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Abstract

Machine Learning for Query Optimization

by

Zongheng Yang

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Ion Stoica, Chair

Data has been growing at an unprecedented rate in the past two decades. As a result,
systems that store, process, and analyze data have become mission-critical. Crucial to the
performance of data systems is the query optimizer, which translates high-level declarative
queries (e.g., SQL) into efficient execution plans. However, query optimization is highly
complex, leading to two key challenges. First, optimizers use a myriad of hand-designed
heuristics to tame the complexity, but heuristics leave performance on the table. Second,
optimizers are highly costly to develop, where human experts may spend months writing a
first version and years refining it.

This dissertation applies and enhances machine learning advances to tame the complexity in
query optimization. First, we remove for the first time decades-old and accuracy-impacting
heuristics in cardinality estimation—the Achilles’ heel of optimizers where heuristics par-
ticularly abound—thereby significantly improving estimation accuracy. We present Naru
and NeuroCard, two cardinality estimators based on self-supervised learning advances that
learn the joint data distribution of tables without any heuristic assumptions. Our estima-
tors improve the accuracy of cardinality estimation by orders of magnitude compared to the
prior state of the art. Second, we show that automatically learning to optimize SQL queries,
without learning from an expert-designed optimizer, is both possible and efficient, thereby
potentially alleviating the high development cost. We introduce Balsa, a deep reinforcement
learning agent that automatically learns to optimize SQL queries by trial-and-error. Balsa
can learn to outperform the optimizers of PostgreSQL—one of the most popular database
systems—and a commercial database engine with a few hours of learning.

Overall, by enhancing machine learning advances with new, carefully designed systems and
ML techniques, this line of work improves existing query optimizers, while opening the
possibility of alleviating the complex optimization in future environments and engines.
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Chapter 1

Introduction

In the past two decades, organizations large and small have been accumulating data at an
ever increasing rate. With this growth, systems that store, process, and analyze data have
attracted significant attention and investment. Such data systems—including database man-
agement systems (DBMS), data analytics systems (often dubbed “big data systems”), among
others—provide critical value by answering and serving queries, questions that organizations
may ask about the data they collected.

The most widely used queries today are SQL queries on tabular data. SQL allows users to
express questions about data in a declarative way. The query only specifies the “what” (what
target quantities and outputs are desired) and the data system is responsible for figuring out
the “how” (the exact sequence of processing to execute the query to return answers). This
separation of concerns enables the users to focus on their analytics tasks without having to
program the detailed processing steps to retrieve and process data.

However, this decoupling also introduces challenges to the data system—most notably,
making queries run fast. For a given SQL query, there are often an enormous number of
different ways to execute it, termed query execution plans. While all plans for the same
query eventually produce the same correct output, their efficiency can differ by orders of
magnitude. Therefore, most data systems employ a query optimizer, a critical component
that is responsible for producing an efficient plan to carry out each query. This process is
called query optimization.

Figure 1.1 illustrates the principal components of the classical cost-based query optimizer.
At a high level, given a query, the optimizer works by enumerating many candidate plans
and scoring them using an analytical cost model that quickly estimates each plan’s efficiency.
The most accuracy-impacting inputs to the cost model are the cardinality estimates, i.e.,
the estimated numbers of tuples in some subplans satisfying the query’s conditions. The
cardinality estimator is typically queried many times for different partial plans during the
optimization. At the end of the optimization, the “best” query plan for the query—the plan
having the lowest estimated cost among all enumerated candidates—is emitted for execution.
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Figure 1.1: Principal components of the classical cost-based query optimizer.

1.1 Challenges in Query Optimization

Acting as the “brain” of a data system, the query optimizer is highly complex. It must
avoid picking poorly performing plans, because they can significantly slow down the query
response time. On the other hand, the optimizer must pick out good plans out of a vast
search space, which is most likely explored non-exhaustively due to runtime constraints. This
high complexity nature has long been acknowledged in the field, with Chaudhuri stating in
1998 that “building a good optimizer is an enormous undertaking” [11], and Hellerstein et
al. writing in 2007 that “optimizers are among the most complex components in current-
generation commercial DBMSs” [41].

The issue of high complexity remains in today’s optimizers, which leads to the following
two key challenges.

First, optimizers use a myriad of heuristics to tame the complexity of the optimization
problem, but heuristics leave performance on the table. For example, the cardinality esti-
mator is a component in optimizers that employs particularly many heuristics, resulting in
highly inaccurate estimates in today’s data systems [64, 65]. These oversimplifying heuris-
tics include data summaries (e.g., 1D histograms), modeling assumptions (e.g., assuming
independence between any pair of columns), and beyond. Moreover, effects of inaccurate
cardinality estimates propagate: inaccurate cardinalities lead to inaccurate cost model scor-
ing (see Figure 1.1), which can ultimately lead the optimizer to output lower-quality plans at
best and disastrously slow ones at worst. This problem has attracted significant attention,
with some declaring cardinality estimation the Achilles’ heel of query optimization [70].

Second, as a result of their complexity, optimizers are highly costly to develop. Human
experts may spend months writing a first version and years refining it. For example, Post-
greSQL, one of the most widely used database systems in the world, has seen a continuous
stream of fine-tuning to its optimizer more than 20 years after it was released [17]. Due to the
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high development costs, some data systems settle for heuristic optimizations and postpone
building full-fledged cost-based optimizers—leaving performance on the table. As examples,
Spark SQL [115] was introduced in 2014 but only added a cost-based optimizer (CBO) in
2017, while CockroachDB shipped the first version of its CBO in v2.1 after “9 months of
intense effort” by a team [46].

Moreover, as data use cases grow in variety and volume, new data systems continue to
be invented to address the new demands. These new data systems may go beyond our
knowledge of classical query optimization based on relational DBMS (RDBMS). For exam-
ple, Materialize [76], a streaming database engine based on materialized views, stated that
their optimization goal is “off the beaten path” [83], in that it prioritizes minimizing memory
usage rather than execution cost (as in classical RDBMS). Another example is dataframe
systems [91], which may optimize for a new set of operators designed for dataframes, devi-
ating from the classical model. Therefore, new data systems may have an even higher cost
for developing performant optimizers suitable for the new workloads and environments.

1.2 Machine Learning for Query Optimization

To address these challenges, this dissertation explores using machine learning to tame the
complexity in query optimization.

Machine learning is a promising tool for these challenges in three regards. First, it is a
methodology that replaces manually designed heuristics with patterns automatically learned
from data. While heuristics are designed for the “average case”, they break down when
the underlying assumptions do not hold for the data at hand (e.g., two columns are in fact
dependent). In contrast, patterns learned from data “fit” that data by construction. Thus,
machine learning may enable us to get rid of the most accuracy-impacting heuristics in
optimizers, such as the ones causing the high inaccuracy in cardinality estimation.

Second, reinforcement learning, a subset of machine learning, offers the ability to auto-
matically learn to perform a task by trial-and-error. This technique has been successfully
applied to solve challenging problems with large search spaces, such as learning to play the
game of Go [112, 113], learning to play complex strategy games [131], and learning robotic
skills [2]. Therefore, reinforcement learning may open the possibility of automatically learn-
ing to optimize queries, potentially alleviating the high development cost of optimizers.

Third, machine learning has been undergoing rapid advancements in the past 10 years,
most notably in the form of deep learning. This new tool has achieved breakthroughs on
problems that could not be solved before, in a wide range of domains such as vision, language,
audio and video, games, and beyond. Enabling the successful application of deep learning
advances to query optimization is the central theme of this dissertation.

Roadmap. In this dissertation, we apply machine learning (ML) advances to:
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Figure 1.2: Using machine learning to both improve and learn to perform query optimization.

• Remove decades-old heuristics in cardinality estimation for the first time, thereby sig-
nificantly improving its accuracy (Chapter 3, Chapter 4);

• Automatically learn to optimize queries, thereby alleviating the high development cost
of optimizers (Chapter 5).

Figure 1.2 summarizes our overall approach schematically. As we will see, rather than directly
applying existing ML methods, we will enhance them with new systems and machine learning
techniques to realize this approach.

The rest of this dissertation is organized as follows. First, in Chapter 2 we give back-
ground information on query optimization and recent machine learning advances. We expand
on why and how ML advances will be leveraged in this dissertation.

In Chapter 3, we present Naru, a learned cardinality estimator for tabular data that
removes heuristic modeling assumptions for the first time. Naru uses deep autoregressive
models, a new advance in self-supervised learning, to capture the high-dimensional joint
data distribution of a table without making any independence assumptions. However, direct
application of these models leads to a limited estimator that is prohibitively expensive to
evaluate for range or wildcard predicates. To obtain a truly usable estimator, we develop
a Monte Carlo integration algorithm on top of autoregressive models, called progressive
sampling, that efficiently handles range queries touching dozens of columns or more. We
augment it further with wildcard skipping, an optimization to handle wildcard predicates.

Unlike previous cardinality estimators, Naru approximates the joint data distribution of
a table without any independence assumptions. As a result, when evaluated on real-world
datasets and compared against real systems (PostgreSQL and a commercial DBMS) and
dominant families of cardinality estimators, Naru achieves single-digit multiplicative errors
at tail, an up to 90× accuracy improvement over the second best method, and is space- and
runtime-efficient.
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In Chapter 4, we present NeuroCard, which extends Naru from supporting a single source
table to supporting joins involving multiple tables. NeuroCard is a join cardinality estimator
that builds a single neural density estimator over an entire database. Leveraging Naru and
enhancing it with new techniques (join sampling, column factorization, inference algorithms
for joins), NeuroCard shows that it is possible to learn the correlations across all tables
in a database without making any inter-table or inter-column independence assumptions.
By removing these accuracy-impacting heuristics, NeuroCard achieves orders of magnitude
higher accuracy than the best prior methods, scales to more than a dozen tables, while being
compact in space (MBs) and efficient to construct or update (seconds to minutes).

Chapter 5 turns the attention to the second key challenge: alleviating the high devel-
opment cost of optimizers. It introduces Balsa, a deep reinforcement learning agent that
automatically learns to optimize SQL queries by trial-and-error. Balsa demonstrates for the
first time that learning to optimize queries without learning from an existing expert-designed
optimizer is both possible and efficient.

To achieve this arguably surprising result, Balsa tackles the key challenge of mitigating
disastrously slow plans during the agent’s learning process. It first learns basic knowledge
from a simple, engine- and environment-agnostic simulator, followed by learning in real
execution, which is guarded by new safe execution and safe exploration techniques.

On the challenging Join Order Benchmark designed to stress test query optimizers, Balsa
matches the performance of two expert optimizers, from PostgreSQL and a commercial
engine, with two hours of learning, and outperforms them by up to 2.8× in workload runtime
after a few more hours. Balsa thus opens the possibility of automatically learning to optimize
in future compute environments and engines where expert-designed optimizers do not exist.

Finally, in Chapter 6 we reflect on lessons learned for related data challenges and future
ML-for-systems problems, discuss possible extensions, and conclude this dissertation.

In summary, this dissertation makes the following contributions:

• Significantly improving the accuracy of cardinality estimation for base tables, by di-
rectly learning all correlations of the underlying joint data distributions and removing
heuristic modeling assumptions (e.g., inter-column independence assumptions).

• Extending this result from base tables to modeling a join schema of multiple tables:
all cross-table and cross-column correlations in the schema are learned, without using
heuristic inter-table or inter-column independence assumptions.

• Demonstrating that learning to optimize queries by trial-and-error, without learning
from an expert-designed optimizer, is not only possible and efficient, but can also result
in a highly competitive learned optimizer that can outperform mature optimizers.
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Previously published materials. This dissertation includes previously published and
co-authored work as follows. Chapter 3 includes materials from [142]. Chapter 4 includes
materials from [143]. Chapter 5 includes materials from [141].
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Chapter 2

Background

In this chapter, we first give some background information on query optimization, then
proceed to review machine learning advances and discuss why and how they will be leveraged
in this dissertation.

2.1 Query Optimization

Query optimization is the process of translating high-level, declarative queries into low-level,
efficient execution plans, much like a compiler. Each execution plan is a tree of physical
operators—algorithms that the system actually implements to carry out the computation.
Query optimization has a long history of work in the research literature as well as in practice,
by having a presence in most, if not all, working data systems, dating back to at least the
pioneering System R project in the 1970s [107].

Next, we start by reviewing two influential optimizer architectures, both of which are
implemented in many of today’s systems: the bottom-up System R-style framework, and
the top-down Cascades-style framework. We then put the contributions of this dissertation
in context.

System R. In this framework, queries are optimized bottom-up: it starts with finding
the best ways to access base tables, then gradually builds up larger plans that include
more tables. It instantiates the architecture in Figure 1.1 by using a dynamic programming
algorithm as the plan enumeration module. We illustrate the key idea of join ordering
and plan construction next, and omit many technical details (e.g., handling subqueries,
interesting orders) which can be found in its classical paper [107].

Given a query with n tables to join, a System R optimizer starts by enumerating all
scan operators to access each of these tables, each of which has its cost estimated and stored
in a memoization table. This step yields the best 1-table subplans (i.e., partial plans). It
then proceeds to construct the best 2-table subplans from the smaller, already-optimized
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subplans: a candidate is formed by picking two 1-table subplans from the memoization table
and joining them in some order with a physical join operator (e.g., hash join, sort-merge
join). These 2-table candidates are scored by the cost model, and the cheapest plan per
table combination is written to the memoization table. The algorithm proceeds similarly for
all k-table joins, at each “level” composing the smaller optimized subplans from prior levels,
eventually producing a final cheapest plan.

The System R optimizer is considered textbook material and is implemented in a wide
range of database systems today (e.g., PostgreSQL).

Cascades. The Cascades framework [32] came from a line of work on extensible optimizers
and optimizer generators, and it addressed several challenges observed in the prior work Ex-
odus [33] and Volcano [34]. For our purpose, we describe its top-down approach of producing
an execution plan, to contrast with System R. This framework can be seen as instantiating
Figure 1.1 with a rule-based search engine as the enumeration module.

At a high level, a Cascades optimizer starts from a logical plan of the query and repeatedly
invokes rules to transform the current plan to get closer to a desired final plan. These rules
can represent logical-to-logical rewrites (e.g., two relations in a logical join can swap their
order) or logical-to-physical rewrites (replacing logical operators with physical operators).
Like System R, a cost model and a cardinality estimator are used to quickly estimate the
efficiency of the considered plans. At the end of the optimization, the cheapest plan found
thus far is emitted.

This framework has the advantage of being more extensible, as new rules can be eas-
ily added into the framework in a modular manner. Many ideas developed in the Cas-
cades framework have appeared in widely used commercial systems, including Microsoft
SQL Server, SCOPE [146], PDW [109], and Greenplum’s Orca [114].

Despite their apparent differences, both influential optimizer architectures described
above have enjoyed wide usage in practice and have no clear winner.

Our work in perspective. Importantly, both frameworks rely on the core primitives
of cost modeling and cardinality estimation for good optimization performance. In this
dissertation, Chapter 3 and Chapter 4 focus on removing decades-old, accuracy-impacting
heuristics from base-table and join cardinality estimation, respectively. Therefore, our results
in those chapters are broadly applicable to a range of optimizers, independent of which
framework they are implemented in.

Chapter 5 presents a deep reinforcement learning approach to learn to optimize queries.
The learned optimizer described in that chapter (Balsa) implements a bottom-up plan search
procedure (as the enumeration module) that is guided by a learned value network (as the
cost model module). Thus, Balsa can be seen as replacing the plan enumeration and cost
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model components shown in Figure 1.1. It is closer in spirit to the System R framework as
it does not use transformation rules as the key mechanism to produce plans.

As mentioned, query optimization has a rich history of work. This section cannot and
does not attempt to cover the topic in depth. Rather, we present the necessary background
information to set up the context for the chapters that follow. For more details, we refer the
reader to the surveys by Jarke and Koch [49] and Chaudhuri [11]; for more perspectives, see
Hellerstein et al. [41] and the “Red Book” [5].

2.2 Machine Learning Advances

Next, we discuss the recent machine learning (ML) advances that serve as the enabling
techniques in this work. We first briefly review some historical context of deep learning,
then articulate why and how advances in self-supervised learning and reinforcement learning
will be leveraged in the chapters to come in this dissertation.

Deep learning (DL). DL, a family of ML techniques based on the use of deep neural
networks as function approximators, has become the de facto method of choice in a wide
range of ML problems in the last decade. While its core techniques (e.g., neural networks
trained by the backpropagation algorithm) were proposed decades ago [102, 62, 101], it was
only until around 2011 to 2012 where the confluence of fast accelerator hardware (GPUs),
improved software, and the availability of large datasets that made deep learning truly
feasible for the first time. This started the so-called “AI boom” or the “deep learning
revolution” of the 21st century [106].

The defining transition point was, by general consensus, the “AlexNet moment” in 2012,
where a network architecture called AlexNet [61] won the large-scale ImageNet image recog-
nition contest by a large margin, compared to other non-neural, classical methods. The
AlexNet moment convincingly demonstrated both the feasibility and the superior perfor-
mance of deep learning, thus kicking off a swift shift to DL methods in the computer vision
community in particular, and the broader ML community in general.

Since then, DL has attracted significant attention, and the capabilities of DL have rapidly
improved. These include an expanded list of supported data modalities (from image pixels
to text, audio, video, and the combinations thereof), improved neural network architectures
(from multilayer perceptrons, to convolutional neural networks, sequence models, Trans-
former, and numerous variants), better training algorithms (e.g., Adam [52]), hardware and
software improvements, and so on. As a result, applications of DL have multiplied. Today,
deep learning has been applied to many areas in sciences and powers many widely used
applications and web services.

DL has since pushed the boundary of nearly every area in ML. We discuss two particularly
active areas that we will leverage: self-supervised learning and reinforcement learning.
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Self-supervised learning. A subset of unsupervised learning, self-supervised learning
refers to a family of methods that learn to predict unseen parts of the input data given the
observed parts. In other words, the data itself provides the supervision signals. This is in
direct contrast with the more familiar regime of supervised learning, where supervision labels
need to be explicitly collected (e.g., by human labelers).

A major direction in self-supervised learning is generative modeling, which has been
rapidly progressing thanks to the combination of new algorithms and neural networks as
powerful function approximators. Notably, while it was previously thought intractable to
learn a joint data distribution of high-dimensional data in its full form, deep autoregressive
models, a new type of density estimator, have succeeded in modeling high-dimensional data
such as images [126, 103, 14], audio [127], and text [97, 128, 8, 23, 140] (termed language
models). Other new generative models include flow models [53, 45, 88, 47, 24], latent variable
models [54, 55, 86, 98], and implicit models such as Generative Adversarial Networks [31].

As mentioned, deep autoregressive models for the first time enable us to learn com-
plex high-dimensional joint data distributions without independence assumptions, achieving
state-of-the-art accuracy. In Chapter 3 and Chapter 4, we will apply them to first learn the
joint data distributions of tabular data without any modeling assumptions, then, crucially,
enhance the models with new techniques to turn them into feasible cardinality estimators.

Reinforcement learning (RL). RL studies automatically learning to perform a task
by trial-and-error. At a high level, RL consists of an agent that learns to solve a task by
repeatedly interacting with an environment. The agent observes the environment’s state
and takes an action to maximize a reward. Through rewards, the agent is incentivized to
reinforce good actions and correct mistakes.

Deep RL, in particular, utilizes neural networks to learn powerful policy and value
functions—key components of a typical RL agent—that allow the agent to learn sophis-
ticated policies (behaviors) to solve increasingly complex tasks. In the last few years, deep
RL has remarkably solved several previously unsolvable challenges. Notable milestones in-
clude learning to play Atari games [78], the AlphaGo project and its successors [112, 113,
111, 104] that learn to play Go to a superhuman level (defeating human champions), learn-
ing to play complex multi-player strategy games (StarCraft II, Dota 2) to a superhuman
level [131, 7], learning robotic skills [3, 2], to name a few. Importantly, these milestones have
contributed many learning algorithms that have been applied to other use cases.

In Chapter 5, we will apply deep RL to learn to optimize SQL queries by trial-and-error.
We will leverage value network-guided tree search, an algorithm similar to AlphaGo and
expert iteration [4], to allow the agent to navigate a large search space to find high-quality
plans. To make it feasible in our setting, we will enhance it with new techniques to resolve
the key challenge of mitigating disastrously slow plans in the learning process.
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Chapter 3

Naru: Deep Unsupervised Cardinality
Estimation

As discussed in Chapter 1, cardinality estimation is a component in query optimization where
heuristics particularly abound. While heuristic modeling assumptions, e.g., the column inde-
pendence assumption and the uniformity assumption in histograms, simplify the estimation
problem, they leave accuracy on the table and thus hurt the quality of query optimization.
As a result, database systems today produce highly inaccurate cardinality estimates, which
are found to be the dominant factor for poor execution plans [64, 65].

In this chapter, we build a new cardinality estimator called Naru, that learns a table’s
data distribution while fully removing heuristic modeling assumptions for the first time, by
applying and enhancing a new statistical model from recent advances in self-supervised learn-
ing. Like classical synopses, Naru directly summarizes the data and then uses the summary
to estimate the cardinalities of incoming queries or predicates. Unlike previous estimators,
Naru approximates the joint data distribution of a table without any independence assump-
tions, thereby achieving a new level of accuracy in base table cardinality estimation.

3.1 Introduction

Cardinality estimation is a core primitive in query optimization [107]. One of its main
tasks is to accurately estimate the selectivity of a SQL predicate—the fraction of a relation
selected by the predicate—without actual execution. Despite its importance, there is wide
agreement that the problem is still unsolved [64, 65, 90]. Open-source and commercial
DBMSes routinely produce up to 104−108× estimation errors on queries over a large number
of attributes [64].

The fundamental difficulty of selectivity estimation1 comes from condensing information

1We use this term and “cardinality estimation” interchangeably, as multiplying a selectivity by the table’s
row count recovers the cardinality.
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Figure 3.1: Approximating the joint data distribution in full, Naru enjoys high estimation accu-
racy and space efficiency.

about data into summaries [50]. The predominant approach in database systems today is to
collect single-column summaries (e.g., histograms and sketches), and to combine these coarse-
grained models assuming column independence. This represents one end of the spectrum,
where the summaries are fast to construct and cheap to store, but compounding errors occur
due to the coarse information and over-simplifying independence assumptions. On the other
end of the spectrum, when given the joint data distribution of a relation (the frequency of
each unique tuple normalized by the relation’s cardinality), perfect selectivity “estimates”
can be read off or computed via integration over the distribution. However, the joint is
intractable to compute or store for all but the tiniest datasets. Thus, traditional selectivity
estimators face the hard tradeoff between the amount of information captured and the cost
to construct, store, and query the summary.

An accurate and compact joint approximation would allow better design points in this
tradeoff space (Figure 3.1). Recent advances in deep unsupervised learning have offered
promising tools in this regard. While it was previously thought intractable to approximate
the data distribution of a relation in its full form [28, 22], deep autoregressive models, a type
of density estimator, have succeeded in modeling high-dimensional data such as images, text,
and audio [126, 103, 127, 128]. However, these models only estimate point densities—in query
processing terms, they only handle equality predicates (e.g., “what is the fraction of tuples
with price equal to $100?”). Full-featured selectivity estimation requires handling not only
equality but also range predicates (e.g., “what fraction of tuples have price less than $100 and
weight greater than 10 lbs?”). Naive estimation of the range density by integrating over the
query region requires summing up an enormous number of points. In an 11-dimensional table
we consider, a challenging range query has 1010 points in the query region, which would take
more than 1,000 hours to sum over by a naive enumeration scheme. A full-featured selectivity
estimator, therefore, requires new techniques beyond the state of the art.
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In this chapter, we show that selectivity estimation can be performed with high accu-
racy by using deep autoregressive models. We first show how relational data—including
both numeric and categorical attributes—can be mapped onto these models for effective
selectivity estimation of equality predicates. We then introduce a new Monte Carlo integra-
tion technique called progressive sampling, which efficiently estimates range queries even at
high dimensionality. By leveraging the availability of conditional probability distributions
provided by the model, progressive sampling steers the sampler into regions of high proba-
bility density, and then corrects for the induced bias by using importance weighting. This
technique extends the state of the art in density estimation, with particular applicability to
our problem of general-purpose selectivity estimation. Our scheme is effective: a thousand
samples suffice to accurately estimate the aforementioned 1010-point query.

To realize these ideas, we design and implement Naru (Neural Relation Understanding),
a selectivity estimator that approximates the joint data distribution in its full form, without
any column independence assumptions. Approximating the joint in full not only provides
superior accuracy, but also frees us from specifying what combinations of columns to build
synopses on. We further propose optimizations to efficiently handle wildcard predicates, and
to encode and decode real-world relational data (e.g., supporting various datatypes, small
and large domain sizes). Combining our integration scheme with these practical strategies
results in a highly accurate, compact, and functionality-rich selectivity estimator based on
deep autoregressive models.

Just like classical synopses, Naru summarizes a relation in an unsupervised fashion. The
model is trained via statistically grounded principles (maximum likelihood) where no super-
vised signals or query feedback are required. While query-driven estimators are optimized
with respect to a set of training queries (i.e., “how much error does the estimator incur on
these queries?”), Naru is optimized with respect to the underlying data distribution (i.e.,
“how divergent is the estimator from the data?”). Being data-driven, Naru supports a much
larger set of queries and is automatically robust to query distributional shifts. Our evalua-
tion compares Naru to the state-of-the-art unsupervised and supervised techniques, showing
Naru to be the only estimator to achieve worst-case single-digit multiplicative errors for
challenging high-dimensional queries.

In summary, we make the following contributions:

1. We show deep autoregressive models can be used for selectivity estimation (§3.2, §3.3),
and propose optimizations to make them suitable for relational data (§3.4).

2. To handle challenging range queries, we develop progressive sampling, a Monte Carlo
integration algorithm that efficiently estimates range densities even with large query
regions (§3.5.1). We augment it with a novel optimization, wildcard-skipping (§3.5.2),
to handle wildcard predicates. We also propose information-theoretic column orderings
(§3.5.3) to reduce estimation variance.



CHAPTER 3. NARU: DEEP UNSUPERVISED CARDINALITY ESTIMATION 14

3. We extensively evaluate on real datasets against 8 baselines across 5 different families
(heuristics, real DBMSes, sampling, statistical methods, deep supervised regression).
Our estimator Naru achieves up to orders-of-magnitude better accuracy with space
usage ∼1% of data size and ∼5−10ms of estimation latency (§3.6).

Naru is open sourced at https://github.com/naru-project/naru.

3.2 Problem Formulation

Consider a relation T with attribute domains {A1, . . . , An}. Selectivity estimation seeks to
estimate the fraction of tuples in T that satisfy a particular predicate, θ : A1 × · · · × An →
{0, 1}. We define the selectivity to be sel(θ) := |{x ∈ T : θ(x) = 1}|/|T |.

The joint data distribution of the relation, defined to be

P (a1, . . . , an) := f(a1, . . . , an)/|T |

is closely related to the selectivity, where f(a1, . . . , an) is the number of occurrences of tuple
(a1, . . . , an) in T . It forms a valid probability distribution since integrating it over the
attribute domains yields a value of 1. Thus, exact selectivity calculation is equivalent to
integration over the joint:

sel(θ) =
∑

a1∈A1

· · ·
∑

an∈An

θ(a1, . . . , an) · P (a1, . . . , an).

In this chapter, we consider finite relation T and hence its empirical domains Ai are finite.
Therefore summation is used in the integration calculation above.

3.2.1 Approximating the Joint via Factorization

Given the joint, exact selectivity “estimates” can be calculated by integration. However,
the number of entries in the joint—and thus the maximum number of points needed to
be summed over in the integration—is |P | =

∏n
i=1 |Ai|, a size that grows exponentially in

the number of attributes. Real-world tables with a dozen or so columns can easily have a
theoretic joint size of 1020 and upwards (§3.6). In practice, it is possible to bound this number
by |T |, the number of tuples in the relation, by not storing any entry with zero occurrence.
Algorithmically, to scale construction, storage, and integration to high-dimensional tables,
joint approximation techniques seek to factorize [35] the joint into some lower-dimensional

representation, P̂ ≈ P .

Classical 1D histograms [107] use the simplest factorization, P̂ (A1, · · · , An) ≈∏n
i=1 P̂ (Ai),

where independence between attributes is assumed. The P̂ (Ai)’s are materialized as his-
tograms that are cheap to construct and store. Selectivity estimation reduces to calculating

https://github.com/naru-project/naru


CHAPTER 3. NARU: DEEP UNSUPERVISED CARDINALITY ESTIMATION 15

per-column selectivities and combining by multiplication,

sel(θ) ≈
(∑

a1∈A1

θ1(a1)P̂ (a1)

)
× · · · ×

( ∑

an∈An

θn(an)P̂ (an)

)

where each θi is predicate θ projected to each attribute (assuming here θ is a conjunction of
single-attribute filters).

Richer factorizations are possible and are generally more accurate. For instance, Proba-
bilistic Relational Models [28, 29] from the early 2000s leverage the conditional indepen-
dence assumptions of Bayesian Networks (e.g., joint factored into smaller distributions,

{P̂ (A1|A2, A3), P̂ (A2), P̂ (A3)}). Dependency-Based Histograms [22] use decomposable in-

teraction models and rely on partial independence between columns (e.g., P̂ (A1, A2, A3) ≈
P̂ (A1)P̂ (A2, A3)). Both methods are marked improvements over 1D histograms since they
capture more than single-column interactions. However, the tradeoff between richer factor-
izations and costs to store or integrate is still unresolved. Obtaining selectivities becomes
drastically harder due to the integration now crossing multiple attribute domains. Most
importantly, the approximated joint’s precision is compromised since some forms of inde-
pendence are still assumed.

In this chapter, we consider the richest possible factorization of the joint, using the
product rule:

P̂ (A1, · · · , An) = P̂ (A1)P̂ (A2|A1) · · · P̂ (An|A1, . . . , An−1)

Unlike the previous proposals, the product rule factorization is an exact relationship to
represent a distribution. It makes no independence assumptions and captures all complex
interactions between attributes. Key to this goal is that the factors, {P̂ (Ai|A1, . . . , Ai−1)},
need not be materialized; instead, they are calculated on-demand by a neural network, a
high-capacity universal function approximator [38].

3.2.2 Problem Statement

We estimate the selectivities of queries of the following form. A query is a conjunction of
single-column boolean predicates, over arbitrary subsets of columns. A predicate contains
an attribute, an operator, and a literal, and is read as Ai ∈ Ri (attribute i takes on values
in valid region Ri). Our formulation includes the usual =, 6=, <,≤, >,≥ predicates, the
rectangular containment Ai ∈ [li, ri], or even IN clauses. For ease of exposition, we use range
to denote the valid region Ri or, for the whole query, the composite valid region R1×· · ·×Rn.
We assume the domain of each column, Ai, is finite: since a real dataset is finite, we can
take the empirically present values of a column as its finite domain.

We make a few remarks. First, disjunctions of such predicates are supported via the
inclusion-exclusion principle. Second, our formulation follows a large amount of existing
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work on this topic [22, 28, 40, 95, 89] and, in some cases, offers more capabilities. Certain
prior work requires each predicate be a rectangle [56, 40] or columns be real-valued [58, 40];
our “region” formulation supports complex predicates and does not make these assumptions.
Lastly, the relation under estimation can either be a base table or a join result.

3.3 Deep Autoregressive Models

3.3.1 Overview

Naru uses a deep autoregressive model to approximate the joint distribution. We overview
the statistical features they offer and how those relate to selectivity estimation.

Access to point density P̂ (x). Deep autoregressive models produce point density esti-

mates P̂ (x) after training on a set of n-dimensional tuples T = {x1, . . . } with the unsu-
pervised maximum likelihood objective. Many network architectures have been proposed in
recent years, such as masked multi-layer perceptrons (e.g., MADE [27], ResMADE [25]) or
masked self-attention networks (e.g., Transformer [128]).

Access to conditional densities {P̂ (xi|x<i)}. Additionally, autoregressive models also
provide access to all conditional densities present in the product rule:

P̂ (x) = P̂ (x1, x2, · · · , xn)

= P̂ (x1)P̂ (x2|x1) · · · P̂ (xn|x1, . . . , xn−1)

Namely, given input tuple x = (x1, · · · , xn), one can obtain from the model the n conditional

density estimates, {P̂ (xi|x<i)}. The model can be architected to use any ordering(s) of the
attributes (e.g., (x1, x2, x3) or (x2, x1, x3)). In our exposition we assume the left-to-right
schema order (§3.5.3 discusses heuristically picking a good ordering).

Naru chooses autoregressive models for selectivity estimation for two important reasons.
First, autoregressive models have shown superior modeling precision in learning images [126,
103], audio [127], and text [128]. All these domains involve correlated, high-dimensional data
akin to a relational table. Second, as we will show in §3.5.1, access to conditional densities
is critical in efficiently supporting range queries.

3.3.2 Autoregressive Models for Relational Data

Naru allows any autoregressive model M to be plugged in. In general, such model has the
following functional form:

M(x) 7→
[
P̂ (X1), P̂ (X2|x1), · · · , P̂ (Xn|x1, . . . , xn−1)

]
(3.1)
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Table

Tuples

Autoregressive
Model

Data
Source

unsupervised loss
(maximum likelihood)

Selectivity
estimates

x1
x2
x3

P̂(x1)

P̂(x2|x1)
P̂(x3|x1, x2)

Figure 3.2: Overview of the estimator framework. Naru is trained by reading data tuples and
does not require supervised training queries or query feedback, just like classical synopses.

Namely, one tuple goes in, a list of conditional density distributions comes out, each being a
distribution of the ith attribute conditioned on previous attributes. (The scalars required to

compute the point density, {P̂ (xi|x<i)}, are read from these conditional distributions.) How

can a neural netM attain the autoregressive property, e.g., that P̂ (X3|x1, x2) only depends
on, or “sees”, the information from the first two attribute values (x1, x2) but not anything
else?

Information masking is a common technique used to implement autoregressive mod-
els [27, 128, 126]; here we illustrate the idea by constructing an example architecture for
relational data. Suppose we assign each column i its own compact neural net, whose in-
put is the aggregated information about previous column values x<i. Its role is to use this
context information to output a distribution over its own domain, P̂ (Xi|x<i). Consider a
travel checkins table with columns city, year, stars. Assume the model is given the
input tuple, 〈Portland, 2017, 10〉. First, column-specific encoders Ecol() transform each at-
tribute value into a numeric vector suitable for neural net consumption, [Ecity(Portland),
Eyear(2017), Estars(10)]. Then, appropriately aggregated inputs are fed to the per-column
neural nets Mcol:

0→Mcity

Ecity(Portland)→Myear

⊕ (Ecity(Portland), Eyear(2017))→Mstars

where ⊕ is the operator that aggregates information from several encoded attributes. In
practice, this aggregator can be vector concatenation, a set-invariant pooling operator (e.g.,
elementwise sum or max), or even self-attention [128].

Notice that the first output, from Mcity, does not depend on any attribute values (its
input 0 is arbitrarily chosen). The second output depends only on the attribute value from
city, and the third depends only on both city and year. Therefore, the three outputs can
be interpreted as [

P̂ (city), P̂ (year|city), P̂ (stars|city, year)
]
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Thus, autoregressiveness is achieved via such input masking.

Training these model outputs to be as close as possible to the true conditional densities
is done via maximum likelihood estimation. Specifically, the cross entropy [38] between the

data distribution P and the model estimate P̂ is calculated over all tuples in relation T and
used as the loss:

H(P, P̂ ) = −
∑

x∈T
P (x) log P̂ (x) = − 1

|T |
∑

x∈T
log P̂ (x) (3.2)

It can be fed into a standard gradient descent optimizer [52]. Lastly, the Kullback-Leibler

divergence, H(P, P̂ )−H(P ), is the entropy gap (in bits-per-tuple) incurred by the model. A
lower gap indicates a higher-quality density estimator; thus, it serves as a monitoring metric
during and after training.

3.4 Estimator Construction

We now discuss practical issues in constructing Naru.

3.4.1 Workflow

Figure 3.2 outlines the workflow of building a Naru estimator. After specifying a table T to
build an estimator on, batches of random tuples from T are read to train Naru. In practice,
a snapshot of the table can be saved to external storage so normal DBMS activities are not
affected. Neural network training can be performed either close to the data (at periods of
low activity) or offloaded to a remote process.

For a batch of tuples, Naru encodes each attribute value using column-specific strategies
(§3.4.2). The encoded batch then gets fed into the model to perform a gradient update step.
Our evaluation (§3.6.4) empirically observed that one pass over data is sufficient to achieve
a high degree of accuracy (e.g., outperforming real DBMSes by 10−20×), and more passes
are beneficial until model convergence.

Appends and updates may cause statistical staleness. Naru can be fine-tuned on the
updated relation to correct for this, as we show in §3.6.8.3. Further, if new data comes in
per-day partitions, then each partition can train its own Naru model.

Joins. The estimator does not distinguish between the type of table it is built on. To
build an estimator on a joined relation, either the entire joined relation can be pre-computed
and materialized, or multi-way join operators [129, 130] and samplers [63, 12] can be used
to produce batches of tuples on-the-fly. Given access to tuples from the joined result, no
changes are needed to the estimator framework. Once trained, the estimator supports queries
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that filter any column in the joined relation. This treatment follows prior work [74, 89, 51]
and is conceptually clean.

In Chapter 4 we will study this in depth, by extending Naru to efficiently support joins.

3.4.2 Encoding and Decoding Strategies

Naru models a relation as a high-dimensional discrete distribution. The key challenge is to
encode each column into a form suitable for neural network consumption, while preserving
the column semantics. Further, each column’s output distribution P̂ (Xi|x<i) (a vector of
scores) must be efficiently decoded regardless of its datatype or domain size.

For each column Naru first obtains its domain Ai either from user annotation or by
scanning. All values in the column are then dictionary-encoded into integer IDs in range
[0, |Ai|). For instance, the dictionary can be Portland 7→ 0, SF 7→ 1, etc. For a column with
a natural order, e.g., numerics or strings, the domain is sorted so that the dictionary order
follows the column order. Overall, this pre-processing step is a lossless transformation (i.e.,
a bijection).

Next, column-specific encoders Ecol() encode these IDs into vectors. The ML community
has proposed many such strategies before; we make sensible choices by keeping in mind a
few characteristics specific to relational datasets:

Encoding small-domain columns: one-hot. For such a column Ecol() is set to one-hot
encoding (i.e., indicator variables). For instance, if there are a total of 4 cities, then the
encoding of SF is Ecity(1) = [0, 1, 0, 0], a 4-dimensional vector. The small-domain threshold
is configurable and set to 64 by default. This encoding takes O(|Ai|) space per value.

Encoding large-domain columns: embedding. For a larger domain, the one-hot vec-
tor wastes space and computation budget. Naru uses embedding encoding in this case.
In this scheme—a preprocessing step in virtually all natural language processing tasks—a
learnable embedding matrix of type R|Ai|×h is randomly initialized, and Ecol() is simply
row lookup into this matrix. For instance, Eyear(4) 7→ row 4 of embedding matrix, an h-
dimensional vector. The embedding matrix gets updated during gradient descent as part of
the model weights. Per value this takes O(h) space (Naru defaults h to 64). This encoding is
ideal for domains with a meaningful semantic distance (e.g., cities are similar in geo-location,
popularity, relation to its nation) since each dimension in the embedding vector can learn to
represent each such similarity.

Decoding small-domain columns. Suppose domain Ai is small. In this easy case, the
network allocates an output layer to compute a distribution P̂ (Xi|x<i), which is a |Ai|-
dimensional vector of probabilities used for selectivity estimation. We use a fully connected
layer, FC(F, |Ai|), where F is the hidden unit size. For example, for a city column with three



CHAPTER 3. NARU: DEEP UNSUPERVISED CARDINALITY ESTIMATION 20

values in its domain, the output distribution may be [SF = 0.2;Portland = 0.5;Waikiki = 0.3].
During optimization, the training loss seeks to minimize the divergence of this output from
the data distribution.

Decoding large-domain columns: embedding reuse. If the domain is large, however,
using a fully connected output layer FC(F, |Ai|) would be inefficient in both space and com-
pute. Indeed, an id column in a dataset we tested on has a large domain size of |Ai| = 104,
inflating the output layer beyond typical scales.

Naru solves this problem by an optimization that we call “embedding reuse”. In essence,
we replace the potentially large output layer FC(F, |Ai|) with a much smaller version, FC(F, h)
(recall that h is the typically small embedding dimensions; defaults to 64). This immediately
yields a saving ratio of |Ai|/h. The goal of decoding is to take in inputs x<i and output
|Ai| probability scores over the domain. With the shrunk-down output layer, inputs x<i
would pass through the net arriving at an h-dimensional feature vector, H ⊆ R1×h. We then
calculate HET

i , where Ei ⊆ R|Ai|×h is the already-allocated embedding matrix for column i,
obtaining a vector R1×|Ai| that can be interpreted as the desired scores after normalization.
We have thus decoded the output while cutting down the cost of compute and storage. This
scheme has proved effective in other large-domain tasks [97].

3.4.3 Model Choice

As discussed, any autoregressive model can be plugged in, taking advantage of Naru’s encod-
ing/decoding optimizations as well as querying capabilities (§3.5). We experiment with three
representative architectures: (A) Masked Autoencoder (MADE) [27], a standard multi-layer
perceptron with information masking to ensure autoregressiveness; (B) ResMADE [25], a
simple extension to MADE where residual connections are introduced to improve learning
efficiency; and (C) Transformer [128], a class of self-attentional models driving recent state-
of-the-art advances in natural language processing [23, 140]. Table 3.7 compares the tradeoffs
of these building blocks. We found that, under similar parameter count, more advanced ar-
chitectures (B, C) achieve better entropy gaps; however, the smaller entropy gaps do not
automatically translate into better selectivity estimates and the computational cost can be
significantly higher (for C).

3.5 Querying the Estimator: Progressive Sampling

Once an autoregressive model is trained, it can be queried to compute selectivity estimates.
Assume a query sel(θ) = P (X1 ∈ R1, . . . , Xn ∈ Rn) asking for the selectivity of the conjunc-
tion, where each range Ri can be a point (equality predicate), an interval (range predicate),
or any subset of the domain (IN). The calculation of this density is fundamentally summing
up the probability masses distributed in the cross-product region, R = R1 × · · · ×Rn.
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We first discuss the straightforward support for equality predicates, then move on to how
Naru solves the more challenging problem of range predicates.

Equality Predicates. When values are specified for all columns, estimating conjunctions
of these equality predicates is straightforward. Such a point query has the form P (X1 =
x1, . . . , Xn = xn) and requires only a single forward pass on the point, (x1, . . . , xn), to obtain

the sequence of conditionals, [P̂ (X1 = x1), P̂ (X2 = x2|X1 = x1), . . . , P̂ (Xn = xn|X1 =
x1, . . . , Xn−1 = xn−1)], which are then multiplied.

Range Predicates. It is impractical to assume a workload that only issues point queries.
With the presence of any range predicate, or when some columns are not filtered, the number
of points that must be evaluated through the model becomes larger than 1. (In fact, it easily
grows to an astronomically large number for the majority of workloads we considered.) We
discuss two ways in which Naru carries out this operation. Enumeration exactly sums up
the densities when the queried region R is sufficiently small:

sel(X1 ∈ R1, . . . , Xn ∈ Rn) ≈
∑

x1∈R1

· · ·
∑

xn∈Rn

P̂ (x1, . . . , xn).

When the region R is deemed too big—almost always the case in the datasets and work-
loads we considered—we instead use a novel approximate technique termed progressive
sampling (described next), an unbiased estimator that works surprisingly well on the rela-
tional datasets we considered.

Lastly, queries with out-of-domain literals can be handled via simple rewrite. For exam-
ple, suppose year’s domain is {2017, 2019}. A range query with an out-of-domain literal, say
“year < 2018”, can be rewritten as “year ≤ 2017” with equivalent semantics. For equality
predicates with out-of-domain literals, Naru simply returns a cardinality of 0. Hereafter we
consider in-domain literals and valid regions.

3.5.1 Range Queries via Progressive Sampling

The queried region R = R1 × · · · × Rn in the worst case contains O(
∏

i
Di) points, where

Di = |Ai| is the size of each attribute domain. Clearly, computing the likelihood for an
exponential number of points is prohibitively expensive for data/queries with even moderate
dimensions. Naru proposes an approximate integration scheme to address this challenge.

First attempt (Figure 3.3, left). The simplest way to approximate the sum is via uniform
sampling. First, sample x(i) uniformly at random from R. Then, query the model to
compute p̂i = P̂ (x(i)). By naive Monte Carlo, for S samples we have |R|

S

∑S
i=1 p̂i as an

unbiased estimator to the desired density. Intuitively, this scheme is randomly throwing
points into target region R to probe its average density.
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Figure 3.3: The intuition of progressive sampling. Uniform samples taken from the query region
have a low probability of hitting the high-mass sub-region of the query region, increasing the
variance of Monte Carlo estimates. Progressive sampling avoids this by sampling from the estimated
data distribution instead, which naturally concentrates samples in the high-mass sub-region.

To understand the failure mode of uniform sampling, consider a relation T with n cor-
related columns, with each column distribution skewed so that 99% of the probability mass
is contained in the top 1% of its domain (Figure 3.3). Take a query with range predicates
selecting the top 50% of each domain. It is easy to see that uniformly sampling from the
query region will take in expectation 1/(0.01/0.5)n = 1/0.02n samples to hit the high-mass
region we are integrating over. Thus, the number of samples needed for an accurate estimate
increases exponentially in n. Consequently, we find that this sampler collapses catastrophi-
cally in the real-world datasets that we consider. It has the worst errors among all baselines
in our evaluation.

Progressive sampling (Figure 3.3, right). Instead of uniformly throwing points into the
region, we could be more selective in the points we choose—precisely leveraging the power
of the trained autoregressive model. Intuitively, a sample of the first dimension x

(i)
1 would

allow us to “zoom in” into the more meaningful region of the second dimension. This more
meaningful region is exactly described by the second conditional output from the autore-
gressive model, P̂ (X2|x(i)

1 ), a distribution over the second domain given the first dimension

sample. We can obtain a sample of the second dimension, x
(i)
2 , from this space instead of

from Unif(R2). This sampling process continues for all columns. To summarize, progres-
sive sampling consults the autoregressive model to steer the sampler into the high-mass part
of the query region, and finally compensating for the induced bias with importance weighting.

Example. We show the sampling procedure for a 3-filter query. Drawing the i-th sample for
query P (X1 ∈ R1, X2 ∈ R2, X3 ∈ R3):

1. Forward 0 to get P̂ (X1). Compute and store P̂ (X1 ∈ R1) by summing. Then draw

x
(i)
1 ∼ P̂ (X1|X1 ∈ R1).
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Algorithm 1 Progressive Sampling: estimate the density of query region R1 × · · · × Rn

using S samples.

1: function ProgressiveSampling(S;R1, . . . , Rn)

2: P̂ = 0
3: for i = 1 to S do . Batched in practice
4: P̂ = P̂ + Draw(R1, . . . , Rn)

5: return P̂ /S

6: function Draw(R1, . . . , Rn) . Draw one tuple
7: p̂ = 1
8: s = 0n . The tuple to fill in
9: for i = 1 to n do

10: Forward pass through model: M(s)

11: P̂ (Xi|s<i) = the i-th model output . Eq. 3.1
12: Zero-out probabilities in slots [0, Di) \Ri

13: Re-normalize, obtaining P̂ (Xi|Xi ∈ Ri, s<i)

14: p̂ = p̂× P̂ (Xi ∈ Ri|s<i)
15: Sample si ∼ P̂ (Xi|Xi ∈ Ri, s<i)
16: s[i] = si

17: return p̂ . Density of the sampled tuple s

2. Forward x
(i)
1 to get P̂ (X2|x(i)

1 ). Compute and store P̂ (X2 ∈ R2|x(i)
1 ). Draw x

(i)
2 ∼

P̂ (X2|X2 ∈ R2, x
(i)
1 ).

3. Forward (x
(i)
1 , x

(i)
2 ) to get P̂ (X3|x(i)

1 , x
(i)
2 ). Compute and store P̂ (X3 ∈ R3|x(i)

1 , x
(i)
2 ).

The summation and sampling steps are fast since they are only over single-column distribu-
tions. This is in contrast to integrating or summing over all columns at once, which has an
exponential number of points. The product of the three stored intermediates,

P̂ (X1 ∈ R1) · P̂ (X2 ∈ R2|x(i)
1 ) · P̂ (X3 ∈ R3|x(i)

1 , x
(i)
2 ) (3.3)

is an unbiased estimate for the desired density. By construction, the sampled point satisfies
the query (x

(i)
1 is drawn from range R1, x

(i)
2 from R2, and so forth). It remains to show that

this sampler is approximating the correct sum:

Theorem 1 Progressive Sampling estimates are unbiased.

The proof only uses basic probability rules and is deferred to our online technical report.
Algorithm 1 shows the pseudocode for the general n-filter case. For a column that does not
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have an explicit filter, it can in theory be treated as having a wildcard filter, i.e., Ri = [0, Di).
We describe our more efficient treatment, wildcard-skipping, in §3.5.2. Our evaluation shows
that the sampler can cover both low and high density regions, and handles challenging range
queries for large numbers of columns and joint spaces.

Progressive sampling bears connections to sampling algorithms in graphical models. No-
tice that the autoregressive factorization corresponds to a complex graphical model where
each node i has all nodes with indices < i as its parents. In this interpretation, progressive
sampling extends the forward sampling with likelihood weighting algorithm[57] to allow vari-
ables taking on ranges of values (the former, in its default form, allows equality predicates
only).

3.5.2 Reducing Variance: Wildcard-Skipping

Naru introduces wildcard-skipping, a simple optimization to efficiently handle wildcard pred-
icates. Instead of sampling through the full domain of each wildcard column in a query,
Xi ∈ ∗, we could restrict it to a special token, Xi = MASKi. Intuitively, MASKi signifies
column i’s absence and essentially marginalizes it. In our experiments, wildcard-skipping
can reduce the variance of worst-case errors by several orders of magnitude (§3.6.6).

During training, we perturb each tuple so that the training data contains MASK tokens.
We uniformly sample a subset of columns to mask out—their original values in the tuple are
discarded and replaced with corresponding MASKcol. For an n-column tuple, each column
has a probability of w/n to be masked out, where w ∼ Unif[0, n). The output target for the
cross-entropy loss still uses the original values.

3.5.3 Reducing Variance: Column Ordering

Naru models adopt a single ordering of columns during construction (§3.4). However, differ-
ent orderings may have different sampling efficiency. For instance, having city as the first
column and setting it to Waikiki focuses on records only relevant to that city, a data region
supposedly much narrower than that from having year as the first column.

Empirically, we find that these heuristic orders work well:

1. MutInfo: successively pick column Xi that maximizes the mutual information [19]
between all columns chosen so far and itself, arg maxi I(Xchosen;Xi).

2. PMutInfo: a variant of the above that maximizes the pairwise mutual information,
arg maxi I(Xlast;Xi).

Intuitively, maximizing I(Xchosen;Xi) corresponds to finding the next column with the
most information already contained in the chosen columns. For both schemes, we find that
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picking the column with the maximum marginal entropy, arg maxiH(Xi), as the first works
well. Interestingly, on our datasets, the Natural ordering (left-to-right order in table schema)
is also effective. We hypothesize this is due to human bias in placing important or “key”-like
columns earlier that highly reduce the uncertainty of other columns.

Lastly, we note that order-agnostic training has been proposed in the ML literature [27,
125, 140]. The idea is to train the same model on more than one order, and at inference time
invoke a (presumably seen) order most suitable for the query. This is a possible future opti-
mization for Naru, though in the preliminary experiments we did not find the performance
benefits on top of our optimizations significant.

3.6 Evaluation

We answer the following questions in our evaluation:

1. How does Naru compare to state-of-the-art selectivity estimators in accuracy (§3.6.2)?
Is it robust (§3.6.3)?

2. How long does it take to train a Naru model to achieve a useful level of accuracy
(§3.6.4)?

3. Naru requires multiple inference passes to produce a selectivity estimate. How does
this compare with the latency of other approaches (§3.6.5)?

4. How do wildcard-skipping and column orderings affect accuracy and variance (§3.6.6)?
How does accuracy change with model choices and sizes (§3.6.7)?

Lastly, a series of microbenchmarks are run to understand Naru’s limits (§3.6.8).

3.6.1 Experimental Setup

We compare Naru against predominant families of selectivity estimation techniques, includ-
ing estimators in real databases, heuristics, non-parametric density estimators, and super-
vised learning approaches (Table 3.2). To ensure a fair comparison between estimators, we
restrict each estimator to a fixed storage budget (Table 3.1). For example, for the Conviva-A
dataset, Naru’s model must be less than 3MB in size, and the same restriction is held for all
estimators for that dataset when applicable.

3.6.1.1 Datasets

We use real-world datasets with challenging characteristics (Table 3.1). The number of rows
ranges from 10K to 11.6M, the number of columns ranges from 11 to 100, and the size of
the joint space ranges from 1015 to 10190:
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Table 3.1: List of datasets used in evaluation. “Dom.” refers to per-column domain size. “Joint”
is number of entries in the exact joint distribution (equal to the product of all domain sizes).
“Budget” is the storage budget we allocated to all evaluated estimators, when applicable, relative
to the in-memory size of the corresponding original tables.

Dataset Rows Cols Dom. Joint Budget

DMV 11.6M 11 2–2K 1015 1.3% (13MB)

Conviva-A 4.1M 15 2–1.9K 1023 0.7% (3MB)

Conviva-B 10K 100 2–10K 10190 N/A

DMV [117]. Real-world dataset consisting of vehicle registration information in New
York. We use the following 11 columns with widely differing data types and domain sizes (the
numbers in parentheses): record type (4), reg class (75), state (89), county (63), body type
(59), fuel type (9), valid date (2101), color (225), sco ind (2), sus ind (2), rev ind (2). Our
snapshot contains 11,591,877 tuples. The exact joint distribution has a size of 3.4× 1015.

Conviva-A. Enterprise dataset containing anonymized user activity logs from a video
analytics company. The table corresponds to 3 days of activities. The 15 columns contain a
mix of small-domain categoricals (e.g., error flags, connection types) as well as large-domain
numerical quantities (e.g., various bandwidth numbers in kbps). Although the domains
have a range (2–1.9K) similar to DMV, there are many more numerical columns with larger
domains, resulting in a much larger joint distribution (1023).

Conviva-B. A small dataset of 10K rows and 100 columns also from Conviva, with a
joint space of over 10190. Though this dataset is trivial in size, this enables the use of an
emulated, perfect-accuracy model for running detailed robustness studies (§3.6.8).

3.6.1.2 Estimators

We next discuss the baselines listed in Table 3.2.

Real databases. PostgreSQL and DBMS-1 represent the performance a practitioner
can hope to obtain from a real DBMS. Both rely on classical assumptions and 1D histograms,
while the latter additionally contains cross-column correlation statistics. Every column has
a histogram and associated statistics built. PostgreSQL is tuned to use a maximum amount
of per-column bins (10,000). For DBMS-1, one invocation of stats creation with all columns
specified only builds a histogram on the first column; we therefore invoke stats creation
several times so that all columns are covered.

Independence assumption. Indep scans each column to obtain perfect per-column
selectivities and combines them by multiplication. This measures the inaccuracy solely
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Table 3.2: List of estimators used in evaluation.

Type Estimator Description

Heuristic Indep A baseline that multiplies perfect per-column selectivities.

Real System PostgreSQL 1D stats and histograms via independence/uniformity assumptions.

Real System DBMS-1 Commercial DBMS: 1D stats plus inter-column unique value counts.

Sampling Sample Keeps p% of all tuples in memory. Estimates a new query by evalu-
ating on those samples.

MHIST MHIST The MaxDiff(V, A) histogram [96].

Graphical BayesNet Bayes net (Chow-Liu tree [15]).

KDE KDE Kernel density estimation [40, 51].

Supervised MSCN Supervised deep regression net [56].

Deep AR Naru (Ours) Deep autoregressive models.

attributed to the independence assumption.

Multi-dimensional histogram. We compare to MHIST, an N-dimensional histogram.
We use MaxDiff as our partition constraint, Value (V) as the sort parameter, and Area (A)
as the source parameter [96]. We use the MHIST-2 algorithm [95] and the uniform spread
assumption [96] to approximate the value set within each partition. According to [95],
the resulting MaxDiff(V, A) histogram offers the most accurate and robust performance
compared to other state-of-the-art histogram variants.

Bayesian Network. We use a Chow-Liu tree [15] as the Bayesian Network, since empir-
ically it gave the best results for the allowed space. Since the size of conditional probability
tables scales with the cube of column cardinalities, we use equal-frequency discretization (to
100 bins per column) to bound the space consumption and inference cost. Lastly, we apply
the same progressive sampler to allow this estimator to support range queries (it does not
support range queries out of the box); this ensures a fair comparison between the use of deep
autoregressive models and this approach.

Kernel density estimators & Sampling. In the non-parametric sampling regime,
we evaluate a uniform sampler and a state-of-the-art KDE-based selectivity estimator [40,
51]. Sample keeps a set of p% of tuples uniformly at random from the original table. In
accordance with our memory budget for each dataset, p is set to 1.3% for DMV and 0.7%
for Conviva-A. KDE [40] attempts to learn the underlying data distribution by averaging
Gaussian kernels centered around random sample points. The number of sample points is
chosen in accordance with our memory budget: 150K samples for DMV and 28K samples for
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Conviva-A. The bandwidth for KDE is computed via Scott’s rule [105]. The bandwidth for
KDE-superv is initialized in the same way, but is further optimized through query feedback
from 10K training queries. We modify the source code released by the authors [71] in order
to run it with more than ten columns.

Supervised learning. We compare to a recently proposed supervised deep net-based
estimator termed multi-set convolutional network [56], or MSCN. We apply the source code
from the authors [80] to our datasets. As it is a supervised method, we generate 100K
training queries from the same distribution the test queries are drawn, ensuring their “rep-
resentativeness”. The net stores a materialized sample of the data. Every query is run
on the sample to get a bitmap of qualifying tuples—this is used as an input additional to
query features. We try three variants of the model, all with the same hyperparameters and
all trained to convergence: MSCN-base uses the same setup reported originally [56] (1K
samples, 100K training queries) and consumes 3MB. We found that MSCN’s performance is
highly dependent on the samples, so we include a variant with 10× more samples (MSCN-
10K: 10K samples, 100K train queries), consuming 13MB (satisfying DMV’s budget only).
We also run MSCN-0 that stores no samples and uses query features only.

Deep unsupervised learning (ours). We train one Naru model for each dataset.
All models are trained with the unsupervised maximum likelihood objective. Unless stated
otherwise, we employ wildcard-skipping and the natural column ordering. Sizes are reported
without any compression of network weights:

• DMV: masked autoencoder (MADE), 5 hidden layers (512, 256, 512, 128, 1024 units),
consuming 12.7MB.

• Conviva-A: MADE, 4 hidden layers with 128 units each, consuming 2.5MB. The em-
bedding reuse optimization with h = 64 is used (§3.4.2).

For timing experiments, we train and run the learning methods (KDE, MSCN, Naru) on a
V100 GPU. Other estimators are run on an 8-core node and vectorized when applicable.

3.6.1.3 Workloads

Query distribution (Figure 3.4). We generate multidimensional queries containing both
range and equality predicates. The goal is to test each estimator on a wide spectrum of
target selectivities: we group them as high (>2%), medium (0.5%–2%), and low (≤ 0.5%).
Intuitively, all solutions should perform reasonably well for high-selectivity queries, because
dense regions require only coarse-grained modeling capacity. As the query selectivity drops,
the estimation task becomes harder, since low-density regions require each estimator to
model details in each hypercube. True selectivities are obtained by executing the queries on
PostgreSQL.
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Figure 3.4: Distribution of query selectivity (§3.6.1.3).

The query generator is inspired by prior work [56]. Instead of designating a few fixed
columns to filter on, we consider the more challenging scenario where filters are randomly
placed. First, we draw the number of (non-wildcard) filters 5 ≤ f ≤ 11 uniformly at random.
We always include at least five filters to avoid queries with very high selectivity, on which all
estimators perform similarly well. Next, f distinct columns are drawn to place the filters.
For columns with domain size ≥ 10, the filter operator is sampled uniformly from {=,≤,≥};
for columns with small domains, the equality operator is picked—the intention is to avoid
placing a range predicate on categoricals, which often have a low domain size. The filter
literals are then chosen from a random tuple sampled uniformly from the table, i.e., they
follow the data distribution. For example, a valid 5-filter query on DMV is “(fuel type =
GAS) ∧ (rev ind = N) ∧ (sco ind = N) ∧ (valid date ≥ 2018-03-23) ∧ (color = BK)”. Overall,
the queries span a wide range of selectivities (Figure 3.4).

Accuracy metric. We report accuracy by the multiplicative error [56, 64, 65] (also termed
“Q-error”), the factor by which an estimate differs from the actual cardinality:

Error := max(estimate, actual)/min(estimate, actual)

We lower bound the estimated and actual cardinalities at 1 to guard against division by
zero. In line with prior work [22, 64], we found that the multiplicative error is much more
informative than the relative error, as the latter does not fairly penalize small cardinality
estimates (which are frequently the case for high-dimensional queries). Lastly we report the
errors in quantiles, with a particular focus at the tail. Our results show that all estima-
tors can achieve low median (or mean) errors but with greatly varying performance at the
tail, indicating that mean/median metrics do not accurately reflect the hard cases of the
estimation task.

3.6.2 Estimation Accuracy

In summary, Tables 3.3 and 3.4 show that not only does Naru match or exceed the best
estimator across the board, it excels in the extreme tail of query difficulty—that is, worst-
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case errors on low-selectivity queries. For these types of queries, Naru achieves orders of
magnitude better accuracy than classical approaches, and up to 90× better tail behavior
than query-driven (supervised) methods.

The same Naru model is used to estimate all queries on a dataset, showing the robustness
of the model learned. We now discuss these macrobenchmarks in more detail.

3.6.2.1 Results on DMV

Overall, Naru achieves the best accuracy and robustness across the selectivity spectrum. In
the tail, it outperforms MHIST by 691×, DBMS-1 by 114×, un-tuned (tuned) MSCN by
115× (33×), BayesNet by 70×, Sample by 47×, and KDE-superv by 21×. We next discuss
takeaways from Table 3.3.

Independence assumptions lead to orders of magnitude errors. Estimators that
assume full or partial independence between columns produce large errors, regardless of
query selectivity or how good per-column estimates are. These include Indep, PostgreSQL,
and DBMS-1, whose tail errors are in the 103−105× range. Naru’s model is powerful enough
to avoid this assumption, leading to better results.

MHIST outperforms Indep and PostgreSQL by over an order of magnitude. However,
its performance is limited by the linear partitioning and uniform spread assumptions.

BayesNet also does quite well, nearly matching supervised approaches, but is still signif-
icantly outperformed by Naru due to the former’s uses of lossy discretization and conditional
independence assumptions.

Worst-case errors are much harder to be robust against. All estimators perform
worse for low-selectivity queries or at worst-case errors. For instance, in the high-selectivity
regime PostgreSQL’s error is a reasonable 1.55× at 95th, but becomes 1682× worse at the
maximum. Also, Sample performs exceptionally well for high and medium selectivity queries,
but drops off considerably for low selectivity queries where the sample has no hits. MSCN
struggles since its supervised objective requires more training data to cover all possible low-
selectivity queries. Naru yields much lower (single-digit) errors at the tail, showing the
robustness that results from directly approximating the joint.

KDE struggles with high-dimensional data. KDE’s errors are among the highest.
The reason is that, the bandwidth vector found is highly sub-optimal despite tunings, due
to (1) a large number of attributes in DMV, and (2) discrete columns fundamentally do
not work well with the notion of “distance” in KDE [40]. The method must rely on query
feedback (KDE-superv) to find a good bandwidth.

MSCN heavily relies on its materialized samples for accurate prediction.
Across the spectrum, its accuracy closely approximates Sample. MSCN-10K has 3× better
tail accuracy than MSCN-base due to access to 10× more samples, despite having the same
network architecture and trained on the same 100K queries. Both variants’ accuracies drop
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Table 3.5: Robustness to OOD queries. Errors from 2,000 queries.

Estimator Median 95th 99th Max

MSCN-10K 23 96 151 417
KDE-superv 1.00 1.00 3.67 163

Sample 1.00 1.00 2.00 116
Naru-2000 1.00 1.00 1.26 4.00

off considerably for low-selectivity queries, since, when there are no hits in the materialized
sample, the model relies solely on the query features to make “predictions”. MSCN-0 which
does not use materialized samples performs much worse, obtaining a max error of 6145×.

3.6.2.2 Results on Conviva-A

Based on DMV results, we keep only the promising baselines for this dataset. Table 3.4
shows that Naru remains best-in-class for a dataset with substantially different columns and
a much larger joint size.

For this dataset, most estimators produce larger errors. This is because Conviva-A has
a much larger joint space. DBMS-1, MHIST, BayesNet, and KDE-superv exhibit 5×, 14×,
1.8×, and 2.6× worse max error than before respectively. MSCN-base’s max error in the
medium-selectivity regime is also 14× worse. As a non-parametric method covering the full
joint space, Sample remains a robust choice.

For Naru, since the sampler needs to cross more domains and a much larger joint space,
Naru-1000 becomes insufficient to provide single-digit error in all cases. However, a modest
scaling of the number of samples to 4K decreases the worst-case error back to single-digit
levels. This suggests that the approximated joint is sufficiently accurate, and that the key
challenge lies in extracting its information.

3.6.3 Robustness to Out-of-Distribution Queries

Our experiments thus far have drawn the filter literals (query centers) from the data. How-
ever, a strong estimator must be robust to out-of-distribution (OOD) queries where the
literals are drawn from the entire joint domain, which often result in no matching tuples.
Table 3.5 shows results on select estimators on 2K OOD queries on DMV, where 98% have a
true cardinality of zero. The supervised MSCN-10K suffers greatly (e.g., median is now 23×,
up from the 1.51× in Table 3.3) because it was trained on a set of in-distribution queries;
at test time, out-of-distribution queries confuse the net. KDE-superv, a sampling-based ap-
proach, finds no hits in its sampled tuples, and therefore appropriately assigns zero density
mass for all queries.
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Figure 3.5: Training time vs. quality (§3.6.4). Dotted lines show divergence from data; bars show
max estimation errors.

Since Naru approximates the data distribution, it correctly learns that out-of-distribution
regions have little or no density mass, outperforming KDE by 40× and MSCN by 104×.

3.6.4 Training Time vs. Quality

Compared to supervised learning, Naru is efficient to train: no past queries are required; we
only need access to a uniform random stream of tuples from the relation. We also find that,
surprisingly, it only takes a few epochs of training to obtain a sufficiently powerful Naru
estimator.

Figure 3.5 shows how two quality metrics, entropy gap and estimation error, change
as training progresses. The metrics are calculated after each epoch (one pass over the
data) finishes. An epoch takes about 75 seconds and 50 seconds for DMV and Conviva-A,
respectively. The number of progressive samples is set to 2K for DMV and 8K for Conviva-A.

Observe that Naru quickly converges to a high goodness-of-fit both in terms of entropy
gap and estimation quality. For DMV where a larger Naru model is used, 1 epoch of training
suffices to produce the best estimation accuracy compared to all baselines (Table 3.3, last
column). For Conviva-A, 2 epochs yields the best-in-class quality and about 15 epochs yields
the quality of single-digit max error.

3.6.5 Estimation Latency

Figure 3.6 shows Naru’s estimation latency against other baselines. On both datasets Naru
can finish estimation in around 5-10ms on a GPU, which is faster than scanning samples
(Sample and MSCN) and is competitive with DBMS-1. We note the caveat that latencies
for PostgreSQL and DBMS-1 include producing an entire plan for each query.

Naive progressive sampling requires as many model forward passes as the number of
attributes in the relation. With Naru’s wildcard-skipping optimization (§3.5.2), however, we
can skip the forward passes that generate distributions for the wildcard columns. Hence,
the number of forward passes required is the number of non-wildcard columns in each query.
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Figure 3.6: Estimator latency (§3.6.5). Learning methods are run on GPU; other estimators are
run on CPU (dashed lines).
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Figure 3.7: Variance of random orders. Each dataset’s 2000-query workload is run 10 times; the
maximum of these 10 max errors are shown. Order indices sorted by descending max error.

This effect manifests in the slightly slanted nature of Naru’s CDF curves—queries that only
touch a few columns are faster to estimate than those with a larger number of columns.
Latency tail is also well-behaved: on DMV, Naru-1000’s median is at 6.4ms vs. max at
9.4ms; on Conviva-A, Naru-2000’s median is at 5.0ms vs. max at 9.7ms.

Naru’s estimation latency can be further minimized by engineering. Naru’s sampler
is written in Python code and a general-purpose deep learning framework (PyTorch); the
resultant control logic overhead from interpretation can be removed by using hand-optimized
native code. Orthogonal techniques such as half-precision, i.e., 32-bit floats quantized into
16-bit floats, would shrink Naru’s compute cost by half.

3.6.6 Variance Analysis

Effect of random orders. Figure 3.7 shows the estimation variance of randomly sampled
column orders. We sample 20 random orders and train a Naru model on each, varying
the autoregressive building block. The result shows that the choice of ordering does affect



CHAPTER 3. NARU: DEEP UNSUPERVISED CARDINALITY ESTIMATION 36

1 5 10 15 17
Max Errors, 10 runs

no w.s.
Natural
no w.s.

MutInfo
no w.s.

PMutInfo

(a) DMV

100 101 102 103

Max Errors, 10 runs

(b) Conviva-A

Figure 3.8: Wildcard-skipping and heuristic orders. These orders have much lower variance than
random orders. Ablation of wildcard-skipping is shown. Distributions of 10 max errors are plotted;
whiskers denote min/max and bold bars denote medians.

Table 3.6: Larger model sizes yield lower entropy gap. Here we only consider scaling the hidden
units of a MADE model.

Architecture Size (MB) Entropy gap, 5 epochs

32× 32× 32× 32 0.6 4.23 bits per tuple
64× 64× 64× 64 1.1 2.25 bits per tuple

128× 128× 128× 128 2.7 1.01 bits per tuple
256× 256× 256× 256 3.8 0.84 bits per tuple

estimation variance in the extreme tail. However, we found that on 99%-tile or below, almost
all orderings can reach single-digit errors.

Effect of wildcard-skipping (§3.5.2) and heuristic orders (§3.5.3). Figure 3.8 shows
that the information-theoretic orders have much lower variance than randomly sampled ones.
The left-to-right order (Natural) is also shown for comparison. We also find that wildcard-
skipping is critical in reducing max error variance by up to several orders of magnitude (e.g.,
MutInfo’s max drops from 103 to < 10).

3.6.7 Autoregressive Model Choice and Sizing

In Table 3.6, we measure the relationship between model size and entropy gap on Conviva-
A. While larger model sizes yield lower entropy gaps, Figure 3.5 shows that this can yield
diminishing returns in terms of accuracy.

Table 3.7 compares accuracy and (storage and computation) cost of three similarly sized
autoregressive building blocks. The results suggest that ResMADE and regular MADE are
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Table 3.7: Comparison of autoregressive building blocks (§3.4.3). Max error calculated by run-
ning DMV’s 2000-query workload 10 times (Naru-2000). FLOPs is the number of floating point
operations required per forward pass per input tuple.

Params FLOPs Ent. Gap Max Error

MADE 3.3M 6.7M 0.59 8.0×
ResMADE 3.1M 6.2M 0.56 8.0×

Transformer 2.8M 35.5M 0.54 8.2×
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Figure 3.9: Accuracy of Naru as an artificial entropy gap is added to an oracle model for Conviva-
B projected to the first 15 columns. 50 queries are drawn from the same distribution as in the
macrobenchmarks. Naru has the best accuracy for an entropy gap of less than 2 bits, though
remains competitive up to a surprisingly large gap of 10 bits. Variance of progressive sampling
decreases dramatically when moving from 50 to 250 to 1000 samples.

preferable due to their efficiency. We expect the Transformer—a more advanced architecture—
to excel on datasets of larger scale.

3.6.8 Understanding Estimation Performance

Naru’s accuracy depends critically on two factors: (1) the accuracy of the density model; and
(2) the effectiveness of progressive sampling. This section seeks to understand the interplay
between the two components and how each contributes to estimation errors. We do this by
running microbenchmarks against the Conviva-B dataset, which has only 10K rows but has
100 columns for a total joint space of 10190. The small size of the dataset makes it possible
to run queries against an emulated oracle model with perfect accuracy by scanning the data.
This allows us to isolate errors introduced by density estimation vs. progressive sampling.
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Figure 3.10: Accuracy of Naru as we add more columns from Conviva-B. We again use an oracle
model (with 0 bits of entropy gap) and 50 randomly generated queries. The number of predicates
covers at most 12 columns. The number of progressive sample paths required to accurately query
the model increases modestly with the number of columns, but remains tractable even as the joint
data space reaches over 10190 (at 100 columns).

3.6.8.1 Robustness to Increasing Model Entropy Gap

One natural question is: how accurate does the density model have to be? One metric of
modeling accuracy is the fraction of total probability mass assigned to observed data tuples.
For example, a randomly initialized model will assign equal probability mass to all points in
the joint space of tuples. As training proceeds, it learns to assign higher probability to tuples
actually present in the relation. Under the simplifying assumption that all relation tuples
are unique (as they are in Conviva-B), we can quantify this fraction as follows. Suppose the
model has an entropy gap of 2 bits; then, the fraction of probability mass assigned to the
relation, f , satisfies − log2 f = 2, which leads to f = 25%.

Figure 3.9 shows that Naru achieves the best performance with a model entropy gap of 0-
2 bits. A gap of lower than 0.5 bits does not substantially improve performance. This means
that for the best accuracy, the model must assign between 25−100% of the probability mass
to the empirical data distribution. Surprisingly, Naru still outperforms baselines with up to
10 bits of entropy gap, which corresponds to less than ≈ 0.1% probability mass assigned. We
hypothesize that the range queries make such modeling errors less critical, because density
errors of individual tuples could even out when estimating the density of the region as a
whole.

3.6.8.2 Robustness to Increasing Column Counts

While the datasets tested in macrobenchmarks have a good number of columns, using
Conviva-B we test how well progressive sampling scales to 10× as many dimensions. Fig-
ure 3.10 shows that while the number of columns does significantly increase the variance
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of estimates, the number of progressive samples required to mitigate this variance remains
tractable. A choice of 1000 sample paths produces reasonable worst-case accuracies for up
to 100 columns, and 10000 sample paths improves on that by a modest factor.

3.6.8.3 Robustness to Data Shifts

Lastly, we study how Naru reacts to data shifts. We partition DMV by a date column into
5 parts. We then ingest each partition in order, emulating the common practice of “1 new
partition per day”. Each estimator is built after seeing the first partition. After a new ingest,
we test the previously built estimators on queries that touch all data ingested so far. The
same query generator as macrobenchmarks is used where the filters are drawn from tuples
in the first partition (true selectivities computed on all data ingested so far).

Table 3.8: Robustness to data shifts. Errors from 200 queries.

Partitions Ingested 1 2 3 4 5

Naru, refreshed: max 2.0 2.0 2.0 2.0 2.0
90%-tile 1.20 1.14 1.12 1.14 1.15

Naru, stale: max 2.0 40.3 47.5 52.9 53.5
90%-tile 2.0 2.4 3.4 4.4 5.5

Table 3.8 shows the results of (1) Naru, no model updates, (2) Naru, with gradient
updates on each new ingest. The model architecture is the same as in Table 3.3; 8,000
progressive samples are used since we are interested in learning how much imprecision or
staleness presents in the model itself and not the effectiveness of information extraction.
The results show that, Naru is able to handle queries on new data with reasonably good
accuracy, even without having seen the new partitions. The model has learned to capture
the underlying data correlations so the degradation is graceful.

3.7 Related Work

Naru builds upon decades of rich research on selectivity estimation and this section cannot
replace comprehensive surveys [18]. Below, we highlight the most related areas.

Joint approximation estimators. Multidimensional histograms [95, 36, 81, 96] can been
seen as coarse approximations to the joint data distribution. Probabilistic relational mod-
els (PRMs) [28] rely on a Bayes Net (conditional independence DAG) to factor the joint
into materialized conditional probability tables. Tzoumas et al. [124] propose a variant of
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PRMs optimized for practical use. Dependency-based histograms [22] make partial or con-
ditional independence assumptions to keep the approximated joint tractable (factors stored
as histograms). Naru belongs to this family and applies recent advances from the deep
unsupervised learning community. Naru does not make any independence assumptions; it
directly models the joint distribution and lazily encodes all product-rule factors in a universal
function approximator.

Query-driven estimators. These are supervised methods that take advantage of past
or training queries [13]. ISOMER [116] and STHoles [9] are two representatives that adopt
feedback to improve histograms. LEO [118] and CardLearner [136] use feedback to improve
selectivity estimation of future queries. Heimel et al. [40] propose query-driven KDEs; Kiefer
et al. [51] enhance them to handle joins. Supervised learning regressors [69, 56, 26], some
utilizing deep learning, have also been proposed. Naru, an unsupervised data-driven synopsis,
is orthogonal to this family. Our evaluation shows that full joint approximation yields
accuracy much superior to two supervised methods.

Machine learning in query optimizers. Naru can be used as a drop-in replacement of
selectivity estimator used in ML-enhanced query optimizers. Ortiz et al. [87] learns query
representation to predict cardinalities, a regression rather than our generative approach.
Neo [74], a learned query optimizer, approaches cardinality estimation indirectly: embed-
dings for all attribute values are first pre-trained; later, a network takes them as input and
additionally learns to correct or ignore signals from the embeddings. This proposal, as well
as reinforcement learning-based join optimizers (DQ [60], ReJOIN [72]), may benefit from
Naru’s improved estimates.

3.8 Summary

We have shown that deep autoregressive models are highly accurate selectivity estimators.
They approximate the data distribution without any independence assumptions. We de-
velop a Monte Carlo integration scheme and associated variance reduction techniques that
efficiently handle challenging range queries. To the best of our knowledge, these are novel
extensions to autoregressive models. Our estimator, Naru, exceeds the state-of-the-art in
accuracy over several families of estimators.

Naru can be thought of as an unsupervised neural synopsis. In contrast to supervised
learning-based estimators, Naru enjoys drastically more efficient training since there is no
need to execute queries to collect feedback—it only needs to read the data. Learning directly
from the underlying data allows Naru to answer a much more general set of future queries
and makes it inherently robust to shifts in the query workload. Our approach is non-intrusive
and can serve as an opt-in component inside an optimizer.
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Chapter 4

NeuroCard: Extending Naru to Joins

Having addressed in Chapter 3 how to remove long-standing heuristics in base table cardi-
nality estimation, we now extend this result to cardinality estimation for joins over multiple
tables. Accurately estimating join cardinalities is more critical than base table estimates [70],
because estimation errors propagate exponentially with the number of joins [48]. Inaccurate
join estimates would severely hurt the optimizer’s quality on queries that touch multiple
tables, a common occurrence in today’s workloads.

In this chapter, we show that it is possible to learn the correlations across all tables in a
database without any independence assumptions. We present NeuroCard, a join cardinality
estimator that builds a single neural density estimator over an entire database. NeuroCard
leverages two building blocks from Naru—deep autoregressive modeling (§3.3, §3.4) and the
progressive sampling algorithm (§3.5)—and enhances them with new techniques to make
learning the distribution of multiple tables without heuristics possible.

By removing both inter-table and inter-column independence assumptions in its prob-
abilistic modeling, NeuroCard achieves orders of magnitude higher accuracy than the best
prior methods, scales to more than a dozen tables, while being compact in space (several
MBs) and efficient to construct or update (seconds to minutes).

4.1 Introduction

There have been two approaches to cardinality estimation: query-driven and data-driven.
Query-driven estimators typically rely on supervised learning to learn a function mapping
(featurized) queries to predicted cardinalities. They implicitly assume queries from a pro-
duction workload are “similar” to training queries—namely, training and test sets of queries
are drawn from the same underlying distribution. This assumption can be violated when,
for example, users issue unexpected types of queries.

In contrast, data-driven estimators approximate the data distribution of a table—a func-
tion mapping each tuple to its probability of occurrence in the table—instead of training
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Figure 4.1: NeuroCard uses a single probabilistic model, which learns all possible correlations
among all tables in a database, to estimate join queries on any subset of tables.

on “representative” queries. A simple method to approximate the data distribution is a
histogram. In theory, once we estimate the distribution of each table in a schema, we can
estimate the output cardinality of any query. While this approach is more general, it suffers
from two drawbacks: (1) lossy modeling assumptions (e.g., assume the tables’ distributions
are independent), and (2) low precision (e.g., a limited number of histogram bins). Fortu-
nately, recent advances in machine learning have alleviated both drawbacks. Unlike previous
density estimators, deep autoregressive (AR) models [103, 127, 97, 27, 25] can learn complex
high-dimensional data distributions without independence assumptions, achieving state-of-
the-art results in both precision and expressiveness. This has resulted in new data-driven
cardinality estimators based on deep AR models, exemplified by the Naru estimator pre-
sented in Chapter 3.

However, Naru is limited to handling single tables. There are three challenges that make
this approach ineffective for joins :

• High training cost: To learn the distribution of a join, any data-driven estimator needs
to see actual tuples from the join result. Unfortunately, for all but the smallest scale, it is
expensive, and sometimes infeasible, to precompute the join.

• Lack of generality: The AR approach builds a probabilistic model for each join, e.g.,
T = T1 ./ T2 ./ T3, that it estimates. However, the model for T cannot be directly used to
estimate a join on a subset of T , e.g., T2 ./ σ(T3). Of course, one could train a model for
every possible join. This can be prohibitive, as the number of possible joins is exponential
in the number of tables.

• Large model size: The complexity of the learned AR model grows with the cardinality
of the dataset. As joins tend to involve columns with high cardinalities, an AR model
built on a join may incur a prohibitively large size.

In this chapter, we propose NeuroCard, a learning-based join cardinality estimator that
directly learns from data to overcome these challenges. NeuroCard’s distinctive feature is the
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ability to capture the correlations across multiple joins in a single deep AR model, without
any independence assumptions (Figure 4.1). Once trained, this model can handle all queries
issuable to the schema, regardless of what subset of tables is involved. We address the above
challenges using the following key ingredients.

To reduce training cost, NeuroCard samples from a join, instead of computing the join
fully (§4.4). The key property of such a sample is to capture the join’s distribution: if a
key is more frequent in the join result, it should be more frequent in the sample as well. To
meet this requirement, we precompute the correct sampling weights for each key. While the
worst-case cost of computing the join is exponential in the number of tables, computing the
sampling weights is done in time linear with the data size by dynamic programming.

To achieve generality, NeuroCard needs to train a single model to answer queries on any
subset of tables (§4.6). The basic idea behind our solution is to train the AR model on
samples from the full outer join of all tables. The full join contains the values from all the
base tables, so it has sufficient information to answer a query touching any subset of tables.
At inference time, if a table in the schema is not present in a join query, we need to account
for any potential fanout effect. Consider an AR model trained on samples from the full join
T = T1 ./ T2, and a query σ(T1) whose cardinality we want to estimate. If the join key of
T2 is the foreign key of T1, then a tuple of T1 may appear multiple times in T . NeuroCard
learns the probabilities of these “duplicated” tuples and additional bookkeeping information,
which enables us to account for fanouts.

Finally, to scale to large-cardinality columns while avoiding prohibitively large models,
NeuroCard employs lossless column factorization (§4.5). An AR model stores one embedding
vector per distinct value, so it could quickly blow up in size for columns with large numbers
of distinct values, e.g., 100,000s or more. With factorization, a column is decomposed into
several subcolumns, each taking a chunk of bits from the binary representation of the original
column values. For instance, a 32-bit ID column id can be decomposed into (id0, . . . , id3)
with the first subcolumn corresponding to the first 8 bits, and so on. We then train the
autoregressive model on these lower-cardinality subcolumns instead of the full columns.

By combining these ingredients, NeuroCard achieves state-of-the-art estimation accuracy,
including in the challenging tail quantiles. On the popular JOB-light benchmark, a schema
that contains 6 tables and basic filters, NeuroCard achieves a maximum Q-error of 8.5×
using 4 MB. This corresponds to a 4.6× improvement over the previous state of the art.
We created a more difficult benchmark, JOB-light-ranges, with a larger variety of content
columns and range filters. On this benchmark, NeuroCard achieves up to 15–34× higher
accuracy than previous solutions, including DeepDB [44], MSCN [56], and IBJS [63]. Lastly,
to test NeuroCard’s ability to handle a more complex join schema, we created JOB-M which
has 16 tables and multi-key joins. NeuroCard scales well to this benchmark, offering 10×
higher accuracy than conventional approaches while maintaining a low model size (27 MB,
covering 16 tables).

In summary, this chapter makes the following contributions:
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• We design and implement NeuroCard, the first learned data-driven cardinality estimator
that learns across joins in a schema without any independence assumptions. All in-schema
correlations among the tables are captured by a single autoregressive model, which can
estimate any query on any subset of tables.

• NeuroCard learns the correct distribution of a join without actually computing that join.
Instead, the model is trained on uniform and independent samples of the join of all tables
in a schema.

• We propose lossless column factorization (§4.5), a technique that significantly reduces the
size of the autoregressive model, making its use practical for high-cardinality columns.

• Compared to the best prior methods, NeuroCard significantly improves the state-of-the-
art accuracy on the JOB-light benchmark. We further propose two new benchmarks,
JOB-light-ranges and JOB-M, and show that both are much more challenging and thus
better gauges of estimator quality (§4.7).

To invite further research, NeuroCard and the benchmarks used in this chapter are open
sourced at https://github.com/neurocard.

4.2 Overview of NeuroCard

Consider a set of tables, T1, . . . , TN . We define their join schema as the graph of join
relationships, where vertices are tables, and each edge connects two joinable tables. A query
is a subgraph of the overall schema. If a query joins a table multiple times, our framework
duplicates that table in the schema. We assume the schema and queries submitted to the
estimator are acyclic (§4.4.2 discusses relaxations), so they can be viewed as trees.

Next, we present an overview of NeuroCard as a sequence of goals and solutions to achieve
these goals.

4.2.1 Goals and Solutions

Goal: A single estimator. Our goal is building a single cardinality estimator for the entire
join schema. For example, assuming the schema has three tables, the estimator should handle
joins on any subset of tables, e.g., σ(T2), T1 ./ T3, or T1 ./ T2 ./ σ(T3).

Having a single estimator has two key benefits: simplicity and accuracy. Having multiple
estimators—each covering a specific join template (a table subset)—does not scale for a
large number of tables, as the number of possible join templates increases exponentially.
In addition, it is easier for a DBMS to operationalize a single estimator rather than many
estimators. Most importantly, having multiple estimators can hurt accuracy. This is because
estimating the cardinality of a query on a table subset not covered by any single estimator,

https://github.com/neurocard
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Figure 4.2: Overview of NeuroCard. The Join Sampler (§4.4) provides correct training data
(sampled tuples from join) by using unbiased join counts. Sampled tuples are streamed to an
autoregressive model for maximum likelihood training (§4.3). Inference algorithms (§4.6) use the
learned distribution to estimate query cardinalities.

but by multiple estimators, requires some form of independence assumption to combine these
estimators. If the independence assumption does not hold, the accuracy will suffer.

Solution: We build a single cardinality estimator that learns the distribution of the full
outer join of all tables in the schema (henceforth, full join). For example, for a three-table
schema, we learn p(T1 ./ T2 ./ T3). Note that using the inner join instead of the full join
would not work. Indeed, the inner join T1 ./ T2 ./ T3 is the intersection of the three tables. If
a query uses only T1 or T1 ./ T3, their tuples may not be fully contained in this intersection,
and thus the estimator would have insufficient information to answer these queries.

Goal: Efficient sampling of the full join. A data-driven estimator learns a distribution
by reading representative tuples from that distribution. To learn the distribution of the full
join, a straightforward approach is to compute it and then uniformly draw random samples
from the result. Unfortunately, even on a small 6-table schema (the JOB-light workload),
the full join contains two trillion (2 ·1012) tuples, making it infeasible to compute in practice.

Solution: We perform uniform sampling over the full join without materializing it.
Specifically, we ensure that any tuple in the full join J (a multiset) is sampled with same prob-
ability, 1/|J |. To achieve this, we leverage a state-of-the-art join sampling algorithm [145]
(§4.4). We first precompute join count tables that map each table’s join keys to their correct
sampling weights with respect to the full join. Then, we sample the keys using these counts
as weights. Given a sampled key, we construct the full tuple by looking up the remaining
columns via indexes1 from all tables, and then concatenating them. This way, we only need

1Like prior work on join sampling [63, 66], we assume base tables have an index built for each join key.
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to materialize the join counts as opposed to the full join. Using dynamic programming,
computing the join counts takes time linear in the size of the database, and is quite fast in
practice (e.g., 13 seconds for 6 tables in JOB-light, and 4 minutes for 16 tables in JOB-M).

Goal: Support any subset of tables. Although the full outer join contains all infor-
mation of the tables, we need to take care when a query involves just a subset of the tables.
Consider:

T1.id : [1, 2] T2.id : [1, 1] −→ T1 ./ T2 : [(1, 1), (1, 1), (2,∅)]

Query: σid=1(T1)

The correct selectivity is 1
2

(1 row). However, in the full join distribution, P (T1.id = 1) = 2
3

(2 rows). This is because we have not accounted for the fanout produced by the missing
table, T2.

Solution: Handle schema subsetting : If a query does not include a table, we downscale
the estimate by the fanout introduced by that table. In essence, since the learned probability
space is the full join, we must downscale appropriately when a query touches a subset and
expects the returned selectivity to refer to that subset.

Goal: Accurate density estimation. The final ingredient to achieve our goal is an
accurate and compact density estimator.

Solution: We leverage deep autoregressive (AR) models to implement our density esti-
mator. This family of neural density estimators have been successfully employed on high-
dimensional data types such as image [103], audio [127], and text [97]. In Chapter 3, we
showed that Naru leverages deep AR models to achieve state-of-the-art accuracy results on
estimating the cardinalities of single-table queries, while learning the correlations among all
columns without independence assumptions. In this chapter, we apply Naru to learn the
distribution of the full join, and optimize its construction and inference for our setting.

4.2.2 Putting It All Together

Figure 4.2 shows the high-level architecture of NeuroCard.

Building the estimator consists of two stages. First, we prepare the join sampler by
building or loading existing single-table indexes on join keys and computing the join count
tables for the specified join schema (§4.4). Second, we train the deep AR model by repeatedly
requesting batches of sampled tuples from the sampler, usually 2K tuples at a time. The
sampler fulfills this request in the background, potentially using multiple sampling threads.

Once the estimator is built, it is ready to compute the cardinality estimates for given
queries. For each query, we use probabilistic inference algorithms (§4.6) to compute the

This impacts the efficiency but not correctness of the design.
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cardinality estimate by (1) performing Monte Carlo integration on the learned AR model,
and (2) handling schema subsetting. A single estimator can handle queries joining any subset
of tables, with arbitrary range selections.

4.3 Constructing NeuroCard

In this section, we present the background of the techniques used to implement NeuroCard.

4.3.1 Probabilistic Modeling of Tables

Consider a table T with column domains {A1, . . . , An}. This table induces a discrete joint
data distribution, defined as the probability of occurrence of each tuple (f(·) denotes number
of occurrences):

p(a1, . . . , an) = f(a1, . . . , an)/|T |.
The n-dimensional data distribution (the joint) p(·) allows us to compute a query’s car-
dinality as follows. Define a query Q as σ : A1 × · · · × An → {0, 1}. Then, the selec-
tivity—the fraction of records that satisfy the query—can be computed as a probability:
P (Q) =

∑
a1∈A1

· · ·∑an∈An
σ(a1, . . . , an) · p(a1, . . . , an). The cardinality is obtained by mul-

tiplying it with the row count: |Q| = P (Q) · |T |.
Data-driven cardinality estimators can be grouped along two axes: (1) joint factorization,

and (2) the density estimator used.

Joint factorization, or the modeling assumption, determines how precisely data distri-
bution p is factored. Any modeling assumption risks losing information about correlations
across columns, which ultimately leads to a loss in accuracy. For example, the widely used ID
histogram technique assumes the columns are independent. As a result, it factors p into a set
1D marginals, p ≈∏n

i=1 p(Ai), which can lead to large inaccuracies when the columns’ values
are strongly correlated. Similarly, other data-driven cardinality estimators such as graphical
models [28, 29, 22, 123, 124] either assume conditional independence or partial independence
among columns. One exception is the autoregressive (product-rule) factorization,

p =
n∏

i=1

p(Ai|A<i), (4.1)

which precisely expresses the overall joint distribution as the product of the n conditional
distributions.

The density estimator determines how precisely the aforementioned factors are actu-
ally approximated. The most accurate “estimator” would be recording these factors exactly
in a hash table. Unfortunately, this leads to enormous construction and inference costs (e.g.,
in the case of p(An|A1:n−1)). At the other end, the 1D histogram has low costs, but this comes
at the expense of low precision, as it makes no distinction between the values falling in the
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same bin. Over the years, a plethora of solutions have been proposed, including kernel den-
sity estimators and Bayesian networks. Recently, deep autoregressive (AR) models [25, 97,
103] have emerged as the density estimator of choice. Deep AR models compute {p(Ai|A<i)}
without explicitly materializing them by learning the n conditional distributions in compact
neural networks. Deep AR models achieve state-of-the-art precision, and, for the first time,
provide a tractable solution for implementing the autoregressive factorization.

4.3.2 Leveraging Naru

NeuroCard builds on Naru, introduced in Chapter 3, a state-of-the-art cardinality estimator
that fully captures the correlations among all columns of a single table using a deep AR
model. Next, we present a brief review of Naru and in particular discuss how NeuroCard
leverages it.

Construction. Given table T , an AR model θ takes a tuple x ∈ T as input, and pre-
dicts conditional probability distributions, {pθ(Xi|x<i)}, each of which is an 1D distribution
over the i-th column (conditioned on all prior column values of x). The likelihood of the
input tuple is then predicted as pθ(x) =

∏n
i=1 pθ(Xi = xi|x<i). Any deep AR architecture

can instantiate this framework, e.g., ResMADE [25] or Transformer [128]. Training aims
to approximate the data distribution p using pθ, by minimizing the KL divergence [82],
DKL(p||pθ). This is achieved by maximum likelihood estimation (MLE) and gradient ascent
to maximize the predicted (log-)likelihood of data:

Sample i.i.d. x ∼ p (4.2)

Take gradient steps to maximize log pθ(x) (4.3)

In our setting, we define T as the full outer join of all tables within a schema. Conse-
quently, the deep AR model learns the correlations across all tables. Next, we need to sample
tuples with probabilities prescribed by p. Otherwise, pθ would approximate an incorrect, bi-
ased distribution. To achieve this, we use a sampler that emits simple random samples from
the full join T (§4.4).

Estimating query cardinalities. Once constructed, the Naru estimator estimates the
cardinality of a given query. A query is represented as a hyper-rectangle: each column Xi

with domain Ai is constrained to take on values in a valid region Ri ⊆ Ai:

Query: ∧ {Xi ∈ Ri} (4.4)

Next, Naru estimates the probability of the query (an event) using a Monte Carlo integration
algorithm, progressive sampling :

ProgressiveSampling({Xi ∈ Ri}): pθ(∧{Xi ∈ Ri}) · |T | (4.5)
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It works by drawing imaginary, in-region tuples from the model’s learned distributions.
Specifically, it draws the first dimension of the sample as x1 ∼ pθ(X1|X1 ∈ R1), the second
dimension of the sample as x2 ∼ pθ(X2|X2 ∈ R2;x1), and so on. The likelihoods of the
samples are importance-weighted. This procedure also efficiently supports omitted columns,
i.e., wildcards of the form Xi ∈ ∗.

NeuroCard’s inference invokes progressive sampling to estimate cardinalities, but extends
it in two ways. First, we apply the column factorization optimization (§4.5), which poten-
tially changes a Xi+i’s valid region, Ri+1, based on the value drawn from Xi. Second, we
add support for schema subsetting (§4.6), by downscaling selectivity pθ(∧{Xi ∈ Ri}) by the
corresponding fanout.

4.3.3 Join Problem Formulation

A join schema induces the full outer join of all tables in the schema, T = T1 ./ · · · ./ TN .
Our goal is to build a fully autoregressive probabilistic model on the full join consisting of
all tables’ columns:

Model: pθ(T ) ≡ pθ(T1.col1, T1.col2, . . . , TN .colk) (4.6)

We can then use the probabilistic model to estimate the cardinalities of join queries on any
subset of tables in the schema.

Supported joins. NeuroCard supports acyclic join schemas and queries containing multi-
way, multi-key equi-joins (§4.4.2 discusses how to relax the acyclic requirement). The schema
should capture the most common joins. For joins not captured in the schema, their cardi-
nalities can be estimated by first obtaining single-table estimates using NeuroCard, then
combining the estimates using classical heuristics [65]. This allows uncommon cases to be
handled under the same framework, albeit at the cost of lower accuracy.

Supported filters. NeuroCard supports equality and range filters on discrete or numerical
columns. These include arithmetic comparison operators (<,>,≤,≥,=) and IN. More com-
plex filters can also be expressed using the valid region encoding, mentioned in the previous
section. Arbitrary forms of AND/OR can be handled via the inclusion-exclusion principle.

4.3.4 Model architecture

NeuroCard uses a standard AR architecture, ResMADE [25], which is also employed by Naru;
see Figure 4.3. Input tuples are represented as discrete, dictionary-encoded IDs, (x1, . . . , xn),
and embedded by per-column embedding matrices. The concatenated embedded vector is
fed to a series of residual blocks, each consisting of two masked linear layers (they are masked
to ensure the autoregressive property). The output layer produces logits {log pθ(Xi|x<i)}
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Figure 4.3: Default architecture of the autoregressive model.

by dotting the last layer’s output with the embedding matrices. Next, we compute a cross-
entropy loss on the logits and perform backpropagation. We turn on Naru’s wildcard skipping
optimization, which randomly masks inputs to train special marginalization tokens that aid
infer-time estimation (i.e., using these tokens to skip sampling any wildcards in a query).

Masked multi-layer perceptrons such as ResMADE strike a good balance between effi-
ciency and accuracy. NeuroCard can use any advanced AR architectures, if desired. In §4.7,
we also instantiate NeuroCard with an advanced architecture (the Transformer [128]).

4.4 Sampling from Joins

A key challenge in NeuroCard is computing an unbiased sample of the full join (§4.2.1)
to ensure that the learned distribution faithfully approximates the full join distribution.
Namely, every tuple in the full join J (a multiset) must be sampled equally likely with
probability 1/|J |. The samples should also be i.i.d., as required by Equation 4.2. NeuroCard
meets these requirements by using a sampler that produces simple random samples with
replacement.

4.4.1 Algorithm

A tuple in the full join contains join key columns and content columns. Our sampler exploits
this decomposition. The first step of the sampler is to precompute join count tables, which
are per-table statistics that reflect the occurrence counts of the join keys in the full join. The
sampler then samples the join keys, table-by-table, with occurrence probabilities proportional
to their join counts. Lastly, it selects content columns from the base tables by looking up the
drawn join keys. This completes a batch of sample, which is sent to the model for training,
and the procedure repeats on demand.

Computing join counts. Zhao et al. [145] provide an efficient algorithmic framework of
join sampling that produces simple random samples from general multi-key joins. NeuroCard
implements the Exact Weight algorithm from Zhao et al., adapted to full outer joins.
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(a) Schema and base tables

A.x B.{x, y} C.y

1 1 1, a 1 c 1

2 3 2, b 1 c 1

∅1 2, c 2 d 1

∅1 ∅1

(b) Join counts

A.x B.x FB.x B.y C.y FC.y 1A 1B 1C

1 1 1 a ∅ 1 1 1 0
2 2 2 b ∅ 1 1 1 0
2 2 2 c c 2 1 1 1
2 2 2 c c 2 1 1 1
∅ ∅ 1 ∅ d 1 0 0 1

(c) Full outer join, with virtual columns in blue

-- In full join , |A.x=2|=3.

-- Q1. True answer is 2.
SELECT COUNT (*)
FROM A JOIN B ON x

JOIN C ON y
WHERE A.x = 2;

-- Q2. True answer is 1.
SELECT COUNT (*)
FROM A WHERE A.x = 2;

(d) Schema subsetting

Figure 4.4: End-to-end example. (a) A join schema of three tables and their join key columns.
Content columns are omitted. (b) Join counts (blue) enable uniform sampling of the full outer
join and are computed in linear time by dynamic programming. Here, edges connect join partners.
(c) Learning target: the full outer join of the schema, with virtual columns in blue. We show the
fanouts F , the number of times a join key value appears in the corresponding base table, for keys
B.x and C.y. The fanouts for A.x and B.y are all 1 and omitted. Each indicator 1T denotes
whether a tuple has a match in table T . (d) Examples of schema subsetting, i.e., queries that touch
a subset of the full join (§4.6).
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We illustrate the algorithm on a join schema (a tree) consisting of tables T1, . . . , TN . For
exposition, assume they only involve join keys (content columns are gathered later). Let T1

be the root table. The join count of a tuple t ∈ Ti is the total number of tuples in the full
outer join of all of Ti’s descendants that joins with t. It is recursively defined as:

wi(t) =
∏

Tj∈Children(Ti)

∑

t′∈toTj
wj(t

′) ∀i, ∀t ∈ Ti (4.7)

where to Tj denotes all tuples in Tj that join with t. For a leaf table with no descendants,
wi(·) is defined as 1. At the root table T1, w1(t) represents the count of all t ∈ T1 in the
entire full outer join. The join counts of each table are computed by aggregating over the
join counts of all of its child tables, and can thus be computed recursively in a bottom-up
fashion. Using dynamic programming, the time complexity is linear in the number of tuples
in all tables, O(|T1|+ · · ·+ |TN |).

Sampling. Once the join counts are computed, the sampler produces a sample by travers-
ing the join tree in a top-down fashion. It starts by drawing a sample t1 from the root table
T1 using weights {w1(t) : t ∈ T1} (i.e., with probabilities {w1(t)/

∑
t′∈T1 w1(t′)}). It then

samples through all descendants of T1 in the breadth-first order. At a child table, say T2, it
samples t2 from t1 oT2 (all tuples in T2 that join with t1) using weights {w2(t) : t ∈ t1 oT2}.
The procedure continues recursively until all tables are visited, and thus produces a sample
(t1, · · · , tN), each ti being a tuple of join keys from the respective table.

Example. Consider the schema in Figure 4.4a. Figure 4.4b shows the computed join
counts. The leaf table C has a count of 1 for every tuple. In B, since (2, c) can join with
two tuples in C, its join count is 2 = 1 + 1. Similar propagation happens for A.x = 2 which
gets a count of 3 = 1 + 2. Physically, we store the join counts indexed by join keys (e.g.,
for C, only one mapping c → 1 is kept). For sampling, suppose A.x = 2 is first sampled.
It has two matches in B with weights 1 and 2, so the second match, (2, c), has an inclusion
probability of 2/3.

NULL handling. To support full outer joins, we handle NULL keys as follows. We add a
virtual ∅ tuple (which denotes NULL) to each table Ti, and make it join with all normal t ∈ Tj
that have no matches in Ti, where Tj ∈ Children(Ti). Similarly, any normal t ∈ Parent(Ti)
that has no match in Ti joins with Ti’s ∅. All-NULL is invalid. Propagation proceeds as
before; Figure 4.4b shows examples.

Constructing complete sample tuples. In the prior example, suppose 〈2; 2, c; c〉 is
drawn. We gather the content columns of A by looking up A.x = 2 and similarly for2

2Either intersect two matching lists from both columns’ index lookups, or do a single lookup if a composite
index is available.
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(B.x,B.y) = (2, c) and C.y = c. On multiple matches, we pick a row uniformly at random.
Their concatenation represents a sampled tuple from the full join.

Computing the size of the full join (normalizing constant). Recall from §4.3.2 that
the row count |J | (the normalizing constant in probabilistic terms) is required to convert se-
lectivities into cardinalities. With join counts it can be computed exactly: |J | = ∑t∈T1 w1(t).

Parallel sampling. Finally, the sampling procedure is embarrassingly parallel: after the
join count tables {wi(·)} are produced, parallel threads can be launched to read the join
counts and produce samples. Computation of the join count tables is also parallelizable,
although it is an one-time effort. Sampling correctness is preserved even in the presence of
parallelism due to the i.i.d. property.

4.4.2 Comparison with Other Samplers

Our key requirements of uniform and i.i.d. samples from the full join render many related
sampling algorithms unsuitable. If either property is not satisfied, the sampling distribution
would be biased and thus compromise the quality of the learned AR model. As examples,
Index-based Join Sampling (IBJS) [63] is neither uniform nor independent; Wander Join [66]
produces independent but non-uniform samples. Both approaches do produce unbiased
estimators for counts or other aggregate statistics, but are not designed to return uniform join
samples. Reservoir sampling, a well-known technique, draws samples without replacement
(thus, non-independent) and requires a full scan over the full join, which is not scalable.
Lastly, the Exact Weight algorithm NeuroCard implements is among the most efficient in
Zhao et al. [145]. They provide additional extensions to support general, potentially cyclic
joins (e.g., a cycle can be broken), which NeuroCard can leverage to broaden our formulation
(§4.3.3).

4.5 Lossless Column Factorization

A key challenge of using an autoregressive model for high-cardinality data is that the size of
the model parameters can scale linearly with the numbers of distinct values in the columns. In
the model architecture we use (§4.3.4), each column (any data type; categorical or numerical)
is first dictionary-encoded into integer token IDs. Then a per-column embedding layer is
applied on these token IDs. The size of the trainable embedding matrix (essentially, a hash
table) for each column C scales linearly with |C|, i.e., the number of distinct values in the
domain. Even a moderately sized column with up to 106 distinct values, therefore, easily
takes up 128 MB of space, assuming 32-dimensional embeddings are used.

To handle high-cardinality columns efficiently, we propose an optimization that we call
lossless column factorization. This optimization is inspired by the popular use of “subword
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Domain: 106
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1111010000  1001000000             
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Domain: ≤ 2NChunk every N=10 bits    

Figure 4.5: Lossless column factorization (§4.5).

units” [108] in modern natural language processing, and also shares characteristics with “bit
slicing” in the indexing literature [85]. Different from subword units, column factorization
does not use a statistical algorithm such as byte pair encoding to determine what subwords
to use (a potential optimization). Different from bit slicing, we slice a value into groups of
bits and convert them back into base-10 integers.

Figure 4.5 illustrates the idea on a simple example. Suppose a column (any datatype) has
a domain size of |C| = 106. Naively supporting this column would require allocating |C| · h
floats as its embedding matrix, where h is the embedding dimension. Instead, NeuroCard
factorizes each value on-the-fly during training: we convert an original-space value into its
binary representation, then slice off every N bits, the factorization bits hyperparameter.
Each sliced off portion becomes a subcolumn, now in base-10 integer representation. These
subcolumns are now treated as regular columns to learn over by the autoregressive model.
Crucially, a much smaller embedding matrix is now needed for each subcolumn containing
at most 2N · h floats. In this example, we can reduce 128 MB to 250 KB—a more than 500×
space reduction.

Model size vs. statistical efficiency. Choosing the factorization bits N enables a trade-
off between model size vs. statistical efficiency. By decreasing N , we have more subcolumns,
each with a smaller domain, but learning across more variables becomes harder. In theory,
by using autoregressive modeling no information is lost in this translation, so the precision
of the learned distributions is not affected. In practice, we observed that lower factorization
bits, i.e., slicing into more subcolumns, generally underperform higher ones that use more
space, but not by a significant margin (§4.7.5). We thus set the factorization bits N based
on a space usage budget.

Lossless = factorization + autoregressive modeling. With factorization, a column is
factorized into multiple subcolumns, which are then fed into a downstream density estimator.
However, if a density estimator with independence assumptions, e.g., 1D histograms, is used,
then this whole process is lossy. By modeling p(subcol1, subcol2) ≈ p(subcol1)p(subcol2),
histograms would fail to capture any potential correlation between the two subcolumns.
In other words, other estimators could read in subcolumn values and potentially reduce
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space usage, but their inherent quality and assumptions determine how much information
is learned about the subcolumns, and about their correlations with other columns. By
using autoregressive modeling, NeuroCard forces the AR model to explicitly capture such
correlation, namely (ignoring other columns):

p(col) ≡ p(subcol1, subcol2) = p(subcol1)p(subcol2|subcol1),

which has no inherent loss of information. Hence, we call the unique combination of factor-
ization and autoregressive modeling lossless.

Filters on subcolumns. During probabilistic inference, a filter on an original column
needs to be translated into equivalent filters on subcolumns. Recall from §4.3.2 that the
probabilistic inference procedure draws samples that lie inside the queried region. We modify
that procedure to handle subcolumns by respecting each filter’s semantics. Going back to
our example, consider the filter col < 1,000,000. The filter for the high-bits subcol1 is relaxed
to ≤ 976 (note the less-equal). The inference procedure would draw a subcol1 value in this
range, based on which the low-bits filter is relaxed appropriately. If the drawn subcol1 is
976, then the filter on subcol2 is set to “< 576”; otherwise, the high-bits already satisfy
the original filter so a wildcard is placed on the low-bits subcolumn. This is reminiscent of
processing range predicates on bit-sliced indexes [85]; NeuroCard applies these processing
logic in the new context of probabilistic inference for autoregressive models.

4.6 Querying NeuroCard

Once built, the autoregressive model summarizes the entire full outer join. The challenge
with querying this probabilistic model for a selectivity estimate is that the query may restrict
the space it touches to a subset of the full join—a phenomenon we term schema subsetting.
Since the selectivity estimate returned by the model assumes the probability space to be
the full outer join, rather than the query-specific restricted space, the estimate should be
downscaled appropriately during probabilistic inference.

NeuroCard’s inference algorithms combine two building blocks. First, Naru introduced
progressive sampling (§3.5.1), a Monte Carlo algorithm that integrates over an autoregressive
model to produce selectivity estimates. We invoke this routine (i.e., Equation 4.5) on the
trained autoregressive model with changes outlined in this section. Second, Hilprecht et
al. [44] have proposed inference algorithms to query a sum-product network trained on a full
outer join. We state their algorithms below and discuss how to adapt these algorithms into
our framework, thereby generalizing them to a new type of probabilistic model.

Basic case: no table omitted. The simplest case of schema subsetting is an inner join
query on all tables. Consider the example data in Figure 4.4a and an inner join query Q1 in
Figure 4.4d. The query, σA.x=2(A ./x B ./y C), restricts the probability space from the full
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join to the inner join. Naively querying the model for |A.x = 2| would return a cardinality
of |J | · (3/5) = 3 rows, as 3 out of 5 rows in the full join J (Figure 4.4c) satisfy the filter.
However, the correct row count for this query is 2 (two rows in the inner join; both pass the
filter). Left/right outer joins can also exhibit this behavior.

To correct for this, Hilprecht et al. propose a simple solution by adding an indicator
column per table into the full join. A binary column 1T is added for each table T , with value
1 if a tuple (in the full join) has a non-trivial join partner with table T , and 0 otherwise.

NeuroCard adopts this solution as follows. First, during training, the sampler is tasked
with appending these virtual indicator columns on-the-fly to sampled tuples. Recall that
each sampled tuple is formed by querying base-table indexes with sampled join keys. If
a table T contains a join key, we set that sampled tuple’s 1T to 1, and 0 otherwise (see
Figure 4.4c). The autoregressive model treats these indicator columns as regular columns to
be learned.

Second, during inference, NeuroCard adds equality constraints on the indicator columns,
based on what tables are present in the query. The progressive sampling routine (Equa-
tion 4.5) not only gets the usual filter conditions, {Xi ∈ Ri}, but also {1T = 1} for any table
T that appears in the inner-join query graph.3 In summary, for the no-omission case, the
routine now estimates the probability:

P ({Xi ∈ Ri} ∧ {1T = 1 : for all table T}) (4.8)

Example. Coming back to the example query Q1, σA.x=2(A ./x B ./y C), we compute the
selectivity under the full join as P (A.x = 2∧1A = 1B = 1C = 1). Reading from Figure 4.4c,
this probability is 2/5, so the cardinality is correctly computed as 5 · (2/5) = 2 rows.

Omitting tables and fanout scaling. The less straightforward case is if a query omits,
i.e., does not join, certain tables. Consider Q2 in Figure 4.4d: σA.x=2(A). When restricting
the scope to table A, the row count of A.x = 2 is 1, different from |J |·P (A.x = 2∧1A = 1) = 3
rows. The fundamental reason this happens is because the operation of a full join has fanned
out tuples from base tables. To correctly downscale, Hilprecht et al. propose recording a
per-join fanout column. We adapt this solution in NeuroCard.4

Specifically, for each join key column T.k, we insert into the full join a virtual fanout
column, FT.k, defined as the number of times each value appears in T.k. For example, 2

3The indicator columns can also be constrained appropriately for left or right joins.
4Our definition differs slightly from Hilprecht et al. In that work, each fanout column is bound to a

PK-FK join and stores the frequency of a value in the FK. Our treatment binds a fanout to each join key,
regardless of PK/FK, and is defined as the frequency each value appears in that key column itself. This
removes their assumption of PK-FK joins and supports general equi-joins where both join keys can have
duplicate values.
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appears twice in B.x, so its fanout is FB.x(2) = 2; see Figures 4.4a and 4.4c. Again, we task
the join sampler with adding these fanout values on-the-fly to each batch of sampled tuples.
The inclusion of fanouts is piggybacked onto the index lookup path (querying the size of
each lookup result list), which adds negligible overheads.

On the inference side, Hilprecht et al. showed that the correct cardinality with omitted
tables can be computed via fanout scaling :

Cardinality(query Q) = |J | · P ({Xi ∈ Ri} subsetted to query Q)

= |J | · E
X∼J

[
1{Xi∈Ri} ·

∏
T∈Q 1T∏

R/∈QFR.key

]
.

(4.9)

In essence, the numerator handles the basic case above, while the denominator counts the
total number of times omitted tables {R /∈ Q} have fanned out each tuple in query Q. It
loops through each omitted table R, finds its unique join key R.key that connects to Q in
the schema (discussed in detail below), and looks up the associated fanout value FR.key. We
incorporate this scaling as follows. Since the fanout columns are learned by the model, we
modify progressive sampling to draw a concrete value for each relevant FR.key per progressive
sample, compute the product of these fanouts, and divide the progressive sample’s estimated
likelihood by this product.

Example. Coming back to Q2, σA.x=2(A), the constraints are {A.x = 2, 1A = 1}. Reading
from Figure 4.4c, three rows satisfy the constraints and the relevant downscaling keys are
B.x and C.y. Thus the expectation expands as: 1

5
· ( 1

2·1 + 1
2·2 + 1

2·2) = 1
5
. Multiplying with

|J | = 5 arrives at the correct cardinality of 1 row.

Handling fanout scaling for multi-key joins. Our formulation of fanout scaling sup-
ports multi-key joins, e.g., both x and y keys in the example schema A.x = B.x∧B.y = C.y
(Figure 4.4a). The challenge of fanout scaling in this case is determining the set of omitted
keys to downscale. Let V be the set of all tables. Let Q be the set of tables joined in a
query, and the complement O = V \ Q the omitted tables. Pick any table T ∈ Q. There
exists a unique path from each omitted TO ∈ O to T , because the join schema graph is a
tree (acyclic, connected). The join key attached to the edge incident to TO on this path
is the unique join key for table TO to downscale. Hence, the fanout downscaling factor in
Equation 4.9 is well-defined.

Going back to example Q2 where only A is queried, when considering the omitted table
B which has two join keys (B.x, B.y), we see that B.x is the unique fanout key since it lies
on the path A←→ B.

Summary of schema subsetting. To recap, NeuroCard’s probabilistic inference lever-
ages the progressive sampling algorithm from Naru and the idea of additional columns from
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Hilprecht et al. that we term virtual columns. Our join sampler is modified to logically
insert into the full join two types of virtual columns, the indicators and the fanouts. Both
are treated as regular columns to be learned over by the density model, and both are used
during progressive sampling to handle various cases of schema subsetting.

Ordering virtual columns in the autoregressive factorization. The autoregressive
model requires some fixed ordering of columns in its factorization (§4.3.2). Naru has shown
that different orderings may have different performance in the tail error but not in the lower
error quantiles. We adopt the same practice as Naru in using an arbitrary ordering for the
content columns. For the virtual columns introduced above, we place them after all the
content columns, with indicators before fanouts. The intuition here is to ensure that (1) the
conditional distributions involving content columns do not get confused by the presence of
virtual columns, and (2) when sampling fanouts, placing them at the end allows for prediction
using a maximum amount of prior information.

In our early benchmarks this choice performed better than if virtual columns were placed
early in the ordering. We also experimented with multi-order training [27] in the autore-
gressive model, but did not see noticeably better performance. Thus, we opt for a simple
treatment and leave such optimizations to future work.

4.7 Evaluation

We evaluate NeuroCard on accuracy and efficiency and compare it with state-of-the-art
cardinality estimators. The key takeaways are:

• NeuroCard outperforms the best prior methods by 4–34× in accuracy (§4.7.3).
On the popular JOB-light benchmark, NeuroCard achieves a maximum error of 8.5× using
4 MB.

• NeuroCard scales well to more complex queries (§4.7.3). On the two new bench-
marks JOB-light-ranges (more difficult range filters) and JOB-M (more tables in schema),
NeuroCard achieves orders of magnitude higher accuracy than prior approaches.

• NeuroCard is efficient to construct and query (§4.7.4). A few million tuples, learned
in less than 5 minutes, suffice for it to reach best-in-class accuracy.

• We study the relative importance of each component of NeuroCard (§4.7.5).
Out of all factors, learning the correlations across all tables and performing unbiased join
sampling prove the most impactful.



CHAPTER 4. NEUROCARD: EXTENDING NARU TO JOINS 59

Table 4.1: Workloads used in evaluation. Tables: number of base tables. Rows, Cols, Dom.:
row count, column count, and maximum column domain size of the full outer join of each schema.
Feature characterizes each workload’s queries. Rows in full join: 2 · 1012; 2 · 1012; 1013.

Workload Tables Rows Cols Dom. Feature

JOB-light 6 2 · 1012 8 235K single-key joins
JOB-light-ranges 6 2 · 1012 13 134K +complex filters
JOB-M 16 1013 16 2.7M +multi-key joins

4.7.1 Experimental Setup

Workloads (Table 4.1). We adopt the real-world IMDB dataset and schema to test car-
dinality estimation accuracy. Prior work [65, 64] reported that correlations abound in this
dataset and established it to be a good testbed for cardinality estimators. We test the
following query workloads on IMDB:

• JOB-light: a 70-query benchmark used by many recent cardinality estimator propos-
als [119, 56, 44]. The schema contains 6 tables, title (primary), cast info, movie companies,
movie info, movie keyword, movie info idx and is a typical star schema—every non-primary
table only joins with title on title.id. The full outer join contains 2 · 1012 tuples. Each
query joins between 2 to 5 tables, with only equality filters except for range filters on
title.production year.

• JOB-light-ranges: we synthesized this second benchmark containing 1000 queries de-
rived from JOB-light by enriching filter variety. We generate the 1000 queries uniformly
distributed to each join graph of JOB-light (18 in total), as follows. For each join graph,
using our sampler we draw a tuple from the inner join result. We use the non-null col-
umn values of this tuple as filter literals, and randomly place 3–6 comparison operators
associated with these literals, based on whether each column can support range (draw one
of {≤,≥,=}) or equality filters (=). Overall, this generator (1) follows the data distri-
bution and guarantees non-empty results, and (2) includes more filters, in variety and in
quantity, than JOB-light. An example 3-table query is: mc ./ σinfo type id=99(mi idx) ./
σepisode nr≤4∧phonetic code≥’N612’(t), where t.id is joined with other tables’ movie id.

• JOB-M: this last benchmark contains 16 tables in IMDB and involves multiple join keys.
For instance, the table movie companies is joined not only with title on movie id, but also
with company name on company id, and with company type on company type id, etc. We
adapt the 113 JOB queries [64] by allowing each table to appear at most once per query
and removing logical disjunctions (e.g., A.x=1 ∨ B.y=1). Each query joins 2–11 tables.
We use JOB-M to test NeuroCard’s scalability as its full join is 5× larger and has more
dimensions than the above (see Table 4.1).
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Figure 4.6: Distribution of query selectivity (§4.7.1).

The benchmarks are available at https://github.com/neurocard.

Metric. We report the usual Q-error distribution of each workload, where the Q-error
of a query is the multiplicative factor an estimated cardinality deviates from the query’s

true cardinality: Q-error(query) := max
(

cardactual
cardestimate

, cardestimate

cardactual

)
. Both actual and estimated

cardinalities are lower bounded by 1, so the minimum attainable Q-error is 1×. As reported
in Naru’s evaluation (§3.6), reducing high-quantile errors is much more challenging than
mean or median; thus, we report the quantiles p100, p99, p95, and the median. For timing
experiments, we report latency/throughput using an AWS EC2 VM with a NVIDIA V100
GPU and 32 vCPUs.

Benchmark characteristics. Figure 4.6 plots the distributions of selectivities of these
workloads, where we calculate each query’s selectivity as cardactual/cardinner (denominator
is the row count of the query join graph—an inner join—without filters). The selectivity
spectrums of our two benchmarks (JOB-light-ranges and JOB-M) are much wider than JOB-
light due to higher filter variety. The median selectivity is more than 100× lower, while at
the low tail the minimum selectivities are 1000× lower.

4.7.2 Compared Approaches

We compare against several prevalent families of estimators. In each family, we aim to choose
a state-of-the-art representative. Related Work (§4.8) includes a more complete discussion
on all families and their representative methods.

Supervised query-driven estimators. We use MSCN [56] as a recent representative
from this family. It takes in a featurized query, runs the query filters on pre-materialized
samples of the base tables, then use these bitmaps as additional network inputs, and predicts
a final cardinality. For JOB-light, we used the training queries and sample bitmaps provided

https://github.com/neurocard
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in the authors’ source code [80]. For JOB-light-ranges, due to new columns, we generated
10K new training queries—generating and executing them to obtain true cardinality labels
took 3.2 hours—and used a bitmap size of 2K to match the size of other estimators in
this benchmark. For JOB-light, we also cite the best numbers obtained by Sun and Li [119],
termed E2E, which is a deep supervised net with more effective building blocks (e.g., pooling,
LSTM) than MSCN.

Unsupervised data-driven estimators. We use DeepDB [44] as a recent technique in
this family. It uses a non-neural sum-product network [94] as the density estimator for each
table subset chosen by correlation tests. Conditional independence is assumed across subsets.
In contrast, NeuroCard uses a neural autoregressive model to build a single learned estimator
over all tables in a schema. We use two recommended configurations from DeepDB: a base
version that learns up to 2-table joins, and a larger version that additionally builds 3-table
models. These correspond to their storage-optimized and the standard setups, respectively.

We found that the DeepDB source code [21] did not support range queries on categorical
string columns out-of-the-box. Since JOB-light-ranges contains such queries, we perform
data and query rewriting for this baseline, by dictionary-encoding the string values into
integers. Reported results are with this optimization enabled.

Join sampling. We implement the Index-based Join Sampling method (IBJS) [63], using
10,000 as the maximum sample size. A query’s cardinality is estimated by taking a sample
from the query’s join graph and executing per-table filters on-the-fly.

Real DBMS. We use PostgreSQL v12, which performs cardinality estimation using 1D
histograms and heuristics to combine them.

Other baselines. The methods chosen above have been compared to other estimators in
prior studies. Naru has shown that estimators based on classical density modeling (KDE;
Bayesian networks; the MaxDiff n-dimensional histogram) or random sampling significantly
lag behind deep autoregressive models (see §3.6). DeepDB [44] also shows that it significantly
outperforms wavelets [10]. We therefore do not compare to these methods.

NeuroCard. We implement NeuroCard on top of the Naru source code [84]. We use
ResMADE by default. For complex benchmarks we also use the Transformer (§4.3.4), which
is suffixed with -large.
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Table 4.2: JOB-light, estimation errors. Lowest errors are bolded.

Estimator Size Median 95th 99th Max

PostgreSQL 70 KB 7.97 797 3 · 103 103

IBJS – 1.48 103 103 104

MSCN 2.7 MB 3.01 136 1 · 103 103

E2E (quoting [119]) N/A 3.51 139 244 272
DeepDB 3.7 MB 1.32 4.90 33.7 72.0
DeepDB-large 32 MB 1.19 4.66 35.0 39.5

NeuroCard 3.8 MB 1.57 5.91 8.48 8.51

4.7.3 Estimation Accuracy

4.7.3.1 JOB-light

Table 4.2 reports each estimator’s accuracy on the 70 JOB-light queries. Overall, NeuroCard
exhibits high accuracy across the spectrum. It sets a new state-of-the-art maximum
error at 8.5× using 3.8 MB of parameters. This represents an > 8× improvement over the
best prior method when controlling for size.

We now discuss a few observations. Not surprisingly, PostgreSQL has the most inaccu-
rate median—indicating a systematic mismatch between the approximated distribution and
data—due to its use of coarse-grained density models (histograms) and heuristics. IBJS fares
better at the median, but falls off sharply at tail, because samples of a practical size have a
small chance to hit low-density queries in a large joint space. Both MSCN and E2E are deep
supervised regressors which show marked improvements over prior methods. However, their
median and 95th errors are quite similar and have sizable gaps from the two data-driven
estimators.

NeuroCard vs. DeepDB shows interesting trends. NeuroCard is up to 4–8× better at
tail (99th, max), and DeepDB is slightly better at lower quantiles. NeuroCard is more
robust at tail due to (1) a markedly better density model (neural autoregressive vs. non-
neural sum-product networks that use inter-column independence assumptions), and (2)
learning all possible correlations among the columns of all 6 tables, whereas DeepDB assumes
(conditional) independence across several table subsets. DeepDB-large, being 8.4× bigger
and trained on 7.7× more (54M) tuples, still trails NeuroCard at tail by more than 4×.
NeuroCard slightly trails at the lower quantiles (“easy” queries with high true density) likely
due to the mode-covering behavior of KL-divergence minimization [30].
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Table 4.3: JOB-light-ranges, estimation errors. Lowest errors bolded.

Estimator Size Median 95th 99th Max

PostgreSQL 70 KB 13.8 2 · 103 2 · 104 5 · 106

IBJS – 10.1 4 · 104 106 108

MSCN 4.5 MB 4.53 397 6 · 103 2 · 104

DeepDB 4.4 MB 3.40 537 8 · 103 2 · 105

DeepDB-large 21 MB 2.00 91.7 2 · 103 4 · 104

NeuroCard 4.1 MB 1.87 57.1 375 8169
NeuroCard-large 21 MB 1.40 35.1 232 1029

Table 4.4: JOB-M, estimation errors. Lowest errors are bolded.

Estimator Size Median 95th 99th Max

PostgreSQL 120 KB 174 1 · 104 8 · 104 1 · 105

IBJS – 61.1 3 · 105 4 · 106 4 · 106

NeuroCard 27.3 MB 2.84 404 1327 2 · 104
NeuroCard-large 409 MB 1.96 26.4 304 874

4.7.3.2 JOB-light-ranges

This 1000-query benchmark adds equality/range filters on more content columns, using the
same join templates as JOB-light (which has range filters on one column only). Results are
shown in Table 4.3.

NeuroCard achieves the best accuracy across all error quantiles, and improves
on the best prior methods by up to 15−34×. It is also the only estimator with
< 2× median and 3-digit 99%-tile errors. Overall, all estimators produce less accurate
cardinalities, though the drops are of varying degrees. Compared with MSCN, NeuroCard
improves by 2× at median, 7× at 95th, 15× at 99th, and 2× at max. Compared with
DeepDB, NeuroCard improves the four quantiles by 2×, 9×, 21×, and 23×, respectively.
Comparing the enlarged versions of the two estimators (suffixed with -large), the accuracy
gains become 1.4×, 2.6×, 9.6× and 34×, respectively.

NeuroCard’s improvements over baselines significantly widen in this benchmark, due to
prior approaches failing to capture the more complex inter-column correlations being tested.
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4.7.3.3 JOB-M

This final benchmark tests NeuroCard’s ability to scale to a much larger and more complex
join schema. Different from the JOB-light schema, JOB-M contains 16 tables, with each
query joining 2–11 tables on multiple join keys (in addition to movie id only in JOB-light).
For baselines, we only include PostgreSQL and IBJS, because MSCN’s query encoding does
not support the complex filters in this benchmark and DeepDB ran out of memory on this
16-table dataset due to high-cardinality categorical columns.

Results in Table 4.4 show that NeuroCard’s accuracy remains high on this com-
plex schema. PostgreSQL produces large errors, and IBJS also struggles, due to many
intermediate samples becoming empty as the number of joins grows. NeuroCard overcomes
this challenge and offers more than 10× better accuracy across the board. In terms of space
efficiency, since the model needs to be trained on the full outer join of 16 tables and the
maximum domain size exceeds 2 million, a vanilla NeuroCard would require 900 MB in model
size. With column factorization (§4.5), the model size is reduced to 27MB—less than 1% of
the total size of all tables. We also present a large model NeuroCard-large to demonstrate
scalability.

4.7.4 Efficiency

Having established that NeuroCard achieves the best accuracy, we now study the statistical
and physical efficiency of NeuroCard.

How many tuples are required for good accuracy? Figure 4.7a plots accuracy (p99
on JOB-light and JOB-light-ranges) vs. number of tuples trained. About 2–3M tuples are
sufficient for NeuroCard to achieve best-in-class accuracy (compare with Tables 4.2 and
4.3). Using more samples helps, but eventually yields diminishing returns. Reaching high
accuracy using a total of ∼107 samples out of a population of 1012 data points (i.e., only
0.001% of the data)—many queries would inevitably touch unseen data points—shows that
NeuroCard generalizes well and is statistically efficient.

How does sampling affect training throughput? Figure 4.7b plots the training through-
put, in tuples per second, vs. the number of sampling threads used to provide training data.
Four threads suffice to saturate the GPU used for training. At lower thread counts, the
device spends more time waiting for training data than doing computation. With a peak
throughput of ∼40K tuples/second, NeuroCard can finish training on 3M tuples in about
1.25 minutes.

Wall-clock training time comparison. Figure 4.7c compares the wall-clock time used
for training the MSCN, DeepDB, and NeuroCard configurations reported in Tables 4.2 and
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Figure 4.7: Statistical and physical efficiency of NeuroCard.

4.3. MSCN requires a separate phase of executing training queries to collect true cardi-
nalities, which takes much longer (3.2 hours for 10K queries) than just the training time
shown here. DeepDB runs on parallel CPUs and is quite efficient. NeuroCard starts
training/on-the-fly sampling after calculating the join count tables, which takes 13 seconds
for both datasets. Its construction is efficient due to parallel sampling and accelerated GPU
computation.

Wall-clock inference time comparison. Lastly, Figure 4.7d plots the latency CDF
of the learning approaches for 1000 JOB-light-ranges queries. As before, we use the base
configurations reported in the accuracy Tables. MSCN and NeuroCard run on GPU while
DeepDB runs on CPU; all three approaches are implemented in Python. MSCN is fastest
because its lightweight network has fewer calculations involved. DeepDB’s latencies span
a wide spectrum, from ∼1 ms for queries with low complexity (numbers of joins and filters
involved) to ∼100 ms for queries with the highest complexity. NeuroCard’s latencies are more
predictable, with 17 ms at median and 12 ms at minimum: this is due to the higher number
of floating point operations involved in the neural autoregressive model. All approaches can
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Table 4.5: Ablation studies: varying primary components of NeuroCard. Unlisted values are
identical to the Base configuration. We show the impact of the sampler (A), column factorization
bits (B), autoregressive model size (C), inter-table correlations learned (D), and whether to use an
autoregressive model at all (E) on the 50% and 95%-tile errors of JOB-light-ranges.

Sampler
Fact.
Bits

dff; demb Correlations Learned p50 p95

Base
(4.1MB)

unbiased 14 128; 16 all tables in one AR 1.9 57.1

(A) biased 33 3270

(B)
10

(2.2MB)
2.2 173

12
(2.6MB)

2.0 168

None
(12MB)

1.6 62.7

(C)
128; 64
(23MB)

1.5 44.0

1024; 16
(31MB)

1.7 64.0

(D) one AR per table 40 9 · 104

(E) No model; uniform join samples only 4.0 2 · 105

be sped up by engineering efforts (e.g., if run in a native language). For NeuroCard, model
compression or weight quantization can also reduce the computational cost.

4.7.5 Dissecting NeuroCard

To gain insights, we now evaluate the relative importance of primary components of Neu-
roCard, by varying them and measuring the change in estimation accuracy on JOB-light-
ranges. We use the smaller NeuroCard in Table 4.3 as the Base configuration, and ablate
each component in isolation. Table 4.5 presents the results.

In (A), using IBJS adapted for full joins5 as a biased sampler significantly decreases the
learned estimator’s accuracy. The large increase in the median error implies a systematic
distribution mismatch. Overall, this design choice is the second most important.

5The fact table title is ordered at front and a large intermediate size of 106 is used.
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Rows in group (B) vary the column factorization granularity. Using smaller bits results
in more subcolumns and yields a small drop in accuracy. Disabling factorization uses the
most space and appears to perform the best.

Group (C) varies the size of the autoregressive model, by changing the dimension of
the feedforward linear layers (dff) or the embeddings (demb). An enlarged embedding proves
markedly more useful than enlarged linear layers, likely because each token’s captured se-
mantics becomes more finetuned during optimization.

In group (D) we vary the correlation learned by NeuroCard. While all configurations
above learn the distribution of all tables in a single model—capturing all possible correlations
among them—here we build one model (same architecture as Base) per table. Queries that
join across tables are estimated by combining individual models’ estimates via independence.
Without modeling inter-table correlations, this variant yields the lowest accuracy.

Finally, group (E) ablates away the AR model altogether. We test uniform join samples
as a standalone estimator: it uses our sampler (§4.4) to draw 104 simple random samples
(actual tuples in the database) from each query’s join graph. While the median error is
reasonable, it is 104× less accurate than an autoregressive model at tail as many queries
have no sample hits. The AR model is more statistically efficient than sampling, because
it provides access to conditional probability distributions—these conditional contributions
enable an efficient probabilistic inference procedure, i.e., progressive sampling, which cannot
be used otherwise.

Tuning guide. Groups (B) and (C) show that NeuroCard is not overly sensitive to hy-
perparameters. For new datasets, we recommend starting with the Base configuration and
increasing sizing as much as possible up to a size budget. The recommended precedence is:
factorization bits; demb; dff and the number of layers. The number of training tuples can be
set by early-stopping or a time budget; §4.7.4’s results suggest starting with a few to 10+
million.

4.7.6 Update Strategies

NeuroCard handles new data by either retraining, or taking additional gradient steps, i.e.,
incremental training. To test both strategies, we simulate the practice of time-ordered par-
tition appends : table title is range-partitioned on a year column into 5 partitions. Each
partition defines a distinct snapshot of the entire database and the full join, so running the
same set of queries at different partition count yields 5 sets of true cardinalities. We compare
three update strategies, all of which are trained fully for 7M tuples after the first ingest: (1)
stale, trained once on the first snapshot and never updated, (2) fast update, incrementally
updated after each new ingest on 1% of original samples (70K), and (3) retrain, using 100%
of original samples (7M) after each ingest. We also show the latency required to perform
additional gradient steps.
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Figure 4.8: Updating NeuroCard, fast and slow. JOB-light. Errors (p95, p50) of each strategy
are averaged from 10 runs. PostgreSQL is also run as comparison, whose statistics are updated
(1∼2 sec.) on each ingest.

Results are shown in Figure 4.8. Without update, the stale NeuroCard significantly
degrades in accuracy, which is expected as each partition adds a significant amount of new
information. A fast updated NeuroCard recovers most of the accuracy, incurring a minimal
overhead. Even fully retraining only requires a few minutes and yields the highest accuracy.
Both the statistical efficiency (number of tuples needed vs. accuracy) and the physical
efficiency of NeuroCard contribute to these highly practical update strategies.

4.8 Related Work

Unsupervised data-driven cardinality estimators. This family approximates the data
distribution and dates back to System R’s use of 1D histograms [107]. The quality of the
density model used has seen steady improvements throughout the years:

Classical methods. Multidimensional histograms [95, 36, 81, 96] are more precise than
1D histograms by capturing inter-column correlations. Starting from early 2000s, graphical
models were proposed for either single-table or join cardinality estimation [28, 124, 22].
These density models tradeoff precision for efficiency by assuming conditional or partial
independence, and require expensive structure learning (finding the best model structure
given a dataset).

Sum-product networks. SPNs, a tree-structured density estimator, were proposed
about 10 years ago [94]. Each leaf is a coarse histogram of a slice of an attribute, and each
intermediate layer uses either × and + to combine children information. Due to their heuris-
tics (e.g., inter-slice independence), SPNs have limited expressiveness : there exists simple
distributions that cannot be efficiently captured by SPNs of any depth [75]. DeepDB [44] is a
recent cardinality estimator that uses SPNs. NeuroCard is similar to DeepDB in the follow-
ing aspects. (S1) Both works use the formulation of learning the full outer join of multiple
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tables. (S2) Our “schema subsetting” capability builds on their querying algorithms.

NeuroCard differs from DeepDB in the following. (D1) Modern density model: Neu-
roCard’s choice of a deep autoregressive model is a universal function approximator hence
fundamentally more expressive. Unlike SPNs, no independence assumption is made in the
modeling. (D2) Correlations learned: NeuroCard argues for capturing as much correlation
as possible across tables, and proposes learning the full outer join of all tables of a schema.
DeepDB, due to limited expressiveness, learns multiple SPNs, each on a table subset (∼1–3
tables) chosen by correlation tests. Conditional independence is assumed across table sub-
sets. (D3) Correct sampling: NeuroCard identifies the key requirement of sampling from the
data distribution of joins in an unbiased fashion. In contrast, DeepDB obtains join tuples
either from full computation or IBJS which samples from a biased distribution. Due to these
differences, NeuroCard outperforms DeepDB by up to 34× in accuracy (§4.7).

Deep autoregressive models. A breakthrough in density estimation, deep AR mod-
els are the current state-of-the-art density models from the ML community [97, 27, 128,
25]. They tractably learn complex, high-dimensional distributions in a neural net, capturing
all possible correlations among attributes. Distinctively, AR models provide access to all
conditional distributions among input attributes. Naru [142] is a single-table cardinality
estimator that uses a deep AR model; see Chapter 3. By accessing conditional distributions,
Naru proposes efficient algorithms to integrate over an AR model, thereby producing selec-
tivity estimates. NeuroCard builds on single-table Naru and overcomes the unique challenges
(§4.2) to support joins.

Supervised query-driven cardinality estimators. Leveraging past or collected queries
to improve estimates dates back to LEO [118]. Interest in this approach has seen a resurgence
partly due to an abundance of query logs [136] or better function approximators (neural
networks) [56, 119] that map featurized queries to predicted cardinalities. Hybrid methods
that leverage query feedback to improve density modeling have also been explored, e.g.,
KDE [40, 51] and mixture of uniforms [89]. Supervised estimators can easily leverage query
feedback, handle complex predicates (e.g., UDFs), and are usually more lightweight [26].
NeuroCard has demonstrated superior estimation accuracy to representatives in this family,
while being fundamentally more robust since it is not affected by out-of-distribution queries.
Complex predicates can also be handled by executing on tuples sampled from NeuroCard’s
learned distribution.

Join sampling. Extensive research has studied join sampling, a fundamental problem in
databases. NeuroCard leverages a state-of-the-art join sampler to obtain training tuples
representative of a join. NeuroCard adopts the linear-time Exact Weight algorithm from
Zhao et al. [145], which is among the top-performing samplers they study. This algorithm
provides uniform and independent samples, just as NeuroCard requires. NeuroCard may
further leverage their extensions to support cyclic join schemas. While IBJS [63] and Wander
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Join [66] provide unbiased estimators for counts and aggregates, they do not provide uniform
samples of a join and thus are unsuitable for collecting training data. Lastly, we show that
it is advantageous to layer a modern density model on join samples.

Learned database components. A great deal of work has recently applied either clas-
sical ML or modern deep learning to various database components, e.g., indexing [59], data
layout [144], and query optimization [60, 122, 74]. NeuroCard can be seen as a versatile core
that can benefit any query engine, learned or not learned. Being able to model inter-table
and inter-column correlations without any independence assumptions, NeuroCard’s use may
go beyond query optimization to other tasks that require an understanding of tables and
attributes (e.g., data imputation [137] or indexing [138]).

4.9 Summary

In this chapter we have presented the NeuroCard estimator. NeuroCard is built on a simple
idea: learn the correlations across all tables in a database without making any independence
assumptions. NeuroCard applies established techniques from join sampling and deep self-
supervised learning to cardinality estimation, a fundamental problem in query optimization.
It learns from data—just like classical data-driven estimators—but captures all possible inter-
table correlations in a probabilistic model: pθ(all tables). To our knowledge, NeuroCard is
the first cardinality estimator to achieve assumption-free probabilistic modeling of more than
a dozen tables. NeuroCard achieves state-of-the-art accuracy for join cardinality estimation
(4–34× better than prior methods) using a single per-schema model that is both compact
and efficient to learn.
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Chapter 5

Balsa: Learning to Optimize Queries

Chapter 3 and Chapter 4 removed long-standing heuristics in cardinality estimation. We
now turn our attention to the second key challenge addressed in this dissertation: the high
development cost of optimizers. As discussed in Chapter 1, optimizers take experts months
to write and years to refine due to their high complexity. Instead of having human experts
spend years developing a state-of-the-art optimizer, in this chapter we ask the question: is
it possible to use machine learning to automatically learn to optimize queries?

We answer this question affirmatively by presenting Balsa, a learned query optimizer
based on deep reinforcement learning. Balsa demonstrates for the first time that learning to
optimize queries without learning from an expert optimizer is both possible and efficient.

To achieve this arguably surprising result, Balsa tackles the key challenge of mitigating
disastrously slow plans during the agent’s learning process. It first learns basic knowledge
from a simple, engine and environment-agnostic simulator, followed by learning in real exe-
cution, guarded by new safe execution and safe exploration techniques. On the challenging
Join Order Benchmark designed to stress test query optimizers, Balsa matches the per-
formance of two expert optimizers, from PostgreSQL and a commercial engine, with two
hours of learning, and outperforms them by up to 2.8× in workload runtime after a few
more hours. Balsa thus opens the possibility of automatically learning to optimize in future
compute environments where expert-designed optimizers do not exist.

5.1 Introduction

Balsa leverages deep reinforcement learning (RL), which has been successfully employed to
learn complex skills [2] and play highly challenging games, defeating human champions [112,
113, 131]. RL consists of an agent that learns to solve a task by repeatedly interacting
with an environment. The agent observes the environment’s state and takes an action to
maximize a reward. If the actions lead to improved rewards, they are reinforced, i.e., the
agent is updated to make these actions more likely in the future. For a learned optimizer
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agent, such as Balsa, the environment is the database; a state is a partial plan for a query;
an action is to add operators to the partial plan, and the reward for a complete plan is its
execution latency (negated). Using this feedback loop, Balsa learns by trial and error to
become increasingly better at generating query execution plans.

In fact, the promise of RL for query optimization has been shown by several recent
projects [60, 74, 73]. However, these methods assume the availability of a mature query
optimizer to learn from. In contrast, Balsa does not learn from such an expert optimizer.
To our knowledge, Balsa demonstrates for the first time that learning to optimize queries
without learning from an expert optimizer is both possible and efficient. This can have a far
reaching impact, as it paves the road towards automatically learning to optimize in new data
systems [91, 83] where a mature optimizer does not exist.

A unique challenge in learning to optimize queries without an expert optimizer’s guidance
is that most execution plans for a query are slow—sometimes orders of magnitude more
expensive than the optimal plan [64, 65]. At the beginning of the learning process, the agent
has no prior knowledge, so the probability of selecting such disastrous plans is high, which
may prevent any progress. This is a unique characteristic of query optimization that is not
shared by other successful RL applications such as games. Indeed, with most games (e.g.,
AlphaGo [112], MuZero [104]), a “bad” action typically leads to a game ending quicker. As
a result, bad actions do not hinder learning in those environments.

To avoid disastrous plans, Balsa employs simulation-to-reality learning [121]. In the “sim-
ulation” phase, Balsa quickly learns from a simulator how to avoid disastrous plans without
executing queries, while in the “reality” phase it learns from real executions to produce
high-performance plans. The simulator gives cost feedback to the agent by using a basic,
logical-only cost model with a cardinality estimator. For convenience, we use PostgreSQL’s
cardinality estimator, a simple histogram-based method [64]. We pick an existing estimator
since, unlike an optimizer, a cardinality estimator is agnostic to the execution environment,
so the same estimator can be used for any environment. (In our evaluation, we use Post-
greSQL’s estimates for another commercial engine.) Moreover, the estimator needs not be
high-quality for effective simulation. In fact, PostgreSQL’s estimates can exhibit orders of
magnitude errors [64], and we find that even injecting noises to these estimates does not im-
pact Balsa’s performance (§5.10). This is because Balsa only uses the simulation to learn to
avoid disastrous plans, not to reach expert-level performance. Therefore, basic cost models
and estimates suffice.

Next, to vastly improve over the imperfect knowledge acquired from the simulator, Balsa
learns in the real environment by actually executing queries. While the simulation knowledge
enables the agent to avoid the worst plans, it can still stumble onto bad plans, causing
unpredictable stalls in the learning process. Balsa addresses this challenge by using timeouts.
A query’s timeout is set to its best latency so far during learning. If a plan times out, we
assign it a predefined low reward (as we do not know its true reward). If the plan finishes,
we tighten the timeout for future iterations. Thus, timeouts bound each learning iteration’s
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Figure 5.1: Balsa’s architecture. Balsa learns to optimize queries by executing plans and observing
their latency feedback from an engine.

runtime, ensuring safe execution that eliminates unpredictable stalls.

Finally, an RL agent must balance exploiting past experiences with exploring new ones
to escape local minima. The classic solution is random exploration, i.e., occasionally pick a
random plan. Unfortunately, this standard strategy is ineffective, since random plans in the
search space are likely to be highly expensive. Instead, Balsa explores from a set of probably
good plans. During exploration, Balsa generates several best predicted plans (instead of the
best), then picks the best unseen one out of them. This safe exploration approach improves
Balsa’s plan coverage and performance.

Given a target dataset, Balsa is trained by repeatedly optimizing a set of sample queries
by trial and error. After training, we test its generalization performance on a new set of
unseen queries for the same dataset. We find that all three components of Balsa—simulation
learning, safe execution, safe exploration—boost its generalization. They expose Balsa to
a higher quantity and variety of plans, thereby enabling it to optimize new queries more
robustly—a trait we believe is essential for the practical deployment of learned optimizers.
We further propose using diversified experiences to enhance generalization (§5.6). We study
Balsa’s generalization in depth in our evaluation (§5.8.2, §5.8.5), and find that it achieves
better performance than two expert optimizers on unseen queries.

We call our approach “Bootstrap, Safely Execute, Safely Explore”, hence Balsa1 for
short. To our knowledge, Balsa is the first learned optimizer that does not rely on plans
(demonstrations) generated by an existing expert optimizer. On the Join Order Bench-
mark [64], a complex workload designed to stress test optimizers, Balsa matches the per-
formance of two expert optimizers with two hours of training, and outperforms them by
2.1–2.8× after a few more hours.

In summary, we make the following contributions:

1Balsa wood is famous for its light weight.
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• We introduce Balsa, a learned query optimizer that does not learn from an existing, expert
optimizer.

• We design a simple approach for learning a query optimizer without expert demonstrations:
bootstrapping from simulation (§5.3), safe execution (§5.4), and safely exploring the plan
space (§5.5).

• We propose diversified experiences, a novel method to further enhance training and gener-
alization performance (§5.6), including generalizing to unseen queries with highly distinct
join templates.

• Balsa can outperform both an open-source (PostgreSQL) and a commercial query opti-
mizer, after a few hours of training (§5.8).

• We show that, despite not learning from an expert optimizer, Balsa outperforms the prior
state-of-the-art technique that does.

Balsa is open sourced at https://github.com/balsa-project/balsa.

5.1.1 Differences from Prior Work

To highlight Balsa’s contributions, we briefly compare with the most related work and defer
a complete discussion to §5.9.

DQ [60] learns from an expert optimizer’s cost model. As such, its performance is bounded
by the quality of the cost model, which can be inaccurate. Neo [74] takes an opposite
approach by learning from an expert optimizer’s plans and real executions. While this is
more accurate than using just a cost model, it is also more expensive. Importantly, these
solutions assume either an expert cost model or an expert optimizer to bootstrap from.

In contrast, Balsa requires neither an expert cost model (as in DQ) nor an expert op-
timizer (as in Neo) to learn from. Balsa removes these fundamental assumptions by boot-
strapping from a minimal, logical-only cost model, followed by safe learning in real execution.
For the cost model, Balsa needs a basic cardinality estimator (§5.3.3). We find inaccurate
estimates can still lead to successful simulation, and most of Balsa’s knowledge is learned
after simulation (§5.10).

In summary, this chapter tackles the new problem of learning to optimize when an expert
optimizer does not exist. (We discuss in §5.10 how Balsa can better leverage an expert, if
available, than prior work.) To solve this problem, we develop or apply techniques new to the
domain of learned optimizers. These include sim-to-real (§5.2), safe execution (§5.4.3), safe
exploration (§5.5), on-policy learning (§5.4.1), and enhancing generalization with diversified
experiences (§5.6).

https://github.com/balsa-project/balsa
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5.2 Balsa Overview

Balsa’s goal is to learn to optimize queries for a given dataset and an execution engine. We
assume a training workload is available. At test time, Balsa is asked to optimize unseen
queries issued for the same dataset, which can contain new filters and join graphs that are
different from those in the training queries.

Balsa learns by trial and error. It optimizes the training queries, producing different
plans, then executes them on the engine to observe their runtimes. Based on the runtime
feedback, Balsa updates itself to correct mistakes and reward good decisions. As the feedback
loop repeats, Balsa gets better at generating good plans.

After training, Balsa can be deployed to optimize an unseen test set of queries. The agent
is evaluated by the performance of training plans produced, the performance of testing plans
produced (i.e., its generalization ability), and its learning efficiency.

Throughout learning, Balsa accesses the underlying execution engine only to execute
plans and observe their runtimes, and does not learn from an existing optimizer. This
requirement is informed by the fact that many data systems have execution engines built
long before an optimizer becomes available (§5.1).

Assumptions. We assume the database content is kept static. Updates to the schema,
appends, or in-place updates can be handled by retraining. This assumption implies that the
agent need not solve a learning problem with a shifting distribution. Another assumption
is that Balsa currently optimizes select-project-join (SPJ) blocks. This is in line with the
classical treatment [107] of decomposing a query into simple SPJ blocks and optimizing them
block-by-block.

5.2.1 Approach

Balsa’s architecture is shown in Figure 5.1. It consists of three basic components: boot-
strapping a value network in a minimal cost model, fine-tuning the value network in real
execution, and using a tree search algorithm to build query plans.

Classical design: cost models + enumeration. The classical optimizer design [107]
uses an expert-implemented cost model that takes in a plan2 and outputs a cost estimate:

C : plan→ cost

Costs are designed to reflect real execution performance: lower costs should correlate with
faster execution. The optimizer produces plans by enumerating candidate plans and scoring
them using the cost model. For queries with a small number of tables, dynamic programming
(DP) is typically used as the enumeration module.

2We use “plans” to refer to both complete plans and partial subplans.
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RL: value functions + planning. Instead of a cost model, which estimates the immediate
cost of a plan, Balsa learns a value function that estimates the overall cost/latency of
executing a query when the plan is used as a partial step (subplan):

V : (query, plan)→ overall cost or latency

Given a value function, we can use it to optimize queries by building a plan bottom-up.
Consider a query Q joining tables {A,B,C,D}. To figure out the best first join to perform,
we compare the overall cost/latency, i.e., the value, of all valid first joins:

{A,B,C,D} ⇒ [V (Q,A ./ B)); V (Q,A ./ C); . . . ]

In other words, we use V to score the 2-table joins, which are all partial subplans to complete
query Q. The best first join is the one with the lowest V value. Suppose A ./ C is the best
among them, then we can continue the process, scoring all possible second joins:

{A ./ C,B,D} ⇒ [V (Q,B ./ D); V (Q,B ./ (A ./ C)); . . . ]

Continuing such planning leads to a complete query plan.

In contrast to the classical cost model, a value function directly optimizes for the final,
overall cost/latency of completing a query—the real objective we care about. Moreover,
a learned value function can leverage data to tailor to a target database and hardware
environment, potentially surpassing heuristics. If the optimal value function V ∗ is known,
then planning would produce optimal plans for queries. Our goal is to approximate V ∗ as
accurately as possible.

Learned value networks. Balsa approximates the optimal value function by training a
neural network, Vθ(query, plan) (with parameters θ), on agent-collected data. The two inputs
to the network are featurized into query features (encoding joined tables and filters) and plan
features (encoding the tree structure of the plan and each node’s operator type), respectively.

We learn the value function in two stages. First, we learn parameters θsim in a fast
simulation environment backed by a minimal cost model. Next, we initialize parameters
θreal ← θsim and start fine-tuning the value function in real execution. The two stages
produce the value networks3:

Vsim : (query, plan)→ overall cost

Vreal : (query, plan)→ overall latency

After training, Vreal is used with planning to optimize new queries.

3For notational convenience, throughout this chapter we use Vsim and Vreal to refer to the simulation and
real-execution models Vθsim and Vθreal , respectively.
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Step 1: bootstrapping from a minimal cost model (§5.3). Balsa starts learning in a
“simulator” of query optimization, i.e., a cost model. The key advantage of using a simulator
is that the agent can learn about disastrous plans without executing them in the initial phase
of learning. The agent bootstraps initial knowledge against an inaccurate but fast-to-query
cost model, which provides rapid feedback (cost estimates) for the agent. The cost model is
generic and does not model the target engine or hardware.

To train the simulation model Vsim, we use a data collection procedure (e.g., DP) to
enumerate plans for the training query set and ask the simulator for costs. Each query can
yield thousands of training data points, eventually producing a sufficiently large dataset,
Dsim = {(query, plan, overall cost)}. Vsim is then trained on this dataset in a standard super-
vised learning fashion.

Step 2: fine-tuning in real execution (§5.4). Next, we transfer the value function
from doing well in the simulator to excelling in the real execution environment. The second
stage starts by initializing the real-execution model from the trained simulation model: Vreal

← Vsim. The fine-tuning of Vreal is performed in iterations of query executions and model
updates. In each iteration, Balsa uses its current Vreal to optimize training queries; these
plans are executed with their latencies measured. Balsa then updates its Vreal on these
collected data to make its latency predictions more accurate.

A key challenge of learning in real execution is mitigating slow plans. We address this
as follows. By initializing from Vsim, Balsa’s behavior in iteration 0 would be much better
than random initialization (which amounts to picking plans randomly). After iteration 0,
Balsa uses timeouts (determined by earlier runtimes) to early-terminate slow plans (§5.4.3)
and also employs safe exploration (§5.5).

Planning with tree search. Balsa uses tree search planning on top of the learned value
function to optimize queries. The learned Vreal guides the search towards the promising
regions of the plan space. As Vreal becomes more accurate, better plans can be found.

There are many tree search algorithms with different complexity-optimality tradeoffs:
from greedy planning, to advanced planning algorithms such as Monte Carlo tree search.
We opt for a middle ground by using a simple beam search (§5.4.2).

In the next sections, we describe Balsa’s components in detail.

5.3 Bootstrapping From Simulation

The first stage of training aims to rapidly impart basic knowledge to the agent, before it
starts learning in long-running real executions. We achieve this by bootstrapping Balsa in a
minimal simulator, i.e., a cost model. It “simulates” query optimization in that query plans
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are not actually executed. Instead, the agent issues a large amount of plans to the simulator,
which can quickly return cost estimates (rather than measuring their runtimes) as feedback.

Why is a simulator necessary? The search space for a query is vast and disastrous ex-
ecution plans are abundant [64]. Unfortunately, disastrous plans can stall learning progress:
an agent may wait for a long time for a slow plan to complete execution, before learning
that it is a bad action (if it ever finishes). This property is in direct contrast to other RL
use cases such as games. In game environments (e.g., Go, chess, Atari), bad moves typically
cause a game to end sooner, as the opponent can exploit the agent’s mistakes.

A randomly initialized RL agent without training in simulation can quite easily stumble
upon such disastrous plans, especially in the early stage of learning. We show this with a
simple experiment: we randomly initialize 6 agents without simulation learning, and task
them with optimizing 94 queries from the Join Order Benchmark (detailed setup described
in §5.8.1). Plans produced by the median random agent execute 45× slower in workload
runtime than those produced by an expert optimizer, PostgreSQL. The slowest agent is 79×
slower than the expert (2.5 hours vs. 2 minutes).

Next, we describe the specific choice of cost model employed.

5.3.1 A Minimal Simulator

Balsa uses a minimal, logical plan-only cost model, which captures the general principle that
“fewer tuples lead to better plans”. It is minimal, because it is free of any prior knowledge
about the execution engine and physical operators (e.g., merge vs. hash join).

Formally, we use the Cout cost model [16]:

Cout(T ) =

{
|T | if T is a table/selection

|T |+ Cout(T1) + Cout(T2) if T = T1 ./ T2

where |T | denotes the estimated cardinality of a table (with filters taken into account) or a
join, obtained from a cardinality estimator (§5.3.3). This cost model estimates the cost of a
query plan simply by summing up the estimated result sizes of all operators.

Tradeoffs of a minimal simulator. We choose a minimal cost model to bake in as little
prior knowledge as possible. The goal of simulation learning is to steer the agent away from
definitively disastrous plans (when it starts the real execution phase), not to instill expert
knowledge. It is also generic: by not modeling physical details, it can be used to bootstrap
Balsa optimizing for any engine.

Due to its simplicity, the cost model is inherently inaccurate. Balsa will learn to fill in
missing knowledge and correct inaccuracy when fine-tuning in the real execution phase (§5.4).
As we will show in §5.8.3.1, while Balsa can leverage pre-engineered, more sophisticated
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Figure 5.2: Simulation data collection and augmentation. For each k-table join in DP, Balsa
collects and augments all its enumerated plans. Each bordered box yields a collected data point
(see legend).

cost models to accelerate training, they are not required for Balsa to reach expert-level
performance.

5.3.2 Simulation Data Collection

Given a simulator, we extract as much knowledge from it as possible by applying a batched
data collection procedure. The output is the simulation dataset, Dsim = {(query, plan, overall cost)},
which is used to train the value network Vsim. Specifically, we use dynamic programming
(also used by DQ [60]) to collect data.

Enumerating plans using dynamic programming. For each query in Balsa’s training
workload, we run the classical Selinger [107] bottom-up DP with a bushy plan space. It
starts by enumerating the best plans for all valid 2-table joins, composed out of base table
scans, then enumerating 3-table joins, etc. Each enumerated plan T will get a cost estimate
C from the cost model,4 generating a data point (query=T , plan=T , overall cost=C), where
query=T denotes the original query restricted to the tables/filters of T . This data point
undergoes a data augmentation procedure, described below, to yield a list of training data
points to be added into Dsim.

The data collection is high-throughput : data is generated from all enumerated plans, not
just from the set of optimal plans in the final DP results. This means that some suboptimal
plans (under the cost model) are included, which increase data variety and aid learning.
Figure 5.2 illustrates the data collection procedure.

However, DP’s runtime may become too large for queries joining many tables. Hence we
skip collecting data from queries with ≥ n tables (we set n = 12). Alternative strategies can

4Balsa enumerates physical plans for Cout, which will ignore the differences between physical joins/scans
and treat them as logical operators.
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also be applied. For example, DQ proposes a partial DP scheme where the first j levels of
DP are run and the rest of the levels are planned greedily.

Data augmentation. Balsa employs a data augmentation technique proposed by DQ,
where multiple data points are generated from a single enumerated plan. Specifically, given
a (query=T , plan=T , overall cost=C), each subplan T ′ of T will yield a distinct data point
with the same “overall query” T and the same cost: {(query=T , plan=T ′, overall cost=C) :
∀T ′ ⊆ T}. This technique significantly enriches the dataset Dsim in quantity and variety.

Interpretation. In RL terms, the augmentation reflects that all states (the subplans)
in a trajectory (the overall query/final plan) share the same return, because intermediate
rewards are defined to be 0 and terminal rewards are the negative costs of final plans.

5.3.3 Discussion

We found simulation learning to be highly effective. At the start of §5.3, we performed
a simple experiment illustrating an up to 79× gap between randomly initialized (i.e., no
bootstrapping) agents and an expert optimizer. Now, with simulation bootstrapping, agents
significantly shorten this gap to only 5.8× slower than the expert at max—all without
performing any real execution.

Cardinality estimator. The simulator needs a cardinality estimator. As mentioned in
§5.1, we pick PostgreSQL’s estimator for its simplicity (per-column histograms; heuristically
assumes independence for joins; “magic constants” for complex filters) [64]. Balsa does not
learn from PostgreSQL’s optimizer (costs or plans).

We use an existing, textbook-style estimator for convenience, not to rely on it for good
performance. In fact, most of Balsa’s quality improvements are learned after the simulation
stage (§5.8.2, §5.10).

Alternative cost models. While Balsa advocates for a minimal simulator, more prior
knowledge can be plugged in by the user, if desired. Other cost models may include pro-
gressively more physical operator knowledge (e.g., the Cmm cost model [64] for in-memory
settings). New query engines optimizing for different objectives (e.g., lower memory foot-
print) may either bootstrap Balsa with Cout (its fewer-tuples-are-better principle generally
applies), or develop another minimal cost model tailored to the objective.

5.4 Learning from Real Execution

Simulation learning imparts basic knowledge to the agent. But no simulators can perfectly
reflect the nuances of the real execution environment. Therefore, we fine-tune the agent
through query executions in the real environment.
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5.4.1 Reinforcement Learning of the Value Function

Balsa learns the real-execution value network, Vreal(query, plan)→ overall latency, using rein-
forcement learning. The basic idea is that the agent iteratively uses its current value network
to optimize queries and runs them, then uses the latency feedback to improve itself. As this
feedback loop runs, more execution data is collected, and the agent’s Vreal becomes better at
generating good plans.

Concretely, we start with Vreal initialized5 from Vsim and an empty real-execution dataset,
Dreal = ∅. Each iteration of learning consists of an execute and an update phase.

Execute. The agent uses the current Vreal to optimize each training query q, producing
an execution plan p. (Planning will be described in §5.4.2.) Each plan is executed on the
target engine with its latency l measured. This results in one data point, (query=q, plan=p,
overall latency=l), which then undergoes the same subplan data augmentation discussed
in §5.3.2 to yield a list of data points:

Dreal += {(query = q, plan = p′, overall latency = l) : ∀p′ ⊆ p}

Update. Balsa uses the collected data to improve its Vreal. We perform stochastic
gradient descent (SGD) with an L2 loss between predicted and true latencies. Thus, mispre-
dictions are corrected and good predictions are reinforced. Data points (q, p, l) are sampled
from Dreal. However, model outputs Vreal(q, p) are updated not towards l, but towards the
best latency obtained so far of query q that involves subplan p—a previously proposed tech-
nique [74]. The latency label correction is motivated as follows. Consider query q joining
tables A,B,C,D. Subplan p = Join(A,B) may have appeared in two executions, one with
C joined next and one with D joined next. They may have wildly different latencies, say 1
vs. 100 seconds. As we wish to minimize latency, we define the lower latency l = 1 as the
value of subplan p, because p could have made q run this fast. The best latencies so far are
calculated from the entire Dreal.

Thus, data collection and value function improvement alternate. The algorithm can be
thought of as either value iteration [120] or expert iteration [4], and variants of it have
been recently applied in prior work in query optimization [74] (which, different from Balsa’s
updates, resets and retrains the value network across iterations) , theorem proving [93], and
compute schedule optimization [1].

On-policy learning. Balsa employs a novel optimization on top of the algorithm above by
using on-policy learning. Updates to Vreal are performed only on the data points generated
by the current Vreal. In other words, SGD is performed on data points (q, p, ) sampled from
the most recent iteration of the dataset, Dreal, but not from its entirety. The latter would

5Predictions naturally change from the scales of costs to latencies through fine-tuning.
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yield data from many iterations ago and is hence off-policy. Label correction still utilizes the
entire dataset.

Intuitively, the most recent data points generally are the most surprising to the agent
and have faster latency labels, so it should be beneficial to focus on them. Indeed, we
find on-policy learning to significantly accelerate learning, by reducing the number of SGD
steps per iteration, and improve the plan variety and performance of Balsa (§5.8.3.4). On-
policy learning makes Balsa’s training more than 9.6× faster when compared to Neo [74], a
prior state-of-the-art method, which employs a full retraining scheme instead (§5.8.4). We
hypothesize that this technique may also improve other applications of value functions that
predict runtimes.

5.4.2 Plan Search

With the learned value network, Balsa uses a simple (best-first) beam search to produce
execution plans for a given query.

Beam search operates on search states, each a set of partial plans for the query. The
search starts with a root state that contains all tables (scans) in the query. A beam of size
b stores search states to be expanded, sorted by their predicted latencies.6 At each step, the
best search state is popped from the beam, and all available actions are applied to produce
children states. Each action joins two eligible plans in the current state with a physical join
operator assigned, as well as assigning scan operators if either side is a table. As a search
state is a set of partial plans (joined relations and non-joined tables), applying actions to it
will lead to at least one complete plan.

Then, all resulting children states are scored by the value network Vreal and added to the
beam, which keeps the top b states only. In this way, the learned value network guides the
search to focus on the more promising regions of the plan space. Beam search terminates
when k complete plans are found. Balsa uses b = 20 and k = 10.

Top-k plans and exploration. Beam search is not guaranteed to return globally optimal
plans, and better plans may be found later in the search. We thus continue searching until
k complete plans are found. At test time, the best plan out of this list is emitted.

Interestingly, at training time, obtaining a list of plans enables a simple exploration
technique on top. We treat all of these plans as having reasonable optimality—so that it
should be safe to explore among them—and prioritize choosing the unseen plans as beam
search outputs. This technique is discussed in §5.5.

6Vreal takes a (query, plan) as input, while a search state is a set of partial plans for the same query. To
score the latter, we define V (state) ≡ maxplan∈state V (query, plan). Intuitively, it reflects that a state’s latency
is at least the maximum overall latency a subplan is predicted to take.
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5.4.3 Safe Execution via Timeouts

A unique challenge in query optimization is the proliferation of expensive plans in a vast
search space, even when fast plans exist. When Balsa learns by trial and error from real
executions, it can encounter long-running plans with unacceptably high latencies.

Balsa addresses this challenge by applying timeouts, a classical idea in distributed sys-
tems. Since training proceeds in iterations, earlier execution runtimes of the same training
workload are known and can be used to bound future iterations.

Key to this mechanism is how to pick the initial timeout. Fortunately, simulation learning
allows us to assume that when the real execution starts, the first ever plans produced for a
set of training queries have reasonable (albeit suboptimal) latencies.

Timeout policy. During iteration 0’s execute phase (just after simulation learning), the
plans are allowed to finish execution in their entirety—simulation learning is assumed to
yield a non-disastrous starting point. Let the maximum per-query runtime recorded be T .

For iteration i > 0, a timeout of S × T is applied for all agent-produced plans, where S
is a “slack factor”. By definition of T , for any training query there exists a plan that can
finish execution in time T . The slack’s purpose is to give some extra room and account for
runtime variance (Balsa uses S = 2).

If a plan has been executing longer than the current timeout, it is terminated early, since
it would be slower than earlier found plans for the same query anyway. It gets assigned a
large label7 instead of its true, unknown latency. Such large labels serve to discourage and
steer the agent away from similar plans in future iterations.

Timeouts are progressively tightened. If an iteration finishes with a maximum per-query
runtime T ′ < T , then the next iteration’s timeout is tightened to S × T ′. This progression
ensures that the timeout is neither too small, which prevents progress, nor too large, which
wastes efforts. It generates an implicit learning curriculum for the agent with just-about-
right difficulties.

In sum, we found the timeout mechanism to significantly accelerate learning. It bounds
the runtime of each iteration’s execute phase and eliminates unexpected stalls, thereby
achieving safe execution.

5.5 Safe Exploration in Real Execution

While an RL agent exploits its past experience for good performance, it must also explore
new experience to escape local minima. To achieve this, an exploration strategy can be used.

7We use 4096 seconds throughout. It can also be set as some multiple of iteration 0’s maximum per-query
runtime.



CHAPTER 5. BALSA: LEARNING TO OPTIMIZE QUERIES 84

predicted
latency

exec. count

top-k plans ?

10s

4

?

11s

2

?

12s

0

iter i+1iter i

?

5s

1

?

9.5s

4

?

10s

2
plan to 

execute 

Figure 5.3: Safe exploration. For a training query, Balsa prioritizes running the unseen plans
of the top-k plans from tree search (exploration). If all seen, the predicted-best plan is chosen
(exploitation).

However, the abundance of slow plans, a unique characteristic of query optimization, ad-
ditionally requires safe exploration, i.e., disastrous plans be avoided. Random plans sampled
from the search space are slow [64], and choosing to explore them would again stall learning.
In our early experiments, a basic ε-greedy strategy (for each training query, with a small ε
probability a random plan is sampled, a la QuickPick [133]) often selected inferior plans that
led to timeouts, slowing down the discovery of better plans and learning.

To achieve safe exploration, Balsa proposes a simple count-based exploration technique.
In essence, this family of methods encourages an agent to explore a less-visited state or
execute a less-chosen action. We instantiate this principle in the following way.

Count-based exploration for beam search. Our goal is to provide a “trust region”
of reasonable plans for the agent to explore. To do so, beam search is asked to return
top-k plans, sorted by ascending predicted latencies, rather than the single best plan found.
Instead of executing the best plan (i.e., with the lowest predicted latency), we execute the best
unseen plan of this list. If all top-k plans have been previously executed—indicating sufficient
exploration—Balsa resorts to exploitation by executing the predicted-cheapest plan. The
visit counts of plans are cached by a hash table, which adds low overheads, as past executions
are already stored in Dreal. Figure 5.3 illustrates this technique using example statistics
(k = 3).

Intuitively, all of the top-k plans are probably good (since they are produced by value
network-guided beam search), so they should not be chosen strictly by their predicted laten-
cies (which are imperfect estimates). Therefore, executing novel, unseen plans in this “trust
region” is both safe and exploratory.

5.6 Diversified Experiences

For learned query optimizers, robustly optimizing unseen queries is essential. To further
enhance Balsa’s generalization performance, we introduce a simple method, diversified expe-
riences.
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Figure 5.4: Diversified experiences. A more robust agent is produced by retraining on the expe-
riences collected from different agents.

Problem: mode diversity. As a value network is used to guide plan search, an agent
tends to only experience plans preferred by its value network, and may gradually converge
to plans with similar characteristics, or a “mode”. For example, if hash and loop joins are
equally effective for a workload, an agent may learn to heavily use hash joins, while another
may prefer loop joins. Either agent can output good plans, as both operators are effective,
but they may lack the knowledge about plans that prefer alternative operators or shapes.
(While exploration increases plan variety, the new plans are still relatively confined to a
single agent’s mode.) Low mode diversity can hinder an agent’s generalization to highly
distinct, unseen queries that require unfamiliar modes to be optimized well.

Diversified experiences. To enhance generalization, we propose simply merging the ex-
periences (Dreal) collected by several independently trained agents (with different random
seeds), and retraining a new agent on top without any real execution. Figure 5.4 illustrates
this process. Our insight is that this diversified experience covers multiple modes. Thus,
training on it produces a more robust value network that generalizes better.

Table 5.1: Diversifying experiences: number of data collection agents vs. number of unique plans
after merging. Agents have highly diverse experiences. Trained on 113 JOB queries (details in
§5.8.1).

Num. Agents 1 4 8

Num. Unique Plans 27K (1×) 102K (3.8×) 197K (7.3×)

Table 5.1 confirms this insight: the number of unique plans grows almost linearly as the
number of agents, showing that the plans experienced by different agents are indeed highly
diverse. We find this simple method effective (§5.8.5), offering a way to trade more compute,
when available, for better performance.
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Figure 5.5: Pipelining agent planning and remote query execution.

5.7 Implementation

In this section we describe Balsa’s detailed training setup. At a high level, to operate Balsa
on a new engine it needs the following:

• An execution environment (executes plans; support for timeouts).

• Definition of the search space (the set of query operators and the rules to compose them).

Optimizations. We optimize training by parallel data collection, plan caching, and pipelin-
ing. Query executions are dispatched to a pool of identical virtual machines each running
an instance of the target database, using Ray [79]. Each VM runs one query at a time to
prevent interference. A plan cache is used so that reissued plans have their prior runtimes
quickly looked up and can skip re-execution. Planning and remote query execution in each
iteration are pipelined (Figure 5.5): as soon as tree search (run by the main agent thread)
finishes planning a training query, the output plan is sent for remote execution, and then
planning for the next query starts. The two stages thus overlap. The agent waits for all
plans to finish before performing value network updates.

Value network details. The value networks, Vsim and Vreal, are implemented as simple
tree convolution networks [74] (0.7M parameters, or 2.9MB). We also experimented with
implementing them using a Transformer [128] early on; this was found to be similarly effective
but had higher computational costs. When training or updating the value networks, we
sample 10% of experience data as a validation set for early stopping. The inputs to the
value network, query and plan, are encoded as follows. Each plan has the same encoding as
Neo [74]. A query is featurized as a vector [table→ selectivity] where each slot corresponds to
a table and holds its estimated selectivity (§5.3.3). Absent tables’ slots are filled with zeros.
This encoding is simpler than both Neo and DQ [60].

5.8 Evaluation

We conduct an in-depth evaluation of Balsa. Our key findings are:
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• Learning by trial and error, Balsa generates better execution plans that run up to 2.1–
2.8× faster in workload runtime than two expert optimizers, PostgreSQL and “CommDB”8

(§5.8.2).

• Balsa takes a few hours to surpass the experts and a few more hours to reach peak
performance on the tested workloads (§5.8.2).

• Balsa outperforms learning from expert demonstrations [74], a prior state-of-the-art ap-
proach, despite not learning from an expert optimizer (§5.8.4). We also identify poor
generalization as a potential failure mode in this prior method.

• Diversified experiences significantly enhance generalization, including to queries with highly
distinct join templates (§5.8.5).

• Balsa learns novel preferences of operators and plan shapes (§5.8.6).

Additionally, we conduct detailed ablation studies to understand the effect of Balsa’s design
choices in §5.8.3.

5.8.1 Experimental Setup

We use the following workloads, in each of which Balsa is trained on a set of training queries
and tested on a set of unseen queries:

Join Order Benchmark (JOB) contains 113 analytical queries designed by Leis et
al. [64] to stress test query optimizers over a real-world dataset from the Internet Movie
Database. The queries involve complex joins and predicates, ranging from 3-16 joins, aver-
aging 8 joins per query. We benchmark against two train-test splits, each with 94 training
and 19 test queries:

• Random Split (denoted as “JOB”): a randomly sampled split.

• Slow Split (denoted as “JOB Slow”): the test set consists of the 19 slowest-running queries
when planned by an expert optimizer.

Random Split tests an average situation, while Slow Split evaluates when the test queries
run maximally slower than the train queries.

8A leading commercial DBMS. We anonymize its name due to its licensing terms [99].
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TPC-H is a standard analytical benchmark where data and queries are generated from
uniform distributions. We use a scale factor of 10. We use 70 queries for training and 10
queries as the test set.9

Expert baselines and engines. We compare with the optimizers of two mature ex-
pert systems: PostgreSQL (12.5; open-source) and CommDB (a leading commercial DBMS;
anonymized [99]). For each expert, we compare Balsa’s plans with its optimizer’s plans
executed on that same engine. Balsa’s plans are injected by hints [92].

We use Microsoft Azure VMs with 8 cores, 64GB RAM, and SSDs. Training is done
on a NVIDIA Tesla M60 GPU. We configure PostgreSQL with 32GB shared buffers and
cache size, 4GB work memory, and GEQO disabled—settings similar to Leis et al. [64]. We
optimize CommDB extensively by following its tuning guides.

Balsa is trained for 500 iterations on the JOB workloads and 100 iterations on TPC-H
due to its smaller search space. Balsa uses all components and default values discussed in
prior sections.

Expert performance.10 We follow the guidance in Leis et al. [64] to create all primary
and foreign key indexes to make our baselines run JOB much faster than that of prior
work [74, 122]. This also makes the search space more complex and challenging.

Metrics. We repeat each experiment 8 times and report the median metric, unless spec-
ified otherwise. In train/test curves, we show the entire min/max ranges in shaded areas.
Workload runtime is defined as the sum of per-query latencies. When reporting normalized
runtimes, they are calculated with respect to the expert’s runtimes.

5.8.2 Balsa Performance

We begin with end-to-end results, answering the following:

• What is the performance of Balsa on training and test queries?

• How many hours (and executions) does Balsa need to surpass expert performance and
reach its peak performance, respectively?

9For TPC-H, we use templates 3, 5, 7, 8, 12, 13, 14 for training and template 10 for testing, with 10
queries generated per template. We avoid the templates with advanced SQL features (views, sub-queries)
due to a limitation in the pg hint plan extension.

10PostgreSQL runtimes (train/test): JOB 115s/24s; JOB Slow 44s/98s, TPC-H 452s/49s. We do not
disable nested loop joins as suggested by Leis et al., because with indexes created, this change actually made
the expert run JOB 60% slower.
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Figure 5.6: Balsa’s performance on PostgreSQL (left) and CommDB (right): workload speedups
achieved by Balsa plans over plans from the respective expert optimizer. Each bar is the median
of 8 runs.

Table 5.2: Simulation learning efficiency: sizes of simulation datasets, time to collect data (in
minutes), and time to train. Train times differ due to early stopping. Means ± standard deviations
are shown.

Workload Size Collection time (min.) Train time (min.)

JOB 516K 6.8± 0.1 24± 8
JOB Slow 551K 7.6± 0.1 28± 10
TPC-H 12K 1.1± 0.01 1.0± 0.2

Performance. Figure 5.6 summarizes Balsa’s overall performance. On all workloads,
Balsa is able to start from a minimal cost model and learn to surpass the expert optimizers
by a sizable margin.

On PostgreSQL, Balsa achieves a 2.1× training-set speedup on JOB, 1.3× on JOB Slow,
and 1.1× on TPC-H. While speedups on test sets slightly trail behind the training set
speedups, Balsa can still produce faster execution plans than the expert (e.g., 1.7× faster
on JOB). This shows that Balsa can generalize to unseen queries.

Balsa also outperforms CommDB’s optimizer. The speedups are higher—1.1–2.8× for
train and 1.0–1.9× for test sets—because CommDB allows a much smaller search space
than PostgreSQL by not exposing bushy hints. (We estimate it to be 1000× smaller for
an average-sized JOB query, counting plan shapes and operators.) Balsa thus explores the
smaller search space more comprehensively.

Runtime of simulation learning. Table 5.2 shows simulation is data-rich and takes
dozens of minutes. As it is a small fraction of real execution learning’s duration, we focus
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Figure 5.7: Learning efficiency of Balsa. Normalized runtime of training queries (log scale) vs.
(a) elapsed time and (b) number of executed plans.

on the latter next.

Learning efficiency. Figure 5.7 shows the training performance of Balsa as a function of
elapsed time and the number of distinct query plans executed. (The latter is called data/sam-
ple efficiency in RL terms, as each execution is an interaction with the environment.)

Wall-clock efficiency. Figure 5.7a shows Balsa’s wall-clock efficiency during the real
execution stage. Balsa starts off several times slower than the experts—this is the perfor-
mance after bootstrapping from a simple simulator. With just a few hours of learning, Balsa
matches the experts’ performance (on PostgreSQL: 1.4 hours for JOB, 2.5 hours for JOB
Slow, 1.5 hours for TPC-H; ∼0.5 hours faster on CommDB due to its smaller search space).
Balsa continues to improve and reaches its peak performance after around 4–5 hours. TPC-H
has less room for optimization—it has much fewer joins—so Balsa converges faster.

Data efficiency. Figure 5.7b shows data efficiency curves. It takes a few thousand exe-
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Figure 5.8: Wall-clock efficiency, non-parallel training mode.
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Figure 5.9: Breakdown of Balsa’s per-query speedups. Speedup of each query (log scale) vs.
PostgreSQL expert runtime (log scale).

cutions to reach the experts’ performance (on PostgreSQL: 3.2K for JOB, 7.4K for JOB Slow,
0.7K for TPC-H; on CommDB, ∼60% fewer plans are needed). The number of query plans
required is higher for workloads where the agent starts with slower performance. Therefore,
experiencing more plans helps Balsa improve performance by a greater amount.

Non-parallel training wall-clock. Throughout our evaluation, including the discus-
sions above and Figure 5.7, we configure Balsa to use a few query execution nodes per
run (average: 2.5 nodes/run) to speed up training. For completeness, Figure 5.8 shows
non-parallel training times where each run uses one execution node. In all cases, peak per-
formance is reached within single-digit hours, a comfortable “nightly maintenance” range.
The time to match the experts is at most 3 hours slower than that for the parallel mode.

Sources of speedup. Figure 5.9 shows Balsa’s per-query speedups over PostgreSQL plans.
For JOB, Balsa produces better query plans for most queries in both training and testing.
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Notably, Balsa considerably speeds up the slowest queries. Slowdowns mostly occur in the
queries that are inherently fast to execute, and hence minimally affect the overall runtime.
A similar trend holds for TPC-H.

Summary. Balsa can bootstrap from a minimal cost model and learn to surpass both an
open-source and a commercial expert optimizer. Balsa is efficient to train, needing a few
hours to match the experts and thousands of plans to reach its peak performance.

5.8.3 Analysis of Design Choices

Next, we analyze the design choices of each major component in Balsa: (1) the initial
simulator, (2) the timeout mechanism, (3) exploration strategies, (4) the training scheme,
and (5) beam search. In summary, we found all components to positively contribute to
Balsa’s performance and generalization.

In each experiment, we change one component at a time and hold all other configurations
fixed at default values. We then measure each variant’s performance on the JOB (random
split) workload on PostgreSQL. Default choices are highlighted in bold in each figure.

5.8.3.1 Impact of the initial simulator

Balsa bootstraps from a minimal simulator. We can consider two alternatives that differ the
most from this choice in terms of the amount of prior knowledge:

• Expert Simulator: the cost model from an expert optimizer, PostgreSQL, which has
sophisticated modeling of all physical operators and captures the nuances of its execution
engine. (Note that this variant means Balsa uses this cost model as the simulator; it does
not represent PostgreSQL’s own plans.)

• Balsa Simulator (§5.3; Cout): a minimal cost model that sums up the estimated result
sizes of all operators. It has no knowledge about physical operators or the execution
engine.

• No simulator: skip bootstrapping altogether and initialize the agent from random
weights.

Figure 5.10 shows the simulator’s impact. We make four observations:

First, simulators with more prior knowledge shorten the time to reach expert performance
on training queries (Figure 5.10a). Balsa with an expert simulator needs only ∼0.3 hours of
learning to match the expert. Balsa’s default simple simulator takes ∼1.4 hours to match,
while agents without simulation learning take ∼3.8 hours.
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Figure 5.10: Impact of the initial simulator. (a) Better simulators accelerate learning. (b)
Simulation is essential for generalization.

Second, more prior knowledge also leads to slightly better final performance at the end
of training (Figure 5.10a). The gap, however, is relatively small. Agents using a minimal
simulator mostly catch up with those using an expert simulator.

Third, it is a pleasant surprise that the agents without simulation (“No sim”) can finish
training. This is enabled by the use of timeouts and safe exploration, which keep the bulk
of the learning safe.

Fourth, simulation is essential for generalization. Agents without simulation learning
can fail at test time (note the high variance of “No sim” in Figure 5.10b). The unstable
performance on test queries occurs despite good training performance, rendering this choice
impractical. The instability is caused by randomly initialized agents overfitting the experi-
ence collected during the real execution phase, which is limited in quantity (∼700 subplans
per iteration, so it takes at least ∼700 iterations to catch up to the 0.5M-plan simulation
dataset, assuming each iteration’s data is unique).

In summary, bootstrapping from a minimal simulator gives good train and test time
performance. Since new execution engines may not have an expert-developed cost model,
this approach has the additional benefit of potentially generalizing to new systems and
alleviating the human development cost.

5.8.3.2 Impact of the timeout mechanism

We study the impact of timeouts (§5.4.3), a mechanism critical for real execution learning:

• Timeout: early-terminate query plans that have been executing for longer than the cur-
rent iteration’s timeout.
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Figure 5.11: Impact of the timeout mechanism. (a) Timeouts accelerate learning and prevent
spikes. (b) With the same wall-clock time, agents with timeouts execute more plans, improving
plan variety.

• No timeout: the mechanism is turned off.

With timeouts, agents are expected to save wall-clock time on unpromising plans and po-
tentially learn faster.

Results are presented in Figure 5.11. Timeout agents reach expert performance about
35% faster than no-timeout agents (Figure 5.11a). While both choices lead to similar final
performance, there is a pronounced difference in the initial phase of learning. Agents without
timeouts may execute expensive query plans, leading to significant spikes. Such regressions
are unpredictable: they can happen after the no-timeout agents reaching expert performance.

In contrast, agents achieve safe execution when timeout is enabled. The early-terminated
plans “nudge” the agents in a different direction to look for more promising plans. Fig-
ure 5.11b shows how the saved time is more judiciously spent: with the same wall-clock
time, agents with timeouts run more plans, speeding up learning.

Overall, these results show that the timeout mechanism accelerates learning and improves
Balsa’s plan variety.

5.8.3.3 Impact of exploration

Exploration exposes RL agents to diverse states, boosting performance and generalization.
We compare:

• Count-based exploration (§5.5): Balsa’s safe exploration method, which chooses the
best unseen plan from beam search outputs.
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Figure 5.12: Impact of exploration. Balsa’s count-based safe exploration improves generalization
to unseen test queries.

• ε-greedy beam search: at each step of the search, with a small probability ε the beam
is “collapsed” into one state, discarding the rest. The search continues as usual. We chose
ε such that about 10% of training queries have random joins injected.

• No exploration: no exploration algorithms are used.

Figure 5.12a shows that agents with count-based safe exploration generalize to test queries
much better than the other two variants. The better generalization is a result of the higher
number of distinct plans experienced (Figure 5.12b). Training performance is omitted for
space reasons, where count-based is around 8% and 14% faster than no-exploration and
ε-greedy beam at convergence, respectively.

Interestingly, although ε-greedy beam search has similar plan diversity to count-based, it
is less stable. This is because it contains random joins, which may only lead to low-quality
complete plans even when a value network is used to guide the remaining search.

In summary, these results show that safe exploration is non-trivial, and Balsa’s count-
based method is both simple and effective.

5.8.3.4 Impact of the training scheme

We compare Balsa’s on-policy learning to a full retrain scheme used by prior work, Neo [74]:

• On-policy learning (§5.4.1): Balsa’s training scheme which uses the latest iteration’s
data to update Vreal.

• Retrain: re-initialize Vreal and retrain on the entire experience (Dreal) at every iteration.
Last iteration’s Vreal is discarded.
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Figure 5.13: Impact of the training scheme. (a) On-policy learning accelerates training. (b) Time
saved is used towards more exploration.
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Figure 5.14: Impact of search parameters on planning time and performance on JOB test set.
Means and standard deviations are shown.

On-policy learning significantly accelerates training, reaching the expert’s performance
2.1× faster than retrain agents (Figure 5.13a). Its lead is consistent throughout training.
The faster learning is due to on-policy saving time by updating Vreal on a constant-size
dataset, rather than retraining it on an increasingly larger dataset. The time saved is used
towards exploration, i.e., executing more unique plans (Figure 5.13b). Better exploration
thus further accelerates learning. On-policy has slightly higher variance due to performing
SGD on much less data. However, the slowest on-policy agent (the upper edge of the shading)
is still mostly faster than retrain agents.
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Figure 5.15: Comparison with learning from expert demonstrations.

5.8.3.5 Impact of planning time

Balsa performs beam search with beam size b using the value network to generate k complete
query plans, and then picks the best plan to execute (during training, the best unexplored
plan is picked). Figure 5.14 studies Balsa’s planning time and performance of the JOB test
queries using various combinations of b and k on a trained checkpoint.

For all settings, the mean per-query planning time is below 250ms. The planner is
implemented in Python and thus leaves room for optimization. Using b = 1 (where beam
search degenerates into greedy search) slightly hurts performance; all other settings produce
plans with similar runtime. Hence, Balsa’s performance is insensitive to these parameters,
and we can flexibly reduce planning time for deployment by using lower values (e.g., b =
5, k = 1 speeds up planning time by 2× with no performance drop). We use b = 20, k = 10
during training as larger values can help exploration.

5.8.4 Comparison with Learning from Expert Demonstrations

We compare Balsa with Neo [74], a recently proposed learned optimizer that relies on
PostgreSQL-generated plans—i.e., learning from expert demonstrations. This experiment
uses the same setup as §5.8.3 (JOB workload on PostgreSQL). As Neo is not open source, we
implement our best-effort reproduction, denoted as “Neo-impl”. We make both approaches
use identical modeling choices (e.g., architecture, featurizations, beam search), and turn
off Balsa’s algorithmic components for Neo-impl (bootstrapping from simulation; on-policy
learning; exploration; timeout mechanism). One notable difference is that Neo completely
resets its model to random weights in each iteration and retrains it on the entire collected
experience.

Figure 5.15a shows training performance. At initialization, Balsa is 5× faster than Neo-



CHAPTER 5. BALSA: LEARNING TO OPTIMIZE QUERIES 98

impl, since simulation learning provides a high state coverage (Table 5.2) as opposed to
a limited number of expert demonstrations (one complete plan per query). Balsa remains
stable throughout training, as it employs timeouts. Neo-impl experiences performance spikes
(note the variance) as it has no mechanism to deal with disastrous plans. These regressions
are unpredictable and can occur after hours of training. In terms of training efficiency, Neo-
impl’s retraining scheme makes it progress increasingly slower as the amount of experience
accumulates. Neo-impl spent about 25 hours to finish 100 iterations, whereas Balsa only
spent 2.6 hours.

Surprisingly, despite reaching a relatively stable training performance with 5 hours of
learning, Neo-impl is still not robust enough to generalize to unseen test queries and suffers
from high variance (Figure 5.15b). Its median workload runtime fluctuates between 1–5×
slower than the expert and its maximum is up to 10× worse. This failure mode may prohibit
this approach from producing reliable models for practical deployment.

In contrast, Balsa is much more robust. Balsa consistently generates faster plans than the
expert for unseen queries, with a 2× maximum speedup. Balsa’s better generalization is due
to a broader state coverage offered by simulation, on-policy learning, and safe exploration
(see Figures 5.12 and 5.13).

In sum, Balsa learns faster, achieves safe execution, generalizes better due to simulation
and better exploration, while refuting the previously held belief that expert demonstrations
are needed [74].

5.8.4.1 Comparison with Bao

Bao [73] is a related approach that assumes an expert optimizer is available. Like Neo, it
requires expert demonstrations to train its model. Bao learns to provide a set of hints (e.g.,
disable hash join) for each query, “steering” the expert optimizer to produce better plans.
This is different from Balsa which learns to produce physical plans by itself. Nevertheless,
we compare the performance of the query plans generated by Balsa with those by Bao on
top of PostgreSQL.

We substantially optimize the Bao source code [6] as follows. First, we turn on an
optimization that bootstraps its model from PostgreSQL’s expert plans, rather than from
a random state. Second, its paper specifies that it trains on the most recent k = 2000
experiences, which we found led to highly unstable performance. We thus train Bao on all
past experiences, stabilizing convergence.

Table 5.3 shows that Balsa generally matches or outperforms Bao. These results are not
surprising: they confirm the finding in the Bao paper that a learned optimizer with higher
degrees of freedom (action space) can outperform Bao in plan quality on stable workloads.
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Table 5.3: Balsa vs. Bao: speedups with respect to PostgreSQL.

JOB, train JOB, test JOB Slow, train JOB Slow, test

Balsa 2.1× 1.7× 1.3× 1.3×
Bao 1.6× 1.8× 1.2× 1.1×
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Figure 5.16: Enhancing generalization using diversified experiences.

5.8.5 Enhancing Generalization

Figure 5.6 already shows that Balsa can generalize to unseen test queries quite well, out-
performing experts without ever seeing the test queries. Here, we study (i) the benefit of
diversified experiences (§5.6), and (ii) generalizing to entirely distinct join templates/filters.

Diversified experiences. We build diversified experiences for all workloads/engines in
Figure 5.6, by merging the data of each main experiment’s eight agents. We retrain a new
agent on top, referred to as “Balsa-8x”; this process is repeated eight times to control for
training variance. (Training is efficient as no query executions are performed.) Figure 5.16
shows the median performance: we observe that Balsa-8x improves speedups on both training
and test queries in almost all cases, sometimes even by 60–80% (JOB Slow, test).

Improving training speedups is not surprising: a retrained agent can mix-and-match the
best plans found by the base agents. Importantly, test queries see large speedups too without
ever being executed (e.g., on both engines, both JOB splits now have > 2× test speedups).
This is because diversified experiences have highly diverse plans, so more generalizable value
networks can be trained on top.

Queries with entirely new join templates. We further examine Balsa’s generalization
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Figure 5.17: Generalizing to highly distinct join templates: test performance on Ext-JOB, with
JOB as the training set. On PostgreSQL.

to difficult unseen queries. First, we split JOB using 4 slowest templates (17, 16, 6, 19) as
the test set (20 queries) and the rest as the train set. On this new split, Balsa achieves good
train and test speedups (1.4×, 1.5×), further confirming its robustness.

Second, we evaluate on Extended JOB (Ext-JOB), a hard generalization workload [74].
It has 24 new queries on the same IMDb dataset, having 2–10 joins and averaging 5 joins per
query. These queries are challenging and “out-of-distribution” since they contain entirely
different join templates and predicates from the original JOB.

Figure 5.17a shows the test performance of Neo-Impl and Balsa on Ext-JOB with the
entire 113 JOB queries as the training set. While Balsa is more stable than Neo-impl, neither
surpasses the expert on the Ext-JOB test set (although they come close). This confirms that
Ext-JOB is a highly challenging generalization workload.

Next, we compare Balsa-8x as described above, with Balsa-1x that retrains on only one
agent’s data. Surprisingly, in iteration 0, Balsa-8x already matches the expert on the test
set (Figure 5.17b). We then allow these agents to learn for 50 more iterations on the training
set. Throughout the process, the agents never train on the Ext-JOB test queries. Balsa-8x
reaches significantly better test set performance on Ext-JOB (20% faster than the expert)
than Balsa-1x (which still fails to match the expert). The gain is also consistent. These
results show that diversified experiences and further exploration are valuable strategies to
improve generalization to out-of-distribution queries.

5.8.6 Behaviors Learned by Balsa

To gain intuition on the behaviors learned by Balsa, we visualize the operator and shape
compositions of agent-produced plans over the course of training. Results are shown in
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Figure 5.18: Balsa’s use of join operators (dark blue) and plan shapes (light blue) on JOB. Dashed
lines are counts from PostgreSQL plans.

Figure 5.18.

In early stages of training, Balsa quickly learns to reduce the use of operators and shapes
that incur high runtimes in the current environment. For example, after 25 iterations, the
use of merge joins is kept below 10%. Meanwhile, Balsa starts to prefer more efficient choices.
Nested loop joins are preferred since a large portion (85% across iterations) are the efficient
indexed variant.

Balsa’s preference is novel when compared to the expert, a difference especially pro-
nounced in the plan shapes. This is due to the expert optimizer being one-size-fits-all, while
Balsa learns to tailor to the given workload and hardware.

5.9 Related Work

Learned query optimizers. Balsa is most related to DQ [60] and Neo [74]. DQ offers
the insight that the classical components of query optimization—cost estimation and plan
enumeration—can be cast as long-term value estimation and planning. All three work follow
this formulation by using a learned value network and plan search. Balsa also adopts DQ’s
use of batched data collection on top of a cost model in our simulation learning. Unlike DQ,
Balsa demonstrates fine-tuning entire workloads in real execution.

Neo requires learning from expert demonstrations (PostgreSQL plans) followed by fine-
tuning. In contrast, Balsa does not learn from an expert optimizer. Lifting this restrictive
assumption opens the possibility to automatically learn to optimize in future environments.
Balsa differs in three more aspects with important consequences. (i) Learning from a sim-
ulator fundamentally differs from expert demonstrations. While the latter are inherently
limited in quantity and variety (one expert plan per query), simulation allows us to extract
a maximal amount of experience, boosting generalization. (ii) Balsa addresses the challenge
of disastrous and slow plans. (iii) Balsa introduces novel techniques (e.g., on-policy learning,
timeout as a learning curriculum, safe exploration, diversified experiences), all of which lead
to higher efficiency, performance, or robustness. In §5.8.4, we showed that Balsa outperforms
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the approach of learning from expert demonstrations and is more robust on unseen queries,
despite not learning from an expert optimizer.

SkinnerDB [122] is an execution algorithm that learns by trying many left-deep join
orders during a query’s execution. Both Balsa and SkinnerDB use timeouts to mitigate bad
plans but propose substantially different timeout policies. While SkinnerDB must iterate
over a set of pre-defined timeouts unrelated to prior executions, Balsa directly uses past
plans’ latencies as timeouts. Balsa also offers more general capabilities, as it can build bushy
plans and assign physical operators, both of which are not supported in SkinnerDB.

Optimizer assistants. Many recent proposals use ML to assist or improve existing opti-
mizers. Since Leis et al. [64] showed that inaccurate cardinality estimates are most respon-
sible for poor plans, many projects have used ML to improve cardinality estimation [135,
136, 56, 26, 44, 142, 143, 110, 119], thus helping today’s optimizers find better plans. The
recent work Bao [73] also assists expert optimizers by learning what optimizer flags to set
for each query. Different from this line of work, Balsa does not assist an existing optimizer,
and tackles learning to optimize precisely assuming no expert optimizers.

Sim-to-real, timeouts, and caching. These are general techniques applicable to a range
of systems problems. Hilprecht et al. [43] have proposed using sim-to-real to learn high-
quality data partitionings and applying timeouts and caching to optimize training. Balsa
applies these methods in learned query optimization instead and offers the novel finding that
simulation learning improves generalization.

5.10 Lessons Learned and Discussions

During the development of Balsa, we have learned a few lessons. We discuss them below.

Simulation learning boosts generalization. To our surprise, while Balsa generalizes
well to unseen queries, we find that agents without a simulation phase—including those that
learn from expert demonstrations—become unstable on new queries (§5.8.3.1, §5.8.4). At
first glance, it might be counterintuitive why simulation improves generalization. After all,
the simulator we use is a minimal, logical-only cost model that is agnostic to the execution
environment. It imparts inaccurate knowledge to the agent that must be corrected.

We believe the reason is the simulation enables Balsa to achieve a high coverage of the
plan space. During bootstrapping, Balsa trains on thousands of plans per query (Table 5.2),
much more than the experiences collected in real execution. Then, in real execution, a
bootstrapped agent can update its belief to simultaneously correct much of the simulated
knowledge, which can improve generalization. In contrast, agents that learn only from real
executions will only see a small set of query plans, which can lead to overfitting.
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Using inaccurate cardinality estimates. In traditional optimizers, cardinality esti-
mates are known to be highly inaccurate [64], which can lead to poor plans. In Balsa,
however, we find an effective use of inaccurate estimates: use them in the simulator. We
find that inaccurate estimates can still provide effective simulation.11 Importantly, Balsa’s
performance is not overly tied to the simulator—most learning occurs after simulation, when
Balsa uses real execution to vastly improve over the simulated knowledge (e.g., initial vs.
final performance have a 4–40× gap in Figure 5.7). Consistent with prior work [64], we
expect better estimates to lead to a better simulator, which would accelerate learning (e.g.,
“Expert Sim” in Figure 5.10).

How to better leverage an expert optimizer, if available? For learning to optimize
in a new system, even if a compatible expert optimizer (i.e., all operators of the expert are
supported by the target engine) exists, prior state-of-the-art [74] proposes bootstrapping
only from the expert optimizer’s plans. We show that this can lead to poor generalization
due to the limited amount of demonstrations (§5.8.4). In contrast, Balsa can better leverage
the expert by bootstrapping from the expert optimizer’s cost model—a data-rich simulator
(see the “Expert Sim” Balsa variant in Figure 5.10). We show that bootstrapping from a
cost model significantly improves generalization to new queries (§5.8.3.1), which is a novel
finding of this chapter.

5.11 Summary

To our knowledge, Balsa is the first approach to show that learning an optimizer without
expert demonstrations is both possible and efficient. Balsa learns by iteratively planning
a given set of queries, executing them, and learning from their latencies to build better
execution plans in the future. To make learning practical, Balsa must avoid disastrous plans
that can dramatically hinder learning. We address this key challenge with three simple
techniques: bootstrapping from a simulator, safe execution, and safe exploration.

Balsa paves the road towards automatically learning a query optimizer tailored to a
workload and a compute environment. New data systems may have execution models [91]
or objectives [83] that go beyond our knowledge of query optimization. By learning on its
own and not learning from an expert system, Balsa may alleviate the significant optimizer
development cost for systems yet to be developed.

11We use PostgreSQL’s estimates, which have∼100×median errors and up to 106× tail errors on JOB [64].
We tried making them even more inaccurate, by dividing them by random noises (a median noise factor of
5×), and saw little impact on Balsa’s plans.
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Chapter 6

Conclusion

This dissertation has demonstrated the promise of using modern machine learning to tame
the complexity of query optimization. We have shown that ML advances, when enhanced
with new systems and ML techniques, can be used to achieve previously unattainable goals:

• Removing decades-old, accuracy-impacting heuristics in cardinality estimation, thereby
significantly improving its accuracy compared to prior state of the art;

• Automatically learning to optimize queries by trial-and-error and without expert su-
pervision, to a level that matches or outperforms mature real-world optimizers.

In the context of data systems, the first direction improves query optimizers, while the second
opens the possibility of alleviating the complex optimization in future environments and
engines. More generally, our results on machine learning for query optimization—a complex
yet critical component in data systems—add a compelling proof point to the nascent field of
applying machine learning to solve computer systems problems (“ML for Systems”).

We conclude this dissertation by reflecting on lessons learned and sketching some potential
areas for future work.

6.1 Lessons Learned

When and how should we apply ML to systems problems? While ML has achieved
remarkable successes in many domains in the past ten years (§2.2), ML for systems is a
nascent area. Here, we reflect on the question: why is ML effective for the long-standing
data systems challenges studied in this dissertation? We offer two points in the hope of
forming some amount of guidance for related ML-for-systems problems in the future.

First, the problem nature and the ML method should “fit”. In Chapter 1, we discussed
that one reason ML is a promising tool for us is its rapid progress in the past ten years,
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mostly in the form of deep learning. However, the more important contributor to its ef-
fectiveness, as we have learned, is to ensure the problem is essentially an ML problem or
the problem’s nature calls for ML. For example, cardinality estimation has long relied on
statistical data summaries, and deep autoregressive modeling is one such new tool that is
more powerful than prior methods. In addition, in optimizing queries we inherently would
like to pick intermediate subplans to maximize the long-term goodness of the final plan, the
true metric, rather than the current practice of picking them according to their immediate
short-term costs, a proxy metric. Optimizing for the long-term goodness is the central goal
in reinforcement learning, making RL a suitable tool. Thus, one lesson we have learned in
this work is to apply ML to systems problems where there is a natural fit.

Second, directly applying a new ML method is often not enough, and new techniques to
adapt or enhance it are often required. This has been a recurring theme in this dissertation.
In Naru, for example, we developed a new approximate inference algorithm (progressive sam-
pling) and an inference optimization (wildcard skipping) to enhance a deep autoregressive
model to handle estimating the cardinalities of range predicates. Without these enhance-
ments, the estimator would not be usable. In NeuroCard, we built on top of Naru but
had to add systems techniques (join sampling; column factorization) and ML techniques
(inference algorithms for joins) to handle join estimation. In Balsa, we saw that using value
network-guided tree search—a new RL advance—out-of-the-box is insufficient, as it does not
address safety : mitigating extremely slow plans when learning in real execution. We thus
combined it with simulation-to-reality learning (another RL advance), safe execution via a
timeout policy (a classic systems technique that we added), and safe exploration (an ML
technique we proposed in this work) to make learning feasible. These examples suggest that
ML advances alone may not be the panacea: to make the ML part feasible or efficient in
systems problems, expect new techniques to be required.

RL agents that learn on a real system need to be “safe”. An RL agent must make
mistakes to improve, but these mistakes can be highly costly if executions on real systems are
involved. For example, an extremely costly query plan produced by an agent may take too
long to complete, which means the agent will not get a reward signal to improve for a long
time. Meanwhile, the real system busying running the plan may lock up or even increase its
use of hardware resources (e.g., a plan that keeps spilling intermediate buffers to the disk),
further slowing down the learning. In such settings, therefore, enabling fast data collection
(getting a reward signal for agent actions) is a key challenge.

When developing Balsa, we were initially faced with many of these issues, which prompted
us to propose and apply several safety mechanisms (sim-to-real; safe execution via a timeout
policy; safe exploration). These safety techniques are general and not overly specific to Balsa;
thus, we expect they can be applied to and benefit other RL-for-systems problems.

Act vs. search: using RL to search for interpretable and deployable solutions.
While RL commonly involves an agent acting in an environment, we found using RL as an
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intelligent search procedure to be a promising approach in systems problems. Under this
alternative view, we can use RL to search (i.e., optimize) for interpretable solutions, such
as query plans, that can be inspected, modified if desired, and deployed to the downstream
system in a white-box manner. For example, Balsa can be used to search for the best plans
that it can find for a set of high-value queries, by treating those queries as “training” queries
and recording the best plans encountered in training. If the queries are recurring, these
high-quality agent plans can then be deployed and reused. In other words, this alternative
use seeks the optimal outputs of the agent, and less so the trained agent itself.

Using RL as a search procedure has enjoyed successes in other applications. Examples
include searching for the best data structures that perform packet classification in network-
ing [67], the best partitioning layout for a dataset that maximizes the current workload’s
performance [144], or the best hardware layout for designing a computer chip [77]. In these
examples, the RL agent’s outputs are interpretable solutions to the underlying problem or
canonical inputs to the system (i.e., they have the same form as existing hand- or machine-
designed solutions). Deploying such static solutions, rather than the agent itself which
involves neural network computations, also reduces runtime overheads. Thus, this use of RL
may build more trust with systems developers and operators, leading to a promising path
to increasingly adopt RL in systems problems.

Leveraging a powerful neural summary of data. For the first time, deep autoregres-
sive models—combining next-token prediction and a modern neural network architecture—
give us the ability to approximate high-dimensional data distributions with high accuracy.
Naru and NeuroCard, with their new techniques discussed above, successfully transform
these models into powerful neural summaries of tabular data, which can then be used to, for
example, perform cardinality estimation.

Since the summary condenses information, we can extract approximate information out
of it. We thus believe this new capability developed in this work can be leveraged in other
data problems too, especially if an accurate understanding of tables and columns—and their
correlations—is required. For example, ReStore [42] extends Naru to schema-structured
autoregressive models to support data imputation and completion. SAM [139] adapts Neu-
roCard’s modeling and inference ideas to perform synthetic database generation, where the
neural summary is sampled to produce simulated, high-fidelity databases, which can be used
to accelerate the development and testing of data systems. Other possible tasks include using
a neural summary to run approximate query processing or to model non-tabular data [132].

6.2 Future Work

Extensions to Balsa and learning to optimize queries. Here, we sketch several pos-
sible ideas of extensions to Balsa, and, more generally, to the direction of automatically
learning to optimize queries:
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• Pushing the scale. Since Balsa was evaluated in single-machine settings, an inter-
esting next step is to test how far we can push Balsa to work on a larger data scale,
possibly running on a distributed engine. Such an engine may have new operators,
e.g., distributed joins or shuffles, enriching the action space and the complexity of the
learning task. As data size grows and the engine uses more costly operators, bad plans
would be more expensive to run, so Balsa’s safety mechanisms may become even more
important. Another possibility to handle a larger database is to first train on a smaller,
sampled version of the data, which speeds up the execution of agent plans, and then
transfer the trained agent to the full database.

• Using self-supervised cardinality estimators in Balsa. Balsa uses basic cardi-
nality estimates in two places: in query features where estimates represent a query’s
base-table predicates, and in the simulator whose cost model needs estimates as in-
puts.1 It would be interesting to use a self-supervised cardinality estimator—such as
NeuroCard—for these purposes, replacing our current choice of histogram-based esti-
mates from a real system.

This can have two benefits. First, NeuroCard should produce much more accurate
estimates, which would make the simulator more accurate; as we showed in §5.8, better
simulation accelerates learning. Second, more fundamentally, removing the reliance on
estimates produced from a real system would be a major next step towards learning
to optimize queries entirely from scratch.

• Making Balsa more robust. Balsa can be made more robust in two aspects. First,
there is some variance in performance across random seeds (see Figure 5.7 and other
performance curves in §5.8). A certain amount of variance may be unavoidable and
is perhaps even desirable—indeed, variance implies that the agent is sufficiently ex-
ploratory, and differently initialized agents can accumulate diverse experiences, which,
as we showed, can be leveraged. However, it would be important to control or reduce
the worst-case performance across random seeds, which would enable any training run
to produce a reasonably high-quality agent.

The second aspect of robustness is generalization, i.e., how well the agent optimizes
new queries unseen in training. While our ablation studies in §5.8 show that many
mechanisms in Balsa improve generalization, it would be interesting to see how much
we can improve it further: e.g., can the agent optimize any plausible query well?

• Using Balsa for a new engine that has no optimizer or has only a heuristic
optimizer. For new data systems that currently have no optimizer or only have a
heuristic one, it would be interesting to train Balsa on that engine to produce plans,
essentially using it as a learned cost-based optimizer. One question to overcome here, if

1§5.8.3.1 presents evidence that entirely removing the simulation could work, at the cost of slower learning
and higher variance in generalization performance. If these issues were mitigated with new techniques, then
Balsa’s reliance on simulation, and thus the cardinality estimates used there, could be removed.
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the system truly has no optimizer built, is evaluation: how do we know Balsa-produced
plans are good? Potential choices of new data systems to carry out this study include,
as cited in Chapter 1, a streaming DBMS [76] and dataframe systems [91], as well as
engines that process graph data [100] or engines that run SQL on GPUs [20, 39].

• Using Balsa to search for optimal plans for recurring workloads. As discussed
above (§6.1), Balsa as an RL agent can be used to search for optimal plans for high-
value, perhaps recurring, queries. These plans can then be deployed for repeated
execution. In this use case, we can presumably trade longer training time for better
final plans. The idea of diversified experiences (§5.6) would be useful here to achieve
higher quality by performing more computations.

• Leveraging historical execution plans. If an organization has collected histori-
cal execution plans and associated information (e.g., total runtime of each plan, per-
operator runtimes), one can train a value network on this data. This value network
would be limited, as it does not cover the plan space well, lacking knowledge about
non-executed plans. Thus, the question here is how to integrate this offline, off-policy
training with Balsa’s RL training. The availability of historical plans implies there
is an existing expert (or at least baseline) optimizer. Therefore, one possibility is to
perform simulation training first using the expert’s cost model (recall the result that a
better simulator accelerates learning), then train on off-policy historical logs, followed
by an optional phase of learning in real execution. The second phase may already
correct much of the knowledge learned in simulation (e.g., cost-to-latency corrections)
to produce a reasonably competent agent. The optional real execution learning would
cover the plan space better, enhancing the agent.

Extensions to self-supervised cardinality estimation. Naru and NeuroCard have
demonstrated the promise of autoregressive models as cardinality estimators. Their capa-
bility of learning the entire joint data distribution, with all conditionals learned, is unique
among modern generative models. We here list a few extensions to this line of work that
can improve their capabilities, space efficiency, runtime efficiency, and beyond.

• Handling large domains with lower space and higher precision. Naru and
NeuroCard use embeddings to discretize column values into tokens (§3.4.2), and the
trainable embedding matrix for each column takes space linear in the column’s domain
size. Memory usage is therefore quite high for large domains, especially for cate-
gorical columns with a large number of distinct values. While column factorization
(§4.5) mitigates this issue by trading off some accuracy, there may be other ideas to
investigate. The NLP community, for example, commonly utilizes a small fixed-size
vocabulary [108] to tokenize text inputs. It may be interesting to come up with a
similar “universal column vocabulary” for tabular data, which would reduce memory
usage as well as potentially generalize to rare or new values better.
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• Optimizing runtime efficiency. To ease deployment of this approach, further opti-
mizing inference runtime is important. Fortunately, there are several mature techniques
to leverage here, such as quantization (use a lower number of bits in model weights,
rather than 32-bit floating points), optimizing the inference algorithm (progressive
sampling) by, e.g., implementing it entirely in a native language or in CUDA rather
than in Python, using just-in-time compilation, etc. While important, training time is
less of a concern and can be controlled by tuning many existing knobs (e.g., training
epochs, in conjunction with learning rate schedules).

• Pushing the boundary of supported schemas and predicates. Another di-
rection is to extend the capability of Naru and NeuroCard to handle more complex
scenarios. For example, better handling of schema graphs with a variety of shapes [37],
a larger number of tables in the schema, cyclic join queries, and better support for
string columns and string predicates [68] are interesting areas of future work.

• Investigating other self-supervised generative models. Naru and NeuroCard
pioneered the use of modern generative models in cardinality estimation, using deep
autoregressive models as the key tool. Our estimators convincingly show that they
capture data correlations much better than (query-)supervised learning and older den-
sity models. The field of generative modeling has been growing rapidly in recent years
(§2.2), however, which means newer tools from the deep learning community may fur-
ther improve our results in model quality, runtime efficiency, and model size. For
example, normalizing flows [88] have been recently applied in cardinality estimation
with good results on datasets with a few columns [134]. Normalizing flows, if shown to
better handle tabular data of larger dimensionality, can potentially be combined with
NeuroCard’s join support to further push the boundary of join cardinality estimation.
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