
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Where Do Heuristics Come From?

Permalink
https://escholarship.org/uc/item/1gd685wb

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 41(0)

Authors
Binz, Marcel
Endres, Dominik

Publication Date
2019
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1gd685wb
https://escholarship.org
http://www.cdlib.org/


Where Do Heuristics Come From?
Marcel Binz (binz@staff.uni-marburg.de)

Department of Psychology, Theoretical Neuroscience Group
Philipps-Universität Marburg

Dominik Endres (dominik.endres@uni-marburg.de)
Department of Psychology, Theoretical Neuroscience Group

Philipps-Universität Marburg

Abstract

Human decision-making deviates from the optimal solution,
i.e. the one maximizing cumulative rewards, in many sit-
uations. Here we approach this discrepancy from the per-
spective of computational rationality and our goal is to pro-
vide justification for such seemingly sub-optimal strategies.
More specifically we investigate the hypothesis, that humans
do not know optimal decision-making algorithms in advance,
but instead employ a learned, resource-constrained approxima-
tion. The idea is formalized through combining a recently pro-
posed meta-learning model based on Recurrent Neural Net-
works with a resource-rational objective. The resulting ap-
proach is closely connected to variational inference and the
Minimum Description Length principle. Empirical evidence
is obtained from a two-armed bandit task. Here we observe
patterns in our family of models that resemble differences be-
tween individual human participants.

Keywords: Bounded rationality; computational rationality;
variational inference; reinforcement learning; meta-learning;
individual differences; multi-armed bandit

Introduction
In this work we study human decision-making strategies
on a stationary multi-armed bandit task. These are among
the simplest sequential decision-making problems, that
require reasoning about trade-offs between exploration and
exploitation. In the special case of an infinite horizon and
geometric discounting their Bayes-optimal solution is the
Gittins index strategy (Gittins, 1979), while in general it is
defined as the result of a planning process in an augmented
Markov Decision Process (Duff & Barto, 2002). Prior
work however suggests, that several heuristics appear to be
favourable as a model of human decision-making, when
compared to the Bayes-optimal solution (Steyvers, Lee, &
Wagenmakers, 2009; Zhang & Angela, 2013).

Understanding human cognition in terms of heuristics
has been a major theme in cognitive science over the
past decades (Tversky & Kahneman, 1974; Simon, 1990;
Gigerenzer & Todd, 1999). They can be viewed as crude, but
realizable, approximations of optimal behavior. Heuristics
are thus connected to the idea of rationality under resource
constraints, which is commonly referred to as bounded ratio-
nality (Simon, 1972), computational rationality (Gershman,
Horvitz, & Tenenbaum, 2015), or resource-rationality
(Griffiths, Lieder, & Goodman, 2015). Examples for re-
source constraints include related prior experience on a given
task, limited capacity of our brain or restricted deliberation

times. For a more general overview of computational ratio-
nality we refer the reader to Gershman et al. (2015). Here
we are interested in the hypothesis, that humans employ a
learned, resourced-constrained approximation of an optimal
decision-making strategy. More specifically we show, that
different, potentially sub-optimal, human strategies emerge
naturally in artificial learning systems when varying the
strength of the constraints placed upon them. For a real-
ization of this principle, we rely on information-theoretic
concepts, similar to the approach of Ortega and Braun (2013).

We instantiate a particular kind of such resource-rational
agents using recent advances from the meta-learning lit-
erature (Wang et al., 2016; Duan et al., 2016). In this
framework the algorithm to be learned is parametrized by
a Recurrent Neural Network (RNN). RNNs are known to
be Turing-complete and hence are in theory able to realize
any algorithm (Siegelmann & Sontag, 1991). The RNN is
trained on a set of related tasks to act as an independent
Reinforcement Learning algorithm for solving the original
problem. We treat all parameters of the RNN as random
variables and infer approximate posterior distributions by
solving a regularized optimization problem. Varying the
regularization factor leads to a spectrum of resource-rational
algorithms, each possessing different properties. Models
with large constraints need to rely more on prior assumptions
and thus prefer simple strategies, while models with weaker
constraints will approach the optimal solution (up to the
representational capabilities of the RNN and the limitations
of the meta-learning procedure).

The resulting approach is closely related to the Minimum
Description Length (MDL) principle (Hinton & Van Camp,
1993; Grunwald, 2004), which asserts that the best model
is the one, that leads to the best compression of the data,
including a cost for describing the model. The bits-back
argument establishes a link between the MDL principle and
Bayesian learning (Honkela & Valpola, 2004), opening up
connections to Bayesian theories of cognition (Griffiths,
Kemp, & Tenenbaum, 2008). Indeed several heuristics have
been recently interpreted as Bayesian models under strong
priors (Parpart, Jones, & Love, 2018).

Our hypothesis is validated on a classical two-armed ban-
dit task. However we view multi-armed bandits merely as
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the first step towards investigating more complex tasks and
the proposed algorithm is not limited to any specific problem
class. The following section first introduces the framework
in more general terms, before considering multi-armed ban-
dits as a special case. We then identify different strategies
of human participants and subsequently show how the pro-
posed class of models captures important characteristics of
human behavior on both a qualitative and quantitative level.
Our results indicate, that the seemingly sub-optimal decision
strategies used by humans might be a consequence of the con-
straints under which these very strategies are learned.

Methods
Reinforcement Learning
Let M = (S ,A , p,γ) be a Markov Decision Process (MDP),
with a set of states S , a set of actions A , a joint distribution
over the next state and a scalar reward signal, describing the
dynamics of the environment, p(st+1,rt |st ,at) and a discount
factor γ ∈ [0,1]. The objective of a Reinforcement Learning
(RL) agent is to find a policy π(at |·), that maximizes the dis-
counted, expected return Ep,π [∑

∞
t=0 γtrt ] without having direct

access to the true underlying dynamics p.

Learning Reinforcement Learning Algorithms
Following the approach of Wang et al. (2016); Duan et al.
(2016) we want to learn a RL algorithm for solving a MDP
sampled from a distribution over MDPs. We parametrize
the algorithm to be learned with a Recurrent Neural Net-
work (RNN), in form of a Gated Recurrent Unit (Cho et al.,
2014), followed by a linear layer. The set of all model pa-
rameters is denoted with θ in the following. The RNN takes
previous actions and rewards as inputs in addition to the cur-
rent state, making the output a function of the entire history
Xt = (s0,a0,r0,s1 . . . ,at−1,rt−1,st). A good algorithm has to
integrate information from the history in order to identify the
currently active MDP, based on which it subsequently has to
select the appropriate strategy. The RNN is trained to accom-
plish this using standard model-free RL techniques. In this
work we utilize n-step Q-Learning (Mnih et al., 2016), al-
though in theory any other algorithm could be applied as well.
The RNN implements a freestanding RL algorithm through
its recurrent activations after training is completed (the pa-
rameters of the RNN are held constant during evaluation).
Throughout this work we use the abbreviation LRLA – for
learned Reinforcement Learning algorithm – to refer to this
kind of model. Alternatively we can view this procedure as
a model-free algorithm for partially observable MDPs, where
the hidden information consists of the currently active task.

Resource-Rational Decision-Making
We consider maximizing the following regularized objective
for inferring a distribution qφ over parameters θ of LRLAs:

L(φ,X,y) = Eqφ(θ) [log p(y|X,θ)]−βKL(qφ(θ)||p(θ)) (1)

where the hyperparameter β controls how much the pos-
terior is allowed to deviate from the prior in terms of the

Kullback-Leibler (KL) divergence. We assume a likelihood
p(y|X,θ), that factorizes over data points ∏

N
i=1 p(yi|Xi,θ)

and we approximate each factor with a normal distribu-
tion of fixed scale σy: N (yt ;Qθ(Xt ,a),σy). In our setting
Qθ(Xt ,a) corresponds to the RNN output after seeing his-
tory Xt and yt corresponds to the n-step return ∑

n−1
k=0 γkrt+k +

γn maxa Qθ(Xt+n,a). The corresponding policy is derived as
follows:

π(at |Xt) =

{
1 if at = argmaxa∈A Qθ(Xt ,a)
0 else

(2)

Setting β to a specific value can be interpreted as implicitly
defining a constraint on KL(qφ(θ)||p(θ)). Importantly the
KL term determines how much the model parameters can be
compressed in theory (Hinton & Van Camp, 1993). Hence
our models are resource-constrained with regard to a hypo-
thetical lower bound on their storage capacity. Intuitively,
if the regularization factor β is large, parameters are forced
to match the prior closely. In this work we employ priors
favoring simple functions, hence models are only allowed to
realize more complex functions as β→ 0.

Bayesian Interpretation
If we set β= 1, we recover the evidence lower bound (ELBO)
as an objective for performing variational inference. In the
setting of large data-sets subsampling techniques are often
employed to approximate Equation 1 using mini-batches B
of size M with an appropriately scaled log-likelihood term:

log p(y|X,θ)≈ N
M ∑

i∈B
log p(yi|Xi,θ) (3)

If data arrives in sequential fashion, as it does in the RL
setting, the data-set size N is not known in advance and has
to be treated as an additional hyperparameter. This leads to a
Bayesian interpretation of Equation 1 even for β 6= 1. For any
values of β and N maximizing Equation 1 is equivalent to
performing stochastic variational inference with an assumed
data-set size of N̂ = N

β
. In practice we optimize a by N−1

scaled version of Equation 1, which leads to N̂−1 as a factor
for the KL term.

In the following section we investigate whether we can un-
derstand individual differences in human decision-making in
terms of optimal solutions to Equation 1 for varying values
of β. It is worth clarifying, that we are only interested in
the computational aspects of this hypothesis, i.e. we want
to test, whether human decision-making can be characterized
through resource-rational strategies. We do not attempt to an-
swer how this objective is realized on an algorithmic or im-
plementational level.

Technical Details
We maximize Equation 1 using standard gradient-based opti-
mization techniques. For this we simulate k environments in
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Figure 1: Illustration of different algorithms for two-armed bandits. Middle: Definitions of the respective policy. Bottom:
Coefficients obtained from fitting the probit regression (Equation 5) to corresponding trajectories. Error bars indicate the
uncertainty (one standard deviation) in the coefficients estimated through a Laplace approximation. Note, that for LRLAs the
coefficients are task-dependent. For this plot we use the set of two-armed bandits described in the later sections to compute the
coefficients. Φ denotes the cumulative distribution function of a standard normal distribution.

parallel and update the model at the end of each episode. All
models in this work employ a group horseshoe prior, which
can be viewed as a continuous relaxation of a spike-and-slab
prior (Mitchell & Beauchamp, 1988), over their weights:

s∼ C+(0,τ0); z̃i ∼ C+(0,1);

θ̃i j ∼N (0,1); θi j = θ̃i j z̃is

and we represent the approximate posterior qφ(θ) through
a fully factorized distribution as proposed in (Louizos, Ull-
rich, & Welling, 2017). The hyperparameter of the horseshoe
prior is fixed to τ0 = 10−5. The horseshoe prior is a sparsity-
inducing prior, which causes our models to implement simple
functions in absence of any experience. During training we
approximate the expectation of the log-likelihood term with a
single sample from qφ(θ) and make use of the reparametriza-
tion trick (Kingma & Welling, 2013). Resampling of weight
matrices is done only at the beginning of an episode as pro-
posed in Gal and Ghahramani (2016); Fortunato, Blundell,
and Vinyals (2017). Target values yt are computed using the
maximum a posteriori estimate of a separate target network
(Mnih et al., 2013; Lipton et al., 2017). For additional details
we refer the reader to the publicly available implementation1.

Multi-Armed Bandits
Experiments in the following section involve a multi-armed
bandit task. These are MDPs consisting of a single state. At
each step t an agent selects one out of multiple actions and
is rewarded according to an unknown, stationary distribution
based on its choice. This interaction is repeated T times.

The trade-off between exploiting good options and explor-
ing yet unknown ones is the central theme in multi-armed
bandits (and in RL in general). Methods for resolving this
exploration-exploitation dilemma can be categorized in two
major groups: directed and random exploration strategies.

1https://github.com/marcelbinz/MDLDQN

Directed exploration attempts to gather information about un-
certain, but learnable, parts of the environment, while random
exploration injects stochasticity of some form into the policy.
Gershman (2018) showed, that these two principles can be
distinguished exactly under certain conditions. For this we
consider a two-armed bandit task with normal distributions
over both the mean of rewards for each arm and their reward
noise at each time-step. Let N (ra;µ0,a,σ0,a) be an indepen-
dent normal prior over expected rewards for each action a and
N (ra;µt,a,σt,a) be the posterior after t interactions. Many
popular strategies can be formulated using the parameters of
these distributions. Define:

Vt = µt,0−µt,1

RUt = σt,0−σt,1 (4)

TUt =
√

σ2
t,0 +σ2

t,1

Vt constitutes the estimated difference in value, while RUt
and TUt describe relative and total uncertainty respectively.
Choice probability in Thompson sampling (an example for
random exploration) is only a function of Vt and TUt , while
it is a function of Vt and RUt for the UCB algorithm (an ex-
ample of directed exploration). Figure 1 (middle row) shows
definitions of all strategies under consideration. For a given
set of observed trajectories D one can fit a probit regression
model to infer the importance of factors from Equation 4:

p(at = 0|D,w) = Φ(w1Vt +w2RU t +w3Vt/TU t) (5)

Analyzing the resulting coefficients w can reveal, which
exploration strategy generated the observations, as shown
in Figure 1 (bottom row). We utilize this form of analysis
throughout the following sections.

Empirical Analysis
Human Participants
We initially inspect human exploration strategies on a two-
armed bandit task with episode length T = 10. The mean
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Figure 2: Visualization of human policies alongside resource-constrained LRLAs. Left: Probit regression coefficients of pro-
totype participants. Prototypes were obtained from a mean-shift clustering, shown in the middle plot. Colors correspond to
clusters. Error bars indicate the uncertainty (one standard deviation) in the coefficients estimated through a Laplace approxima-
tion. Middle: UMAP (McInnes & Healy, 2018) embedding of coefficients for all participants. Right: Joint UMAP embedding
of coefficients for human participants and LRLAs ∈HLRLA.

reward for each action is drawn from N (µa;0,
√

100) at the
beginning of an episode and the reward in each step from
N (rt ;µat ,

√
10). Intuitively we expect some participants to

be more proficient at the task, for example because they
have more experience at related problems (higher N̂), while
the opposite is true for others. We rely on data gathered
by Gershman (2018), which contains records of 44 partici-
pants, each playing 20 of the aforementioned two-armed ban-
dit problems. Figure 2 (middle) shows the result of fitted
probit regression coefficients for individual participants. This
analysis reveals three major subgroups within the population,
each using a different set of strategies. We visualize coeffi-
cients of three example participants (Figure 2, left) and ob-
serve, that a large fraction is well-described through Thomp-
son sampling (clusters 2 and 3), while other participants have
tendencies towards a mixture of strategies (cluster 1).

Learned Reinforcement Learning Algorithms
Next we show, that optimizing LRLAs with different reg-
ularization factors leads to the emergence of diverse ex-
ploration pattern. We train otherwise identical models for
N̂ ∈HLRLA = {256,512,1024,2048,4096,8192} on the same
two-armed bandit task until convergence and report average
results over 10 random seeds unless otherwise noted. Equa-
tion 1 is approximated with a batch of samples from complete
episodes of 16 parallel simulations and gradient-based opti-
mization is performed using Adam (Kingma & Ba, 2014).
Figure 3 (left) shows, that performances continuously im-
proves as N̂ increases, confirming our expectation that models
become more sophisticated for large N̂. Fitting the aforemen-
tioned probit regression model to the resulting policies (Fig-

ure 3, right) reveals value-based characteristics at one end of
the spectrum. Towards the other end we observe coefficients,
that slowly transition to those of the unconstrained (β = 0)
model.

Modelling Human Behavior

We are mainly interested in whether the set of resource-
constrained LRLAs can help us to understand human behav-
ior on an individual level. To answer this question, we com-
pare the optimized models to human decision-making strate-
gies in terms of the probit regression analysis. We visualize
the regression coefficients for 50 models (10 for each value
of N̂ ∈ HLRLA, excluding N̂ = 256) alongside those of the
human participants in Figure 2 (right). Although some parts
of the low-dimensional embedding are over- and underrepre-
sented, the overall variation of human exploration strategies
is captured by the resource-constrained LRLAs.

Model Comparison

The regression analysis performed so far provides only
qualitative indicators for our hypothesis. In order to obtain
a quantitative measure for the explanatory power of the
proposed hypothesis, we performed a Bayesian model
comparison. Figure 4 (left) shows log-likelihoods for each
participant and model. We observe, that different participants
are modelled best with different values of N̂.

To verify that the class of resource-constrained LRLAs
HLRLA contains a good model, we compute Bayes fac-
tors (BF) between the marginal probability of the resource-
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Figure 3: Results for optimized LRLAs with different N̂. Left: Visualization of per episode regret averaged over 10 models and
1000 episodes. Horizontal lines correspond to the performance of a value-directed policy and an unconstrained LRLA. Right:
Coefficients of the probit regression from Equation 5. Error bars indicate standard deviations across the 10 models.

constrained LRLAs and a value-directed policy:

logBFi = log p(Di|HLRLA)− log p(Di|Hvalue-directed)

p(Di|HLRLA) =
1

|HLRLA| ∑
H∈HLRLA

p(Di|H) (6)

where Di refers to all actions taken by a specific participant
and 1

|HLRLA|
is a prior that corrects for multiple comparisons

across different values of N̂. The resulting logBFs (see
Figure 4, right) reveal strong evidence for 42 of the 44
participants in favor of the class of resource-constrained
LRLAs, when compared with the baseline. This indicates,
that one of the models in HLRLA explains the participant’s
behavior much better than the value-directed policy. There
are nine participants best described by letting N̂ = 512, nine
by N̂ = 1024, 20 by N̂ = 4096 and six by N̂ = 8192. This
heterogeneity highlights, that the model class is able to ac-
comodate individual differences between human participants.

Finally we want to show, that the proposed class of models
captures exploration strategies across all participants better
than any standard exploration strategy alone. To verify this,
we computed Bayes factors between ∏i p(Di|HLRLA) and
two baseline exploration strategies: ∏i p(Di|HThompson) and
∏i p(Di|HUCB). We find 2logBF = 72.8 against Thompson
sampling and 5391.4 against UCB, indicating that our class of
models is overall better at representing exploration strategies
for all participants in comparison to any single, fixed strategy.

Discussion
In this work we proposed a justification for seemingly
sub-optimal human strategies in sequential decision-making
problems based on the idea of computational rational-
ity. We view human decision-making as an instance of
a learned, resource-constrained RL algorithm. This is
formalized through learning distributions over parameters of

a meta-learning model with a regularized, resource-rational
objective. The emerging spectrum of strategies resembles
characteristics of human decision-making without being
explicitly trained to do so. Additional model comparison
suggests, that the resulting resource-constrained LRLAs
describe human policies well on a quantitative level. How-
ever, the correspondence between human behavior and the
LRLA model class is not perfect. Looking at Figure 2 (right)
we observe, that some clusters are not represented exactly.
Furthermore it remains open, why none of the participants is
best described through the model with N̂ = 2048. Accounting
for these observations remains a question for future work.

The analysis on the two-armed bandit task presented in this
work can be extended in several ways. Relating deliberation
times to regularization factors could, for example, provide
additional evidence for our hypothesis. It also remains to
be seen whether our conclusions transfer to other sequential
decision-making problems beyond the bandit setting. In
this context we are especially interested in tasks, where
descriptive models of individual human behavior consist of a
set of different heuristics. We are also interested in methods,
that allow us to disentangle resource-rational behavior from
the Bayesian interpretation.

Recent work on model-free meta-learning methods, simi-
lar to the one employed in this work, indicates an emergence
of model-based behavior (Wang et al., 2016) and causal rea-
soning (Dasgupta et al., 2019) as well as the ability for few-
shot learning (Santoro, Bartunov, Botvinick, Wierstra, & Lil-
licrap, 2016), properties supposedly absent in artificial sys-
tems. Having systems capable of such feats, opens the possi-
bility for interesting studies on human cognition.
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Figure 4: Model comparison of the set of resource-constrained LRLAs with a value-directed baseline. Left: Log-likelihoods
for each participant and model. Higher values indicate a better fit. Right: Bayes factors (see Equation 6) for each participant i.
The dotted horizontal line (equal to 10) corresponds to the threshold for very strong evidence (Kass & Raftery, 1995) in favour
of HLRLA.
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