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Simple and Canonical Correspondence Analysis

Using the R Package anacor

Jan de Leeuw
University of California, Los Angeles

Patrick Mair
Wirtschaftsuniversität Wien

Abstract

This paper presents the R package anacor for the computation of simple and canonical
correspondence analysis with missing values. The canonical correspondence analysis is
specified in a rather general way by imposing covariates on the rows and/or the columns
of the two-dimensional frequency table. The package allows for scaling methods such as
standard, Benzécri, centroid, and Goodman scaling. In addition, along with well-known
two- and three-dimensional joint plots including confidence ellipsoids, it offers alternative
plotting possibilities in terms of transformation plots, Benzécri plots, and regression plots.

Keywords: anacor, simple correspondence analysis, canonical correspondence analysis, R.

1. Introduction

Correspondence Analysis (CA; Benzécri 1973) is a multivariate descriptive method based on a
data matrix with non-negative elements and related to principal component analysis (PCA).
Basically, CA can be computed for any kind of data but typically it is applied to frequencies
formed by categorical data. Being an exploratoy tool for data analysis, CA emphasizes two-
and three-dimensional graphical representations of the results.

In this paper we briefly review the mathematical foundations of simple CA and canonical CA
in terms of the singular value decomposition (SVD). The main focus is on the computational
implementation in R (R Development Core Team 2007), on scaling methods based on Benzécri
distances, centroid principles, and Fischer-Maung decomposition and on the elaboration of
corresponding graphical representations. More details about CA, various extensions and
related methods can be found in Greenacre (1984), Gifi (1990) and Greenacre and Blasius
(2006) and numerous practical issues are discussed in Greenacre (2007).

Recently, several related R packages have been implemented and updated, respectively. The ca
package by Nenadić and Greenacre (2006) allows for the computation of simple CA using SVD
on standardized residuals. Multiple CA is carried out in terms of SVD on either the indicator
matrix or the Burt matrix. Joint CA, which can be regarded as a variant of multiple CA
excluding the diagonal cross tabulations when establishing the Burt matrix, can be performed
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as well as subset CA. The package provides two- and three-dimensional plots of standard and
principal coordinates with various scaling options.

The ade4 package (Chessel, Dofour, and Thioulouse 2004; Dray, Dofour, and Chessel 2007)
which has been developed in an ecological context, allows for multiple CA, canonical CA,
discriminant CA, fuzzy CA and other extensions. Another related package is vegan (Dixon
2003), also developed in the field of ecology, which allows for constrained and partially con-
strained CA as well. Another related package is homals (de Leeuw and Mair 2008) which fits
models of the Gifi-family (homogeneity analysis aka multiple CA, nonlinear PCA, nonlinear
canonical correlation analysis). Additional CA-related packages and functions in R can be
found in Mair and Hatzinger (2007).

The anacor package we present offers, compared to the packages above, additional possibilites
for scaling the scores in simple CA and canonical CA, additional graphical features includ-
ing confidence ellipsoids. It also allows for missing values which are imputed using Nora’s
algorithm (Nora 1975).

2. Simple Correspondence Analysis

2.1. Basic Principles of Simple CA

The input unit of analysis is a bivariate frequency table F having n rows (i = 1, . . . , n) and
m columns (j = 1, . . . ,m). Thus the fij are non-negative integers. Without loss of generality
we suppose that n ≥ m. The row marginals fi• are collected in a n × n diagonal matrix D
and the column marginals f•j in a m×m diagonal matrix E. Suppose un and um are vectors
of lengths n and m with all elements equal to 1. It follows that the grand total can be written
as n = u′nFum.

Suppose we want to find row scores and column scores such that the correlation in the bivariate
table F is as large as possible. This means maximizing λ(x, y) = n−1x′Fy over the row score
vector x and column score vector y. These vectors are centered by means of

u′nDx = 0, (1a)
u′mEy = 0, (1b)

and normalized on the grand mean by

x′Dx = n, (1c)
y′Ey = n. (1d)

Such vectors, i.e. both centered and normalized, are called standardized. The optimal x and
y must satisfy the centering and normalization conditions in (1), as well as the stationary
equations

Fy = ξxDx+ µxDu, (2a)
F ′x = ξyEy + µyEu, (2b)

where (ξx, ξy, µx.µy) are Lagrange multipliers. By using the side constraints (1) we find that
the Lagrange multipliers must satisfy ξx = ξy = σ(x, y) and µx = µy = 0. Thus we can solve
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the simpler system, which says that the two regressions linear for the optimal scores

Fy = σDx, (3a)
F ′x = σEy, (3b)

together with the side conditions in (1). The system in (3) is a singular value problem. We
find the stationary values of σ as the singular values of

Z = D−
1
2FE−

1
2 . (4)

Since m ≤ n, we have the singular value decomposition Z = PΣQ′. P is n×m and composed
of the left singular vectors; Q is m × m and composed of the right singular vectors. Both
matrices are orthonormal, i.e. P ′P = Q′Q = I. Σ is the diagonal matrix containing the
min(n,m) = m singular values in descending order.

The m solutions of the stationary equations (3) can be collected in

X =
√

nD−
1
2P, (5a)

Y =
√

nE−
1
2Q, (5b)

where X is the n×m of row scores and Y is m×m. Except for the case of multiple singular
values, the solutions are uniquely determined. If (x, y, σ) solves (3) we shall call it a singular
triple, while the two vectors (x, y) are a singular pair. In total there are s = 0, . . . ,m − 1
singular triples (xs, ys, σs) where xs and ys are the columns of X and Y respectively.

We still have to verify if the m columns of X and Y satisfy the standardization conditions
in (1). First, X ′DX = nP ′P = nI and Y ′EY = nQ′Q = nI, which means both X and Y
are normalized. In fact we have orthonormality, i.e. if (xs, ys, σs) and (xt, yt, σt) are different
singular triples, then x′sDxt = 0 and y′sEyt = 0.

To investigate centering, we observe that (un, um, 1) is a singular triple, which is often called
the trivial solution, because it does not depend on the data. All other singular triples
(xs, ys, λs) with σs < 1 are consequently orthogonal to the trivial one, i.e. satisfy u′nDx = 0
and u′mEy = 0. If there are other singular triples (xs, ys, 1) with perfect correlation, then
xs and ys can always be chosen to be orthogonal to un and um as well. It follows that all
singular triples define stationary values of σ, except for (un, um, 1) which does not satisfy the
centering conditions.

The largest singular value reflects the largest possible correlation over the scores. The squared
singular values σ2 correspond to the eigenvalues λ of Z ′Z and ZZ ′, respectively. Let us denote
the corresponding diagonal matrix of eigenvalues by Λ. In classical CA terminology (see e.g.
Greenacre 1984) these eigenvalues are referred to as principal inertias. By ignoring λ0 based
on the trivial triple (x0, y0, 1), the Pearson decomposition can be established by means of

n

m−1∑
s=1

σ2
s = n

m−1∑
s=1

λs = n(tr Z ′Z − 1) = χ2(F ). (6)

χ2(F ) is called total inertia and corresponds to the Pearson chi-square statistic for indepen-
dence of the table F with df = (n − 1)(m − 1). The single composites are the contributions
of each dimension to the total inertia. Correspondingly, for each dimension a percentage
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reflecting the contribution of dimension s to the total intertia can be computed. The larger
the eigenvalue, the larger the contribution. In practical applications, a “good” CA solution is
characterized by large eigenvalues for the first few dimensions.

2.2. Methods of Scaling in Simple CA

The basic plot in CA is the joint plot which draws parts of X and Y jointly in a low-
dimensional Euclidean space. Note that instead of joint plot sometimes the term CA map
is used. Both symmetric and asymmetric CA maps can be drawn with the ca package and
corresponding descriptions are given in Nenadić and Greenacre (2006).

We provide additional methods for scaling X and Y which lead to different interpretations
of the distances in the joint plot. Ideally we want the dominant geometric features of the
plot (distances, angles, projections) to correspond with aspects of the data. So let us look at
various ways of plotting row-points and column-points in p dimensions using the truncated
solutions Xp, which is n× p, and Yp, which is m× p.
In the simplest case we can use the standardized solution of Xp and Yp without any additional
rescaling and plot the coordinates into a device. This corresponds to a symmetric CA map
and the coordinates are referred to as standard coordinates.

An additional option of scaling is based on Benzécri distances, also known as chi-square
distances. The Benzécri distance between two rows i and k is defined by

δ2ik(F ) =
m∑

j=1

(
fij

fi•
−
fkj

fi•

)2

/f•j . (7)

If we use ei and ek for unit vectors of length n, then

δ2ik(F ) = (ei − ek)′D−1FE−1F ′D−1(ei − ek) =

= (ei − ek)′D−
1
2ZZ ′D−

1
2 (ei − ek) =

= (ei − ek)′D−
1
2PΣ2P ′D−

1
2 (ei − ek) =

= (ei − ek)′XΣ2X ′(ei − ek).

Thus, the Benzécri distances between the rows of F are equal to the Euclidean distances
between the rows ofXΣ. Again, Xp is the row scores submatrix and Σp the diagonal submatrix
containing the first p ≤ m−1 singular values. Based on these matrices fitted Benzécri distances
can be computed. It follows that

dik(X1Σ1) ≤ dik(X2Σ2) ≤ · · · ≤ dik(Xm−1Σm−1) = δik(F ). (8)

In the same way the Euclidean distances between the rows of Y Σ approximate the Benzécri
distances between the columns of F . In CA terminology this type of coordinates is sometimes
referred to as principal coordinates of rows and columns. Based on these distances we can
compute a Benzécri root mean squared error (RSME) for the rows and columns separately
(see also de Leeuw and Meulman 1986). For the rows it can be expressed as

RMSE =

√
1

n(n− 1)

∑
i

∑
k

(δik(Z)− δik(Xp))2. (9)
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A third way to scale the scores is based on the centroid principle. The row centroids (averages)
expressed by means of the column scores are X(Y ) = D−1FY . In the same way, the column
centroids are given by Y (X) = E−1F ′X. These equations will be used in Section 5.1 to
produce the regression plot. Using this notation, the stationary equations can be rewritten
as

X(Y ) = XΣ, (10a)

Y (X) = Y Σ. (10b)

This shows that for each singular triple (x, y, σ) the regression of y on x and the regression
of x on y are both linear, go through the origin, and have slopes λ and λ−1. Depending on
whether X and/or Y are centered, the distances between the points in the joint plot can be
interpreted as follows. Suppose that we plot the standard scores of Xp together with Y (Xp).
Distances between column points approximate Benzécri distances and distances between row
points and column points can be interpreted in terms of the centroid principle. Observe that
in this scaling the column points will be inside the convex hull of the row points, and if the
singular values are small, column points will form a much smaller cloud than row-points.

The same applies if we reverse the role of Xp and Yp. If we plot Y (Xp) and X(Yp) in the plane,
then distances between row points in the plane approximate Benzécri distances between rows
and distances between column points in the plane approximate Benzécri distances between
columns. Unfortunately, distances between row points and column points do not correspond
directly to simple properties of the data.

A further possibility of scaling is Goodman scaling which starts with the Fisher-Maung de-
composition. Straightforwardly, Z = PΣQ′ can be rewritten as D−

1
2FE−

1
2 = D

1
2XΣY ′E

1
2 .

It follows that F = DXΣY ′E. Now we plot the row-points XpΣ
1
2
p and the column points

YpΣ
1
2
p . The scalar product of the two sets of points approximates XΣY ′, which is the matrix

of Pearson residuals
Nfij

fi•f•j
− 1. (11)

For this Goodman scaling there does not seem to be an obvious interpretation in terms
of distances. This is somewhat unfortunate because people find distances much easier to
understand and work with than scalar products.

It goes without saying that if the singular values in Σp are close to one, the four different joint
plots will be similar. Generally, plots based on the symmetric Benzécri and Goodman scalings
will tend to be similar, but the asymmetric centroid scalings can lead to quite different plots.

3. Canonical Correspondence Analysis

3.1. Basic Principles of Canonical CA

Ter Braak (1986) presented Canonical CA within an ecological context having the situation
where the whole dataset consists of two sets: data on the occurrence or abundance of a
number of species, and data on a number of environmental variables measured which may
help to explain the interpretation of the scaled solution. In other words, they are incorporated
as effects in the CA computation in order to examine their influence on the scores.
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To give a few examples outside ecology, in behavioral sciences such environmental variables
could be various types of schools, in medical sciences different hospitals etc. Thus, from this
particular point of view canonical CA reflects multilevel situations in some sense; from a
general point of view it reflects any type of effects on the rows and/or columns of the table.
We introduce canonical CA from the general perspective of having covariates A on the row
margins fi• and/or covariates B on the column margins f•j . Hence, canonical CA can be
derived by means of linear restrictions on the row scores X and the column scores Y , i.e.

X = AU, (12a)
Y = BV, (12b)

where A and B are known matrices of dimensions n× a and m× b, respectively, and U and
V are weights. We suppose, without loss of generality, that A and B are of full column rank.
We also suppose that un is in the column-space of A and um is in the column-space of B.
Note that ordinary CA is a special case of canonical CA in which both A and B are equal to
the identity.

By using basically the same derivation as in the previous section, we find the singular value
problem

(A′FB)V = (A′DA)UΣ, (13a)
(B′F ′A)U = (B′EB)V Σ. (13b)

Analogous to Section 2.1, X and Y , expressed by means of (12), satisfy the standardization
conditions U ′A′DAU = nI and V ′B′EBV = nI. If un = Ag and um = Bh, then (g, h) defines
a solution to (13) with σ = 1. Thus we still have the dominant trivial solution which ensures
that all other singular pairs are centered.

The problem that we have to solve is the SVD on Z which for canonical CA can be expressed
as

Z = (A′DA)−
1
2A′FB(B′EB)−

1
2 (14)

using the inverse of the symmetric square roots of A′DA and B′EB. Suppose again that
Z = PΣQ′ is the singular value decomposition of Z. Then U = (A′DA)−

1
2P and V =

(B′EB)−
1
2Q are the optimal solutions for the weights in our maximum correlation problem,

and the corresponding scores are

X = A(A′DA)−
1
2PY = B(B′EB)−

1
2Q. (15a)

Both X and Y are normalized, orthogonal, and, except for the dominant solution, centered.
Again, X and Y are the standard coordinates which can be rescaled by means of the principles
described in Section 3.2.

If we assume, for convenience, that un is the first column of A and um is the first column
of B, then the elements of the first row and column of Z are zero, except for element z11,
which is equal to one. The other (a − 1)(b − 1) elements of Z are, under the hypothesis of
independence, asymptotically independent N(0, 1) distributed. Thus

n

p∑
s=1

σ2
s = n

p∑
s=1

λs = n(tr Z ′Z − 1) = χ2 (FA,B) , (16)
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which is asymptotically a chi-square with df = (a − 1)(b − 1). Hence, in canonical CA we
compute a canonical partition of the components of chi-square corresponding with orthogonal
contrasts A and B.

3.2. Methods of Scaling in Canonical CA

In this section the same methods of rescaling of row and column scores used for simple CA,
are applied to canonical CA. Again, we start with Benzécri distances δ2ik (FAB) between two
rows i and k and using unit vectors ei and ek of length n:

δ2ik (FAB) = (ei − ek)′A(A′DA)−1A′FB(B′EB)−1B′F ′A(A′DA)−1A′(ei − ek) =

= (ei − ek)′A(A′DA)−
1
2ZZ ′(A′DA)−

1
2A′(ei − ek) =

= (ei − ek)′A(A′DA)−
1
2PΣ2P ′(A′DA)−

1
2A′(ei − ek) =

= (ei − ek)′XΣ2X ′(ei − ek).

Analogous to (8) the monotonicity property holds for the distances for the first p singular
values in terms of the row scores submatrix Xp and the singular value submatrix Σp. The
Benzécri distances for the columns can be derived in an analogous manner.

For the centroid principle we rewrite the stationary equations in (13) as follows (cf. Equation
10):

A(A′DA)−1A′DX? = XΣ, (17a)

B(B′EB)−1B′EY ? = Y Σ, (17b)

where

X? = D−1FY = X(Y ), (17c)

Y ? = E−1F ′X = Y (X), (17d)

and of course X = AU and Y = BV . We see that the columns of X are proportional to
the projections in the metric D of X? on the space spanned by the columns of A. The same
applies to the column scores Y . Note that if we solve the linear regression regression problem
of minimizing

tr (X? −AT )′D(X? −AT ) (18)

then the minimizer is T = (A′DA)−1A′DX?. From the stationary equations it follows that
T = UΣ. Ter Braak (1986) calls T the canonical coefficients. In our more general setup there
are also canonical coefficients for the columns, which are the regression coefficients when
regressing Y ? on B.

Within the context of canonical CA there are various matrices of correlation coefficients
that can be computed to give canonical loadings. For the rows, we can correlate X,X?,
and A. Now X ′DX? = X ′FY = Σ. We know that X ′DX = I, but generally X? is not
normalized, and thus the correlations are not equal to Σ. In fact, using the Loewner order,
(X?)′DX? = Y ′F ′D−1FY . Y ′EY = I and, since Λ = (X?)′DA′(A′DA)−1AD by (17a), also
(X?)′DX? & Λ. If the columns of A are centered and normalized, the correlations become Σ.
For the columns, the situation is the same for Y, Y ? and B.
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The Fisher-Maung decomposition is merely a rewriting of the singular value decomposition.
The most obvious generalization in the constrained case uses

(A′DA)−
1
2A′FB(B′EB)−

1
2 = PΣQ′, (19a)

or

(A′DA)−1A′FB(B′EB)−1 = UΣV ′, (19b)

or

A′FB = (A′DA)UΣV ′(B′EB) = A′(DXΣY ′E)B. (19c)

This can be written as A′RB = 0 with

rij = fij − fi•f•j(1 +
c−1∑
s=1

σsxisyjs), (20)

where c = min(a, b).

Note that the joint plots pertaining to the different scaling methods are again based on the p-
dimensional solution with the corresponding row scores Xp based on the linear combinations
of matrix A, and the corresponding column scores Yp based on the linear combinations of
matrix B.

4. Additional Topics

4.1. Confidence Ellipsoids Using the Delta Method

The core computation in the anacor package is the SVD on Z = PΣQ′. As a result we get
the n×n matrix P of left singular vectors, the m×m matrix Q of the right singular vectors,
the diagonal matrix Σ of order m containing the singular values, and, correspondingly, the
eigenvalue matrix Λ. Based on these results the n × p row score matrix Xp and the m × p
column score matrix are computed (standard scores). At this point an important issue is the
replication stability of the results in terms of confidence ellipsoids around the standard scores
in the joint plot.

A general formal framework to examine stability in multivariate methods is given in Gifi
(1990, Chapter 12). The starting point of the replication stability is the well-known delta
method. Let us assume that we have a sequence of multivariate random variables xn, it
follows that

√
n(xn − µ) D→ N(0,Σ). If we apply a transformation φ(xn) the delta method

states that
√

n(φxn − φ(µ)) =
√

n∇φ(µ)(xn − µ) D→ N(0,∇φ(µ)′Σ∇φ(µ)). In simple words:
The delta method provides the transformed variance-covariance (VC) matrix which is based
on the gradient of φ evaluated at µ.

To apply this method for simple and canonical CA we have to embed our observations pij =
fij/n into a sequence of random variables, i.e. a sequence of multinomial distributed random

variables with cell probabilities πij . Asymptotic theory states that
√

n(p−π) D→ N(0,Π−ππ′)
where p and π are the vectors of relative frequencies and probabilities and Π is the diagonal
matrix with the elements of π on the diagonal.
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The SVD system of transformations φ we use is ZQ = PΣ and Z ′P = QΣ with P ′P = Q′Q =
I. Expressions for the partial derivatives ∂φ/∂pij as well as related computations are given in
de Leeuw (2008). Note that the confidence ellipsoids can be computed for ordinary as well as
canonical CA. A comparison with the bootstrap method for computing confidence ellipsoids
is in Gifi (1990, Section 12.3.4). In addition, the derivatives of the singular values in this SVD
system can be used to establish standard errors for the singular values and, consequently, a
z-test can be carried out.

4.2. Reconstitution Algorithm for Incomplete Tables

As an additional feature of the anacor package, incomplete tables are allowed. The algorithm
we use was proposed by Nora (1975) and revised by de Leeuw and van der Heiden (1988).
This algorithm should not be mistaken for the CA reconstitution formula which allows for
the reconstruction of the data matrix from the scores. Nora’s algorithm is rather based on
the complementary use of CA and log-linear models (see van der Heiden and de Leeuw 1985)
and provides a decomposition of the residuals from independence. We will describe briefly
the reconstitution of order 0 which is implemented in anacor.

We start at iteration l = 0 by setting the missing values in F to zero. The corresponding
table which will be iteratively updated is denoted by F (0). Correspondingly, the row margins
are f (0)

i• , the column margins f (0)
•j and the grand mean f

(0)
•• . The elements of the new table

F (1) are computed under independence. Pertaining to iteration l, this corresponds to

f
(l+1)
ij =

f
(l)
i• f

(l)
•j

f
(l)
••

. (21)

Within each iteration a measure for the change in the frequencies is computed, i.e. H(l) =∑n
i=1

∑m
j=1 f

(0)
ij log f (l)

ij . The iteration stops if |H(l)−H(l−1)| < ε. After reaching convergence,
we set F := F (l) and we proceed with the computations from Section 2 and Section 3,
respectively.

5. Applications of Simple and Canonical CA

5.1. Plotting Options in anacor

The basic function in the package is anacor which performs simple or canonical CA with
different scaling options. The NA cells in the table will be imputed using the reconstitution
algorithm. The results are stored in an object of class "anacor". For objects of these class
a print.anacor and a summary.anacor method is provided. Two-dimensional plots can be
produced with plot.anacor, static 3-D plots with plot3dstatic.anacor and dynamic rgl-
plots with plot3d.anacor. The type of the plot can be specified by the argument plot.type:

• "jointplot": Plots row and column scores into the same device (also available as 3-D).

• "rowplot", "colplot": Plots the row/column scores into separate devices (also avail-
able as 3-D).
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• "graphplot": This plot type is an unlabeled version of the joint plot where the points
are connected by lines. Options are provided (i.e. wlines) to set the line thickness
indicating the connection strength.

• "regplot": First, the unscaled solution is plotted. A frequency grid for the row cate-
gories (x-axis) and column categories (y-axis) is produced. The regression line is based
on the category weighted means of the relative frequencies. More precise, the black
line on the column-wise means (x-axis) and the column category on the y-axis, the red
line is based on the row categories (x-axis) and the row-wise means on the y-axis. In
a second device the scaled solution is plotted. The frequency grid is determined by
the row scores (x-axis) and the column scores(y-axis). Now, instead of the row/column
categories, the column scores (black line y-axis) and the row scores (red line x-axis) are
used (see centroid principle in Section 2.2).

• "transplot": The transformation plot plots the initial row/column categories against
the scaled row/column scores.

• "benzplot": The Benzécri plot shows the observed distances against the fitted Benzécri
distances; assumed that the row and/or columns in the CA result are Benzécri scaled.
For the rows the observed distances are based on D−

1
2ZZ ′D−

1
2 and the fitted distances

on XpΣ2
pX
′
p; for the columns on E−

1
2ZZ ′E−

1
2 and YpY

′
p , respectively.

5.2. Utilities in anacor

In addition, anacor offers various CA utility functions: expandFrame() expands a data frame
into a indicator supermatrix, burtTable() establishes the Burt matrix, and mkIndiList()
returns a list of codings with options for crisp indicators, numerical versions, and fuzzy coding.
The utilities make it easy to switch between anacor and homals (de Leeuw and Mair 2008).
In homals the input is a data frame of n observations on m categorical variables, coded as R
factors. The output is a Multiple Correspondence Analysis (MCA) with various restrictions
on the rows and column scores. Computations use the Alternating Least Squares algorithm
which computes only a few of the dominant singular triples.
homals can also be used to compute a CA solution, because CA is MCA with two variables.
And homals can be used to compute the Canonical CA solution, because it allows for lin-
ear restrictions on the category quantifications. And because homals also allows for ordinal
restrictions, we can use it to compute a CA with ordinal restrictions on the quantifications
of the two variables. Conversely, CA can also be used to compute an MCA, which may be
desirable, for example, if we want confidence ellisoids. We can do a CA on the Burt matrix,
created by burtTable() from the multivariate data frame. Or. alternatively, we can do a
CA on the indicator supermatrix, created by expandFrame() from the data frame. More
generally, mkIndiList() can generate B-spline codings from the data frame, which can then
be concatenated to form a fuzzy indicator supermatrix as input for CA.

5.3. Applications of Simple CA

We start with an application of simple CA on Tocher’s eye color data (Maung 1941) collected
on 5387 Scottish school children. This frequency table consists of the eye color in the rows
(blue, light, medium, dark) and the hair color in the columns (fair, red, medium, dark, black).
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> data(tocher)

> res <- anacor(tocher, scaling = c("standard", "centroid"))

> res

CA fit:
Sum of eigenvalues: 0.2293315

Total chi-square value: 1240.039

Chi-Square decomposition:
Chisq Prop CumProp

Component 1 1073.331 0.866 0.866
Component 2 162.077 0.131 0.996
Component 3 4.630 0.004 1.000

> plot(res, plot.type = "jointplot", ylim = c(-1.5, 1.5))

> plot(res, plot.type = "graphplot", wlines = 5)

For this two-dimensional solution we use asymmetric scaling by having standard coordinates
for the rows and principal coordinates for the columns. As graphical representation methods
the joint plot including 95% confidence ellipsoids and the graph plot are chosen (see Figure 1).
Because of the large sample size the confidence ellipsoids are nicely separated in this example.
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Figure 1: Joint Plot and Graph Plot for Tocher Dataset.

As mentioned above the coordinates of the points in both plots are the same. Note that the
column scores (blue points) in the joint plot are scaled around their centroid. The row scores
(red points) are not rescaled. In the graph plot the columns scores are represented by blue
triangles and the row scores by red points. The thickness of the connecting lines reflect the
frequency of the table or, in other words, the strength of the connection. The distances within
row/column categories can be interpreted and we see that black/dark hair as well as fair/red



12 Simple and Canonical CA with anacor

hair are quite close to each other. The same applies to blue/light eyes. The distances between
single row and column categories can not be interpreted.
We can run a χ2-test of independence

> chisq.test(tocher)

Pearson’s Chi-squared test
data: tocher
X-squared = 1240.039, df = 12, p-value < 2.2e-16

and see that it is highly significant. Looking at the χ2-decomposition of the CA result it is
obvious that the first component accounts for 88.6% of the total χ2-value (i.e. inertia).
In a second example we show two CA solutions for the Bitterling dataset (Wiepkema 1961)
which concerns the reproductive behavior of male bitterlings. The data are derived from 13
sequences using a moving time-window of size two (time 1 in rows, time 2 in columns) and
are organized in a 14×14 table with the following categories: jerking (jk), turning beats (tu),
head butting (hb), chasing (chs), fleeing (ft), quivering (qu), leading (le), head down posture
(hdp), skimming (sk), snapping (sn), chafing (chf), and finflickering (ffl).
We fit a two-dimensional and a five-dimensional CA solution using Benzécri scaling. With
two dimensions we explain 53.2% of the total inerita (sum of eigenvalues is 1.33) and with
five dimensions we explain 85.8% (sum of eigenvalues is 2.15).

> data(bitterling)

> res1 <- anacor(bitterling, ndim = 2, scaling = c("Benzecri", "Benzecri"))

> res2 <- anacor(bitterling, ndim = 5, scaling = c("Benzecri", "Benzecri"))

> res2

CA fit:
Sum of eigenvalues: 2.147791
Benzecri RMSE rows: 0.0002484621
Benzecri RMSE columns: 0.000225833

Total chi-square value: 14589.07

Chi-Square decomposition:
Chisq Prop CumProp

Component 1 4026.287 0.276 0.276
Component 2 3730.218 0.256 0.532
Component 3 1996.814 0.137 0.669
Component 4 1635.673 0.112 0.781
Component 5 1145.514 0.079 0.859
Component 6 904.313 0.062 0.921
Component 7 832.702 0.057 0.978
Component 8 284.566 0.020 0.998
Component 9 31.421 0.002 1.000
Component 10 1.357 0.000 1.000
Component 11 0.206 0.000 1.000
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> plot(res1, plot.type = "benzplot", main = "Benzecri Distances (2D)")

> plot(res2, plot.type = "benzplot", main = "Benzecri Distances (5D)")

The improvement of the five-dimensional solution with respect to the two-dimensional one is
reflected by the Benzécri plots in Figure 2. For a perfect (saturated) solution the points would
lie on the diagonal. This plot can be used as an overall goodness-of-fit plot or, alternatively,
single distances can be interpreted.
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Figure 2: Benzécri Plots for Bitterling Data.

The data for the next example were collected by Glass (1954). In this 7× 7 table the occupa-
tional status of fathers (rows) and sons (columns) of 3497 British families were cross-classified.
The categories are professional and high administrative (PROF), managerial and executive
(EXEC), higher supervisory (HSUP), lower supervisory (LSUP), skilled manual and routine
non-manual (SKIL), semi-skilled manual (SEMI), and unskilled manual (UNSK).

> data(glass)
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> res <- anacor(glass)

> plot(res, plot.type = "regplot", xlab = "fathers occupation",

+ ylab = "sons occupation")

Unscaled Solution Dimension 1

fathers occupation  categories

so
ns

 o
cc

up
at

io
n 

 c
at

eg
or

ie
s

PROF EXEC HSUP LSUP SKIL SEMI UNSK

P
R

O
F

E
X

E
C

H
S

U
P

LS
U

P
S

K
IL

S
E

M
I

U
N

S
K

●

●

●

●

●

●

●

●

●

●

●

●

●

●

50

19

26

8

18

6

2

16

40

34

18

31

8

3

12

35

65

66

123

23

21

11

20

58

110

223

64

32

14

36

114

185

714

258

189

0

6

19

40

179

143

71

0

3

14

32

141

91

106

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

Scaled Solution Dimension 1

fathers occupation  scores

so
ns

 o
cc

up
at

io
n 

 s
co

re
s

●

●

●

●

●

●●

●

●

●

●

●

●
●

50

19

26

8

18

6
2

16

40

34

18

31

8
3

12

35

65

66

123

23
21

11

20

58

110

223

64
32

14

36

114

185

714

258
189

0

6

19

40

179

143
71

0

3

14

32

141

91
106

UNSK SKIL LSUP HSUP EXEC PROF

U
N

S
K

S
K

IL
LS

U
P

H
S

U
P

E
X

E
C

P
R

O
F

Figure 3: Regression Plots for Glass Data.

Figure 3 represents regression plots for the first CA dimension. On the left hand side we
show the unscaled solution. The father’s occupation is on the abscissae and the occupation of
the sons on the ordinate. The grid represents the (transposed) table with the corresponding
frequencies. Let us focus on the red line first: The coordinates in x-direction correspond
to single row categories aka father’s occupation. Now, for each father’s occupation (i.e.
conditional) the category-weighted average of the (relative) frequencies is computed. The
weights range from 1 to m. The corresponding points are connected and we see that the son’s
occupation increases monotonically conditional on the father’s occupation. The same applies
to the blue line. Conditional on each son’s occupation the relative frequencies are weighted
from 1 to n. The average values are plotted in x-direction and are again monotonically
increasing. The monotonicity is not surprising since the categories (professions) are ordered in
the table (from PROF down to UNSK) and the variables are highly dependent (χ2 = 1361.742,
df = 36, p < 0.000).

On the right hand side of Figure 3 we find the scaled solution. The first obvious characteristic
is that the grid components are not equidistant anymore due to the category scaling. The
ordering of the professions in terms of the scaled values is given on the top and the right,
respectively. Compared to the unscaled solution they are reversed. By means of these grid
margins we see that the differences between PROF, EXEC, and HSUP are considerably large
compared to lower profession levels such as UNSK, SEMI, and SKIL. The regression lines are
computed in an analogous fashion than in the unscaled solution; with the exception that the
category scores are taken as weights. The red line is composed of the weighted averages con-
ditional on the row scores on the abscissae, the blue line by the weighted averages conditional
on the columns scores on the ordinate. Basically, this leads to two linear regressions with the
row/column scores as predictors.
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As a final interpretation we see that there is a positive relationship between the intra-familiar
occupations: The higher the father’s occupation level, the higher the son’s occupation level.
More detailed, if the father occupies one of the three highest levels, the son is (on the average)
in the level below. For the three lowest levels we have the opposite case: On the average the
son is in the next higher level. With the optimal scores the correlation between fathers and
sons is 0.725, which is the square root of the largest eigenvalue.

5.4. Canonical CA on Maxwell Data

A hypothetical dataset by Maxwell (1961) is used to demonstrate his method of discriminant
analysis. We will use it to illustrate canonical CA. The data consist of three criterion groups
(columns), i.e. schizophrenic, manic-depressive and anxiety state; and four binary predictor
variables each indicating either presence or absence of a certain symptom. The four symptoms
are anxiety suspicion, schizophrenic type of thought disorders, and delusions of guilt. These
four binary variables were factorially combined to form 16 distinct patterns of symptoms
(predictor patterns), and each of these patterns is identified with a row of the table. In total
we have a cross-classification of 620 patients according to the 16 patterns of symptoms and
the three criterion groups.

We fit a symmetric (Goodman scaled) two-dimensional solution and get an amount of ex-
plained inertia of 87.2%.

> data(maxwell)

> res <- anacor(maxwell$table, row.covariates = maxwell$row.covariates,

+ scaling = c("Goodman","Goodman"))

> res

CA fit:
Sum of eigenvalues: 0.6553413

Total chi-square value: 406.312

Chi-Square decomposition:
Chisq Prop CumProp

Component 1 302.568 0.650 0.650
Component 2 103.743 0.223 0.872

> plot(res, plot.type = "colplot", xlim = c(-1.5, 1), arrows = TRUE, conf = NULL)

> plot(res, plot.type = "transplot", legpos = "topright")

The plot of the column scores on the left hand side of Figure 4 shows that the mental diseases
go into somewhat different directions and thus they are not really related to each other. The
transformation plot on the right hand side shows interesting patterns. For the first dimension
a cyclic behavior over the predictors is identifiable. The scores (y-axis) for pairs of points 1-2,
3-4, 5-6, etc. do not change much within these pairs. Note that these pairs are contrasted by
the (fourth) predictor “delusions of guilt”. Between these pairs some obvious differences in the
scores are noticeable. These between-pairs-differences are contrasted by the (third) predictor
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Figure 4: Column Scores and Transformation Plot for Maxwell Data.

“thought disorders”: 1-2 has 0, 3-4 has 1, 5-6 has 0 etc. Therefore, the first dimension mainly
reflects thought disorders.

The second dimension shows an alternating behavior. Referring to the pair notation above,
it reflects within-pair-differences based on “delusions of guilt”. In addition a slight downward
trend due to “anxiety” (first predictor) can be observed.

6. Discussion

The anacor package provides additional features which are not offered by other CA packages
on CRAN. These features are additional scaling methods for simple and canonical CA, missing
data, and graphical representations such as regression plots, Benzécri plots, transformation
plots, and graphplots. The included utilities make it possible to switch from the data format
used in anacor to the data format used in homals, and this gives the user a great deal of
flexibility. The confidence ellipsoids from CA are a powerful tool to visualize the dispersions
of the row and column projections in the plane.
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