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Abstract

It has been theoretically suggested and experimentally demonstrated that fast and low-cost 

sequencing of DNA, RNA, and peptide molecules might be achieved by passing such molecules 

between electrodes embedded in a nanochannel. The experimental realization of this scheme faces 

major challenges, however. In realistic liquid environments, typical currents in tunnelling devices 

are of the order of picoamps. This corresponds to only six electrons per microsecond, and this 

number affects the integration time required to do current measurements in real experiments. This 

limits the speed of sequencing, though current fluctuations due to Brownian motion of the 

molecule average out during the required integration time. Moreover, data acquisition equipment 

introduces noise, and electronic filters create correlations in time-series data. We discuss how 

these effects must be included in the analysis of, e.g., the assignment of specific nucleobases to 

current signals. As the signals from different molecules overlap, unambiguous classification is 

impossible with a single measurement. We argue that the assignment of molecules to a signal is a 

standard pattern classification problem and calculation of the error rates is straightforward. The 

ideas presented here can be extended to other sequencing approaches of current interest.
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1. Introduction

Identification and sequencing of single DNA, RNA, and peptide molecules is a key step in 

many diagnostic protocols. Electronic sequencing of nucleobases and nucleic acids with 

nanopores or nanogaps has received growing interest as an alternative to optical methods in 

the last two decades [1–4]. Nanopore sequencing, as originally conceived, records the ionic 

current through a nanopore that is partially blocked by a nucleotide and attempts to identify 
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that nucleotide from its degree of blocking. However, due to the thickness of the 

nanochannels employed and the longitudinal direction of the ionic current probe, single-base 

resolution is difficult to achieve with this approach [1, 2]. For this reason, a complementary 

concept (“quantum sequencing” [5]) has been suggested, based on the specific molecular 

fingerprints in the transverse tunneling current that passes through the nucleotide when the 

latter passes between two electrodes in a nanochannel [5–7], see figure 1(a).

With a break-junction as the electrode pair, single nucleotides have been identified 

experimentally by their respective transverse tunnelling currents [8, 9]. In addition, quantum 

sequencing has been used for identification of methylated DNA bases [10], for detection of 

post-translational modifications in single peptides [11], and for single-molecule 

spectroscopy of individual amino acids and peptides [12].

Current signals from single nucleotides have also been measured with a scanning-tunneling 

microscope (STM) [13]. With a functionalized STM tip, the individual nucleotides in a DNA 

oligomer have been read [14]. Nucleotides have also been identified with a fixed-gap device 

[15], and DNA molecules have been detected with nanowire-nanopore field-effect transistor 

sensors [16]. In all cases, the current signal was noisy and with step-like features, and a 

statistical analysis was required to get the actual sequence information, to determine the type 

of nucleotide, or just to detect a translocation event [17, 18].

In addition to these experimental efforts, simulations were found useful for testing 

alternative realizations of electronic nucleotide identification and nanopore sequencing [6, 7, 

19–28]. One such alternative, e.g., measures changes in the current in a graphene nanoribbon 

while a DNA string passes through a hole in the ribbon [22,27].

The experimental relevance of these simulations depends on the magnitude of the currents 

that can be measured experimentally—specifically, it depends on the integration time 

(bandwidth) required to obtain a signal that stands out well enough over noise and filtering 

effects to distinguish between different nucleotides. This is a critical issue for any type of 

sequencing protocol that employs either transverse tunnelling or longitudinal ionic currents.

The present article discusses the subtleties related to the connection between theoretical 

ideas and simulations with actual experiments. In section 2, we describe how the transverse 

current through individual nucleotides is simulated. Then we discuss the magnitude of the 

average current, the amplitude of current fluctuations, and the correlation time of current 

fluctuations. The correlation time is, interestingly, even shorter than the average waiting time 

between electrons tunneling through the nucleotide.

Tunneling currents are typically very small so that long integration times are needed to 

measure them in actual experiments. The reason is charge quantization: A current of 1 pA 

amounts to six electrons per microsecond, on average. Consequently, narrowly defined 

current values can be measured only with integration times much longer than microseconds. 

This limits the time resolution of current measurements, which can be ameliorated by 

multiplexing with several pairs of electrodes [29].
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As a result, the integration time of data acquisition in a realistic experiment is long enough 

that current fluctuations due to thermal motion of nucleotides average out in a realistic 

recorded signal (section 3). Electronic noise, however, broadens the distribution of currents 

recorded for a given nucleotide, so current distributions for different nucleotides overlap (see 

figure 1(b,c) and section 4).

Electronic filters in the data acquisition system also affect the distribution of recorded 

currents and autocorrelate the time series of recorded currents (section 5). We show in 

section 6 how to assign a nucleotide to a current signal and that the autocorrelations play an 

important role in the assignment. Finally, in section 7 we compare the error rates of 

nucleotide assignment for simulated data with and without autocorrelations.

Throughout this article we consider only simulations of the transverse tunneling current 

through the four nucleotides A, T, G, and C. The analysis presented here is nevertheless also 

valid for other types of sensors that produce weak, overlapping current signals.

2. Magnitude and correlations of simulated current values

Nanopore experiments take place in a liquid environment at ambient temperature [5]. These 

conditions make simulations of the current through a single nucleotide both time consuming 

and computationally expensive [7] as they do not only involve the nucleotide of interest, but 

also the degrees of freedom of the surrounding molecules of the liquid. In previous work by 

one of us (MDV), the following protocol was used for simulating the transverse current 

through a single nucleotide as it passes through a nanopore [7,20]: The molecule is driven by 

a driving field into the nanopore where the electrodes are placed. Then the driving field is 

reduced and the transverse field is turned on. The molecule moves due to the electric fields 

and the thermal motion caused by interactions with the surrounding water molecules. This 

motion is described by molecular dynamics (MD) simulations with a time resolution of 1 fs. 

The femtosecond timescale is also the timescale for a typical electron transport time through 

the trapped molecule. Each picosecond the motion is frozen and a tight-binding Hamiltonian 

is set up which describes the coupling between the electrodes, the liquid and the DNA 

molecule. The steady-state current is calculated using a single-particle scattering approach 

with an applied bias of less than 1 V. Then the molecule is released for another time interval 

of one picosecond and the procedure is repeated many times (on the order of 4000 to 5000 

times).

Figure 2 shows an example of a current trace for the nucleotide A, and histograms of the 

current values for all four nucleotides are shown in figure 3 as obtained in reference [29]. We 

here plot the log-current probability distributions p(Ĩ|X) with Ĩ = log10(I/Amp), and where X 
∈ {A, T, G, C} denotes the four types of nucleotides. That is, the probability distributions 

for the current I is p(I|X) = (dĨ/dI)p(Ĩ|X) = p(Ĩ|X)/(I ln 10).

Notice that the current distributions span six orders of magnitude; from 10−15 Amp to 10−9 

Amp (see figure 3). Table 1 shows the corresponding expected values μX and standard 

deviations σX for the current probability density distributions of figure 3. In experiments 

with mechanically controlled break-junctions, the transverse current signal from individual 
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nucleotides was in the range ~1–100 pA [8] and thus comparable to the expected values of 

the simulated currents, such as those shown in figure 2‡.

In the simulations, the contacts to the nucloetides are modelled as gold electrodes [7,20]. 

Due to the presence of water, the tunneling barrier is considerably reduced: to about 1 eV 

from the gold work function of about 4.5 eV. Other electrodes, such as Pt, can be (and are 

currently) used in experiments without much qualitative change in the distributions. For a 

detailed discussion of the current calculations, see references [6,7,20].

We next take advantage of the simulation times up to 1500 ps in the simulations of 

individual nucleotides in the nanopore. Although it is not possible to reach the 

experimentally relevant sampling times, which are of the order of micro- or miliseconds (see 

below), we can extract the relevant time scales without approximate solutions for times 

longer than picoseconds [30].

Current values calculated at different time points are not independent, and the correlations in 

the signal are quantified with the autocovariance , 

where Ik is the simulated current at the time point tk = kΔtcurr with Δtcurr = 1 ps §. Figure 4 

shows the autocovariance for the nucleotide A. The autocovariance is consistent with a 

process with two time-scales∥,

(1)

where  is the total noise-variance. The first term in equation (1) describes the total 

contribution from all processes with correlation times much shorter than the time between 

recordings, Δtcurr = 1 ps, i.e., correlation times too short to be resolved. The second term is 

exponentially decreasing with a characteristic time-scale τX. Fitted values for the parameters 

of RX (k, ℓ) are given in table 1 for all four nucleotides. The parameter w0,X is the weight 

factor for processes with correlation times too short to be resolved. It falls in the range from 

0.70 to 0.94. Thus most correlations are too brief to be resolved, probably due to 

reorientation of the water molecules in the solvent, which happens on a time scale of tens of 

femtoseconds. The longer-lasting correlations decrease exponentially in time with a 

characteristic time scale τX in the range 14–80 ps. Correlations in the current on the longer 

time-scale are most likely caused by the motion of the nucleotide between the electrodes.

Figure 5 shows a schematic of the time scales in the simulation. These are: the time step in 

the MD-simulations, ΔtMD = 1 fs, the time interval between consecutive recordings of the 

current Δtcurr = 1 ps, and the correlation times in current traces τX ~ 40–70 ps. Furthermore, 

for a current of 1 pA, the average waiting time, Δtwait, between electrons is ~ 0.1 µs; more 

than a 1000 times longer than the correlation time. Consequently, the measured currents are 

‡In typical measurements of the ionic current through a nanopore, the current is in the range of hundreds of nA.
§See SI for how to calculate the autocovariance from data.
∥The black curve in figure 4 is not obtained from a fit with the expression in equation (1), but from a fit to the corresponding power 
spectrum (see the SI for details).
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not affected by the thermal motion of the molecule, and the correlations in the calculated 

current signal cannot be measured experimentally. We elaborate on this finding in the next 

section.

3. Connecting simulated current values with experimental recordings

A current measured experimentally cannot be detected instantaneously but requires that the 

number of electrons passing through a surface is recorded over a finite time interval. That is, 

the current  measured at discrete time points ti = iΔts is the number of electrons N 
passing through the nucleotide X from time ti−Δts to ti divided by the length of the interval 

( ). Here, we argue that the uncertainty in the measured current is caused by 

two effects. The shot noise due to the discreteness of electrons, and the correlation time 

between current values. For the simulations considered here, we demonstrate that the 

uncertainty in the measured current is dominated by shot noise.

First, the low current values (fA to nA) set a lower limit on the experimental sampling time 

Δts. With the assumptions of an ideal detector and no correlations between events of electron 

tunneling, the latter events satisfy Poisson statistics, so a recording with an expected value of 

〈N〉 electrons in the time interval Δts will have a relative uncertainty on the number of 

measured electrons of . This uncertainty is due to shot noise.

Suppose we aim for an uncertainty of 3%, which requires 〈N〉 = 1000. A current signal of 

the order of picoamperes corresponds to an expected value of approximately 107 electrons 

passing through the nucleotide per second. Thus, a measurement time of approximately 10−4 

s = 0.1ms is needed to detect 1000 electrons on average. A sampling time Δts = 0.1ms gives 

a sampling frequency fs = 1/Δts = 10 kHz¶. Similarly, detection of currents in the nanoamp-

regime requires sampling frequencies of at most MHz. Higher sampling frequencies require 

larger currents. Thus, it seems of questionable relevance to analyze simulated current spikes 

with durations down to a few picoseconds and a current signal in the nanoamp-regime. 

Increased sampling frequency also leads to increased thermal noise, as we discuss in section 

4.

Next, we consider the uncertainty in the measured current due to its auto-correlated variation 

caused by the thermal motion of the nucleotide. Mathematically, the current value 

recorded for nucleotide X and associated with the point in time ti = iΔts is

(2)

where IX (t) is the steady-state current for the configuration of the system at time t (see 

above). As IX (t) is fluctuating, the measured current  is a stochastic variable. It can be 

characterized by its expected value and its standard deviation. The expected value of the 

¶A sampling frequency of 10 kHz is ten times the sampling frequency in the break-junction experiments in reference [8].
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measured current is . The standard deviation of the measured 

current depends on the correlations in the current due to the dynamics of the molecule itself 

and the motion of the surrounding water molecules. With the autocovariance defined in 

equation (1), the variance of the measured current is (for details, see SI)

(3)

where we used in the last two lines that the sampling time is much longer than the 

correlation time Δts ≫ τX ≫ Δtcurr. For a sampling frequency of 10 kHz and a correlation 

time of, say, 50 ps, the prefactor is 2τX/Δts ~ 10−6. So the standard deviation of the measured 

current is σmes,X ~ 10−3σX, which for the present data is of the order of, or less than, 

femtoamps. That is, the relative uncertainty of the measured current due to the thermal 

motion of the nucleotide is σmes,X/μX ~ 10−3, which is much lower than the relative 

uncertainty due to shot noise. Thermal motion of the nucleotide thus does not affect 

experimental measurements.

According to table 1, the minimum distance between the expected current values |μX − μX′| 

for X ≠ X′ is approximately 1 pA; much larger than σmes,X, or, e.g., the 3% relative 

uncertainty caused by shot noise for 〈N〉 = 1000. Consequently, an ideal measurement could 

easily distinguish between the four types of nucleotides as the distributions of the measured 

currents are nonoverlapping. That is, neither the configurational changes of the nucleotide 

and the surrounding water molecule nor the shot noise can explain the overlapping 

distributions seen in experiments. Furthermore, an ideal experiment would only be able to 

estimate the expected values, μX, of the simulated current probability distributions in figure 

3, not the actual shapes of the distributions.

Finally, we notice that even though the molecule in the simulation goes through many 

different configurations during a given measurement, we do not know how much of its phase 

space is sampled. The molecule could be trapped in a local minimum and only sample a 

fraction of all possible minima. Therefore simulations should be performed for different 

initial configurations, and the dependence on the initial conditions should be investigated.

In section 4 we discuss the role of the thermal noise and in section 5 how filters change the 

current distributions for the case where the width of the distributions are not made negligible 

by the time-averaging in equation (2).

4. Experimental noise

Noise is unavoidable in real measurements. It causes current distributions to overlap and 

must be accounted for in order to avoid ambiguous classifications of the signal. Previous 

work has characterized the noise in the ionic current through a solid-state nanopore in a SiN 

membrane [31] and through graphene nanopores [32]. Both cases show a 1/f-distribution at 

low frequencies. Reference [33] characterized the noise in the voltage across a gold-wire 

break-junction in vacuum at room temperature. Both in the presence and absence of a 
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molecule in the junction, at high frequencies the power spectrum of the voltage is identical 

to the spectrum of thermal (Johnson-Nyquist) noise.

Thermal noise is inevitable in electronic circuits and is due to the thermal voltage 

fluctuations in a resistor [34]. It causes a Gaussian distributed white noise with standard 

deviation

(4)

Here, Δf is the frequency bandwidth within which the current is measured, and R is the 

resistance of a load resistance put in series with the molecular junction. Notice in particular 

how a decreased sampling time increases the thermal noise if the total measurement time 

tmsr is kept unchanged (Δf = fNyq − 1/tmsr ≃ fNyq = 1/(2Δts)). Equation 4 describes a system 

in equilibrium, while the noise increases if a DC voltage is applied. For measurements with 

nanogaps in a liquid environment, the standard deviation of the measured background signal 

was 10 pA for a load resistance of 10 kΩ and a bandwidth Δf ≃ 1/(2Δts) = 0.5 kHz [8]. Thus 

the estimate for the standard deviation of the thermal noise before filtering is ~ 30 pA. 

Electronic lowpass filters reduce this noise amplitude, however (see section 5).

Figure 6 illustrates this situation with normal distributions with expected values given by μX 

in table 1 and with standard deviations σnoise = 5 pA. That is, we assume that the noise is 

normal distributed and added to the signal from the molecule. The distributions show clear 

overlaps for X = T, G, and C, as σnoise is larger than the distance between the expected 

values. Current signals from the base A are well separated from the other values, making this 

nucleotide easily distinguishable. We use the distributions in figure 6 when we discuss 

nucleotide assignment and the corresponding error rates in sections 6 and 7, respectively.

5. Influence of electronic filters

Electronic lowpass filters are indispensable for measurements of small currents. They reduce 

the noise in measurements, but they also modify the shape of spikes in the signal. This effect 

is well-studied for the higher-order Bessel filters often used in patch-clamp techniques [35] 

and in measurements of the ionic blockade in nanopores [36] (see, e.g., references [35] and 

[37] for an introduction to random data and filters). Filters also change the distribution of the 

measured current values, which must be considered when comparing measured and 

simulated currents (figure 7). Finally, filters introduce autocorrelations in the signal. An 

autocorrelated time series of current measurements contains less information than an 

uncorrelated series with the same variance, and thus gives higher error rates for the 

nucleotide assignment. The latter point is addressed in section 7.

Linear filters change an incoming signal by outputting a weighted sum over input values. 

Described in continuous time,
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(5)

where Iin/out is the current before and after the filter, respectively, and the weight factor h(t) 
is the filter’s transfer function. For a causal system h(t) = 0 for t < 0. The Fourier transform 

of the transfer function is the frequency response function H(f). Since a factor 2 is very 

nearly 3 dB, the frequency at which |H(f)|2 = 1/2 is denoted by f3dB. It is also called the 

critical frequency and denoted by fc. In experiments, fc-frequency is typically chosen as a 

fraction of the Nyquist frequency fNyq = 1/(2Δts).

A discrete linear filter relates discrete inputs to outputs as

(6)

As an example, we here consider a simple first-order filter (0 ≤ α ≤ 1),

(7)

Here the output at a given point in time is the weighted sum of the simultaneous input, Iin,i, 

and the output at the previous point in time, Iout,i−1. Iteration of equation (7) gives the weight 

factors of the filter: hj = α (1 − α)j = αej ln(1−α) = α e−jΔts/τc for j ≥ 0 and zero otherwise, 

i.e., the output is an exponentially weighted superposition of the current and all past inputs. 

The characteristic time scale is τc = −Δts/ ln(1 − α), and the characteristic frequency is fc = 

1/(2πτc).

Now consider an uncorrelated input signal with μ the average current and  the variance of 

the input signal, i.e., . With equation (6) and the definition of 

the exponential filter, the autocovariance of the output current follows,

(8)

Here we have introduced . The first-order filter thus gives an exponentially 

decreasing correlation function and lowers the value of the total variance. We use this 

expression for the correlation function in section 7, where we calculate the error rates for 

nucleotide assignment for correlated data.

The distribution of the recorded output relative to the input is also changed by filters. 

Assume it were possible to measure the current values in figure 3 with a sampling time as 

brief as the time between recordings, i.e., with Δts = Δtcurr. Assume also absence of intrinsic 

correlations (w0,X = 1) and a simple first-order filter with critical frequency fc = fNyq/4, i.e., 
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with characteristic time scale τc ≃ 1.27Δts+. Then the distribution of the sampled current 

values would follow the distributions shown with dashed lines in figure 7. The filtered 

distributions are smoother than the original ones, and the standard deviations are reduced 

[see text below equation (8)]. In the limit of very long characteristic times, τc ≫ Δts, the 

distributions approach normal distributions by force of the central limit theorem. These 

effects are important to keep in mind when comparing simulation results with experimental 

data, as the comparison must take into account the distortion of experimental distributions 

by filters. This could be relevant, e.g., for simulations of the current through a nanoribbon 

with nucleotides passing through a hole in it. Simulations show an overlap for different 

nucleotides [22], but electronic filters will decrease these overlaps.

Finally, the autocovariance of experimental data is often affected both by the physical 

processes in the measured device and by filters in the data acquisition electronics [31, 32]. If 

the autocovariance can be determined experimentally, it can serve as input for the covariance 

matrix used when estimating the error rates.

6. Nucleotide assignment using maximum likelihood and error rates

Classification of output from biosensors (and sequencers) is often ambiguous because output 

values contain a stochastic element. When probability distributions for output values 

overlap, one cannot tell from a single measurement which input caused the output. For 

experimentally measured current signals the assignment is often further complicated due to, 

e.g., a varying background signal. The classification problem can then, e.g., be addressed by 

machine learning techniques, like Support Vector Machine (SVM) [30,38]. For simulated 

data with a stable background and with the current distributions for the different molecules 

available, we suggest to use the maximum likelihood decision rule for nucleotide assignment 

as it is a straightforward and standard procedure [39]. In addition, it is easy to simulate the 

corresponding error rates without any adjustable parameters. In the assignment procedure, 

the influence of time averaging, experimental noise, and correlations in the signal are 

included. We give here a basic vocabulary for the problem of how to assign a nucleotide to a 

given current signal; for a detailed introduction to pattern classification, see, e.g., reference 

[39].

As an example, we use the four different types of nucleotides X ∈ {A, T, G, C} and their 

four associated distributions of values for the transverse tunnelling current. Let

(9)

denote the time series of m current measurements. All current values  stem from the same 
nucleotide, so we drop the superscript X from now on. Notice that it is assumed that the 

probability distribution of current values is known for each nucleotide. So given a current 

signal Im = I consisting of m measurements, the task is to give an algorithm for how to 

+For a discussion of filter design and of how to choose the critical frequency, see, e.g., [35].
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assign a specific type of nucleotide to the current signal and to determine the error rate, i.e., 

the relative frequency with which the assignment is incorrect.

The current signal I is our observation. It stems from one of the four types of nucleotides X 
∈ {A, T, C, G}. The variable X denotes the ‘state of nature’. Let P(X) denote the a priori 
probability for the nucleotide being X. How probable it is to observe the signal I, will 

depend on the ‘state of nature,’ the value of X. So we introduce the class-conditional 
probability distributions p(I|X). For our problem, these functions are the probability 

distributions for values of currents (see figure 3), and they are known a priori from the 

simulations. If we assume that the priors P(X) are also known, Bayes’ formula states that the 

relation between the prior and the posterior probabilities, i.e., the probability that the ‘state 

of nature’ is X given the observation I is

(10)

Notice the normalization condition ΣX P(X|I) = 1. Here, we also follow the convention in 

reference [39] and let the probability functions over discrete and continuous sets be denoted 

by upper-case P and lower-case p, respectively.

We need a decision rule to decide which ‘state of nature’ the system was in when it 

produced the current signal I. It can be shown that the decision rule which minimises the 

error is Bayes’ Decision Rule [39], which amounts to choosing the ‘state-of-nature’ X with 

the highest a posteriori probability P(X|I). If we have no prior information about the 

molecules, it is reasonable to assume that they all have the same a priori probability P(X) for 

all X. This gives the maximum likelihood decision rule, which is to choose the X which 

maximizes the likelihood p(I|X), i.e.,

(11)

This is the decision rule we will use below. Notice how the decision rule divides the m-

dimensional space for the observable I into different domains DX, where DX is the domain 

where we choose X, i.e., DX = {I | p(I|X) > p(I|X′) for all X′ ≠ X}. This can also be 

expressed as an indicator function 1DX (I) with the properties 1DX (I) = 1 if p(I|X) > p(I|X′) 

for all X′ ≠ X and 0 otherwise.

The different domains DX are simple to illustrate for the probability distributions in figure 3 

for the m = 1 case of a single measurement, see the horizontal arrows in figure 3. The 

vertical dashed lines mark the intersections between the distributions. For general 

probability density distributions, the partition of the space of possible current values may be 

more complicated.

So far we have not specified how to calculate the class-conditional probability density 

function p(Im|X), but we return to this issue in section 7.
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The easiest way to find the error rate is to calculate the probability  of a correct 

assignment for the nucleotide X, and then find the error rate as . The 

probability of being correct can be expressed as the probability that the ‘state of nature’ is X 
and I is in DX, i.e., [39]

(12)

Here, 1DX is an indicator function that is specified above for the maximum likelihood 

decision rule, although other possibilities exist [39].

Given a set of probability distributions p(I|X) and a partition DX dividing the range of 

outcomes for I, error rates can be calculated by direct evaluation of the m-dimensional 

integral in equation (12), e.g., by Monte Carlo integration [40]. Often it is much easier to 

Monte Carlo simulate the error rates, which is done separately for each type of nucleotide 

Xchosen. In case of m measurements, the procedure is:

(i) From the current probability distribution p(Im|Xchosen) draw m independent current 

values Im, (ii) calculate for all four nucleotides the conditional probability density p(Im|X), 

(iii) assign to the current sequence Im the nucleotide Xassigned with the highest conditional 

probability density p(Im|X), and finally (iv) record whether the chosen nucleotide Xchosen is 

identical to the assigned nucleotide Xassigned. Steps (i)-(iv) are repeated many times.

The error rate  is simply the relative frequency with which a different nucleotide is 

assigned to a current sequence produced by the nucleotide Xchosen. The weighted average of 

the error rates is

(13)

where P(X) is the prior for the nucleotide of type X.

In section 7 we demonstrate how to calculate the error rates of the nucleotide assignment for 

the distributions in figure 6 when the current measurements are correlated by first-order 

filtering.

7. Error rates for correlated data

Assignment of nucleotides and the corresponding error rates depend on the class-conditional 

probability density function p(Im|X), i.e., the probability to measure the set of current values 

Im for given nucleotide X. We argued above that both physical processes and electronic 
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filters introduce correlations in the measured signal. We here demonstrate how the 

correlations influence the error rates for the nucleotide assignment.

For the sake of simplicity, we assume that the measurement noise is normally distributed as 

it is, e.g., for thermal noise. Then the probability density function p(Im|X) is given by the 

multivariate normal distribution

(14)

Here μX is an m-dimensional vector with identical elements μX, and ΣX is the (positive 

definite) m × m-covariance matrix ΣX,ij = R(i, j), i, j = 1, 2,…, m, where R(i, j) is the 

autocovariance. Notice that if the current values are independent and identically distributed, 

the covariance matrix is a diagonal matrix with the variance of the distribution on the 

diagonal, . Then the expression in equation (14) reduces to the product form 

.

As an example, we consider the case where the autocovariance is identical for all four 

nucleotides, and the autocoavariance matrix is . This 

corresponds to the output from a first-order filter with a characteristic time scale τc, given a 

white-noise input. The characteristic time scale is again chosen such that it corresponds to a 

first-order filter with a critical frequency , i.e., τc ≃ 1.27Δts. For the current 

distributions shown in figure 6, we then simulate the assignment of nucleotides as described 

above with the use of equation (14). Finally, we calculate the error rates for the individual 

nucleotides, , and the average error rate, em, from equation (13)*. The error rates versus 

the number of measurement are shown as dashed lines in figure 8. Full lines are the results 

for independent measurements, all with the same total noise variance, i.e., . 

Error rates are higher and decay slower for correlated than for independent measurements, 

since correlated data contain less independent information. Error rates for a Gaussian filter 

with the same critical frequency and using the same noise variance are found in SI. The 

results are very similar as those for a first-order filter with the same characteristic time-scale.

These findings stress the importance of including correlations in the algorithms for 

nucleotide assignment or step detection in experimental signals. The version of the step-

finder algorithm CUSUM used for detection of multi-level events in nanopore translocation 

experiments [17] assumes a signal consisting of independent data points, although this 

condition is not fulfilled by the experimental data. The assumption might influence the 

results of the nucleotide assignment and the corresponding error rates; especially for high 

*Multivariate normal distributions are built-in functions in, e.g., matlab.
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noise levels and small level separations of the expected current values for the different 

nucleotides.

The duration of the time a nucleotide spends between the electrodes determines the number 

of measurements done on it. Typically this cannot be easily controlled experimentally as the 

detachment of the nucleotides from the electrodes is a stochastic process, and the 

distribution of durations often is rather broad. For GMP molecules in a break-junction, the 

duration in the gap was in the interval from 1 to 100ms and showed a dependence on the 

applied bias [8]. For a sampling frequency of 1 kHz, it corresponds to up to 100 

measurements at the electrodes. The duration the target molecule spends at the electrodes 

can be increased by functionalizing the junction, which gives durations up to a second 

[13,14,38,41]. Thus the relevance of theoretical proposals for sequencing or biosensing 

depends both on the decrease of error rates with the number of measurements and on the 

four distributions of time spent by Molecule X between the electrodes.

8. Discussion

The present study emphasizes that the very weak transverse tunneling currents require 

experimental current measurements with long integration times, and it describes the 

consequences of a long integration time for the measured currents. These considerations are 

relevant not only for sequencing with fixed electrodes but also for simulations of nanopore 

sequencing of single-stranded DNA with graphene nanoribbons [27] and for recognition 

tunneling [30].

One consequence of the long integration time is that only the expected value of the current is 

probed experimentally, because the required integration time is very much longer than the 

autocorrelation time of current fluctuations caused by the nucleotide’s thermal motion. Thus, 

a current measurement averages over so many different orientations of the nucleotide in the 

gap junction that the resulting current value is a thermal average with no dependence on 

nucleotide orientation. Consequently, different measurements with such long integration 

times should give very similar current values, i.e., values with a very narrow distribution on 

the current axis. Nevertheless, the full distributions of the simulated transverse tunneling 

currents are needed in order to determine their expected values. This is because the 

simulated current values for each nucleotide span almost three orders of magnitude due to 

the thermal fluctuations of the molecule in the nanogap. So it is not sufficient to calculate the 

tunneling current for only a few fixed configurations of a nucleotide. This can lead to 

incorrect values for the current’s expected value.

Secondly, in the original simulations of transverse tunneling through nucleotides, the 

electron transport was described as coherent tunneling [6, 7]. A later simulation included 

dephasing of the tunneling electrons due to the fluctuations of the molecule and its 

environment. These effects changed the distribution of the simulated current values [20]. For 

experimentally relevant values of this dephasing, it caused a slight downward shift in the 

expected value of the current. It also slightly changed the shape of the current distribution. 

The shift might be detectable in experiments, but the change of shape is washed out by the 

long integration time required in real experiments.
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We also addressed how to assign a nucleotide to a measured current signal with the 

maximum likelihood decision rule. The general challenge for the assignment is that the four 

different nucleotides have overlapping current distributions, broadened by electronic noise in 

the data acquisition system. Electronic sequencing would be easy without these overlaps: A 

single measurement of the transverse tunneling current would identify a nucleotide.

With some overlap, we can still distinguish between different nucleotides albeit with non-

zero error rate. We just need to repeat measurements on the individual nucleotide several 

times to obtain a reliable result. We must, however, consider that electronic filters in the data 

acquisition system produce autocorrelations in the filtered signal. So although electronic 

filters are indispensable for measurements of small currents, their effect on the recorded 

current signal must be included in the data analysis, since filtering reduce the information 

content in the signal relatively to a signal with the same number of measurements but with 

independent data points.

The maximum likelihood framework for nucleotide assignment is easily generalized to more 

complicated setups than just a single pair of electrodes (see, e.g., the setup in [29]), or 

extended to include other types of information than just the measured current values. Other 

aspects that could help the identification could be, e.g., the duration of current spikes, the 

time interval between spikes, and the fluctuations of currents within spikes [30]. This extra 

information can be exploited in the assignment of a molecule to a recorded signal, if 

correlations between the measured quantities—e.g., the duration of a spike and its height—

are correctly accounted for in the analysis.

Recently, it was investigated theoretically by simulations whether the use of multiple 

electrode pairs coupled in series could improve identification of nucleotides [29, 42]. The 

advantage of multiple electrodes is an increased number of measurements for each 

nucleotide and, consequently, a lower error rate. If the distribution of current values 

measured with each electrode pair is known, then the assignment procedure described above 

can be applied directly.

9. Conclusion

We have demonstrated the importance of realistic experimental integration times, of 

autocorrelation times in simulated current values, and of electronic noise and filters. 

Simulations must relate to real experimental measurements, obviously, in order to access the 

feasibility of theoretical proposals for real experiments. When the probability distributions 

of current values are known, which is the case for simulated data, we recommend using the 

maximum likelihood decision rule for nucleotide assignment, but also account for the 

correlations in the measured signal in order not to underestimate the error rates for the 

assignment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(a) Schematic of DNA passing through a nanopore with embedded electrodes forming a 

nanogap. (b) Electrons tunnel between the electrodes via the nucleotide in the gap and 

produce a nucleotide-specific current I versus time t. (c) Here p(I|X) is the probability 

density for measuring the current value I, given that the nucleotide is X, where X is one of 

the four bases A, T, G, and C. Current signals from different nucleotides overlap, which 

prevents unambiguous classification [with a single current measurement].
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Figure 2. 
Current value as function of time for the nucleotide A. Note the large range of values. The 

current through the nucleotide is calculated each picosecond, but some data points are 

missing due to lack of convergence in the calculation (see SI for details).
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Figure 3. 
Histograms of the probability distributions p(Ĩ|X) for the log-current values Ĩ = log10(I/Amp) 

for the four different nucleotides (same as figure 2 in reference [29]). Dashed vertical lines 

mark points on the current axis where one distribution replaces another at being the one with 

the highest probability density. The colored arrows show the ranges, DX (X ∈ {A, T, G, C}), 

of current values in which nucleotide X is indicated by a single measured current value (m = 

1, where m is the number of current measurements).
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Figure 4. 
Autocovariance of the current values shown in figure 2. The black curve shows the 

exponential decrease for time lags τ larger than 1 ps. Its characteristic time is τA = 44 ps. 

Notice that the black curve is not a fit to the data shown, because these data values are 

autocorrelated. Instead, the parameter τA of the exponential autocorrelation function was 

determined by fitting the Fourier transform of the autocorrelation function to the power 

spectrum of the data shown here (Wiener-Khinchin theorem; see SI for details).

Pedersen et al. Page 20

Nanotechnology. Author manuscript; available in PMC 2018 January 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Schematic of the various time scales in the simulations of transverse tunneling currents 

through nucleotides. The time scales are the time step in MD-simulations ΔtMD, the time 

interval between consecutive recordings of the current Δtcurr, the correlation times in current 

traces τ, the average waiting time between electron tunneling Δtwait, and the sampling time 

in an experiment Δts.
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Figure 6. 
Illustration of the distributions of the measured currents for the four different nucleotides. 

The expected values are taken from table 1 and the widths are due to an added experimental 

noise with vanishing expected value and standard deviation σnoise = 5 pA. As σnoise is larger 

than the expected value of the current for the nucleotides T, G, and C, negative current 

values occur for these nucleotides.
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Figure 7. 
Effect of filtering. The continuous lines (reproduced from figure 3 for convenience) show 

probability distributions of simulated currents. The dashed lines show probability 

distributions of filtered simulated currents (first-order filter with fc = fNyq/4).
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Figure 8. 

Error rates  versus the number of measurements m for the distributions T, G, 

and C in figure 6 (error rates for the nucleotide A are less than 0.01% for all m and thus not 

shown). Full lines show the error rates for uncorrelated data, while the dashed lines show 

error rates for data filtered through a first-order filter with a critical frequency fc = fNyq/4. 

Notice that the total noise variance is  for both the correlated and uncorrelated 

data. The weighted average, em, of the error rate over all four nucleotides [equation (13) 

with P(X) = 0.25 for all X] is shown with magenta lines.
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Table 1

Expected values μX and standard deviations σX of the current for the four nucleotides X ∈ {A, T, G, C} for the 

current distributions shown in figure 3. The correlation time and weight factors are from fits of the 

experimental periodigrams to the theoretical power spectrum corresponding to the autocovariance stated in 

equation (1). Error bars on w0,X are less than 5% of the fitted values and thus not stated.

X μX [pA] σX [pA] τX [ps] w0,X

A 48 41 44 ± 5 0.70

T 0.30 0.73 80 ± 40 0.92

G 4.0 3.2 60 ± 20 0.85

C 1.3 2.0 14 ± 7 0.94
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