/2022).

https://redis.io/
http://sortbenchmark.org/2014_06_CloudSort_v_0_4.pdf
https://issues.apache.org/jira/browse/SPARK-32915

BIBLIOGRAPHY 182

[182] Min Shen, Ye Zhou, and Chandni Singh. Magnet: Push-based shuffle service for
large-scale data processing. Proc. VLDB Endow., 13(12):3382–3395, aug 2020.

[183] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared
Casper, and Bryan Catanzaro. Megatron-lm: Training multi-billion parameter
language models using model parallelism. arXiv preprint arXiv:1909.08053,
2019.

[184] Elliott Slaughter, Wonchan Lee, Sean Treichler, Michael Bauer, and Alex Aiken.
Regent: a high-productivity programming language for hpc with logical regions.
In Proceedings of the International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, pages 1–12, 2015.

[185] Sergei Sokolenko. How distributed shuffle improves scalability and performance
in cloud dataflow pipelines. https://cloud.google.com/blog/products/
data-analytics/how-distributed-shuffle-improves-scalability-and-

performance-cloud-dataflow-pipelines, September 2018.

[186] Vikram Sreekanti, Chenggang Wu Xiayue Charles Lin, Jose M Faleiro, Joseph E
Gonzalez, Joseph M Hellerstein, and Alexey Tumanov. Cloudburst: Stateful
functions-as-a-service. arXiv preprint arXiv:2001.04592, 2020.

[187] Vikram Sreekanti, Harikaran Subbaraj, Chenggang Wu, Joseph E Gonzalez, and
Joseph M Hellerstein. Optimizing prediction serving on low-latency serverless
dataflow. arXiv preprint arXiv:2007.05832, 2020.

[188] Vikram Sreekanti, Chenggang Wu, Saurav Chhatrapati, Joseph E Gonzalez,
Joseph M Hellerstein, and Jose M Faleiro. A fault-tolerance shim for serverless
computing. In Proceedings of the Fifteenth European Conference on Computer
Systems, pages 1–15, 2020.

[189] Lalith Suresh, João Loff, Faria Kalim, Sangeetha Abdu Jyothi, Nina Narodyt-
ska, Leonid Ryzhyk, Sahan Gamage, Brian Oki, Pranshu Jain, and Michael
Gasch. Building scalable and flexible cluster managers using declarative pro-
gramming. In 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20), pages 827–844, 2020.

[190] Andrew S Tanenbaum and Maarten Van Steen. Distributed systems: principles
and paradigms. Prentice-Hall, 2007.

[191] Andrew Stuart Tanenbaum and Robbert Van Renesse. A critique of the remote
procedure call paradigm. In Proc. Euteco’88 IR 123, pages 1–11. 1988.

[192] PyTorch Team. torch.utils.data – pytorch documentation. https://

pytorch.org/docs/stable/data.html, 2022. (Accessed on 10/16/2022).

https://cloud.google.com/blog/products/data-analytics/how-distributed-shuffle-improves-scalability-and-performance-cloud-dataflow-pipelines
https://cloud.google.com/blog/products/data-analytics/how-distributed-shuffle-improves-scalability-and-performance-cloud-dataflow-pipelines
https://cloud.google.com/blog/products/data-analytics/how-distributed-shuffle-improves-scalability-and-performance-cloud-dataflow-pipelines
https://pytorch.org/docs/stable/data.html
https://pytorch.org/docs/stable/data.html

BIBLIOGRAPHY 183

[193] Ray Team. Ray datasets: Distributed data preprocessing. https://

docs.ray.io/en/latest/data/dataset.html, 2022. (Accessed on 10/16/2022).

[194] Shivaram Venkataraman, Aurojit Panda, Kay Ousterhout, Ali Ghodsi, Michael
Armbrust, Benjamin Recht, Michael Franklin, and Ion Stoica. Drizzle: Fast
and adaptable stream processing at scale. In Proceedings of the Twenty-Sixth
ACM Symposium on Operating Systems Principles, SOSP ’17. ACM, 2017.

[195] Robert Virding, Claes Wikström, and Mike Williams. Concurrent programming
in ERLANG. Prentice Hall International (UK) Ltd., 1996.

[196] Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam Kendall. A note on dis-
tributed computing. In International Workshop on Mobile Object Systems,
pages 49–64. Springer, 1996.

[197] Qian Wang, Rong Gu, Yihua Huang, Reynold Xin, Wei Wu, Jun Song, and
Junluan Xia. Nadsort. http://sortbenchmark.org/NADSort2016.pdf, 2016.
(Accessed on 01/26/2022).

[198] Stephanie Wang. Analyzing memory management and performance in dask-on-
ray. https://medium.com/distributed-computing-with-ray/analyzing-
memory-management-and-performance-in-dask-on-ray-930a2236b70d,
June 2021. (Accessed on 01/26/2022).

[199] Stephanie Wang, Benjamin Hindman, and Ion Stoica. In reference to rpc: It’s
time to add distributed memory. In Proceedings of the Workshop on Hot Topics
in Operating Systems, HotOS ’21, page 191–198, New York, NY, USA, 2021.
Association for Computing Machinery.

[200] Stephanie Wang, John Liagouris, Robert Nishihara, Philipp Moritz, Ujval
Misra, Alexey Tumanov, and Ion Stoica. Lineage stash: fault tolerance off
the critical path. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles, pages 338–352, 2019.

[201] Stephanie Wang, Eric Liang, Edward Oakes, Ben Hindman, Frank Sifei Luan,
Audrey Cheng, and Ion Stoica. Ownership: A distributed futures system for
Fine-Grained tasks. In 18th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 21), pages 671–686, Virtual, April 2021. USENIX
Association.

[202] Stephanie Wang, Edward Oakes, and Frank Luan. Ownership nsdi’21 artifact.
https://github.com/stephanie-wang/ownership-nsdi2021-artifact.

[203] Yandong Wang, Cong Xu, Xiaobing Li, and Weikuan Yu. Jvm-bypass for effi-
cient hadoop shuffling. In 2013 IEEE 27th International Symposium on Parallel
and Distributed Processing, pages 569–578, Cambridge, MA, USA, 2013. IEEE.

https://docs.ray.io/en/latest/data/dataset.html
https://docs.ray.io/en/latest/data/dataset.html
http://sortbenchmark.org/NADSort2016.pdf
https://medium.com/distributed-computing-with-ray/analyzing-memory-management-and-performance-in-dask-on-ray-930a2236b70d
https://medium.com/distributed-computing-with-ray/analyzing-memory-management-and-performance-in-dask-on-ray-930a2236b70d
https://github.com/stephanie-wang/ownership-nsdi2021-artifact

BIBLIOGRAPHY 184

[204] Wes McKinney. Data Structures for Statistical Computing in Python. In Stéfan
van der Walt and Jarrod Millman, editors, Proceedings of the 9th Python in
Science Conference, pages 56 – 61, Austin, Texas, 2010. Python in Science
Conference.

[205] Tom White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 2012.

[206] Chenggang Wu, Jose M. Falerio, Yihan Lin, and Joseph M. Hellerstein. Anna:
A kvs for any scale. IEEE Transactions on Knowledge and Data Engineering,
2019.

[207] Reynold Xin. Apache spark the fastest open source engine for sorting
a petabyte. https://databricks.com/blog/2014/10/10/spark-petabyte-
sort.html, October 2014. (Accessed on 01/19/2022).

[208] Reynold Xin. Project hydrogen: Unifying state-of-the-art ai and big data in
apache spark. Spark + AI Summit, 2018.

[209] M. Young, A. Tevanian, R. Rashid, D. Golub, and J. Eppinger. The dual-
ity of memory and communication in the implementation of a multiprocessor
operating system. In Proceedings of the Eleventh ACM Symposium on Oper-
ating Systems Principles, SOSP ’87, page 63–76, New York, NY, USA, 1987.
Association for Computing Machinery.

[210] Peifeng Yu and Mosharaf Chowdhury. Fine-grained gpu sharing primitives for
deep learning applications. Proceedings of Machine Learning and Systems, 2:98–
111, 2020.

[211] Yuan Yu, Panagiotis Manolios, and Leslie Lamport. Model checking tla+ spec-
ifications. In In Correct Hardware Design and Verification Methods (CHARME
’99), Laurence Pierre and Thomas Kropf editors. Lecture Notes in Computer
Science, Springer-Verlag., volume 1703, pages 54–66, June 1999.

[212] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J Franklin, Scott Shenker, and Ion Stoica. Resilient
distributed datasets: A fault-tolerant abstraction for in-memory cluster com-
puting. In Proceedings of the 9th USENIX conference on Networked Systems
Design and Implementation, pages 2–2. USENIX Association, 2012.

[213] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker,
and Ion Stoica. Discretized streams: Fault-tolerant streaming computation
at scale. In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, SOSP ’13, pages 423–438, New York, NY, USA, 2013. ACM.

https://databricks.com/blog/2014/10/10/spark-petabyte-sort.html
https://databricks.com/blog/2014/10/10/spark-petabyte-sort.html

BIBLIOGRAPHY 185

[214] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael Arm-
brust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman,
Michael J. Franklin, Ali Ghodsi, Joseph Gonzalez, Scott Shenker, and Ion Sto-
ica. Apache Spark: A unified engine for big data processing. Commun. ACM,
59(11):56–65, October 2016.

[215] Kai Zeng, Sameer Agarwal, Ankur Dave, Michael Armbrust, and Ion Stoica. G-
ola: Generalized on-line aggregation for interactive analysis on big data. In Pro-
ceedings of the 2015 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’15, page 913–918, New York, NY, USA, 2015. Association
for Computing Machinery.

[216] Haoran Zhang, Adney Cardoza, Peter Baile Chen, Sebastian Angel, and Vincent
Liu. Fault-tolerant and transactional stateful serverless workflows. In 14th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
20), pages 1187–1204, 2020.

[217] Haoyu Zhang, Brian Cho, Ergin Seyfe, Avery Ching, and Michael J. Freedman.
Riffle: Optimized shuffle service for large-scale data analytics. In Proceedings of
the Thirteenth EuroSys Conference, EuroSys ’18, New York, NY, USA, 2018.
Association for Computing Machinery.

[218] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng Chen, Yan-
ping Huang, Yida Wang, Yuanzhong Xu, Danyang Zhuo, Eric P Xing, et al.
Alpa: Automating inter-and {Intra-Operator} parallelism for distributed deep
learning. In 16th USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI 22), pages 559–578, 2022.

[219] Siyuan Zhuang, Zhuohan Li, Danyang Zhuo, Stephanie Wang, Eric Liang,
Robert Nishihara, Philipp Moritz, and Ion Stoica. Hoplite: Efficient and fault-
tolerant collective communication for task-based distributed systems. In Pro-
ceedings of the 2021 ACM SIGCOMM 2021 Conference, SIGCOMM ’21, page
641–656, New York, NY, USA, 2021. Association for Computing Machinery.

[220] Siyuan Zhuang, Stephanie Wang, Eric Liang, Yi Cheng, and Ion Stoica.
{ExoFlow}: A universal workflow system for {Exactly-Once}{DAGs}. In 17th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
23), pages 269–286, 2023.

186

Appendix A

Ownership system protocols

The following appendix is adapted from the previously published paper Owner-
ship: A Distributed Futures System for Fine-Grained Tasks [201].

A.1 Distributed Reference Counting

Type Description

Local reference A flag indicating whether the DFut has gone out of the process’s
scope.

Submitted task
count

Number of tasks that depend on the object that were submitted
by this process and that have not yet completed execution.

Borrowers The set of worker IDs of the borrowers created by this process,
by passing the DFut as a first-class value.

Nested DFuts The set of DFuts that are in scope and whose values contain
this DFut.

Lineage count Number of Tasks that depend on this DFut that may get re-
executed. This count only determines when the lineage (the
Task field) should be released; the value can be released even
when this count is nonzero.

Table A.1: Full description of the References field in Table 4.2. Every process with
an instance of the DFut (either the owner or a borrower) maintains these fields.

If a DFut never leaves the scope of its owner, it does not require a distributed
reference count. This is because the owner always has full information about which
pending tasks require the object. However, since our API allows passing DFuts to
other tasks as first-class values, we use a distributed reference count to decide when
the object is out of scope.

APPENDIX A. OWNERSHIP SYSTEM PROTOCOLS 187

Our reference counting protocol is similar to existing solutions [160, 143]. As
explained in Section 4.4.2, the reference count is maintained with a tree of processes.
Each process keeps a local set of borrower worker IDs, i.e. its children nodes in the
tree. Most of the messages needed to maintain the tree are piggy-backed on existing
protocols, such as for task scheduling.

A borrower is created when a task returns a SharedDFut to its parent task, or
passes a SharedDFut to a child task. In both cases, the process executing the task
adds the ID of the worker that executes the parent or child task to its local borrower
set.

In many cases, a child task will finish borrowing the DFut by the time it has fin-
ished execution. Concretely, this means that the worker executing the child task will
no longer have a local reference to the DFut, nor will it have any pending dependent
tasks. Thus, when the worker returns the task’s result to its owner, the owner can re-
move the worker from its local set of borrowers, with no additional messages needed.
This optimization is important for distributing load imposed by reference counting
among the borrowers, rather than requiring all reference holders to be tracked by the
owner.

However, in some cases, the worker may borrow the DFut past the duration of
the child task. There are two cases: (1) the worker passed the DFut as an argument
to a task that is still pending execution, or (2) the worker is an actor and stored the
DFut in its local state. In these cases, the worker notifies the owner that it is still
borrowing the DFut when replying with the task’s return value.

Eventually, the owner must collect all of the borrowers in its local set. It does
this by sending a request to each borrower to reply once the borrower’s reference count
has gone to zero. Borrowers themselves never delete from their local set of borrowers.
Once a borrower no longer has a reference or any pending dependent tasks, it replies
to the owner with its accumulated local borrower set. The owner then removes
the borrower, merges the received borrowers into its local set and repeats the same
process with any new borrowers. If a borrower dies before it can be removed, the
owner removes it upon being notified of the borrower’s death.

When a DFut is returned by a task, it results in a nested DFut. Nested DFuts

can be automatically flattened, e.g., when submitting a dependent task, but we must
still account for nesting during reference counting. We do this by keeping a set of
DFuts whose values contain the DFut in question in the ownership table (Table 4.2).
The DFut’s value is pinned if its nested set is non-empty.

A.2 Formal Specification

We developed a formal specification for the ownership-based system architecture [202].
It models the system state transitions of the ownership table for task scheduling,
garbage collection, and worker failures. The goal is to check the correctness of the

APPENDIX A. OWNERSHIP SYSTEM PROTOCOLS 188

system design, which is manifested in the following properties:

• Safety: A future’s lineage information is preserved as long as a task exists that
depends on the value of the future. This is defined recursively: at any time,
either the value of a future is stored inline (thus cannot be lost), or all futures
that this future depends on for computing its value must be safe. Formally, it
means the following invariant holds at any given time: ∀x,

LineageInScope(x) ,

∨ x = INLINE VALUE

∨ ∀arg ∈ x.args : LineageInScope(arg)

• Liveness: The system will eventually execute all tasks and resolve all future
values, even in case of failures, i.e., all Get calls eventually return.

• No Resource Leakage: The system will eventually clean up all task states and
future values, after the all references to futures become out-of-scope.

We checked the model using the TLA+Model Checker [211] for up to 3 levels
of recursive remote function calls, where each function creates up to 3 futures, and
verified that the safety and liveness properties hold in more than 44 million distinct
states. Currently, the model does not include first-class futures or actors; we plan to
include these and open-source the full TLA+specification in the future.

189

Appendix B

Exoshuffle libraries, applications,
and evaluation

The following appendix is adapted from the previously published paper Exoshuf-
fle: An Extensible Shuffle Architecture [130] and includes additional contributions of
Frank Sifei Luan et al.

B.1 Expressing Shuffle Strategies with Distributed

Futures

B.1.1 Pre-Shuffle Merge

Riffle [217] is a specialized shuffle system built for Spark. Its key optimization is
merging small map output blocks into larger blocks, thereby converting small, random
disk I/O into large, sequential I/O before shuffling over the network to the reducers.
The merging factor F is either pre-configured, or dynamically decided based on a
block size threshold. As soon as F map tasks finish on an executor node, their output
blocks (F × R) are merged into R blocks, each consisting of F blocks of data from
the map tasks. This strategy, illustrated in Figure 5.2b, is implemented in Listing 1
(shuffle riffle). The code additionally takes F as the merging factor, and a merge
function which combines multiple map outputs into one.

Riffle’s key design choice is to merge map blocks locally before they are pulled
by the reducers, as shown in the highlighted lines. For simplicity, the code assumes
that the first F map tasks are scheduled on the first worker, the next F map tasks
on the second worker, etc. In reality, the locality can be determined using schedul-
ing placement hints or runtime introspection (§5.4.2) Section 5.5.1 shows that this
implementation of Riffle-style shuffle improves the job completion time over simple
shuffle.

APPENDIX B. EXOSHUFFLE LIBRARIES, APPLICATIONS, AND EVALUATION190

B.1.2 Push-based Shuffle

Push-based shuffle (Fig 5.2c) is an optimization that pushes shuffle blocks to reducer
nodes as soon as they are computed, rather than pulling blocks to the reducer when
they are required. Magnet [182] is a specialized shuffle service for Spark that performs
this optimization by merging intermediate blocks on the reducer node before the final
reduce stage. This improves I/O efficiency and data locality for the final reduce tasks.
shuffle magnet in Listing 1 implements this design.

B.1.3 Straggler Mitigation

Distributed futures enable dynamic task graphs by nature, making it ideal for detect-
ing and reacting to stragglers during runtime.

Speculative Execution One way to handle stragglers is through speculative exe-
cution. Tasks that are suspected to be stragglers can be duplicated, and the system
chooses whichever result is available first. This can be accomplished with distributed
futures using the ray.wait primitive, as shown in Listing 4.

1 map_out = ...
2 _, timeout_tasks = ray.wait(map_out, timeout=TIMEOUT)
3 duplicates = []
4 for task in timeout_tasks:
5 duplicates.append(map.remote(task.args))
6 for t1, t2 in zip(timeout_tasks, duplicates):
7 t, _ = ray.wait([t1, t2], num_returns=1)
8 map_out[t1.id] = t

Listing 4: Mitigating stragglers with speculative execution.

Best-effort Merge Shuffle systems including Riffle and Magnet also implement
“best-effort merge”, where a timeout can be set on the shuffle and merge phase [217,
182]. If some merge tasks are cancelled due to timeout, the original map output blocks
will be fetched instead. This ensures straggler merge tasks will not block the progress
of the entire system. Best-effort merge can be implemented in Exoshuffle as shown
in Listing 5 using an additional ray.cancel() API which cancels the execution of
a task. The cancelled task’s input, which are the original map output blocks, will
then be directly passed to the reducers. This way, the task graph is dynamically
constructed as the program runs, adapting to runtime conditions while still enjoying
the benefits of transparent fault tolerance provided by the system.

APPENDIX B. EXOSHUFFLE LIBRARIES, APPLICATIONS, AND EVALUATION191

1 map_out = ...
2 merge_out = ...
3 _, timeout_tasks = ray.wait(merge_out, timeout=TIMEOUT)
4 for task in timeout_tasks:
5 ray.cancel(task)
6 merge_out[task.id] = task.args
7 out = [reduce.remote(merge_out[:, r]) for r in range(R)]
8 ray.wait(out)

Listing 5: Mitigating stragglers via task cancellation.

B.1.4 Data Skew

Data skew can be prevented at the data management level using techniques such
as key salting, or periodic repartitioning. However, it is still possible for skews to
occur during ad-hoc query processing, especially for those queries involving joins and
group-bys. Data skew during runtime can cause the working set of a reduce task to
be too large to fit into executor memory.

Dynamic repartitioning solves this problem by further partitioning a large re-
ducer partition into smaller ones. This is straightforward to implement since the
distributed futures programming model enables dynamic tasks by nature. Listing 6
shows that we can recursively split down a reducer’s working set until it fits into a
predefined memory threshold.

1 @ray.remote
2 def reducer(*parts):
3 total_size = [part.size() for part in parts]
4 if total_size > THRESHOLD:
5 L = len(parts) // 2
6 return flatten([
7 reducer.remote(*parts[:L]),
8 reducer.remote(*parts[L:])])

Listing 6: Dynamic repartitioning for skewed partitions.

B.2 Expressing Shuffle Applications

Because Exoshuffle implements shuffle at the application level, it can easily interop-
erate with other applications. Here, we demonstrate two example applications that
use fine-grained pipelining with shuffle to improve end-to-end performance. These
applications are evaluated in Appendix B.3.3.

APPENDIX B. EXOSHUFFLE LIBRARIES, APPLICATIONS, AND EVALUATION192

B.2.1 Online Aggregation with Streaming Shuffle

Online aggregation [102] is an interactive query processing mode where partial results
are returned to the user as soon as some data is processed, and are refined as progress
continues. This is especially useful when the query takes a long time to complete.
Online aggregation is difficult to implement in MapReduce systems because they
require all outputs to be materialized before being consumed. Past work made in-
depth modifications to Hadoop and Spark to support online aggregation [67, 215].

1 def streaming_shuffle(map, reduce, print_aggregate):
2 reduce_states = [None] * R
3 for rnd in range(N):
4 map_results = [map.remote(M*rnd+i) for i in range(M)]
5 ray.wait(reduce_states)
6 reduce_states = [
7 reduce.remote(reduce_state, *map_results[:, r])
8 for r, reduce_state in enumerate(reduce_states)]
9 print_aggregate.remote(reduce_states)

10 return ray.get(reduce_states)
11

12 def model_training(trainer, data):
13 shuffle_out = shuffle(data, ...)
14 for epoch in range(EPOCHS):
15 next_shuffle_out = shuffle(data, ...)
16 for block in shuffle_out:
17 trainer.train(ray.get(block))
18 shuffle_out = next_shuffle_out

Listing 7: Streaming shuffle and pipelined data loading for ML.

Online aggregation is straightforward to implement in Exoshuffle without the
need to modify the underlying distributed futures system. Listing 7 shows the
streaming shuffle routine. It requires a modified reduce function that takes a
reducer state and a list of map outputs and returns an updated state, and an ag-

gregate function which combines the reducer states to produce aggregate statistics.
Shuffle is executed in rounds. At the end of each round, the aggregation function is
invoked with the reducer outputs, and will asynchronously print an aggregate statis-
tic (e.g. sum) to the user. Note that the Exoshuffle user can simply swap between
simple shuffle and streaming shuffle to get the semantics they desire.

B.2.2 Distributed ML Training with Pipelined Shuffle

Exoshuffle also enables fine-grained pipelining for ML training, as illustrated in Sec-
tion 5.1. In Listing 7, model training shows the code skeleton. On line 13, the
shuffle function (could be any in Listing 1) returns a set of distributed futures
pointing to reducer outputs. They are passed immediately to the model trainer while

APPENDIX B. EXOSHUFFLE LIBRARIES, APPLICATIONS, AND EVALUATION193

100GB 200GB
Data Size (100 partitions)

0

50

100

150

Jo
b

T
im

e
(s

)
ES-simple

ES-merge

ES-push

ES-push*

(a) In-memory sort on 10 SSD nodes.

ES-push* Magnet Spark
0

2

4

6

8

Jo
b

T
im

e
(h

)

(b) 100 TB on 100 HDD nodes.

Figure B.1: Comparing job completion times on the Sort Benchmark. The dashed
lines indicate the theoretical baseline (§5.5.1.1). Exoshuffle is abbreviated as ES.

shuffle executes asynchronously. As soon as a reducer block becomes available, the
model trainer acquires it (line 17) and send it to the GPU for training. This achieves
the fine-grained pipelining described in Section 5.1.

B.3 Evaluation

B.3.1 Performance Comparison of Shuffle Libraries

In-memory Performance. Figure B.1a shows that when data fits in memory, ES-
simple is actually the fastest algorithm compared to all other variants. This is because
the other algorithms create copies of data by merging them, triggering unnecessary

APPENDIX B. EXOSHUFFLE LIBRARIES, APPLICATIONS, AND EVALUATION194

disk spilling. Magnet observes similar behavior for small datasets1.

Conclusion. These experiments show that the shuffle algorithms provided by Ex-
oshuffle offer the same performance benefits as their monolithic counterparts. Fur-
thermore, the most performant shuffle algorithm depends on the data size and hard-
ware configuration, and Exoshuffle offers the flexibility to choose the most suitable
algorithm at the application level, without having to deploy multiple systems.

B.3.2 Shuffle Scalability

To test performance at large scale, we run the Sort Benchmark on 100 TB data with
50 000× 2 GB input partitions on a cluster of 100× d3.2xlarge VMs. For Exoshuffle, we
run the ES-push* variant since it is the most optimized for scale. For baselines, we run
both Spark’s native shuffle (Spark) and its push-based shuffle service (Magnet). We
run both baselines with compression on because Spark without compression becomes
unstable at this scale.

Figure B.1b shows the results. Exoshuffle outperforms both native Spark shuffle
and the push-based shuffle service Magnet, despite Spark’s compression reducing total
bytes spilled by 40%. Magnet improves shuffle performance by 1.6× because it reduces
random disk I/O. Exoshuffle further improves performance over push-based Spark by
1.8×. This difference comes from reduced write amplification in ES-push*, which spills
only the merged map outputs, while Magnet also spills the un-merged map outputs.
These additional writes provide faster failure recovery through improved durability,
albeit at the cost of performance. Exoshuffle allows the application to choose between
these tradeoffs by using ES-push vs. ES-push*.

B.3.3 Shuffle Applications

Next, we show how Exoshuffle can extend distributed shuffle support for a broader
set of applications.

B.3.4 CloudSort

The CloudSort competition [180] calls for the most cost-efficient way to sort 100 TB of
data on the public cloud. We ran Exoshuffle-CloudSort on a cluster of 40× i4i.4xlarge
nodes with input and output data stored on Amazon S3, and set a new world record
of $0.97/TB [131]. This is 33% more cost-efficient than the previous world record
set in 2016. The previous entry used a heavily modified version of Spark for the
CloudSort workload [197]. In contrast, Exoshuffle-CloudSort is only hundreds of lines
of application code running on a release version of Ray.

1The Spark 3.3.1 documentation states: “Currently [Magnet] is not well suited for jobs/queries which runs quickly
dealing with lesser amount of shuffle data.”

APPENDIX B. EXOSHUFFLE LIBRARIES, APPLICATIONS, AND EVALUATION195

0 200 400

Time (s)

0%

20%

40%

60%

80%

100%

Simple

Streaming

Approx Error

Figure B.2: Online aggregation. Dotted lines show map progress; solid, reduce
progress.

0 100 200 300 400

Time (min)

40%

50%

60%

70%

80%

A
cc

ur
ac

y

PyTorch+Exoshuffle

PyTorch+Petastorm

Figure B.3: Single-node ML training for 20 epochs.

0 10 20 30

Time (min)

40%

50%

60%

70%

80%

A
cc

ur
ac

y

Exoshuffle (full)

Exoshuffle (partial)

Figure B.4: 4-node, distributed ML training for 20 epochs.

APPENDIX B. EXOSHUFFLE LIBRARIES, APPLICATIONS, AND EVALUATION196

To account for the fact that the cloud hardware costs have lowered since 2016, we
take the setup from the previous record-winning entry and look up its cost on today’s
Alibaba Cloud. Table B.1 shows that the same amount of cloud resources would cost
$115 today. Still, Exoshuffle-CloudSort achieves another 15% cost reduction beyond
this result. We calculate another theoretical baseline of simply shuffling 100 TB data
through the AWS network (without sorting), which would cost $74. This puts our
record within 31% of the theoretical limit. This result demonstrates that Exoshuffle
can achieve state-of-the-art performance and cost-efficiency for large-scale shuffle.

System Cost

NADSort (2016) $1.44/TB
NADSort (2022, extrapolated) $1.15/TB
Exoshuffle-CloudSort (2022) $0.97/TB

Table B.1: CloudSort costs over years.

B.3.5 Online Aggregation with Streaming Shuffle

We use a 1 TB dataset containing 6 months of hourly page view statistics on Wikipedia.
We run an aggregation to get the ranking of the top pages by language on 10×
r6i.2xlarge nodes with data loaded from S3. Figure B.2 shows the difference between
regular and streaming shuffle. The streaming shuffle takes 1.4× longer to run in to-
tal due to the extra computation needed to produce partial results. However, with
streaming shuffle, the user can get partial aggregation results within 8% error2 of the
final result in 18 seconds, 22× faster than regular shuffle. Exoshuffle makes it easy to
switch between simple shuffle and streaming shuffle to choose between partial
result latency and total query run time.

B.3.6 Distributed ML Training

Many distributed training frameworks already run on top of Ray. By offering Ex-
oshuffle as a library, we enable these workloads to leverage scalable shuffle. We
demonstrate Exoshuffle’s ability to support fine-grained pipelining for ML training
using the Ludwig framework [142] to train a deep classification model TabNet on
the HIGGS dataset (7.5 GB). Ludwig integrates ML data loaders with the PyTorch
training framework [157]. Efficient training requires randomly shuffling the data per
epoch before sending it into the GPU for training.

We first run the ML training on a single g4dn.4xlarge instance. We compare
two versions of Ludwig: Ludwig 0.4.0 uses Petastorm [93], which prefetches data

2Error is computed using the KL-divergence DKL =
∑

p log(p/p̂) where p is the true statistic and p̂ is the sample
statistic.

APPENDIX B. EXOSHUFFLE LIBRARIES, APPLICATIONS, AND EVALUATION197

in batches into a per-process memory buffer and performs random shuffle in the
buffer. This approach makes the shuffle window size limited by the memory buffer
size (§5.2.2). In this experiment, we set the shuffle window size to 9% of the total
data size to avoid OOM errors. In comparison, Ludwig 0.4.1 uses Exoshuffle offered
through Ray Data [193]. It pipelines data loading and shuffling with GPU training
(§5.1), and supports full shuffle across loading batches by storing data in the shared-
memory object store. Figure B.3 shows that model training with Exoshuffle is 2.4×
faster end-to-end thanks to the fine-grained pipelining. The model also converges
faster per-epoch and to a higher accuracy, because Exoshuffle performs complete
random shuffling between epochs, whereas Petastorm’s random shuffle is limited to
subsets of the data.

Next, we run the training on 4 g4dn.xlarge nodes to show the distributed shuffle
performance. Ludwig 0.4.x has known bugs with distributed training, so we could
not compare Petastorm with Exoshuffle. Instead, we use the latest Ludwig 0.6.0 and
compares two shuffle strategies with the Exoshuffle-based data loader: full shuffle (the
default) and partial shuffle. For partial shuffle, we emulate the Petastorm behavior
and perform random shuffling only in each in-memory batch. Figure B.4 shows that
per-epoch time is slightly faster with partial shuffle, since it is fully local, but the
convergence accuracy is slightly lower because of the less random shuffling of training
data. This example demonstrates that Exoshuffle gives the developer the flexibility
to choose the best shuffle strategy based on their training needs, while providing
high-throughput data loading and shuffling.

198

Appendix C

Exoflow system design and
evaluation

The following appendix is adapted from the previously published paper ExoFlow:
A Universal Workflow System for Exactly-Once DAGs [220] and includes additional
contributions of Siyuan Zhuang et al.

C.1 Architecture

We further describe the Exoflow design and the requirements of the pluggable execu-
tion backend and persistent storage.

C.1.1 Workflow execution

The workflow control layer is implemented using the system Ray [145]. Ray provides
remote task invocation, distributed immutable memory, and distributed actors. How-
ever, Ray only provides at-most-once or at-least-once guarantees and lacks built-in
persistence for memory and actors. Thus, Ray tasks and actors are distinct from
workflow tasks and actors, which execute exactly-once and can be natively check-
pointed.

We use Ray actors to implement the workflow controller and task executors (Fig-
ure 6.5). The controller uses Ray’s distributed futures [201] to coordinate task execu-
tion and checkpointing. Distributed futures are an asynchronous extension of RPC
where each invocation returns a future pointing to the eventual and possibly remote
return value. Ray actors and distributed futures also directly implement application-
facing references (Section 6.3).

We build on Ray for three reasons: (1) futures make it simple for the controller
to manage concurrent task execution and checkpointing, (2) passing remote values by
reference avoids bottlenecks from large task outputs being passed directly through the

APPENDIX C. EXOFLOW SYSTEM DESIGN AND EVALUATION 199

centralized controller, and (3) the RPC-like interface straightforwardly and efficiently
wraps other execution backends. For example, the Lambdas backend is implemented
by wrapping a synchronous Lambda invocation in a Ray task.

The controller is a state machine where the state describes the current execution
status of a workflow DAG and is persisted in storage. On run, the controller logs the
workflow DAG specification (arguments, Opts, etc.) to durable storage and triggers
execution. On each iteration of the event loop, the controller may select a workflow
task whose inputs are ready and submit the task to an executor. For example, in
Figure 6.5, the controller submits C to executor 1 and immediately receives back the
distributed future Ref(1bf). The controller uses this system-internal Ref to wait for
task completion, and then passes it to downstream workflow tasks (e.g., D).

Checkpointing is carried out asynchronously by background threads on the ex-
ecutors, enabling parallel and distributed checkpoints that are not bottlenecked by the
centralized controller. To checkpoint an output, the executor asynchronously writes
a copy to a deterministic storage location (e.g., w0/B/output in Figure 6.5). The
controller considers the checkpoint done once it is fully written. For convenience,
the controller can also synchronize the checkpoint by requesting a signal from the
executor (controller to executor 2 in Figure 6.5).

Checkpoint synchronization is required: (1) at the end of a workflow, (2) before
executing a task with can rollback=False, and (3) before executing a task with a
rollback option. Section 6.5 evaluates a simple policy that synchronizes all pending
checkpoints for a workflow in any of these cases and shows that this provides sufficient
performance for key applications. A more sophisticated policy may synchronize only
the minimum necessary.

Exoflow handles passing and checkpointing application references (Section 6.3.4).
When a task finishes, the executor replaces any Refs and ActorRefs appearing in
the task’s output with placeholders, e.g., x in Figure 6.5. When passing the output
to another task, the controller also passes a list of concrete references (Ref(e02) for
x) used by the executor to fill the placeholders. Task checkpoints include a list of
Ref checkpoint locations, which are written in parallel and distributed fashion. The
controller restores and swaps Refs after a failure.

If a workflow task returns a WorkflowDAG as its output, the controller simply
records the sub-workflow (if checkpoint=True), points the output of the parent task
to the output of the sub-workflow, then resumes execution.

C.1.2 Workflow recovery

The controller handles task and checkpoint failures. In both cases, the protocol rolls
back any previous outputs as needed, then rolls “forward” by re-executing workflow
tasks.

The first step is to determine the re-execution task frontier. For example, sup-
pose C in Figure 6.5 fails because we lost A’s cached output Ref(be5). Then, we walk

APPENDIX C. EXOFLOW SYSTEM DESIGN AND EVALUATION 200

the DAG backwards from C and add each visited task node to the re-execution set.
For each task, we check argument availability, i.e. whether the value has a checkpoint
or a live Ref. If all arguments are available, then we terminate. Else, we add the
tasks that create the arguments (A) to the re-execution set. If a visited task has
deterministic=False, then we also add all tasks downstream to the re-execution
set. Thus, if C fails and we need to re-execute A, we also re-execute B, even though
it has a checkpoint.

From the re-execution task set, we carry out rollback. In reverse-topological
order of the re-execution set, we first clear any cached output Refs and output check-
points, e.g., /w0/B/output and /w0/B/x for B. If it has a rollback task, then we
re-execute this task, using the same protocol as normal task execution. Finally, we
resume workflow execution as normal, starting from the earliest task frontier of the
re-execution set.

Critical controller state is persisted, so recovering from controller failure is
straightforward. On failure, all in-memory controller state (the table in Figure 6.5) is
wiped, including any Refs. On restart, the controller simply scans persistent storage
for incomplete workflows, rebuilds its in-memory table, then re-executes them using
the described protocol.

Correctness. We provide informal proofs that the final outputs are consistent (Def-
inition 6.1). During normal execution, this follows from the execution protocol: start-
ing from a consistent prefix of outputs, executing a task will produce another consis-
tent prefix.

For recovery, we first consider reconstruction of internal outputs, i.e. values
returned by workflow tasks. If the task is deterministic, then the reconstructed output
will match the original. If the task is nondeterministic, then the described rollback
procedure returns execution to a consistent prefix that does not include any results
downstream to the original output.

Next, we consider external outputs: tasks with can rollback=False or roll-

back defined. For a task T with can rollback=False, the application guarantees
idempotence, so it is enough to show that once T begins, the failure-free execution will
include the same inputs for T . To show this, we rely on Invariant 6.1 (Section 6.3.3)
and checkpoint synchronization (Appendix C.1.1). The system synchronizes the par-
tition provided by Invariant 6.1 before submitting T ; thus once T begins, any future
recovery procedure will never add T to the rollback set.

If T instead has rollback defined, we must show that if T fails, rollback

will complete with the same view of inputs as T ’s previous execution, before re-
executing T . Invariant 6.2 and checkpoint synchronization guarantee that we can
deterministically and idempotently recreate rollback’s original inputs.

Correctness also requires preventing conflicts between different executions of the
same task. For task checkpoints, if the backend’s failure detection for executors is
reliable, then by the time we re-execute T , we can be sure that there is no concurrent

APPENDIX C. EXOFLOW SYSTEM DESIGN AND EVALUATION 201

checkpoint in progress. Under unreliable failure detection, the Exoflow controller
assigns unique checkpoint locations to prevent races between concurrent executions.
This requires one extra durable write before each task execution to record the expected
checkpoint location.

For a task that returns Refs or ActorRefs, the execution backend can provide
reliable failure detection for references by killing all copies of a Ref before reporting
failure to Exoflow. Alternatively, a safe and efficient method that works for both
crash and fail-stop failures is to generate unique references for each execution.

C.1.3 Execution backends

Integration. Exoflow references are compatible with existing third-party mecha-
nisms for task communication and recovery. For example, Ray does not provide
exactly-once semantics, but it does automatically reconstruct Refs created by deter-
ministic (at-least-once) tasks [201]. Exoflow encourages hierarchical recovery, wherein
the execution backend can attempt to handle Ref failures first, then throw unrecov-
erable errors up to the workflow controller.

Exoflow is compatible with backends that use logging and checkpointing. In gen-
eral, log-based tasks would use deterministic=True and can rollback=False an-
notations, while checkpoint-based tasks would use deterministic=False and can -

rollback=True. The backend can also directly leverage Exoflow for checkpointing
instead of supplying a user-defined rollback function; this shifts the responsibility
of checkpoint coordination to Exoflow and automatically enables optimizations such
as overlapping with execution.

Preventing leaks. The workflow layer ensures that previous Refs and pending
checkpoints do not leak; invalid Refs and checkpoints are dropped during rollback.
The execution backend must additionally prevent resource leaks for dead Refs. Dead
Refs can be deleted via reference counting (the controller calls back to the backend
once a Ref goes out of scope) or garbage collection (the backend scans the controller’s
in-memory state for dead Refs).

C.2 Implementation

Exoflow is built on Ray v2.0.1, which uses gRPC [9] for tasks and actors and a custom
shared-memory object store for Ref storage [145]. Exoflow is implemented as a Ray
Python program in 4k LoC.

We implemented two execution backends for Exoflow: Ray itself (“Exoflow-
Ray”) and the serverless FaaS offering AWS Lambdas (“Exoflow-Lambdas”). In each
case, a typical deployment would use one Ray node to host the Exoflow controller.

APPENDIX C. EXOFLOW SYSTEM DESIGN AND EVALUATION 202

In Exoflow-Lambdas, the controller node takes the place of the gateway provided by
AWS for their proprietary serverless workflow offering (Step Functions).

We chose to implement Exoflow on Ray for three reasons:

1. Support for first-class references to immutable data, which we use to implement
Refs.

2. Support for actors (stateful workers), which we use to implement ActorRefs.
3. Low task and actor overhead, similar to pure RPC.

We also use Ray actors to implement executors. Workflow tasks are stateless,
but we use actors to store execution state about checkpoints that are pending after
task completion.

To build Exoflow on another actor system such as Akka [2] or Orleans [42], we
must implement Refs. This is straightforward for workloads that only pass small
data. For data-intensive workflows, one can build a custom in-memory store that
is tightly coupled to executors, as in Ray, or use an external key-value store. The
latter requires low implementation effort, but may result in poor locality. It is ideal
if the execution backend cannot be modified, e.g., to support values larger than the
Lambdas response size in Exoflow-Lambdas.

C.3 Evaluation

C.3.1 Online-offline graph processing

Distributed graph processing systems can be generally divided into stream vs. batch
processing [136]. Streaming systems can handle continuous updates and produce
timely results, but may not offer the same precision as batch systems.

We use references in Exoflow to link stream and batch graph processing, produc-
ing a single application that can both handle online queries and produce periodic exact
results. We use Ray actors to implement a version of Kineograph [64], a streaming
graph processing system that uses distributed snapshots for consistency. Each work-
flow task ingests one epoch of incoming graph updates to compute a graph snapshot
and an online approximate result, and we periodically pass the snapshot in-memory
to another workflow task that uses Spark to compute the full result.

We evaluate on the SNAP Twitter follower network dataset [118] (41M nodes
and 1.5B edges), with each input record representing an edge insert event. We run
the push-model TunkRank algorithm used by Kineograph to compute Twitter user
influences on a 3-node r3.8xlarge cluster, 1 for streaming and 2 for the Spark cluster.
We use two Ray actors to process the input stream and use Exoflow to checkpoint and
pass the ActorRefs between streaming tasks. Each streaming task represents a 10-
second epoch and also returns 4 Refs that represent the partitioned graph snapshot.
These Refs are passed to a Spark task every 20 epochs. Latency is reported for

APPENDIX C. EXOFLOW SYSTEM DESIGN AND EVALUATION 203

0 1 2 3 4 5
Latency (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

D
is

tri
bu

tio
n

ExoFlow AsyncCkpt
ExoFlow SyncCkpt
ExoFlow NoCkpt

Figure C.1: (c) Latency CDF of online-offline graph processing.

APPENDIX C. EXOFLOW SYSTEM DESIGN AND EVALUATION 204

200 epochs, after an initial warmup of 150 epochs. The average digestion rate is
44.94k tweets per second with our dataset. Kineograph achieves about 40k tweets per
second with 2 ingest node + 48 graph nodes with a similar setting. We outperform
Kineograph likely because we utilize shared memory for data passing, with more
powerful hardware, which significantly reduces overhead of data pushing.

Figure C.1 shows a CDF for latency from input event to the earliest time that
the event is reflected in a streaming task’s output (although inconsistent results can
be returned earlier by querying the ingest actors directly). AsyncCkpt allows the
snapshot to be viewed before it is checkpointed. NoCkpt has impractical recovery
overhead, but we use it as a performance baseline. AsyncCkpt achieves similar la-
tency as NoCkpt, meaning that checkpointing overhead remains stable as the graph
grows larger; this is because streaming tasks pass through previous Refs that are
already checkpointed, so Exoflow only checkpoints new data on each epoch. Sync-

Ckpt is similar to Kineograph, checkpointing the snapshot before making it visible,
and adds less than 1s latency. Finally, the error rate of the online results and the
batch processing task duration both grow linearly over time, confirming the tradeoffs
between batch vs. stream processing.

C.3.2 Microbenchmarks

Latency. With equivalent backends, Exoflow matches or reduces execution over-
heads of existing workflow systems while enabling more flexible inter-task communi-
cation. Figure C.2a (1 m5.8xlarge instance) shows the latency of workflow execution
(“Trigger”) and task execution with different size arguments. We use exactly-once
systems (Airflow [5], AWS Standard Step Function [50]) and at-least-once systems
(AWS Express Step Function [50], Ray [145]) as baselines. Airflow is an industrial
custom-built workflow system while Step Functions are the AWS-native workflow
offering for Lambdas.

First, with the Lambdas backend, Exoflow has similar trigger latency as AWS
Standard Step Function. Airflow has generally high overhead due to coordinating
execution through a database, which can easily lead to inefficient scans.

“1B” in Figure C.2a compares minimum task execution latency. Exoflow-Lambdas
achieves comparable latency as AWS Step Functions, as the primary overheads for
exactly-once and at-least-once execution come from durability and Lambdas invoca-
tion, respectively. Exoflow-Ray improves upon the latter as it uses Ray for execution.

Finally, we compare the ability to pass large data between tasks. AWS Step
Functions limit data passing to 256KB, but plain Lambdas have a size limit of
6MB. Thus, Exoflow-Lambdas can actually support larger data sizes. This could
be improved further with Refs, e.g., with Redis [174] for distributed memory. Air-
flow’s XCom [1] can support slightly larger data but is fundamentally limited by its
database-centric design. Meanwhile, Exoflow-Ray uses Ray Refs for efficient data
passing. The gap between AsyncCkpt and NoCkpt latency is small but grows with

APPENDIX C. EXOFLOW SYSTEM DESIGN AND EVALUATION 205

Trigger 1B 128KB 1MB 32MB 128MB
Operation

10−3

10−2

10−1

100

101

La
te

nc
y

(s
)

Airflow
AWS Std.SF-λ

AWS Exp.SF-λ
ExoF.-λ SyncCkpt

ExoF.-λ AsyncCkpt
ExoF.-λ NoCkpt

ExoF.-Ray SyncCkpt
ExoF.-Ray AsyncCkpt

ExoF.-Ray NoCkpt
Ray

(a)

1 2 4 8
Number of Consumers

0

20

40

60

80

D
ur

at
io

n
(s

)

Airflow
Spark

ExoFlow + SyncCkpt
ExoFlow + NoCkpt

(b)

Figure C.2: Microbenchmarks. (a) Triggering and data passing latency of Exoflow
and other workflow systems, using AWS Lambda (λ) and Ray as execution backends.
Missing bars indicate limitations in inter-task communication. (b) End-to-end run
time for the ETL workflow shown in Figures 6.2b and 6.4c, compared with Airflow
and native Spark.

APPENDIX C. EXOFLOW SYSTEM DESIGN AND EVALUATION 206

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of Controllers

0

1000

2000

3000

Th
ro

ug
hp

ut
 (t

as
ks

/s
)

ExoFlow (1 node)
Ray (1 node)

ExoFlow (4 nodes)
Ray (4 nodes)

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of Controllers

0

5000

10000

15000

Th
ro

ug
hp

ut
 (t

as
ks

/s
)

ExoFlow (1 node)
Ray (1 node)

ExoFlow (4 nodes)
Ray (4 nodes)

(b)

Figure C.3: Microbenchmarks, cont. Maximum task throughput (a: 1 task/DAG;
b: 100 tasks/DAG) of 10k tasks, compared against Ray as an optimal baseline, on 1
node and 4 nodes.

APPENDIX C. EXOFLOW SYSTEM DESIGN AND EVALUATION 207

data size; although the checkpoint is asynchronous, Exoflow synchronously copies the
data to guard against concurrent writes.

In summary, Exoflow’s low execution overheads make it a practical replacement
for existing workflow systems, and it enables greater flexibility in task communication
and recovery.

Data sharing for ETL. We evaluate Exoflow against Airflow for a Spark workflow
similar to Figure 6.2b (1 m5.8xlarge instance, 4GB Spark memory). Figure C.2b
measures total run time for a workflow that uses Spark to generate a 1GB random
dataset, followed by multiple downstream tasks that consume the data with data
sampling Spark jobs. Such a workflow requires orchestration across Spark jobs, which
Spark does not provide, and is therefore often run on a workflow orchestrator such as
Airflow.

Airflow run time grows proportionately with the number of consumers because
they cannot share data in-memory. Meanwhile, Exoflow scales well even with syn-
chronous checkpointing because consumers share data via Spark’s native cache. Fur-
thermore, Exoflow runs as fast as native Spark alone, while facilitating composition
with other systems as well.

Throughput and Scalability. We measure maximum throughput with varying
numbers of controllers, (AWS m5.2xlarge) nodes, and tasks per DAG. We use Ray as
the optimal baseline, as Ray is also the execution backend.

Figure C.3a (1 task/DAG) shows that Exoflow and Ray both reach saturation
after 4 controllers on one node. With 4 nodes, scalability continues, and the gap
between Exoflow and Ray narrows at around 16 controllers. Figure C.3b (100 parallel
tasks/DAG) shows that throughput overall improves via task batching. Again, with
four nodes, both Exoflow and Ray scale linearly with the number of controllers.
Exoflow achieved roughly 50% of Ray’s throughput, due to additional overhead from
workflow orchestration and ensuring exactly-once semantics.

208

Appendix D

Some random walks

Here are some nice walks in the Bay Area, walked by the author over the course
of her thesis. These are inspired by [77] (although sadly several of these require a
car). Stay hydrated!

Soda Hall to Fire Trails (4-8 miles) This walk goes right from campus, is very
nice for sunset views, and has lots of options ranging from a couple hours to a full
day. The Fire Trails have many entrypoints, but the one closest to Soda is about 1
mile away, on Centennial Drive. The Fire Trails are popular with grad students and
fun to explore on your own, so I won’t describe them too much here.

I will, however, give you a nice shortcut to a great view! The Fire Trail starting
from the Centennial Drive trailhead winds gently uphill, until about 1 mile in, when
the trail turns sharply to the left and goes up a short but steep hill. This leads to
the Upper Fire Trails, and there are great views from here. However, if you aren’t
feeling the hill, you can also continue straight, and turn left onto the residential road
Panoramic Way. Continue for another 0.5 miles, past houses that seem to be on
stilts, to reach the intersection with Dwight Way. There is a wonderful sunset view
of Berkeley and the Bay at this corner.

From here, you can turn back, head to Southside via Dwight Way, continue up
Panoramic Way to intersect with the Upper Fire Trails, or call for a ride!

Tilden Park Tilden is a delight, and one of my regrets in grad school is not going
more often and earlier on. There are again many trails here to explore, but here are
two good options.

Tilden Park: Meadows Canyon to Curran to Wildcat Gorge Trail (3 miles)
This short and moderate loop is a great introduction to Tilden Park, winding through
chaparral-covered hills, down through a eucalyptus forest, then running along a
shaded creek. The short distance combined with the nature and variety per mile

APPENDIX D. SOME RANDOM WALKS 209

made this a great option for whenever I felt I had no time or energy for a walk (but
in fact I nearly always did).

The directions here are straightforward with a map of Tilden so I will just give
some tips. It is possible to start this trail from at least three different points, but
I like to start from the Lone Oak Road parking area, where there never seems to
be as many people as in other parts of Tilden. This way, you can also go clockwise
to get the unshaded climb along Meadows Canyon out of the way first, although it
does mean you will go downhill on the slightly steeper Curran Trail. I also feel that
Wildcat Gorge is the nicest section, so this direction leaves the best for last.

There are some benches near the top of Meadows Canyon Trail that will give you
the nicest views of this loop, especially at sunset. You can also add a short detour to
see Lake Anza, and/or add the trail that goes around the lake. Keep an eye out for
one of my favorite trees ever along the Wildcat Gorge section.

Tilden Park: Lone Oak to Wildcat Peak (3-4 miles) This steeper loop goes
up to one of the nicest panoramic views in Tilden. As it is for most Tilden points
of interest, there are multiple ways up. I like to start from the Lone Oak parking
area and walk Loop Road to Laurel Canyon Trail to Laurel Canyon Road, to Wildcat
Peak Trail. There is also a redwood grove with some picnic tables right before the
last climb to the peak, if you’re looking for a nice lunch spot. On the way down,
take Wildcat Peak Trail and Sylvan Trail back to Loop Road, because everyone likes
a loop more than an out-and-back. You can also take the slightly longer but much
flatter approach from Inspiration Point along Nimitz Way.

Mt Tam State Park: Stinson Beach to Matt Davis to Steep Ravine to
Dipsea Trail (7-9+ miles) This is my favorite hike in the Bay Area. It feels like
it has practically every ecosystem in California that isn’t the desert or mountains:
waterfalls, forests, golden (i.e. brown) hills, redwoods, and the beach, all in one loop.
Also, with a little bit more effort than the standard trail calls for, you get excellent
views of the Bay Area in addition to the ocean.

Start at Stinson Beach, where there is plenty of free parking and public bath-
rooms. Walk towards and past the Stinson Fire Station, where you will see the Matt
Davis trailhead on your right. From here, take the switchbacks up through your first
ecosystem of the day, a mossy forest with waterfalls at your side. Eventually you will
leave the forest cover and enter the prototypical California hills. This area is nicest
in the winter and spring, when the hills are green.

You can continue on the Matt Davis Trail, or for more adventure and fewer
crowds, take this alternative. Turn left onto the Coastal Trail. About a few hundred
feet after the intersection, you will find a use trail on your right that climbs up the
hill. The climb is very steep but short. Take the trail up and over to the ridgeline,
where you will find a network of use trails. Explore! Eventually, find another use

APPENDIX D. SOME RANDOM WALKS 210

trail that climbs back down on the other side of the hill and meet up with the Matt
Davis Trail to continue.

From here, the route is standard. Take Steep Ravine Trail through a redwood
forest to Dipsea Trail through beach shrubbery back to Stinson Beach. Alternatively,
for an extra long walk, you can continue from Matt Davis all the way up to the peak
of Mt Tam, although you will find that most people just drive up to avoid this 15mi
round-trip hike. End with a foot soak in the frigid Pacific waters! That is the other
reason for starting at Stinson Beach.

	Contents
	List of Figures
	List of Tables
	Introduction
	The Landscape of Data-Intensive Applications
	Alternative Solutions
	Overview and Contributions

	Distributed futures and RPC
	Introduction
	API
	Automatic memory management
	Is the API enough for applications?
	Related abstractions for distributed memory
	System Implementation and Thesis Work
	Memory management
	Fault tolerance

	Conclusion and Lessons Learned

	Lineage stash
	Introduction
	Background
	Case Study: Stream Processing
	System Model and Challenges

	Lineage Stash Overview
	Lineage Stash Implementation
	Definitions
	Protocol
	Failure Model

	Evaluation
	Microbenchmarks
	End-to-end Applications

	Related work
	Conclusion and Lessons Learned

	Ownership
	Introduction
	Distributed Futures
	API
	Applications

	Overview
	Requirements
	Existing solutions
	Our solution: Ownership

	Ownership Design
	Task scheduling
	Memory management
	Failure recovery

	Evaluation
	Microbenchmarks
	End-to-end applications

	Related Work
	Discussion
	Programming languages
	Impact on Ray

	Conclusion and Lessons learned

	Exoshuffle
	Introduction
	Motivation
	Shuffle Systems
	Random Shuffle in ML Training Pipelines

	Shuffle with Distributed Futures
	The Distributed Futures API
	Expressing Shuffle with Distributed Futures

	System Architecture
	Example: Push-based Shuffle
	Scheduling Primitives
	Transparent System Facilities

	Evaluation
	Shuffle Performance
	Implementation Complexity
	System Microbenchmarks

	Related Work
	Discussion
	Conclusion and Lessons Learned

	Exoflow
	Introduction
	Motivation
	Overview of recovery strategies
	Applications

	API
	Overview and requirements
	Model
	Guaranteeing exactly-once execution
	References

	Architecture
	Evaluation
	ML training pipelines
	Stateful serverless workflows

	Related Work
	Discussion
	Conclusion and Lessons Learned

	Conclusion
	Related Work
	Distributed dataflow
	RPC and actors
	High-performance computing (HPC)
	Distributed shared memory (DSM)
	Disaggregated memory
	Serverless
	Cluster managers

	Discussion
	Broader Impact: History of Ray as an open-source project
	Lessons Learned
	Limitations and future work

	Conclusion

	Appendix
	Ownership system protocols
	Distributed Reference Counting
	Formal Specification

	Exoshuffle libraries, applications, and evaluation
	Expressing Shuffle Strategies with Distributed Futures
	Pre-Shuffle Merge
	Push-based Shuffle
	Straggler Mitigation
	Data Skew

	Expressing Shuffle Applications
	Online Aggregation with Streaming Shuffle
	Distributed ML Training with Pipelined Shuffle

	Evaluation
	Performance Comparison of Shuffle Libraries
	Shuffle Scalability
	Shuffle Applications
	CloudSort
	Online Aggregation with Streaming Shuffle
	Distributed ML Training

	Exoflow system design and evaluation
	Architecture
	Workflow execution
	Workflow recovery
	Execution backends

	Implementation
	Evaluation
	Online-offline graph processing
	Microbenchmarks

	Some random walks

