
Lawrence Berkeley National Laboratory
Recent Work

Title
UPC++: A high-performance communication framework for asynchronous computation

Permalink
https://escholarship.org/uc/item/1gd059hj

ISBN
9781728112466

Authors
Bachan, J
Baden, SB
Hofmeyr, S
et al.

Publication Date
2019-05-01

DOI
10.1109/IPDPS.2019.00104

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1gd059hj
https://escholarship.org/uc/item/1gd059hj#author
https://escholarship.org
http://www.cdlib.org/

2019 IEEE International Parallel and Distributed Processing Symposium

UPC++: A High-Performance Communication
Framework for Asynchronous Computation

John Bachan1 Scott B. Baden1 Steven Hofmeyr1 Mathias Jacquelin1

Amir Kamil1,2 Dan Bonachea1 Paul H. Hargrove1 Hadia Ahmed1
1 Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

2 University of Michigan, Ann Arbor, MI 48109, USA
pagoda@lbl.gov

Abstract—UPC++ is a C++ library that supports high-
performance computation via an asynchronous communication
framework. This paper describes a new incarnation that differs
substantially from its predecessor, and we discuss the reasons for
our design decisions. We present new design features, including
future-based asynchrony management, distributed objects, and
generalized Remote Procedure Call (RPC).

We show microbenchmark performance results demonstrating
that one-sided Remote Memory Access (RMA) in UPC++ is com-
petitive with MPI-3 RMA; on a Cray XC40 UPC++ delivers up to
a 25% improvement in the latency of blocking RMA put, and up
to a 33% bandwidth improvement in an RMA throughput test.
We showcase the benefits of UPC++ with irregular applications
through a pair of application motifs, a distributed hash table
and a sparse solver component. Our distributed hash table in
UPC++ delivers near-linear weak scaling up to 34816 cores of
a Cray XC40. Our UPC++ implementation of the sparse solver
component shows robust strong scaling up to 2048 cores, where
it outperforms variants communicating using MPI by up to 3.1x.
UPC++ encourages the use of aggressive asynchrony in low-

overhead RMA and RPC, improving programmer productivity
and delivering high performance in irregular applications.

Index Terms—Asynchronous, PGAS, RMA, RPC, Exascale.

I. INTRODUCTION

UPC++ [1, 2, 3] is a C++ library that supports Partitioned
Global Address Space (PGAS) programming. An early pre-
decessor of UPC++ was released in 2012 as v0.1 [4]. This
paper describes a new incarnation of UPC++ (v1.0) with a very
different design, which is tailored to meet the needs of exascale
applications that require PGAS support1. There are three main
principles behind the redesign of UPC++. First, wherever
possible, operations are asynchronous by default, to allow the
overlap of computation and communication, and to encourage
programmers to avoid global synchronization. Second, all data
motion is explicit, to encourage programmers to consider the
costs of communication. Third, UPC++ encourages the use
of scalable data-structures and avoids non-scalable library
features. All of these principles are intended to provide a
programming model that can scale efficiently to potentially
millions of processors.

Like other PGAS models, UPC++ supports physically dis-
tributed global memory, which can be referenced via special
global pointers. Using global pointers, processes can copy data

1UPC++ is portable beyond HPC systems—it runs on 64-bit Linux and
macOS, and can be used on laptops as well as servers.

between their local memory and remote global memory using
one-sided Remote Memory Access (RMA) operations. Unlike
pointer-to-shared in UPC [5], UPC++ global pointers cannot
be directly dereferenced, as this would violate our principle of
making all communication syntactically explicit. In addition to
RMA, UPC++ also supports Remote Procedure Calls (RPCs),
whereby the caller can induce a remote process to invoke
a user function, including any arguments and generating an
optional result for return to the sender.

In this paper, we provide an overview of the UPC++
programming model and describe its implementation over the
GASNet-EX communication library [6], which delivers a low-
overhead, high-performance runtime. Using microbenchmarks,
we demonstrate that the bandwidth and latency achieved by
UPC++ RMA operations are competitive with MPI one-sided
transfers. Finally, we present results for two application motifs
that exemplify the advantages of UPC++, and more generally,
PGAS programming. The first motif is a distributed hash
table, where latency is a limiting factor; it benefits from the
synergistic interaction of RPC with RMA. The second is an
extend-add operation that is a crucial building block of sparse
solvers; it relies heavily on RPC and benefits from UPC++
mechanisms for asynchrony.

II. UPC++ PROGRAMMING MODEL

A UPC++ program running on a distributed-memory parallel
computer can be viewed as a collection of processes, each
with local memory (see Fig. 1). UPC++ implements SPMD
parallelism, with a fixed number of processes during program
execution. Like other PGAS models, UPC++ provides global
memory that the user program allocates in shared segments dis-
tributed over the processes. Processes have access to remotely
allocated global memory via a global pointer and can access
their respective local memories via conventional C++ pointer.
As with threads programming, references made via global
pointers may be subject to race conditions, and appropriate
synchronization must generally be employed.

A UPC++ global pointer differs from a conventional C-
style pointer in several ways. Most importantly, it cannot be
dereferenced with the * operator, as this would violate the
explicit data-motion principle. However like conventional C-
style pointers, UPC++ supports arithmetic on global pointers
and passing global pointers by value. A global pointer can also

c©2019 IEEE doi:10.25344/S4V88H 1

https://doi.org/10.25344/S4V88H

Fig. 1: PGAS logical memory model

be converted to and from a conventional pointer to the same
object in the shared segment by the owning process.

Global pointers are used to refer to memory in shared
segments when transferring data between processes via one-
sided RMA communication operations. Global pointers are
also used to refer to shared-segment memory locations in
atomic operations.

All operations that involve communication are non-blocking
and are managed through an API that includes futures and
promises. This is a departure from the previous version of
UPC++, which used an event-based model. While both allow
the expression of asynchronous operations, futures are a much
more powerful and composable abstraction, enabling arbitrary
dependency graphs to be constructed. Futures and promises
are also more likely to be familiar to C++ programmers, since
they were introduced to the C++ standard library in C++11 [7].

Unlike standard C++ futures, UPC++ futures and promises
are used to manage asynchronous dependencies within a
thread and not for direct communication between threads or
processes. A future is the interface through which the status
of the operation can be queried and the results retrieved,
and multiple future objects may be associated with the same
promise. A future thus represents the consumer side of a
non-blocking operation. Each non-blocking operation has an
associated promise object, which is created either explicitly by
the user or implicitly by the runtime when the non-blocking
operation is invoked. A promise represents the producer side
of the operation, and it is through the promise that the results
of the operation are supplied and its dependencies fulfilled. A
user can pass a promise to a UPC++ communication operation,
which registers a dependency on the promise and subsequently
fulfills the dependency when the operation completes. The
same promise can be passed to multiple communication op-
erations, and through a single wait call on the associated
future, the user can be notified when all the operations have
completed.

Futures are also a mechanism for composing asynchronous
operations, allowing the construction of elaborate dependence-
driven graphs of asynchronously executed operations. A user
can chain a callback to a future via the .then() method, and
the callback will be invoked on the values encapsulated by the
future when they are available. The callback can be a function
or a lambda, and it can initiate asynchronous operations of
its own. The .then() method itself produces a new future,
representing the results of the callback, and the new future can

then have further callbacks chained on to it. Multiple futures
can be conjoined by the when_all() function template,
which produces a single future that represents readiness of
all the input futures and their values. A callback can then be
chained to the resulting future, allowing the callback to depend
on the completion of and the values produced by multiple
asynchronous operations.
UPC++ provides several types of communication opera-

tions: RMA, RPC, remote atomics and collectives; all are
asynchronous and support a flexible set of synchronization
mechanisms. RMA implements one-sided communication, and
RPC ships a user-provided function or lambda with argu-
ments to a remote processor for execution. On most high-
performance networks, RMA operations use network hardware
offload support to deliver low latency and high bandwidth.
Remote atomics are useful in implementing lock-free data
structures, and on network hardware with appropriate capabil-
ities (such as available in Cray Aries) remote atomic updates
can also be offloaded, improving latency and scalability [8].
UPC++ has several other powerful features that can enhance

programmer productivity and improve performance. For ex-
ample, UPC++ also supports non-contiguous RMA transfers
(vector, indexed and strided), enabling programmers to conve-
niently express more complex patterns of data movement, such
as those required with the use of multidimensional arrays2.

Unlike UPC, UPC++ does not support distributed shared ar-
rays, partially because these are difficult to implement scalably
in a portable way—in general, every process must store at least
one base pointer for every other process’s shared segment.
The other reason, a semantic reason, is that symmetric heaps
(the implementation approach to distributed arrays used in
UPC, OpenSHMEM [9] and other models) require globally
collective allocation that does not compose well with subset
processor teams. Instead, UPC++ provides distributed objects,
which can be used to conveniently represent an object (such as
an array) distributed across any subset of processes, without
implicitly requiring non-scalable storage anywhere in the
software stack to track remote instances of the object. UPC++
RPCs include support to automatically and efficiently translate
distributed object arguments between global identifiers and the
local representative in each process. Obtaining a global pointer
from a remote instance of a distributed object requires explicit
communication, in keeping with the principle that there should
be no implicit communication in UPC++.

The remainder of this paper will focus on a subset of the
UPC++ features: futures, global pointers, RMA and RPC. For
a discussion of other features, the reader is referred to the
UPC++ Programmer’s Guide [3].

III. IMPLEMENTATION OF THE UPC++ RUNTIME

In this section, we give a simplified overview of how the
UPC++ runtime handles asynchronous operations. UPC++ uses
GASNet-EX as the communication layer, which handles the

2UPC++ does not directly provide a multidimensional-array abstraction, but
is compatible with those provided by other packages.

2

transfer of data over the network and within shared memory.
For the purposes of this discussion, we will focus on two
categories of data-movement operations provided by GASNet-
EX: RMA (get and put), and Active Messages (AM). RMA
copies data between local memory and global memory, and
an AM invokes a function with an optional payload on a
remote process. These operations execute asynchronously, and
GASNet-EX provides interfaces to obtain notification when
operations complete.

The UPC++ runtime is responsible for translating UPC++
communication operations into lower-level GASNet-EX op-
erations, synchronizing their completion, and progressing
UPC++-level operations. The asynchronous aspects of the op-
erations are managed by the Progress Engine, which advances
the progress of pending or ongoing communication requests
and processes completed requests. UPC++ does not use special
runtime threads to implement progress. Instead, progress is
made either during calls into the library (internal progress),
or explicitly when a user program invokes the progress or
wait3 calls (user-level progress).

The design of UPC++ avoids introducing hidden threads
inside the runtime in order to improve user-visibility into the
resource requirements of UPC++ and to enhance interoper-
ability with software packages that have restrictive threading
requirements. The consequence, however, is that the user must
be aware of the balance between the need to make progress
(via explicit library calls) and the application’s need for CPU
cycles. This is related to the matter of attentiveness, which we
will discuss shortly.

The Progress Engine employs three unordered queues for
user operations:

defQ Operations in the deferred state,
i.e. not yet handed off to GASNet-EX.

actQ Operations in the active state,
i.e. already handed off to GASNet-EX.

compQ Operations in the complete state,
i.e. they have finished.

When a UPC++ RMA injection call is made, the runtime
creates a promise for the operation and stores the promise
in defQ, indicating the operation is in the deferred state.
This promise is used to create the future that is returned by
rget/rput. The Progress Engine polls defQ and initiates the
queued operations. When the RMA is handed off to GASNet-
EX, the operation enters the active state, and its associated
promise is placed in actQ. The RMA will now complete
without initiator attentiveness4, since GASNet-EX has taken
over responsibility. When GASNet-EX has finished the RMA,
it indicates completion to the UPC++ runtime, and the next
call into internal progress (any UPC++ communication call)
promotes the operation to the complete state, at which point
it will move the promise to the compQ queue. The compQ
queue is drained only by explicit user-progress. Hence, this
queue can be thought of as the list of “futures to satisfy.”

3The wait call is simply a spin loop around progress.
4No further local CPU resources are required to complete the data transfer.

Fig. 2: Progression of RPC through the UPC++ runtime. Blue
and yellow circles are promises.

RPC operations (Fig. 2) progress through both the initiator’s
and the target’s queues. Once the RPC is dispatched from the
sender, the UPC++ runtime places a promise in the initiator’s
actQ, and GASNet-EX moves the payload to the target using
AM. On the target’s side, the incoming RPC (the lambda
or function pointer, plus any arguments) is inserted into the
target’s compQ. The target must be attentive to user-level
progress to execute this RPC (e.g., if the target enters intensive,
protracted computation without calls to progress, incoming
RPCs will stall). Once the RPC executes, its return value will
be sent through defQ and actQ back to the initiator side using
AM, which updates the corresponding promise and moves it
to the initiator’s compQ5.

If a program attaches a callback action to a future (via the
.then() method), that callback is invoked at the initiator
after the corresponding future-returning operation completes
(this progression is not shown in Fig. 2). Each future maintains
a queue of callbacks that are waiting on it, and when the
promise associated with an operation is moved to the compQ,
the callbacks attached to the corresponding future are also
placed there. When user progress executes a callback in
compQ, the promise behind the associated future is satisfied.

IV. EXPERIMENTAL RESULTS

In this section, we present microbenchmark results showing
that the performance of UPC++ RMA operations is competi-
tive with MPI one-sided RMA. We then describe the code for
two application motifs and present performance results.

A. Testbed

All the experiments presented in this paper were run on the
Cori Cray XC40 system [10] at NERSC [11]. This system has
two disjoint partitions, each interconnected using a Cray Aries
network in a Dragonfly topology. Cori Haswell has 2,388
compute nodes, each equipped with two 2.3GHz 16-core Intel
Xeon E5-2698v3 “Haswell” processors and 128GB of DDR4

5UPC++ provides several variants of RPCs, one of which (rpc_ff) does
not return anything to the initiator, and hence its progress is more like
rget/rput.

3

(a) Round-trip Put Latency (lower is better) (b) Flood Put Bandwidth (higher is better)

Fig. 3: RMA microbenchmark performance on Cori Haswell.

DRAM. Cori KNL has 9688 nodes, and each node has a single
1.4GHz 68-core Intel Xeon Phi 7250 “KNL” processor, 96GB
of DDR4 DRAM, and 16GB of on-package high-bandwidth
memory. The code used for all experiments was compiled
with Cray’s PrgEnv-intel/6.0.4 environment module
and version 18.0.1 20171018 of the Intel compiler suite.
All UPC++ results use release version 2018.9.0 with GASNet-
EX v2018.9.0 aries-conduit [8]. All MPI results presented for
comparison used Cray’s cray-mpich/7.6.2 environment
module. To ensure proper optimizations for the KNL CPU,
executables built for Cori KNL used the craype-mic-knl
environment module. Other than selection of the appropriate
craype-* module, all environment modules and settings
used the NERSC defaults.

B. Microbenchmarks
To measure bandwidth, we ran a “flood” microbenchmark,

which initiates a large number of non-blocking RMA puts of
a given size and then waits for them all to complete. The
bandwidth metric is then the total volume of data transferred,
divided by the total elapsed time. For UPC++, we issue
multiple rput operations in a loop and use promises to track
completion, as shown in the following code outline:
upcxx : : promise<> p ; / / f o r t r a c k i n g c o m p l e t i o n
whi le (i t e r s −−) {

/ / one−s i d e d p u t t o remote memory l o c a t i o n
/ / d e s t i s a g l o b a l p o i n t e r
upcxx : : r p u t (s r c , d e s t , s i z e ,

upcxx : : o p e r a t i o n c x : : a s p r o m i s e (p)) ;
/ / o c c a s i o n a l p r o g r e s s
i f (! (i t e r s % 1 0)) upcxx : : p r o g r e s s () ;

}
/ / w a i t f o r a l l r p u t s t o c o m p l e t e
p . f i n a l i z e () . w a i t () ;

In the second experiment, we measured latency by issuing
a large number of blocking transfers of a given size, i.e. the

microbenchmark waits for each upcxx::rput operation to
complete (which includes waiting for a network-level acknowl-
edgment from the target) before issuing a new one. The latency
metric is then the average time taken to transfer a given size.
The code outline is simple, using a wait on a future:

whi le (i t e r s −−)
/ / i s s u e one rpu t , w a i t f o r c o m p l e t i o n
upcxx : : r p u t (s r c , d e s t , s i z e) . w a i t () ;

For comparison, we also ran semantically analogous MPI-3
one-sided benchmarks from the Intel MPI Benchmarks
suite [12] (IMB), version v2018.1. The flood bandwidth
of the MPI_Put function was measured using the aggre-
gate timings of the Unidir_put microbenchmark from the
IMB-RMA test, whereas the latency microbenchmark used the
non-aggregate timings. Both tests use a passive-target access
epoch and synchronize using MPI_Win_flush.

All tests were run between two compute nodes of Cori
Haswell6, using a single process per node, i.e. one initiator
and one passive target. Each data point shows the best result
obtained across 10 different batch jobs for that configuration,
with the UPC++ and MPI RMA tests run back-to-back within
each batch job. It can be seen in Fig. 3 that for sizes less
than 256 bytes the latency of UPC++ is better than that of
MPI RMA by more than 5% on average, and from 256 to
1024 bytes the improvement averages more than 25%. This
latency advantage is present though at least 4MB (the largest
we measured). The bandwidths are comparable for small and
large sizes, but differ in the range between 1KB and 256KB.
This difference is most pronounced at 8KB, where UPC++ is
delivering over 33% more bandwidth than MPI RMA.

6The same experiments on Cori KNL reveal a known performance anomaly
in Cray MPI RMA on this platform. Since this would imply a non-
representative advantage for UPC++, we have omitted those results. However,
the remaining benchmarks in this paper do not use MPI RMA.

4

C. Distributed Hash Table

In our first example application motif, we show how to
implement a distributed hash table that scales efficiently to
large numbers of processes.7 In the simplest implementation,
each process has its own local map:

s t d : : unordered map<s t r i n g , s t r i n g > l oca l map ;

The insert operation uses RPC to update the local map at the
target8:

upcxx : : f u t u r e <> i n s e r t (c o n s t s t r i n g &key ,
c o n s t s t r i n g &v a l) {

re turn upcxx : : r p c (g e t t a r g e t (key) ,
[] (s t r i n g key , s t r i n g v a l) {

l oca l map . i n s e r t ({ key , v a l }) ;
} , key , v a l) ;

}

The target process is determined by a hash function
get_target (not shown) that maps a key to a unique
process. The data is inserted using a lambda function, which
takes a key and a value as parameters. The insert operation
returns the result of the lambda, which in this case is an empty
future. An example use of this asynchronous insert operation:

upcxx : : f u t u r e <> f = i n s e r t (” Germany ” , ”Bonn”) ;
f . w a i t () ;

Although an RPC-only distributed hash table will work, we
can improve the performance for larger value sizes by taking
advantage of the zero-copy RMA provided by UPC++. First,
we define a landing zone type, lz_t, comprised of a global
pointer and a size for a stored value:

s t r u c t l z t {
upcxx : : g l o b a l p t r <char> g p t r ;
s i z e t l e n ;

} ;

Then our local_map maps to landing zones, rather than
directly to values:

s t d : : unordered map<s t r i n g , l z t > l oca l map ;

We define a function, make_lz, which takes as input
a key and value size, and creates a landing zone using
upcxx::allocate to allocate uninitialized space in global
memory. make_lz inserts the key and landing zone pointer
into the local map, returning a global pointer suitable for use
in RMA:

upcxx : : g l o b a l p t r <char>
make lz (s t r i n g key , s i z e t l e n) {

upcxx : : g l o b a l p t r <char> d e s t =
upcxx : : a l l o c a t e <char>(l e n) ;

l oca l map . i n s e r t ({ key , { d e s t , l e n }}) ;
re turn d e s t ;

}

7 To facilitate discussion, the example code presented in this section is
a simplified version of our actual distributed hash table benchmark, which
uses an integer key type and a value type of std::array<uint64_t,
N> rather than std::string.

8For brevity, we omit the find operation; it can be similarly implemented
using RPC.

Finally we show the RMA-enabled hash table insert operation:

upcxx : : f u t u r e <> i n s e r t (c o n s t s t r i n g &key ,
c o n s t s t r i n g &v a l) {

upcxx : : f u t u r e <upcxx : : g l o b a l p t r <char>> f ;
f = upcxx : : r p c (g e t t a r g e t (key) ,

make lz , key , v a l . s i z e () + 1) ;
re turn f . t h e n (

[v a l] (upcxx : : g l o b a l p t r <char> d e s t) {
re turn upcxx : : r p u t (v a l . c s t r () , d e s t ,

v a l . s i z e () + 1) ;
}) ;

}

This function initiates an RPC of make_lz to obtain
the remote landing zone pointer, and schedules a callback
to transfer the value data to the retrieved location using
upcxx::rput. Note the RPC returns a future containing the
global pointer, so the rput is injected by a .then callback
that executes when the RPC’s future completes. The .then
operation itself returns a future representing completion of
the chain, and is returned by insert to represent the entire
asynchronous insertion operation.

We measured the distributed hash table implementation with
a simple use case where each process inserts a different set of
randomly generated 8-byte keys, with varying sizes of values.
For each element size, the same total volume of data was
inserted, e.g. a run with an element size of 2KB would execute
4x more iterations than a run with an element size of 8KB.
The benchmark blocks after each insertion, so this application
is limited by communication latency9.

Weak scaling results are shown in Fig. 4, running from a sin-
gle process up to 512 nodes (16384 processes on Cori Haswell
and 34816 processes on Cori KNL). As expected, there is an
initial decline in performance from one to two processes, as
we move from serial to parallel operation. The serial code
omits all calls to UPC++, and thus represents the best we can
achieve with the underlying C++ standard library. Beyond two
processes, the implementation scales efficiently. Although the
communications are fine-grained, they are random and so the
network traffic is well-distributed, which aids in the scaling.

As we have shown with this application motif, RPCs can be
a useful mechanism for implementing distributed hash tables.
They are particularly elegant when we need to update complex
entries in the hash table. Suppose we represented a graph as a
distributed hash table, where each vertex is a class containing
a vector of neighbors, among other properties:

s t r u c t V er t e x {
. . . / / v a r i o u s p r o p e r t i e s
v e c t o r<s t r i n g > nbs ;

} ;

Now, if we wish to update a vertex (with id v) to add a
new neighbor (with id nb), that is easy to do with RPCs (this
simplified example assumes the key is always found):

9Latency performance is a key consideration for many distributed hash table
applications, such as genome assembly [13].

5

(a) Cori Haswell (b) Cori KNL

Fig. 4: Weak scaling of distributed hash table insertion. The dotted line represents the processes in one node.

upcxx : : r p c (g e t t a r g e t (v) ,
[] (s t r i n g key , s t r i n g v a l) {

auto i t = loca l map . f i n d (key) ;
auto v e r t e x = &i t−>second ;
v e r t e x−>nbs . push back (v a l) ;

} , v , nb) ;

By contrast, if we had no support for RPCs and had to use
only one-sided puts and gets, this would be more complicated,
error-prone, and likely less efficient. We’d have to first lock the
entry in the hash table, then rget the Vertex from the remote
process, modify it locally, rput it back to the remote process,
and then unlock it. The representation of the Vertex class
would also have to be modified, because the representation
of STL types std::vector and std::string are not
amenable to direct access via RMA.

D. Sparse Solvers

1) Background: Our second application motif is a sparse
solver. Sparse matrices contain a significant number of zeros,
and by taking advantage of this specific structure, sparse
matrix computations employed by sparse solvers are able
to drastically reduce storage and computing costs. Here we
focus on an operation called extend-add (henceforth denoted
e_add), a key component of multifrontal sparse solvers [14].

In multifrontal algorithms, computations comprise a se-
quence of parallel operations on dense matrices called frontal
matrices that correspond to a part of the entire sparse ma-
trix. Frontal matrices are organized along the elimination
tree [15] of the sparse matrix, forming a hierarchy described in
terms of a parent/child relationship representing the numerical
dependencies among rows/columns during the factorization.
Fig. 5 depicts two levels of such a hierarchy; the three frontal
matrices represent a portion of some sparse matrix A.

The e_add operation entails a child updating the parent
where each use different local coordinate systems, therefore

indices of the child must be mapped to the parent’s correspond-
ing indices. The mapping between local and global element
indices is stored in the metadata of each frontal matrix, namely
Ip for the parent and IlC / IrC for each child. Frontal matrices
are processed in parallel: they are mapped onto groups of pro-
cesses using the proportional mapping heuristic [16], which
assigns subtrees of frontal matrices to groups of processes of
varying size depending on their computational cost. Frontal
matrices are then distributed in a 2D block-cyclic manner with
a fixed block size among processes of each group, as depicted
by the colored blocks in Fig. 5.

The numerical factorization of a sparse matrix corresponds
to a single bottom-up traversal of the elimination tree, more
precisely the frontal matrix tree in the context of the multi-
frontal algorithm. At each level of the hierarchy, it is con-
venient to partition a frontal matrix F into four component
matrices:

F =

(
F11 F12

F21 F22

)
F11, F12, and F21 are called factors and correspond to the
output of the algorithm. F22 is called the contribution block,
and contains the values that the child will use to update the
parent frontal matrix. This matrix is a temporary, and can be
discarded once the e_add has completed.

At each level of the traversal, the e_add operation applies
the updates from the F22 matrix of each child to the four
submatrices of the parent. Element indices of each child are
first converted to global indices via IlC or IrC , and then onto
local indices in the parent’s coordinate system via Ip. Fig. 5
depicts these updates on a 2-by-3 process grid. The red arrows
show where entries represented by blue dots in the left child
are sent to the parent and accumulated. In this example, the
parent frontal matrix is distributed over six processes, the left
child is distributed over two processes (magenta and yellow),

6

F11 F11

F11

F21 F21

F21

F12 F12

F12

F22

F22F22

Ip

IlC IrC

Parent

Left child Right child

Fig. 5: The e_add operation on a 2-by-3 process grid.

and the right child is distributed over the remaining four. The
number of processes will generally not be the same in the
parent and the children.

2) Extend-add Implementation: In many multifrontal
solvers, the update operation is implemented in three steps:
(1) processes working on a child compute the locations, in
the coordinate system of the parent, where values of their
respective chunk of the contribution block need to be accumu-
lated in the parent; (2) values are communicated between all
processes assigned to the parent; and (3) the received values
are accumulated by the owner of local chunks of the parent
frontal matrix. The communication step (2) can be performed
either using an all-to-all collective communication or a non-
blocking point-to-point strategy. State-of-the-art solvers like
STRUMPACK [17] implement this step using the former
approach while solvers such as MUMPS [18] use the latter.

Our UPC++ implementation is similar to the point-to-point
strategy. It issues an RPC to every process in the parent,
and the input data to these RPCs (i.e. numerical values to
accumulate on a given process) are serialized by the UPC++
framework and sent over the network using UPC++ views [2].
A view is a mechanism that enables an RPC to serialize a
sequence accessed via a user-provided iterator. After the RPC
arrives at the target process, it is executed to accumulate data
into the parent frontal matrix. Fig. 6 depicts the operation. The
magenta process in the left child (1) packs the data going to
each remote process, (2) issues three RPCs to the red, yellow,
and gray processes to transfer the data, and (3) RPCs are
executed on the target processes to accumulate received data
into the locations indicated by the red arrows. This corresponds
to finding the locations of indices i1, i2, i3, and i4 from IlC
in the parent index set Ip.

We now demonstrate in detail how these three steps can be
carried out using UPC++. The implementation defines a class
FMat that includes several fields important to this discussion:

• lChild and rChild: pointers to left and right children
• row_indices: a vector containing the global indices of

the frontal matrix in the sparse matrix (corresponding to Ip,
IlC and IrC in Fig 5)

• front_team: a upcxx::team object (similar in func-
tionality to an MPI communicator) representing the pro-
cesses onto which this frontal matrix is mapped

• pack: a utility function that compares row_indices of
the child and the parent, determines which numerical values
are to be sent to a given process in the parent, and bins them
into appropriate buffers

• e_add_prom: a upcxx::promise initialized with the
number of incoming RPCs expected by the current pro-
cess; this promise acts as a counter and has an associated
upcxx::future which becomes ready when the counter
reaches zero

The top-level code is shown in Fig 7. The e_add func-
tion iterates over both children of the process and calls the
eadd_send helper function (at lines 7-10), which packs the
data to be sent and calls upcxx::make_view to create a
serializable upcxx::view object, v, of the data destined
for each process of the parent frontal matrix (line 26). The
actual serialization is done by the RPC injection call, which
eventually results in remote invocation of the accum function.
The accum callback (not shown) traverses the data packed
in the upcxx::view argument (a non-owning view into
the incoming network buffer), accumulates each element into
one of the local factor matrices (F11, F21, F12, F22), and
calls e_add_prom.fulfill_anonymous(1), signaling
the e_add() function that the expected incoming RPC has
been processed. The RPC injection returns a future, fut,
that is used to track acknowledgment (at line 28). The
returned future objects are conjoined into a single future,
f_conj, via the upcxx::when_all function (line 29).

F11

F11

F21

F21

F12

F12

F22

1

2

3

F22

RPC RPC RPC

communication
i1
i2

i3
i4

i1 i4i3i2

i1

i2

i3
i4

i1 i2 i3 i4

Fig. 6: e_add operation implemented with UPC++ using
RPCs on a 2-by-3 process grid.

7

1 void FMat : : e add () {
2 v e c t o r<v e c t o r<double> > s b u f s [2] ;
3 / / empty f u t u r e , t h e s t a r t i n g p o i n t
4 / / o f c o n j o i n e d f u t u r e s
5 upcxx : : f u t u r e <> f c o n j ;
6 f c o n j = upcxx : : m a k e f u t u r e () ;
7 eadd send (t h i s−>l C h i l d , s b u f s [0] ,
8 f c o n j , t h i s−>f r o n t t e a m) ;
9 eadd send (t h i s−>r C h i l d , s b u f s [1] ,

10 f c o n j , t h i s−>f r o n t t e a m) ;
11 / / w a i t u n t i l a l l RPCs i s s u e d by t h i s
12 / / p r o c e s s have c o m p l e t e d
13 upcxx : : w h e n a l l (f c o n j ,
14 e add prom . f i n a l i z e ()) . w a i t () ;
15 }

16 void FMat : : eadd send (FMat∗ ch , v e c t o r<v e c t o r<double> > &sbuf ,
17 upcxx : : f u t u r e <> &f c o n j , upcxx : : team &f r o n t t e a m) {
18 i n t myrank = f r o n t t e a m . rank me () , P = f r o n t t e a m . rank n () ;
19 i n t myrank ch = ch−>f r o n t t e a m . rank me () ;
20 pack (ch , s b u f) ; / / b i n o u t g o i n g e n t r i e s i n t o s b u f
21 / / l a u n c h an RPC t o e v e r y p r o c e s s i n f r o n t t e a m
22 f o r (i n t l p = 0 ; l p < P ; l p ++) {
23 p d e s t = (myrank + 1 + l p) % P ;
24 i f (s b u f [p d e s t] . s i z e () == 0) c o n t i n u e ;
25 / / c o n s t r u c t a s e r i a l i z a b l e v iew o f t h e da ta
26 auto v = upcxx : : make view (s b u f [p d e s t]) ;
27 / / a c c u m u l a t e i n t o f a c t o r m a t r i x on t h e remote p r o c e s s o r
28 auto f u t = upcxx : : r p c (f r o n t t e a m [p d e s t] , accum , myrank ch , v) ;
29 f c o n j = upcxx : : w h e n a l l (f c o n j , f u t) ; / / c o n j o i n
30 }
31 }

Fig. 7: Extend-add code sketch. this refers to the parent frontal matrix object.

This function is also used to conjoin f_conj to the future
associated with the e_add_prom promise, obtained using
promise::finalize (lines 13-14). This ensures that all
the expected RPCs have been executed by the current process.

3) Extend-add Evaluation: We evaluated the performance
of our UPC++ implementation against two MPI variants, one
using all-to-all collectives and the other using MPI_Isend/
Irecv calls. Our use of these two different MPI variants
follows the strategy generally employed by state-of-the-art
solvers such as STRUMPACK and MUMPS. We use the
audikw_1 sparse matrix input from the Suite Sparse matrix
collection [19]. The frontal matrix tree and data distribution
information are extracted from the STRUMPACK solver. No
computation other than the accumulation of numerical values
is performed by the benchmark. Each data point corresponds to
the mean of 10 runs, and each variant executes the exact same
amount of computation and communicates the same amount
of data.

The results are shown in Fig. 8 on both Cori Haswell and
KNL, using 32 and 64 processes per node, respectively; the all-
to-all variant is labeled MPI Alltoallv, whereas the point-
to-point variant is labeled MPI P2P. As can be observed in

the figure, the UPC++ implementation maintains a consistent
advantage over both MPI implementations, delivering up to
a 1.63x speedup relative to MPI Alltoallv and a 3.11x
speedup relative to MPI P2P. Similar results were observed
for other matrices from the Suite Sparse matrix collection. This
demonstrates that the RPC-based approach can be effective for
implementing non-blocking asynchronous computations such
as those required by the extend-add operation. Furthermore,
UPC++ RPCs offer an elegant way to implement this operation
from a productivity standpoint.

4) symPACK Comparison Between UPC++ Versions: In
the next experiment, we analyze the performance of a direct
linear solver for sparse symmetric matrices named symPACK,
which has been shown to be competitive against state-of-the-
art solvers [20]. It was originally implemented using the pre-
decessor UPC++ and has recently been ported to UPC++ v1.0.
The previous implementation used v0.1 asyncs and events to
schedule the asynchronous communication. These translated
naturally to RPCs and futures, respectively, in v1.0. We com-
pared the performance of both implementations of symPACK
on NERSC Cori Haswell with 32 processes/node, using the
Flan_1565 sparse matrix from the Suite Sparse matrix

1 4 32 64 12
8

25
6

51
2

10
24

20
48

Processes

100

101

Ti
m

e
(s

)

Extend-add time for audikw 1 on Cori Haswell
MPI Alltoallv
MPI P2P
UPC++ RPC

1 4 32 64 12
8

25
6

51
2

10
24

20
48

Processes

100

101

102

Ti
m

e
(s

)

Extend-add time for audikw 1 on Cori KNL
MPI Alltoallv
MPI P2P
UPC++ RPC

Fig. 8: Strong scaling of extend-add on Cori Haswell (left) and Cori KNL (right).

8

4 16 32 12
8

25
6

51
2

10
24

Processes

101

Ti
m

e
(s

)
symPACK time for Flan 1565 on Cori Haswell

UPC++ v0.1
UPC++ v1.0

Fig. 9: Strong scaling comparison of symPACK using UPC++
v0.1 and v1.0 on Cori Haswell.

collection and reporting the mean time for 10 runs at each
data point. Results depicted in Fig 9 show the performance
of the two implementations to be nearly identical; the average
difference in performance across all job sizes is 0.7%, with
the UPC++ v1.0 variant providing up to a 7.2% advantage
at 256 processes. This demonstrates that the new UPC++
framework does not incur any measurable added overheads
for this application.

V. RELATED WORK

A. Comparison to Predecessor UPC++ v0.1

The version of UPC++ presented in this paper differs
considerably from the predecessor developed by Zheng et
al [4]. Both are libraries supporting the PGAS model and
use GASNet [21] as the underlying communication layer,
but the APIs are quite different. In the current version, the
principles of making communication explicit and avoiding
non-scalable data structures means that we’ve dropped support
for implicit dereference of global pointers, shared scalars and
shared arrays. Furthermore, the API for expressing asynchrony
in our current version is based on the abstraction of futures
and promises, as introduced in C++11 [7], rather than the
async/finish interface in the predecessor version and other
models such as X10 [22] and Habanero-C [23]. The new
model improves composability of asynchronous operations,
and it enables additional flexibility in the expression of data
movement and synchronization.

Our new version of UPC++ provides substantial new ca-
pabilities that are absent from its predecessor. The future
abstraction encapsulates both data values as well as readiness
information, as opposed to events in the old version that carry
readiness information only. This semantic binding enables
asynchronous operations that return values; as such, the new
version’s RPCs are permitted to return a value, while the old
version’s asyncs could not. The future abstraction also frees
the programmer from the burden of explicitly managing event-
object lifetime, which can be challenging in algorithms with

highly asynchronous and irregular communication patterns.
RMA operations in the predecessor UPC++ were also very
limited – they did not support events, and there was no mech-
anism to attach a local or remote operation to the completion of
an RMA. The ability to attach an operation which effectively
serves as a completion handler is semantically elegant, and
it leads to more compact code. As a result of the limitations
of the predecessor, a hash-table insertion operation similar to
the one presented in section IV-C requires 50% more lines
of code in old UPC++, and it incurs both a blocking remote
allocation and a blocking RMA, which negatively impact
latency performance and overlap potential. Our improvements
to asynchrony support directly enable the simpler, streamlined,
and fully asynchronous implementation of distributed hash
table that scales beyond thousands of cores.

In addition to the incomplete support for asynchrony, the old
version of UPC++ lacked several important design features
introduced by the new version, such as atomics and view-
based serialization of RPC arguments. Finally, the new version
of UPC++ has a more formal and rigorous specification,
compared to the incomplete documentation and specification
of its predecessor.

B. Other Programming Models

Several recent and older programming systems support the
PGAS model, including UPC [5, 24], Fortran 2008 coar-
rays [25], OpenSHMEM [9], and Titanium [26, 27]. While
X10 and Chapel [28] both support remote task execution, their
execution model is rooted in forking and joining tasks, plac-
ing less emphasis on PGAS-style RMA operations. UPC++
supports the SPMD execution model provided by traditional
PGAS systems, but augments it with remote procedure calls.

The implementation of UPC++ notably takes a template-
metaprogramming approach rather than relying upon a custom
compiler, resulting in a lightweight and sustainable implemen-
tation that leverages existing C++ compilers and simplifies
interoperability with other C++ libraries. There are a number
of programming systems that take a compiler-free, C++-
library approach toward parallel programming on distributed
machines. DASH [29] is a PGAS library implemented over
DART [30], which has an MPI-3 RMA backend. Like UPC++,
DASH provides global pointers, but unlike UPC++, it lacks
support for RPCs or any form of code shipping and it
includes implicit communication via dereference. STAPL [31]
is another parallel programming library, based on an Adaptive
Remote Method Invocation (ARMI) layer. It does not expose
a true PGAS API, but instead abstracts the details of the
data distribution and parallelism into elementary patterns (e.g.
map, map-reduce, scan, zip). Another PGAS library is Coarray
C++ [32], which focuses on distributed data structures such as
coarrays. It assumes the existence of a symmetric shared heap,
an implementation detail that UPC++ has deliberately avoided
because it can result in non-scalable data structures and is
incompatible with subset teams. Like UPC++, Coarray C++
provides asynchrony, but in the form of cofutures. There exist

9

some other libraries (e.g Hierarchically Tiled Arrays [33]) that
focus explicitly on distributed data structures.

Other libraries, such as HPX [34], Phalanx [35], and
Charm++ [36] provide a more task-based execution model
rather than the core SPMD abstraction of UPC++. HPX,
Charm++, and HabaneroUPC++ [37] all support task schedul-
ing and load balancing. By contrast, UPC++ is intended to
provide lightweight constructs for communication and remote
execution with basic progress guarantees, while supporting
interoperation with external scheduling libraries.

VI. DISCUSSION AND CONCLUSIONS

We have presented UPC++, a C++ PGAS library. UPC++
provides low-overhead, one-sided RMA communication, re-
mote procedure call and remote atomics. UPC++’s asyn-
chronous communication model is based on futures and
promises. Futures capture data readiness state, and they enable
the programmer to chain or conjoin operations to execute asyn-
chronously as high-latency dependencies become satisfied, via
completion handlers. Promises provide another mechanism for
tracking completion of multiple operations.

Current work includes adding a rich set of non-blocking
collective operations. Future work will enhance UPC++’s one-
sided communication to express transfers to and from other
memories (such as that of GPUs) with extensions to the
existing abstractions.

Unlike many other PGAS models, UPC++ forbids syntacti-
cally implicit communication, and all communication is non-
blocking by default. These restrictions were made as conscious
design decisions in order to encourage the programmer to write
code that is performant by carefully considering communi-
cation costs. The communication model closely matches the
unordered delivery and RMA semantics of modern RDMA
network hardware, unlike two-sided message passing. The
increased semantic flexibility improves the possibility of over-
lapping communication and scheduling it appropriately.
UPC++’s ability to offer low-overhead communication re-

lies on the GASNet-EX communication library, which hides
incidental details of the communication network while en-
gaging any available low-level hardware support. Future work
includes benchmarking UPC++ applications on additional su-
percomputing networks supported by GASNet-EX.

We demonstrated the benefits of UPC++ on a Cray XC40
via microbenchmarks and two application motifs that perform
fine-grained communication. UPC++ delivers up to a 25%
improvement in the latency of blocking RMA put, and up to
a 33% bandwidth improvement in an RMA throughput test.
Our distributed hash table in UPC++ delivers near-linear weak
scaling up to 34816 cores. Our UPC++ implementation of
the sparse solver component shows robust strong scaling up
to 2048 cores, where it outperforms variants communicating
using MPI by up to 3.1x. In these proxy applications, RPC
was vital in realizing high performance—RMA alone was not
sufficient.

ACKNOWLEDGMENTS

This research was supported by the Exascale Computing
Project (17-SC-20-SC), a collaborative effort of the U.S.
Department of Energy Office of Science and the National
Nuclear Security Administration.

This research used resources of the National Energy Re-
search Scientific Computing Center, a DOE Office of Science
User Facility supported by the Office of Science of the
U.S. Department of Energy under Contract No. DE-AC02-
05CH11231.

REFERENCES

[1] UPC++ home page, http://upcxx.lbl.gov/
[2] J. Bachan, S. B. Baden, D. Bonachea, P. H. Hargrove,

S. Hofmeyr, et al.: UPC++ Specification, v1.0 Draft 8.
Tech. Rep. LBNL-2001179, Lawrence Berkeley Natl.
Lab (September 2018). doi:10.25344/S45P4X

[3] J. Bachan, S. B. Baden, D. Bonachea, P. H. Hargrove,
S. Hofmeyr, et al.: UPC++ Programmer’s Guide, v1.0-
2018.9.0. Tech. Rep. LBNL-2001180, Lawrence Berke-
ley Natl. Lab (September 2018). doi:10.25344/S49G6V

[4] Y. Zheng, A. Kamil, M. B. Driscoll, H. Shan, and
K. Yelick: UPC++: A PGAS extension for C++. In: IEEE
28th International Parallel and Distributed Processing
Symposium. pp. 1105–1114 (May 2014). doi:10.1109/
IPDPS.2014.115

[5] UPC Consortium: UPC Language and Library Specifica-
tions, v1.3. Tech. Rep. LBNL-6623E, Lawrence Berkeley
Natl. Lab (November 2013). doi:10.2172/1134233

[6] D. Bonachea and P. H. Hargrove: GASNet-EX: A High-
Performance, Portable Communication Library for Ex-
ascale. Tech. Rep. LBNL-2001174, Lawrence Berkeley
Natl. Lab (October 2018). doi:10.25344/S4QP4W, to
appear: Languages and Compilers for Parallel Computing
(LCPC’18)

[7] ISO: ISO/IEC 14882:2011(E) Information technology -
Programming Languages - C++. Geneva, Switzerland
(2012), https://www.iso.org/standard/50372.html

[8] P. H. Hargrove and D. Bonachea: GASNet-EX perfor-
mance improvements due to specialization for the Cray
Aries network. In: 2018 IEEE/ACM Parallel Applications
Workshop, Alternatives To MPI (PAW-ATM). pp. 23–33
(November 2018). doi:10.1109/PAW-ATM.2018.00008

[9] S. Pophale, R. Nanjegowda, T. Curtis, B. Chapman,
H. Jin, et al.: OpenSHMEM Performance and Potential:
A NPB Experimental Study. In: Proceedings of the
6th Conference on Partitioned Global Address Space
Programming Models (PGAS’12). (2012), https://www.
osti.gov/biblio/1055092

[10] Cray, Inc.: Cray XC Series. https://www.cray.com/
products/computing/xc-series, accessed 2018-07-17

[11] NERSC: National Energy Research Scientific Computing
Center. http://www.nersc.gov

[12] Intel Corp.: Introducing Intel R© MPI Benchmarks. https:
//software.intel.com/en-us/articles/intel-mpi-benchmarks

10

http://upcxx.lbl.gov/
https://doi.org/10.25344/S45P4X
https://doi.org/10.25344/S49G6V
https://doi.org/10.1109/IPDPS.2014.115
https://doi.org/10.1109/IPDPS.2014.115
https://doi.org/10.2172/1134233
https://doi.org/10.25344/S4QP4W
https://www.iso.org/standard/50372.html
https://doi.org/10.1109/PAW-ATM.2018.00008
https://www.osti.gov/biblio/1055092
https://www.osti.gov/biblio/1055092
https://www.cray.com/products/computing/xc-series
https://www.cray.com/products/computing/xc-series
http://www.nersc.gov
https://software.intel.com/en-us/articles/intel-mpi-benchmarks
https://software.intel.com/en-us/articles/intel-mpi-benchmarks

[13] E. Georganas, A. Buluç, J. Chapman, S. Hofmeyr,
C. Aluru, et al.: HipMer: An Extreme-scale De Novo
Genome Assembler. In: Proceedings of the International
Conference for High Performance Computing, Network-
ing, Storage and Analysis. pp. 14:1–14:11. SC ’15
(2015). doi:10.1145/2807591.2807664

[14] I. S. Duff and J. K. Reid: The multifrontal solution of
indefinite sparse symmetric linear. ACM Transactions on
Mathematical Software (TOMS) 9(3), 302–325 (1983).
doi:10.1145/356044.356047

[15] J. W.-H. Liu: The role of elimination trees in sparse
factorization. SIAM Journal on Matrix Analysis and
Applications 11, 134–172 (1990). doi:0.1137/0611010

[16] A. Pothen and C. Sun: A mapping algorithm for parallel
sparse Cholesky factorization. SIAM Journal on Scien-
tific Computing 14(5) (1993). doi:10.1137/0914074

[17] P. Ghysels, X. Li, F. Rouet, S. Williams, and A. Napov:
An Efficient Multicore Implementation of a Novel HSS-
Structured Multifrontal Solver Using Randomized Sam-
pling. SIAM Journal on Scientific Computing 38(5),
S358–S384 (2016). doi:10.1137/15M1010117

[18] P. Amestoy, I. Duff, J.-Y. L’Excellent, and J. Koster: A
fully asynchronous multifrontal solver using distributed
dynamic scheduling. SIAM Journal on Matrix Anal-
ysis and Applications 23, 15–41 (2001). doi:10.1137/
S0895479899358194

[19] T. A. Davis and Y. Hu: The University of Florida sparse
matrix collection. ACM Transactions on Mathematical
Software 38, 1 (2011). doi:10.1145/2049662.2049663

[20] J. Bachan, D. Bonachea, P. H. Hargrove, S. Hofmeyr,
M. Jacquelin, et al.: The UPC++ PGAS library for
exascale computing. In: Proceedings of the Second An-
nual PGAS Applications Workshop. pp. 7:1–7:4. PAW17
(2017). doi:10.1145/3144779.3169108

[21] D. Bonachea and P. H. Hargrove: GASNet specification,
v1.8.1. Tech. Rep. LBNL-2001064, Lawrence Berkeley
Natl. Lab (August 2017). doi:10.2172/1398512

[22] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kiel-
stra, et al.: X10: an object-oriented approach to non-
uniform cluster computing. In: Proceedings of the 20th
Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications.
(OOPSLA’05) (2005). doi:10.1145/1103845.1094852

[23] S. Chatterjee, S. Tasirlar, Z. Budimlic, V. Cave,
M. Chabbi, et al.: Integrating asynchronous task paral-
lelism with MPI. International Parallel and Distributed
Processing Symposium pp. 712–725 (2013). doi:10.1109/
IPDPS.2013.78

[24] UPC consortium home page, http://upc-lang.org/
[25] J. Reid: Coarrays in the Next Fortran Standard. SIG-

PLAN Fortran Forum 29(2), 10–27 (July 2010). doi:10.
1145/1837137.1837138

[26] P. Hilfinger, D. Bonachea, K. Datta, D. Gay, S. Graham,
et al.: Titanium language reference manual. Tech Report
UCB/EECS-2005-15.1, University of California, Berke-
ley (November 2001). doi:10.25344/S4H59R

[27] K. Yelick, P. Hilfinger, S. Graham, D. Bonachea, J. Su,
et al.: Parallel Languages and Compilers: Perspective
from the Titanium Experience. International Journal of
High Performance Computing Applications 21(3), 266–
290 (2007). doi:10.1177/1094342007078449

[28] D. Callahan, B. L. Chamberlain, and H. P. Zima:
The Cascade High Productivity Language. International
Workshop on High-Level Parallel Programming Models
and Supportive Environments (HIPS) pp. 52–60 (2004).
doi:10.1109/HIPS.2004.10002

[29] K. Fürlinger, C. Glass, A. Knüpfer, J. Tao, D. Hünich,
et al.: DASH: Data Structures and Algorithms with
Support for Hierarchical Locality. In: Euro-Par Parallel
Processing Workshops (2014). doi:10.1007/978-3-319-
14313-2 46

[30] H. Zhou, Y. Mhedheb, K. Idrees, C. W. Glass, J. Gracia,
et al.: DART-MPI: An MPI-based Implementation of
a PGAS Runtime System. In: Proceedings of the 8th
International Conference on Partitioned Global Address
Space Programming Models. pp. 3:1–3:11. PGAS ’14
(2014). doi:10.1145/2676870.2676875

[31] P. An, A. Jula, S. Rus, S. Saunders, T. Smith, et al.:
STAPL: An Adaptive, Generic Parallel C++ Library. In:
Languages and Compilers for Parallel Computing (LCPC
2001). Lecture Notes in Computer Science, vol. 2624.
Springer (2001). doi:10.1007/3-540-35767-X 13

[32] T. A. Johnson: Coarray C++. In: Proceedings of the 7th
International Conference on PGAS Programming Mod-
els. pp. 54–66. PGAS’13 (2013), https://www.research.
ed.ac.uk/portal/files/19680805/pgas2013proceedings.pdf

[33] G. Bikshandi, J. Guo, D. Hoeflinger, G. Almási, B. B.
Fraguela, et al.: Programming for parallelism and locality
with hierarchically tiled arrays. In: Proceedings of the
ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPoPP). pp. 48–57 (2006). doi:
10.1145/1122971.1122981

[34] H. Kaiser, T. Heller, B. Adelstein-Lelbach, A. Serio,
and D. Fey: HPX: A Task Based Programming Model
in a Global Address Space. In: Proceedings of the 8th
International Conference on Partitioned Global Address
Space Programming Models. pp. 6:1–6:11. PGAS ’14
(2014). doi:10.1145/2676870.2676883

[35] M. Garland, M. Kudlur, and Y. Zheng: Designing a
unified programming model for heterogeneous machines.
In: Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Anal-
ysis. SC ’12 (2012). doi:10.1109/SC.2012.48

[36] L. Kalé and S. Krishnan: CHARM++: A portable concur-
rent object oriented system based on C++. In: A. Paepcke
(ed.) Proceedings of OOPSLA. pp. 91–108 (September
1993). doi:10.1145/167962.165874

[37] V. Kumar, Y. Zheng, V. Cavé, Z. Budimlić, and V. Sarkar:
HabaneroUPC++: A Compiler-free PGAS Library. In:
Proceedings of the 8th International Conference on Par-
titioned Global Address Space Programming Models
(PGAS) (2014). doi:10.1145/2676870.2676879

11

https://doi.org/10.1145/2807591.2807664
https://doi.org/10.1145/356044.356047
https://doi.org/0.1137/0611010
https://doi.org/10.1137/0914074
https://doi.org/10.1137/15M1010117
https://doi.org/10.1137/S0895479899358194
https://doi.org/10.1137/S0895479899358194
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1145/3144779.3169108
https://doi.org/10.2172/1398512
https://doi.org/10.1145/1103845.1094852
https://doi.org/10.1109/IPDPS.2013.78
https://doi.org/10.1109/IPDPS.2013.78
http://upc-lang.org/
https://doi.org/10.1145/1837137.1837138
https://doi.org/10.1145/1837137.1837138
https://doi.org/10.25344/S4H59R
https://doi.org/10.1177/1094342007078449
https://doi.org/10.1109/HIPS.2004.10002
https://doi.org/10.1007/978-3-319-14313-2_46
https://doi.org/10.1007/978-3-319-14313-2_46
https://doi.org/10.1145/2676870.2676875
https://doi.org/10.1007/3-540-35767-X_13
https://www.research.ed.ac.uk/portal/files/19680805/pgas2013proceedings.pdf
https://www.research.ed.ac.uk/portal/files/19680805/pgas2013proceedings.pdf
https://doi.org/10.1145/1122971.1122981
https://doi.org/10.1145/1122971.1122981
https://doi.org/10.1145/2676870.2676883
https://doi.org/10.1109/SC.2012.48
https://doi.org/10.1145/167962.165874
https://doi.org/10.1145/2676870.2676879

	I Introduction
	II UPC++ Programming Model
	III Implementation of the UPC++ Runtime
	IV Experimental Results
	IV-A Testbed
	IV-B Microbenchmarks
	IV-C Distributed Hash Table
	IV-D Sparse Solvers

	V Related Work
	V-A Comparison to Predecessor UPC++ v0.1
	V-B Other Programming Models

	VI Discussion and Conclusions
	Acknowledgments
	References

