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We present laboratory experimental results demonstrating that librational forcing of
an ellipsoidal container of water can produce intense motions through the mecha-
nism of a libration driven elliptical instability (LDEI). These libration studies are
conducted using an ellipsoidal acrylic container filled with water. A particle image
velocimetry method is used to measure the 2D velocity field in the equatorial plane
over hundreds libration cycles for a fixed Ekman number, E = 2 × 10−5. In doing so,
we recover the libration induced base flow and a time averaged zonal flow. Further,
we show that LDEI in non-axisymmetric container geometries is capable of driving
both intermittent and saturated turbulent motions in the bulk fluid. Additionally,
we measure the growth rate and amplitude of the LDEI induced excited flow in a
fully ellipsoidal container at more extreme parameters than previously studied [Noir
et al., “Experimental study of libration-driven flows in nonaxisymmetric containers,”
Phys. Earth Planet. Inter. 204-205, 1 (2012); Cébron et al., Phys. Fluids 24, 061703,
“Libration driven elliptical instability,” (2012)]. Excitation of bulk filling turbulence
by librational forcing provides a mechanism for transferring rotational energy into
turbulent fluid motion and thus can play an important role in the thermal evolution,
interior dynamics, and magneto-hydrodynamics of librating bodies, as appear to be
common in solar system settings [e.g., Comstock and Bills, “A solar system survey of
forced librations in longitude,” J. Geophys. Res. Planets 108, 1 (2003)]. C 2014 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4903003]

I. INTRODUCTION

The interactions between satellites and their primary gravitational partners distort the shapes of
both bodies and give rise to periodic mechanical forcings that, in turn, drive precessional, tidal, and
librational motions.1 The current work focuses specifically on the longitudinal libration in so-called
synchronized systems where the secondary body’s rotation rate undergoes periodic oscillations about
its orbital rate. Additionally, some librating bodies are differentiated and contain liquid metal cores
such as those of Mercury,2 Io,3 Ganymede,4 as well as subsurface oceans in Europa,5 Ganymede,4 and
Enceladus.6 The fluid layer response to the librational forcing through viscous,7–9 topographic,10,11

and electromagnetic coupling12–14 is important for understanding the thermal, magnetic, and orbital
evolution of the body. Importantly, while it is often assumed that thermo-compositional convection
drives the fluid motions responsible for dynamo generation,15–17 recent studies18–21 have character-
ized how mechanical forcing can also drive dynamos by injecting a portion of the vast quantity of
rotational energy from primary-satellite orbital systems into driving fluid motions.
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The first studies of libration in spheres22,23 showed, using pressure measurements, that a resonant
response occurs when the forcing frequency matches an eigenfrequency of the system. While this
excitation was inferred to be an eigenmode of the system, a recent analytical study in the limit of small
viscosity found no resonant excitations and only anomalous pressure variations along the axis of rota-
tion.24 Librational forcing also gives rise to centrifugal instabilities that are confined to the boundary
layers of cylinders and spheres.7,8 Additional theoretical, numerical, and experimental works have
verified the stationary zonal flow caused by non-linear interactions in the Ekman boundary layers of
cylinders, spheres, and spherical shells.8–10,25,26

Recent studies have focused on simulating librational effects in more realistic geometries that
reflect the non-axisymmetric shape of planetary interior fluid layers. Theoretical and numerical
studies of flows in non-axisymmetric containers have shown that longitudinal librational forcing
cannot, through a direct resonance, excite eigenmodes of the system.27,28 Importantly, this does
not preclude the resonance of two inertial modes interacting with an elliptically-deformed base
flow.29,30 Numerical simulations using finite element methods at an Ekman number, E = 5 × 10−4,
defined in Sec. II, have shown that a triadic resonance between two inertial modes and a libra-
tionally induced elliptically-deformed base flow31 excites a libration driven elliptical instability
(LDEI). This instability gives rise to three-dimensional (3D) motions in the bulk fluid that act to
modify the base flow thus truncating the instability. The base flow is then re-established and this
cycle of growth and collapse continues.32 Experimental laser doppler velocimetry (LDV) measure-
ments at a single point attributed a growth and decay of the zonal flow strengths in a half-ellipsoid
to the existence of a LDEI.10 The aspects of the mechanically forced flows, described above, are
thoroughly reviewed in Ref. 33.

In this experimental work, a particle image velocimetry (PIV) method is used to measure the
libration induced base flow, time-averaged zonal flow, and fully turbulent libration driven flow in
the equatorial plane of an ellipsoidal container at a fixed E = 2 × 10−5 more extreme than currently
possible through numerical simulations. In Sec. II, the mathematical framework is developed for
libration driven flows as well as the resonant conditions and growth rates associated with the LDEI.
The experimental method is described in Sec. III and the results are discussed in Sec. IV. The
conclusions are presented in Sec. V.

II. MATHEMATICAL BACKGROUND

In this experiment, we consider a homogeneous, incompressible, Newtonian fluid that is en-
closed in an ellipsoidal container. The boundary of this shape is specified by the equation for an ellip-
soid, x2/a2 + y2/b2 + z2/c2 = 1, set in a Cartesian coordinate system affixed to the librating container
where x̂ is along the long equatorial axis of the ellipsoid with length a, ŷ is the short equatorial axis
with length b, and ẑ is along the axis of rotation with length c. The equatorial ellipticity of the cavity
is defined as β = (a2 − b2)/(a2 + b2). The rotation rate Ω(t) for librational forcing is composed of a
constant rotation Ω0 plus a sinusoidal perturbation

Ω(t) = Ω0 + ∆ϕ ωlib sin(ωlibt), (1)

where ωlib [rad/s−1] is the angular frequency of libration and ∆ϕ [rad] is the amplitude of libration.
The equations of fluid motion and continuity, written in the librating frame and non-dimensionalized
using the long axis a for the length scale and Ω−1

0 as the time scale, are

∂u
∂t
+ u · ∇u + 2

�
1 + ϵ sin( f t)�ẑ × u = −∇Π + E∇2u − ϵ f cos( f t)(ẑ × r), (2)

∇ · u = 0. (3)

In (2), the first two terms on the left side are the inertial terms, and the third term is the time-dependent
Coriolis acceleration. The terms on the right side are the pressure gradient, the viscous dissipation,
and the Poincare force due to the time dependent rotation rate, respectively. The non-dimensional
libration frequency is f = ωlib/Ω0, ϵ = f∆ϕ is the dimensionless libration forcing amplitude, andΠ is
the modified pressure term containing the time varying centrifugal acceleration. The Ekman number,
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FIG. 1. (a) Theoretical vector field snapshot (Ulib, Vlib) of the elliptically deformed base flow in the librating frame, (x, y, z).
(b) The same base flow transformed into the steadily rotating reference frame, (X, Y, Z ), where the current experimental
measurements are performed.

E = ν/(Ω0a2), characterizes the ratio of viscous to Coriolis forces and r = (x, y, z) is the position
vector in the librating frame.

A. Base flow

Making a perturbation expansion of (2), the flow is decomposed into u = U + u′ andΠ = Π0 + π′

where the perturbed flow u′(π′) is much smaller than the base flow U(Π0), i.e., |u′| ≪ U and π′ ≪ Π0.
Focusing first on the base flow and taking (2) in the limit that E ≪ 1, the flow is decomposed into
U = Ulib + U with an inviscid bulk component, Ulib, and a flow in the viscous boundary layer of
depth

√
E attached to the outer boundary, |U| ∝ ϵ , that is proportional to the libration forcing. An

inviscid solution of (2) for the bulk base flow velocity that satisfies the non-penetration condition in
the librating frame of reference is given by29

Ulib = −ϵ sin( f t)�ẑ × r − β∇(x y)�, (4)

with coordinates (x, y, z) and equatorial flow components (Ulib,Vlib). In the librating frame, fluid par-
cels oscillate back and forth along elliptically deformed streamlines as shown in a vector field snap-
shot of Figure 1(a). For the current analysis, this flow is transformed to the steadily rotating frame
of reference reflecting the same frame where experimental measurements are performed. This base
flow (Urot,Vrot) in the steadily rotating frame is given in (5) with X and Y being the spatial coordi-
nates fixed to this frame such that X is aligned with the average location of the container’s long-axis.
Figure 1(b) shows a snapshot of the oscillating velocity field exhibiting a strain field with an azimuthal
wavenumber m = 2, and an oscillating direction and amplitude

Urot = ϵ β sin( f t)Y cos
(

2ϵ(1 − cos( f t))
f

)
− X sin

(
2ϵ(1 − cos( f t))

f

)
î,

Vrot = ϵ β sin( f t)Y sin
(

2ϵ(1 − cos( f t))
f

)
+ X cos

(
2ϵ(1 − cos( f t))

f

)
ĵ. (5)

B. Zonal flow

In the librating frame, to satisfy the no-slip boundary conditions, viscous corrections in the Ek-
man boundary layer generate a flow, Ũ, with axisymmetric and non-axisymmetric components, U0
and U2, respectively, given as

U ∝ ϵ sin( f t)(U0 + βU2e±2iφ), (6)

where φ is the azimuthal angle measured with respect to X. The non-linear self-interaction of (6) leads
to an axisymmetric stationary zonal flow in the boundary layer that, by continuity, generates a flow
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in the interior fluid, as confirmed in axisymmetric containers.8,9,25,34–37 This stationary flow scales
as ϵ2 with an azimuthal wavenumber m = 0 and is expected in the ellipsoidal container. Additional
axisymmetric and non-axisymmetric stationary flows arise due to the ellipsoidal geometry and scale
as ϵ2β and ϵ2β2 with azimuthal wavenumbers m = 2 and m = 0,4, respectively.38

C. Inertial modes

For rotating fluids in finite volumes, inertial waves reflected at boundaries conserve the angle
between the wave vector and the axis of rotation θ. Thus, reflections and waves may, through
constructive interference, generate inertial modes of the form u′

j ∝ eiλ j tΦ j(r) that satisfy the linear-
ized inviscid equation motions given by39

∂u′

∂t
+ 2ẑ × u′ = −∇π′. (7)

The jth inertial mode is the solution of (7) such that

iλ jΦ j + 2ẑ ×Φ j = −∇π′
j, (8)

where Φ j ∝ eim jφ with m j being the azimuthal wavenumber.40 Additionally, the inertial modes are
orthogonal such that


Φ∗

kΦ j dV = δ j,k.39 Analytical solutions of inertial modes exist for the cyl-
inder,41 cylindrical shell,42 spheroid,43 and a polynomial description also exists for the ellipsoids44

considered in our experiments. Although, not considered here, such analytical descriptions cannot
be extended to the more geophysically relevant geometry of spherical shells due to the ill-posed na-
ture of the well-known Poincaré equation for inertial modes with non-penetrating boundary condi-
tions. Numerical studies, in this geometry, have shown that solutions converge to attractors.45,46

D. Elliptical instability

The elliptical instability arises due to the growth of perturbations induced by the interaction
between a libration induced base flow from (4) and two inertial modes. Despite the open questions
regarding the completeness property of inertial modes whereby an arbitrary velocity field may be
expanded into a series of inertial modes,39 the velocity and pressure perturbations are written as
a linear combination of inertial modes and later seek to identify the participating inertial modes
experimentally. Then, (u′, π′) = 

j a j(t)eiλ j t(Φ j, π j) where a j(t) ≪ 1 is a small time-dependent
coefficient and the evolution for the velocity perturbation in (2) is given by

∂u′

∂t
+ Ulib · ∇u′ + u′ · ∇Ulib + 2

�
1 + ϵ sin( f t)�ẑ × u′ = −∇π′ + E∇2u′. (9)

By substituting the solutions for (u′, π′) into (9) and analyzing the resulting equations, we seek to
determine the conditions that are required on the coefficients a j such that they grow through time.

j

eiλ j t
 ∂a j

∂t
Φ j + a j

�
Ulib · ∇Φ j +Φ j · ∇Ulib +2ϵ sin( f t)(ẑ ×Φj)�

+a j

�
iλ jΦ j + 2ẑ ×Φ j = −∇π j

�
. (10)

Here, we have neglected viscous dissipation for simplicity. The last expression in parentheses of
(10) is zero using (8). To isolate

∂a j

∂t
, (10) is multiplied by an inertial mode u′∗

k
∝ e−iλk tΦ∗

k and
integrated over the entire fluid volume. Using the orthogonality of inertial modes, the evolution of
the coefficient ak is

∂ak

∂t
= −


j

a jei(λ j−λk)t

Φ∗

k

�
Ulib · ∇Φ j +Φ j · ∇Ulib + 2ϵ sin( f t)(ẑ ×Φ j)�dV. (11)

The libration driven non-axisymmetric base flow at frequency f with an azimuthal wavenumber
mlib = 2 may be written as Ulib ∝ e±i(mlibφ+ f t)Ulib(r, z) and the inertial mode as Φ j ∝ eim jφΦ j(r, z).
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Substituting these dependencies into (11) gives for ak

∂ak

∂t
∝


j

a jei(λ j−λk± f )t


ei(m j−mk±mlib)φ�Ulib · ∇Φ j + Φ j · ∇Ulib

+ 2ϵ sin( f t)(ẑ × Φ j)�dV, (12)

and for the coefficient a j

∂a j

∂t
∝


k

akei(λk−λ j± f )t


ei(mk−m j±mlib)φ�Ulib · ∇Φ j + Φ j · ∇Ulib

+ 2ϵ sin( f t)(ẑ × Φ j)�dV. (13)

For the growth of ak and a j to occur, the periodicity in time is removed by setting λ j − λk ± f = 0.
The integral over the fluid volume is only non-zero for m j − mk ± mlib = 0. These resonant condi-
tions are summarized as

|m j − mk | = mlib,

|λ j − λk | = f . (14)

Importantly, the coupled equations show that the interaction of one of the inertial modes u′
k, (u′

j)
with the base flow Ulib reinforces the other inertial mode u′

j, (u′
k). To solve for ak, we can take

the time derivative of (12) and plugging in (13) to get a second order temporal equation for ak that
admits exponential solutions.30,47 An analogous equation can be made for a j. Since inertial modes
exist within a frequency from [−2,2], the resonance condition in (14) allows for the existence of
elliptical instability in flows from | f | = 0 − 4.

E. Growth rates

While these conditions on the frequency and azimuthal wavenumber form a portion of the
global analysis of the LDEI, a complete analytical description of the inertial modes is still needed
for the large β of our present ellipsoidal geometry. One such method characterizes the inertial
modes by assuming a polynomial spatial description of space coordinates for the velocity and
decomposes the flow field into a set of basis vectors that satisfy the continuity equation and bound-
ary conditions.19,44,48 While this method may be extended to any polynomial degree n and thus
characterize any coupling of inertial modes, the analytical expressions involved quickly become
very complex (e.g., see npoly = 6 in Ref. 19), especially for small-scale modes.

Instead, local stability analyses are used to derive analytical expressions of the growth rate for
the LDEI. The first approach, using a Wentzel-Kramers-Brillouin (WKB)49 method for ϵ, β ≪ 1,
gives an upper bound for the growth rate by assuming that short wavelength plane wave perturba-
tions characterized by the wave vector k whose norm |k | ≫ 1 are advected along streamlines. The
inviscid growth rate σinv is found by solving the inviscid equations of motion to the first order in ϵ β

σinv =
16 + f 2

res

64
βϵ, (15)

where fres is a resonant forcing frequency.30 This method was confirmed in numerical simulations of
the LDEI in Ref. 32.

A second local WKB method uses a multiple scale analysis50 of a multipolar instability for any
ϵ in the limit that ϵ β ≪ 1. The inviscid growth rate solution is then given by

σinv =
16 + ( j fres)2

64
�
Jj−1(n∆ϕ) + Jj+1(n∆ϕ)�βϵ, (16)

where Jj is the Bessel function of the first kind with integer j and the resonance condition is written
as |λ1 − λ2| = j f .47 The degree n of multipolar deformation is taken to be n = mlib = 2 for the
ellipsoid. This method was confirmed in the multipolar stability analysis in a librating deformed
cylinder and sphere in Ref. 47. A general formula of the typical growth rate for each calculation of
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σinv is given for f around the resonant forcing frequency30

σTheory =


σ2

inv − ( fres − f )2 − K
√

E. (17)

The first term on the right hand side is the band of unstable frequencies about fres, and the second
term is the viscous dissipation in the Ekman boundary layer scaling as E1/2 where K is a viscous
dissipation factor typically between 1 and 10.

The goal of our work here is to quantitatively validate all of the theoretical predictions pre-
sented above: (1) the existence of the two-dimensional libration induced base flow in Eq. (5), (2) the
zonal flow generated by the non-linear self-interaction of the base flow correction in Eq. (6), and (3)
the three-dimensional destabilization via LDEI by making velocity measurements in the equatorial
plane of a full ellipsoidal container at Ekman, E = 2 × 10−5. Our work complements and extends
the three-dimensional numerical simulations of Ref. 32, performed at larger E = 5 × 10−4, and the
experimental analysis of Ref. 10 that made point velocity measurements in the half-ellipsoid.

III. METHOD

A. Experimental approach

The experimental setup used in the present work is adapted from the same apparatus used
previously in Refs. 7, 10, and 36. Librational forcing is replicated using two motors. The first, motor
rotates the turntable and super-structure at a constant angular velocity of Ω0 = 30 rpm correspond-
ing to E = 2 × 10−5. The second, which is directly coupled to the acrylic cavity, superimposes a
sinusoidal oscillation whose parameter range is [∆φ, f ] = [0.05 − 2.5,0.5 − 9]. The container used
for this experiment is made from two non-axisymmetric hemispheres machined from solid cast
acrylic cylinders and polished for optical clarity. The enclosed fluid cavity is ellipsoidal with a long
axis a = 127 mm and short axes b = c = 89 mm. Axis c is aligned with the axis of rotation and
the equatorial ellipticity is fixed in all our experiments at β = 0.34. A summary of experimental
parameters are in Table II of Appendix A.

To characterize meridional fluid motions, direct flow visualizations are performed by using a
laser light sheet, oriented along a vertical plane that passes through the container’s origin, to light
Kalliroscope™ particles suspended in the water. A Canon EOS 7D digital camera with a resolution
of 1080 × 720 pixels is positioned on the rotating table to the side of the container to record movies
of the meridional flow field at 60 frames per second.

To make quantitative measurements, a PIV technique is employed in the rotating reference
frame. Nearly spherical, 100 µm diameter Optimage™ particles of density (1 ± 0.02 g/cm3) are
added to the water. Four laser light sheets are fixed in the librating frame several millimeters above
the equatorial plane due to the presence of the joining seam for the two acrylic hemispheres. The
camera is fixed in the rotating frame, positioned overhead (i.e., Figure 2), in order to acquire
1080 × 720 resolution movies of the horizontal flow field. These movies are made only after solid
body rotation has been reached; they are initiated at the start of oscillatory motion and the record-
ings are typically 12 min in duration. The camera is connected directly to a computer in the rotating
frame, which, in turn, is controlled remotely from the lab frame.

Additionally, the camera settings were optimized and physical masks were implemented to
produce well-resolved movies that could yield accurate PIV results. These movies are separated into
their constituent frames and passed through an open source PIV software, DPIVSoft2010,51 that
has been successfully employed in previous studies.9,52 The velocity field for an entire equatorial
plane is resolved into a 23 x 40 grid with a typical spatial resolution of 8 mm. All velocity measure-
ments presented below have been non-dimensionalized using the long axis length, a, and the steady
rotational periodΩ−1

0 .
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FIG. 2. The libration experimental apparatus. The high definition camera is shown in top view position for PIV. The camera
is also used in side-view for Kalliroscope visualizations of meridional flows.

IV. RESULTS

A. Base flow

Figure 3(a) shows an instantaneous PIV vector field of the elliptically deformed base flow in
the fluid interior induced by the topographic coupling of the librating non-axisymmetric boundary
for f = 1.46, ϵ = 0.73. This comparison provides a qualitative match to the bulk interior inviscid
solution of the base flow29 in the steadily rotating reference frame shown in Figure 1(b). For a
quantitative comparison, Figure 3(b) shows a profile of the magnitude of the base flow velocity,
|U | (squares), along the X-axis (dashed black line in Figure 3(a)) compared to the theoretical base
flow (solid black line) in Figure 3(b) at the same phase of libration. The experimental results
in Figure 3(b) follow the base flow trend while the velocity magnitudes are slightly above the

FIG. 3. PIV data for f = 1.46, ϵ = 0.73. (a) Snapshot showing the libration induced base flow and (b) the snapshot profile
of the velocity magnitude |U | (squares) along the X -axis (dashed black line in (a) with the theoretical base flow from (5)
(black line)).

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  199.115.243.184 On: Tue, 16 Dec 2014 18:29:42



126601-8 Grannan et al. Phys. Fluids 26, 126601 (2014)

FIG. 4. (a) Zonal flow azimuthal velocity Uφ/ϵ
2 and (b) zonal flow radial velocity component Ur/ϵ

2 for ( f = 1.46; ϵ
= 0.73) normalized by ϵ2. (c) Radial profile of the normalized azimuthal velocity profile Uφ/ϵ

2. (d) Comparison of
spatially averaged ⟨|Uφ |/r ⟩ from r ∈ [0.1 ∼ 0.35] as a function of ϵ with theoretical values ⟨|Uφ |/r ⟩ = 0.156ϵ2 from
Busse (2010) (dashed black line) and ⟨|Uφ |/r ⟩ = 0.192ϵ2 from Sauret and Le Dizes (2013) (solid black line). Experimental
results (squares) for E = 2 × 10−5, f = 1.46; ϵ = 0.146, 0.292, 0.438, 0.584, 0.73, and 1.022 are provided in Table III of
Appendix B.

theoretical flow with an increase near the boundaries. This deviation is associated with the axisym-
metric flow generated through viscous non-linear interactions in the boundaries driving a zonal
flow.

B. Zonal flow

An analysis of the zonal flow is performed for fixed f = 1.46 and E = 2 × 10−5 for six values
of ϵ in the range [0.146 − 1.022]. We make use of continuous PIV measurements in the equatorial
plane averaged over at least 50 libration cycles. Figure 4(a) shows a time-averaged azimuthal velocity
Uφ/ϵ

2 contour plot. Since the system rotation is counter-clockwise, a mean zonal flow in the bulk
is clockwise (retrograde) in all cases studied. Figure 4(b) clearly shows the m = 2 structure in the
time-averaged radial velocity Ur/ϵ

2 reflecting the mlib = 2 ellipsoidal container.
Figure 4(c) shows a linear collapse of the radial profiles of Uφ when normalized by ϵ2 indicating

the presence of the theoretically predicted solid body rotation between r = [0.1 ∼ 0.35]whose magni-
tude scales as ϵ2. Theoretical zonal flow radial profiles are taken from Ref. 34 (black dotted-dashed
line) and from Ref. 26 (solid black line). Both theoretical flows include singularities around the critical
cylindrical radius53 sc =


1 − f 2/4 due to the exclusion of inertial modes for f ≤ 2. For a spherical

geometry, Ref. 34 assumes f , ϵ ≪ 1 with sc = 1 while Ref. 26 assumes that ϵ ≪ 1 and sc = 0.68 for
f = 1.46. Inertial modes generate internal shear layers whose affect on the zonal flow is still poorly
understood. Thus, solid body zonal flow is expected for r ≪ sc where the profiles are nearly linear
and may help explain the deviation of the experimental velocity profiles with the theoretical trends.

The linear collapse of the velocities for all cases studied between r = [0.1 ∼ 0.35] is indicative
of the presence of the theoretically predicted solid body rotation whose magnitude scales as ϵ2 such
that |Uφ | = αϵ2r where α is a prefactor. Figure 4(d) shows the average experimental values of the
⟨|Uφ |/r⟩ between r = [0.1 ∼ 0.35] at each ϵ . The same averaging is performed for the theoretical pro-
files yielding α = 0.156 from Ref. 34 (black dot-dash line) and α = 0.192 from Ref. 26 (solid black
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FIG. 5. (a) Laminar (open red squares) where I shows the case f = 1.46; ϵ = 0.292 is used in Figure 6(I). Turbulent cases
(blue-filled symbols) are found from f = 0 to f = 4 (dashed black line) and up to f = 4 + ϵβ (solid black line). The
non-dimensional velocity Roeq and associated Reeq for cases II-V are shown in Figure 6(II-V) while the associated flow
structures, shown in Figure 7(II-V), are used for LDEI confirmation. (b) A fine scale diagram of the box where turbulent
flows are distinguished by separate coupled modes associated with fres = 1.5 (blue squares) and fres ∼ 1.6 (blue triangles).

line). The experimental values scale with ϵ2 in good agreement with the theoretical values attained
in the spherical geometry despite the rather large ϵ and f , and the finite equatorial ellipticity of the
container used in the experiment. The scaling of the minimum flow velocity with ϵ2 is indicative of
the possibility for shear instability as shown for tidal forcing experiments.54 However, this instability
was shown to generate local turbulence and does not explain the bulk interior turbulence observed in
our experiments.

The universal quadratic scaling of the axisymmetric component of the zonal flow helps explain
the lack of dependence on the geometry found from the LDV measurements in Ref. 10. Those point
measurements, on time-average at a fixed radius, remove any non-axisymmetric component. Impor-
tantly, this data includes a transition from laminar to turbulent flow, determined through side view-
visualizations, that will be discussed in the Sec. IV C. This transition occurs around f = 1.46;
ϵ = 0.71 (vertical dashed line in Figure 4(d)).

C. LDEI

1. Libration regime diagram

By varying f ∈ [0 − 9] and maximizing the range of ϵ for each f , a regime diagram of
laminar (red open squares) and turbulent flows (closed blue diamonds) in the [ f , ϵ] parameter space
is constructed in Figure 5(a). Note that we focus on the range f ∈ [0 − 5] in Figure 5(a) since
no turbulent flows were found in the range f ∈ [5 − 9]. The rectangle in the regime diagram is
magnified in Figure 5(b) where, by fine variations in [ f , ϵ] space, two separate turbulent cases are
distinguished as well the threshold of stability. The verification of the LDEI is performed using
cases f = 1.46,1.5,1.6,2.4,4 with ϵ = 1.022,1.05,1.12,1.68,0.8, respectively. The experimental
data from Fig. 5 is provided in Appendix B: Table IV.

As the librational forcing frequency f and strength ϵ are varied, the libration driven flows are
separated by side-view direct visualization into laminar and turbulent flows. From equatorial PIV
analysis, measurements of the spatially averaged magnitude of the velocity are non-dimensionalized
using the long axis length a and steady rotational period Ω−1

0 . Thus, we define an equatorial Rossby
number, Roeq = ⟨|U |⟩, as the ratio of inertial to Coriolis forces. Additionally, for fixed E = 2 × 10−5,
an equatorial Reynolds number, Reeq = Roeq/E, provides a measure of equatorial flow turbulence.

A comparison of laminar and turbulent flows are shown in Figure 6 with Roeq on the left axis
and associated Reeq on the right axis using four measurements per libration cycle filtered over a
moving window average over 10 librational periods with a 90% overlap. In side-view, laminar flows
exhibit calm flow in the bulk interior and do not exhibit any vertical motions. Figure 6(I) shows the
steady flow at f = 1.46; ϵ = 0.292 with no clear growth phase.
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FIG. 6. Time evolution of the non-dimensional spatially averaged velocity Roeq = ⟨|U |⟩ and associated Reeq = Roeq/E

using four points per libration cycle over 500 librational periods where τlib = 2π/ωlib. The data is filtered using a
moving average window over 10 libration cycles with a 90% overlap. I. The laminar case ( f = 1.46; ϵ = 0.292). The
intermittently turbulent flows of II. ( f = 1.46; ϵ = 1.022) and III. ( f = 1.6; ϵ = 1.12), and saturated turbulent flows of IV.
( f = 2.4; ϵ = 1.68) and V. ( f = 4; ϵ = 0.8).

Turbulent flows exhibit three-dimensional motions with either intermittent or saturated turbu-
lence in the bulk interior. First, intermittently turbulent flows, as seen in side-view and from
studies Refs. 10 and 32, are characterized by the growth of the LDEI until the flow collapses
after some time, leading to relaminarization and the re-establishment of the base flow and, by
extension, the LDEI itself becomes cyclic. Figure 6(II) and 6(III) show the intermittent turbu-
lence in cases f = 1.46; ϵ = 1.022 and f = 1.6; ϵ = 1.12. After an initial growth phase, the inter-
mittently turbulent cases show large cycles of growth and collapse. For these two cases Roeq

= [0.249,0.299] with variances [2.3 × 10−3,2.6 × 10−3]. The strength of the resulting turbulence is
Reeq = [1.2 × 104,1.4 × 104] ≫ 1 emphasizing the strong turbulence generated.

Figure 6(IV) and 6(V) show the saturated turbulence in cases f = 2.4; ϵ = 1.68, and f = 4; ϵ
= 0.8. For these cases, after an initial growth phase, the cycles are smaller than for intermittent turbu-
lence and side-view visualizations show that once the bulk turbulence is initiated, no clear cycles are
visible. As such, the corresponding variances in these cases are an order of magnitude smaller [3.05
× 10−4,1.88 × 10−4] while the strong turbulence persists with Reeq = [1.65 × 104,6.25 × 103] ≫ 1.
However, a comparison of intermittent and saturated turbulent flows in Figures 6(III) and 6(V)
shows the existence of qualitatively similar cycles above the base state despite the clear distinction
in side-view visualization discussed. A more quantitative distinction between flows as well as the
long term turbulent evolution will be the subject of future studies. Values for Roeq and the variance
for each case studied are given in Appendix B: Table III.

The existence of these turbulent flows span from f = 0 to f = 4 (dashed vertical line in Figure
5(a)) in agreement with the range provided by the resonant conditions, (14), for the LDEI. Specif-
ically, even if a direct resonant forcing was to exist, there can be no direct forcing mechanism
causing excitations in the range f ∈ [2 − 4]. As f is increased, the growth rate increases following
the WKB formulation of (17) and thus the stability threshold separating laminar and turbulent flows
decreases to a minimum at f = 4. Figure 5(b) shows a finer scan of the stability threshold around
f = 1.46 with an intermingling of laminar and turbulent flows. By comparing the symmetry of the
excited flow at f = 1.46, discussed further in the Sec. IV C 2, we distinguish separate symmetry
properties from the LDEI of other cases around fres∼1.6 and track the excited LDEI for f = 1.46
to a minimum at f = 1.5. Since the growth rate in (17) attains a maximum when f = fres, the
associated stability threshold also attains a local minimum. Thus, we find that the LDEI associated
with f = 1.46 has its source at fres = 1.5. As a consequence of the rather large Ekman number used
in our experiment, only selected resonances can occur and, as the Ekman number is reduced, more
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FIG. 7. Direct side-view visualization snapshots of the turbulent flow cases indicated in Figure 5(a) and Figure 6(II-V) with
II. ( f = 1.46, 1.5; ϵ = 1.022, 1.05) III. ( f = 1.6; ϵ = 1.12), IV. ( f = 2.4; ϵ = 1.68), and V. ( f = 4; ϵ = 0.8). Representative
inertial modes, Λn,m,k are taken from polar flattened spheroid calculations in Ref. 56. Movies for these individual cases are
available as a supplement to this work online. (Multimedia view) [URL for II: http://dx.doi.org/10.1063/1.4903003.1] [URL
for III: http://dx.doi.org/10.1063/1.4903003.2] [URL for IV: http://dx.doi.org/10.1063/1.4903003.3] [URL for V: http://dx.
doi.org/10.1063/1.4903003.4]

resonances may be excited leading to transition from the intermingling of laminar and turbulent
states to a sharper boundary between the two as seen in studies of tidal instability in Ref. 55.

Furthermore, excitations beyond f = 4 are associated with a higher order solutions in ϵ β at
the large ellipticity β of the container and the large librational forcing ϵ .49 The large ϵ and β
limit of instability is f = 4 + ϵ β + O(ϵ2β2) and the black line associated with the limit is shown
in Figure 5(a) as ϵ = ( f − 4)/β and is confirmed by the data. Additionally, the existence of many
novel turbulent flows including f = 1, ϵ = 1, builds upon the previous experimental work in the
half-ellipsoid of Ref. 10 that prevented the growth of turbulent flows via elliptical instability of
equatorially antisymmetric inertial modes.

2. Mode coupling

Here, we seek to demonstrate that the presence of bulk turbulent flow in our system is due to the
LDEI, i.e., to the resonance of two inertial modes with a libration induced base flow. To do so, we
combine several techniques including the identification of the inertial modes from side-view direct
visualizations using Kalliroscope, and via Fourier analysis of filtered reconstructions of the velocity
fields and growth rate measurements from the equatorial plane PIV data. Figure 7 (Multimedia
view) shows snapshots from side-view movies for four of the distinct modes observed during the
amplitude growth of the inertial mode. [Movies for these cases are available in the caption to Fig. 7
as a supplement online] We use spheroidal inviscid modes, Λn,m,k, from Ref. 56 to both look for
modes with similar flow structures and symmetries and find the simplest mode couplings. Here, n is
the degree of the associated Legendre polynomial that combines the radial and axial wavenumbers,
m is the azimuthal wavenumber for the mode, and k represents the kth eigenfrequency. The general
schematic for the dominant modes with the largest frequency is superimposed in white on Figure 7.

The clearest determination of the mode and frequency coupling is provided using the f = 4
case at the extreme range of the instability where we expect the participating modes with eigenfre-
quencies |λ1,2| = f /2 = 2. First, the side-view visualization in Figure 7(V) shows a large number
of structures stacked horizontally as might be expected from the inertial wave dispersion relation
for |λ1,2| = 2 where the wave vector is parallel to the rotation axis. Second, Figure 8 shows the
power spectrum of the velocity magnitude for f = 4 where the strongest peaks are associated with
the librational forcing frequency at f = 4, steady zonal flow around f = 0, and the inertial modes
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FIG. 8. Power spectrum of the velocity magnitude for f = 4; ϵ = 0.8. (a) Steady component with snapshot of filtered steady
component of flow. (b) Snapshot of the filtered m1,2 = |1| inertial mode at half the driving frequency λ1,2 = | f /2| satisfying
the resonance conditions. (c) The filtered snapshot of the librational base flow at the driving frequency f .

at |λ1,2| = f /2. The filtered reconstruction at this frequency shows that the base flow in Figure 8(c)
is in good qualitative agreement with the libration driven base flow of Figure 1(b). A retrograde
zonal flow snapshot is reconstructed around the zonal wind frequency, f = 0, in Figure 8(a). Finally,
the flow in Figure 8(b), filtered around f = 2, is identified as an |m| = 1 inertial mode and the side
view helps us identify the spherical modes Λ8,1,7 and Λ8,−1,7 that exhibit a similarly large vertical
wavenumber and |m| = 1 near the equator.

For the LDEI in the f = 1.46,1.5,1.6,2.4 cases, such a complete confirmation of the resonance
conditions is more complicated for several reasons. Figure 9(a) shows the temporal fast Fourier
transform (FFT) for the case of f = 1.5 where two distinct inertial mode frequencies are found
only by carefully choosing the area of the PIV field to perform the FFT. These distinct frequencies
are found around λ1 ∼ 1.62 close to the driving frequency f and the second inertial mode with

FIG. 9. Power spectrum of the velocity magnitude for (a) f = 1.5; ϵ = 1.05 and (b) f = 1.6; ϵ = 1.12 showing the most
prominent peaks at the forcing frequency f and for the steady component f = 0.
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FIG. 10. Comparison of snapshots for (a) the equatorial plane of the theoretical spherical inviscid mode Λ3,1,2 and (b) the
filtered reconstruction of the experimental equatorial flow around the driving frequency with the even m = 2 symmetry
removed for ( f = 1.6, ϵ = 1.12).

frequency λ2 ∼ 0.12 close to the zonal wind frequency. Figure 7(II) shows that the mode excited
around f = 1.46 and f = 1.5 is symmetric across both the equator and the meridional axis. The
dominant excited flow structures, as seen from the vertical cross-section, are qualitatively similar
to the mode Λ6,2,1 with the frequency closer to the driving frequency and azimuthal wavenumber
m = 2. A second possible mode, coupled to form the LDEI, is similar to the inertial mode, Λ8,4,2,
with a frequency close to zero with m = 4. This low frequency mode is not clear in the Kalliroscope
movies that only show strong shear structures. Filtered flow reconstruction around the driving fre-
quency cannot distinguish an m = 2 or m = 4 mode because of its superimposition with the base
flow driven by the m = 2 librational forcing. At the low frequency, an inertial mode cannot be
clearly distinguished from the zonal flow. However, further arguments in favor of the LDEI triadic
resonance in this case will be given below using the growth rate calculations.

For the f = 1.6 case, analysis of the FFT spectrum in Figure 9(b) does not yield any additional
peak aside from the zonal flow and forcing frequency. The side-view visualization in Figure 7(III)
shows that the coupled modes are symmetric across the equator and anti-symmetric across the
meridian. This description is similar to m = 1 inviscid modes Λ3,1,2 near the forcing frequency
and the possible coupling of the m = 3 mode, Λ5,3,1, closer to zero. Since the librational forcing,
m = 2, is even and the proposed mode coupling is odd, the even symmetry is subtracted around the
forcing frequency indeed revealing an m = 1 mode as shown in Figure 10. Figure 10(a) shows the
theoretical spheroidal mode Λ3,1,2 while Figure 10(b) shows the subtraction of the even symmetry
around f = 1.6 in the PIV data revealing a separate odd symmetry associated with the excited
inertial mode. The similarity between the two images provides a qualitative verification for m = 1
inertial mode near the driving frequency. No additional low frequency mode can be distinguished
from the steady zonal flow.

Finally, side-view visualizations indicate that the triadic resonance at f = 2.4 are due to a
coupling of spinover modes. Each mode is characterized by rotation about an axis perpendicular
to the rotation axis as indicated in Figure 7(IV). Because the velocity at the equator is dominated
by vertical motion, the PIV data taken of the horizontal velocity does not provide a clear insight
into the excited spinover mode coupling. The spinover inviscid mode descriptions Λ2,1,1 and Λ2,−1,1
provide a qualitative analytical structural comparison with Figure 7(III), while a polynomial decom-
position of the spinover mode in Ref. 44 gives the inviscid inertial mode frequencies at |λ1,2| = 1.15,
yielding fres = 2.3. This value is close to the observed frequency f = 2.4.

In general, we find that the coupling of a mode near the libration forcing frequency with a
low frequency mode is always associated with the intermittent turbulence whose velocity magnitude
is shown in Figure 6(II) and 6(III) while the coupling of inertial modes with frequencies ± f /2,
including the spinover mode coupling, is associated with saturated turbulence from Figure 6(IV)
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TABLE I. Growth rates for the LDEI in f = 1.46, 1.5, 1.6; ϵ = 1.022, 1.05, 1.12 taking fres and ϵThresh from the regime
diagram in Figure 5(b). σData is extracted from a fit of the spatially averaged magnitude of velocity ⟨|U |⟩ filtered through a
moving window average over 10 libration cycles with an overlap of 90%. (a) The comparison with the WKB stability analysis
from (15). (b) The comparison with the asymptotic multipolar stability analysis from (16).

f ϵ fres ϵThresh KThresh(a) σTheory
σData

(a) KThresh(b) σTheory
σData

(b)
1.46 0.876 1.5 0.69-0.73 12.0-13.1 0.95-1.2 7.3-9.2 0.59-1.2
1.46 1.022 1.5 0.69-0.73 12-13.1 0.65-1.3 7.1-7.8 0.83-1.1
1.5 1.05 1.5 0.61-0.64 13.2-13.9 0.95-1.2 8.3-9.9 0.74-0.96
1.6 1.12 1.6 0.48-0.61 10.9-13.5 0.71-1.0 3.4-5.1 0.55-0.78

and 6(V). Furthermore, the coupling of large scale inertial modes for f = 1.46 and f = 1.6 are
promoted by the large Ekman number in our experiment. As the Ekman number is decreased toward
planetary values, more resonance couplings excite smaller scale modes that are the most unstable
through the WKB analysis of the growth rates.55,57 In this sense, the small scale inertial modes with
frequencies ± f /2 excited by f = 4 case may be more relevant to planetary applications.

3. Growth rates

To verify the LDEI growth rate, we focus on the f = 1.46,1.5 and f = 1.6 cases where the
excited modes have non-zero horizontal velocities and the Fourier analysis is unconvincing. The
regime diagram in Figure 5 provides upper and lower bounds for the stability threshold at each
f . A fine regime diagram of the boxed-in area is shown in Figure 5(b). Using side-view visual-
izations, the laminar and the separated turbulent cases associated with f = 1.46,1.5 and f = 1.6
can be distinguished. Finding the threshold in the fine regime diagram at f = 1.5 verifies that the
resonant frequency associated with the f = 1.46,1.5 is fres = 1.5 around ϵ thresh ∈ [0.61 − 0.64] and
ϵ thresh ∈ [0.69 − 0.73] for f = 1.46. The threshold around the resonant frequency for f = fres = 1.6
is ϵ thresh ∈ [0.48 − 0.61].

At the threshold of instability where σ = 0, by using σinv( fres, ϵ thresh) in (15), we solve for the
dissipation factor K to get a range for Kthresh = K . By plugging this range into (17), a range of
values for σtheory is created. Separately, σData is calculated after filtering spatially averaged PIV
velocity magnitude of four points for every libration cycle using running average over 10 libration
cycles with a 90% overlap. To compare the theoretical growth rate with the data, the growth phase is
fitted to an equation of the form ⟨|U |⟩ = A + B eσData(t−t0) where A and B are fitting coefficients.

Table I shows the value range σTheory/σData and its range for f = 1.46,1.5,1.6 using (a) a local
WKB analysis using plane wave perturbations of (15) and (b) a separate multiple scale asymptotic
WKB analysis using (16). This finds good agreement between the theoretical growth rates using the
local approaches and the measured growth rates for f = 1.46, f = 1.5, and f = 1.6 where for per-
fect agreement σTheory/σData = 1 despite discrepancies that result since neither ϵ ≪ 1 nor ϵ β ≪ 1
holds at the large experiments values used. The error associated with the growth rate ratios stems
from the noise from PIV signal in measuring σData and in the determination of ϵ thresh using Figure
5(b) that is used to deduce Kthresh.

V. DISCUSSION AND CONCLUDING REMARKS

In the present experimental study, we have used a combination of direct flow visualizations and
PIV measurements in the equatorial plane to prove the existence of the libration driven elliptical
instability, LDEI, as the cause of intermittent and saturated space filling turbulence in the interiors
of an ellipsoidal container. To do so, we have explored the flow regimes found in longitudinal libra-
tion in the (f,ϵ)-parameter space at a fixed Ekman number E = 2 × 10−5. Our results confirm that
the librationally induced base flow is established in the bulk and is in good quantitative agreement
with the theoretical base flow when transformed into the steadily rotating frame. We have been able
to quantitatively distinguish between laminar flows and intermittent or saturated turbulent flows in
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the bulk interior. By analyzing the zonal flow induced by the non-linear interaction of the librational
forcing, we recover a |Uφ | ∼ ϵ2 scaling behavior. We have found the presence of turbulent fluid
motions from f ∈ [0 − 4] in accordance with the theoretical limits of the resonance condition for the
LDEI. By choosing the most representative examples of the turbulent flows, we have used the f = 4
case to verify the spatial and temporal resonance conditions and the f = 1.46,1.5,1.6 to verify the
theoretical growth rate calculations.

While we have identified the essential characteristics of LDEI, several important questions
remain. The first open question is the origin of the difference between the onset of intermittent and
saturated turbulence. The analysis indicates that intermittently turbulent flows are generated through
a LDEI having inertial modes near driving frequency, f and at a low frequency inertial mode that
may be obscured by the zonal flow. For cases where saturated turbulence persists, the participating
inertial modes have frequencies at ± f /2. Secondly, due to current experimental difficulties, we
have only measured the velocity in the nearly equatorial plane and, thus, it is not possible to fully
measure the energy associated with turbulent three-dimensional motion.

Although our experimental parameters are far from planetary values, we have confirmed the
characteristics of the LDEI mechanism by compensating for large Ekman number with the exag-
gerated equatorial ellipticity of our experimental container. As such, we may extrapolate from
our current work to planetary settings using the growth rate formula (17) and planetary values to
provide a critical value for the equatorial ellipticity needed to generate a planetary LDEI follow-
ing Ref. 32. By requiring a positive growth rate and assuming perfect resonance f = fres, (17) is
rewritten as βc > 64K

√
E/(16 + f 2

res)ϵ . Using parameters for longitudinal libration where f = 1,
E ∼ 10−14, ϵ ∼ 10−4 and a minimum dissipation factor K = 1, the critical ellipticity is βc > 10−3

indicating that Io, Europa, and telluric exoplanets CoRoT-7b, GJ1214b, and 55CnCe can support
turbulent interior fluid motions generated by LDEI.30

Furthermore, we find a lower bound on the amount of rotational energy injected into the
fluid layer through equatorial plane measurements at E = 2 × 10−5. For the saturated turbulence
driven in f = 4; ϵ = 0.8, from Figure 6(V), the percentage of rotational energy injected into the
fluid is Roeq

2
/2 ∼ 1% generating strong turbulence where Reeq = 6.25 × 103. For celestial bodies

where E ∼ 10−14, only a small percentage of the tremendous amounts of spin-orbital rotational
energy must be transmitted into the fluid layer to drive strongly turbulent motions. These turbulent
flows can lead to energy dissipation58 that effects the orbital evolution of these bodies55 and may
drive dynamo processes. Convectively driven planetary magnetic field generation suffers from tight
budget constraints.59,60 Such energetic limitations become more severe in smaller bodies.61 How-
ever, our results suggest that mechanically-forced orbital systems can harvest significant amounts
of spin-orbital energy to drive turbulent processes without the need for convection. Together with
recent numerical findings showing that mechanically forced instabilities can drive dynamos in pre-
cessing spheres,18 spheroids,19 in longitudinally-librating systems,20 and in tidal forced systems,21

our results support the possibility that mechanical forcing leads to dynamo generation in smaller
bodies, like the early Moon62 and asteroids,63,64 explaining data that do not presently fit into the
standard model for convective dynamos.
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APPENDIX A: EXPERIMENTAL PARAMETERS

TABLE II. Physical and dimensionless parameter definitions and their range of values in the experiment.

Parameter Definition Experiment

a Long axis along x̂ 127 mm
b Short axis along ŷ 89 mm
c Short axis along ẑ 89 mm
Ω0/2π Mean rotation frequency 0.5 Hz
ωlib/2π Libration frequency 0.25 - 5.0 Hz ±0.1%
ν Kinematic viscosity 10−6 m2s−1

E Ekman number ν/(Ω0a
2) 2 × 10−5

f ωlib/Ω0 0.5 - 9.0
∆φ Angular displacement 0.5 - 2.5 rad
ϵ (∆φ) f 0.06 - 2.4
β a2−b2

a2+b2 0.34
c c√

(a2+b2)/2
0.812

APPENDIX B: EXPERIMENTAL DATA

TABLE III. Mean velocity magnitude and variance for laminar and turbulent flows and zonal flow data from Figure 4(d).

f ϵ ⟨|Uφ |/r ⟩ ⟨|U |⟩ = Roeq ⟨|U |⟩var Bulk Interior Flow

1.46 0.146 0.005 0.025 2.04 × 10−6 Laminar
1.46 0.292 0.02 0.057 6.95 × 10−5 Laminar
1.46 0.438 0.05 0.152 8.62 × 10−4 Laminar
1.46 0.584 0.08 0.2459 8.86 × 10−4 Laminar
1.46 0.73 0.15 0.1931 7.44 × 10−4 Intermittent
1.46 0.876 — 0.1234 1.00 × 10−3 Intermittent
1.46 1.022 0.3 0.2489 2.3 × 10−3 Intermittent
1.5 1.05 — 0.1681 1.40 × 10−3 Intermittent
1.6 1.12 — 0.299 2.6 × 10−3 Intermittent
2.4 1.68 — 0.3305 3.05 × 10−4 Saturated
4.0 0.8 — 0.125 1.88 × 10−4 Saturated

TABLE IV. Experimental data from Figure 5 laminar and turbulent flows. Laminar, intermittent turbulence, and saturated
turbulence are determined through side-view direct visualization.

f ϵ Bulk Interior Flows f ϵ Bulk Interior Flows f ϵ Bulk Interior Flows

1 0.7 Laminar 1.38 0.58 Laminar 2 1.2 Intermittent
1 0.8 Laminar 1.3 0.58 Laminar 2 0.6 Intermittent
1 0.9 Laminar 1.3 0.46 Laminar 2 1 Intermittent
1.2 0.84 Laminar 1.38 0.46 Laminar 3 0.3 Saturation
1.2 0.96 Laminar 1.46 0.46 Laminar 3.5 0.35 Saturation
1.2 1.08 Laminar 1.46 0.64 Laminar 4 0.4 Saturation
1.2 1.2 Laminar 1.42 0.73 Laminar 3.5 0.175 Saturation
1.46 0.876 Laminar 1.54 0.73 Laminar 4.2 0.84 Saturation
1.46 0.584 Laminar 1.44 0.73 Laminar 4.4 1.32 Saturation
1.46 0.438 Laminar 1.46 0.69 Laminar 0.5 1.25 Saturation
1.46 0.292 Laminar 1.54 0.69 Laminar 4 0.8 Saturation
1.46 0.146 Laminar 1.54 0.64 Laminar 3 0.6 Saturation
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Table IV. (Continued.)

f ϵ Bulk Interior Flows f ϵ Bulk Interior Flows f ϵ Bulk Interior Flows

1.6 0.48 Laminar 1.48 0.73 Laminar 2.4 1.992 Saturation
1.6 0.32 Laminar 1.48 0.69 Laminar 2.4 2.4 Saturation
1.6 0.16 Laminar 1.34 0.876 Laminar 2.4 0.48 Saturation
2 0.4 Laminar 1.34 0.82 Laminar 2.4 1.2 Saturation
4 0.08 Laminar 1.38 0.82 Laminar 0.5 1.44 Saturation
3.5 0.07 Laminar 1.42 0.78 Laminar 0.5 1.1 Saturation
3 0.06 Laminar 1.6 0.48 Laminar 0.5 1 Saturation
3 0.15 Laminar 1.52 0.69 Laminar 0.5 0.9 Saturation
4.2 0.21 Laminar 1.52 0.64 Laminar 2 0.8 Intermittent
4.2 0.42 Laminar 1.56 0.64 Laminar 0.74 0.82 Saturation
4.4 0.88 Laminar 1.58 0.64 Laminar 0.74 0.9768 Saturation
4.4 0.44 Laminar 1.38 0.64 Laminar 1.5 1.05 Intermittent
4.4 0.22 Laminar 1.48 0.64 Laminar 1.46 0.73 Intermittent
4.6 0.23 Laminar 1.38 0.78 Laminar 2 1.2 Intermittent
5 0.25 Laminar 1.48 0.61 Laminar 1.5 0.73 Intermittent
5.5 0.275 Laminar 1.46 0.58 Laminar 1.38 0.876 Intermittent
6 0.3 Laminar 1.5 0.61 Laminar 1.5 0.64 Intermittent
6.6 0.33 Laminar 1.52 0.61 Laminar 1.5 0.69 Intermittent
7 0.35 Laminar 1.56 0.61 Laminar 1.46 0.876 Intermittent
8 0.4 Laminar 2.4 0.12 Laminar 1.5 0.82 Intermittent
9 0.45 Laminar 2.4 0.24 Laminar 1.42 0.876 Intermittent
5 0.5 Laminar 2.6 0.442 Saturation 1.5 0.876 Intermittent
6 0.6 Laminar 2.76 0.4692 Saturation 1.42 0.82 Intermittent
7 0.7 Laminar 3 0.51 Saturation 1.46 0.78 Intermittent
5 1 Laminar 3.5 0.595 Saturation 1.5 0.78 Intermittent
0.5 0.5 Laminar 4 0.68 Saturation 1.52 0.73 Intermittent
0.5 0.45 Laminar 1.46 1.022 Intermittent 1.5 0.73 Intermittent
0.5 0.4 Laminar 1.6 1.12 Intermittent 1.38 0.876 Intermittent
0.5 0.35 Laminar 2 1.4 Intermittent 1.5 0.64 Intermittent
2.4 0.12 Laminar 2.4 1.68 Saturation 1.5 0.69 Intermittent
2.4 0.24 Laminar 1.8 1.26 Intermittent 1.46 0.876 Intermittent
0.74 0.675 Laminar 1 1 Intermittent 1.5 0.82 Intermittent
1.38 0.73 Laminar 1.46 0.876 Intermittent 1.42 0.876 Intermittent
1.3 0.73 Laminar 1.6 0.96 Intermittent 1.5 0.876 Intermittent
1.26 0.73 Laminar 1.6 0.8 Intermittent 1.42 0.82 Intermittent
1.5 0.58 Laminar 1.6 0.64 Intermittent ... ... ...
2.4 0.12 Laminar 4 0.16 Intermittent ... ... ...
2.4 0.24 Laminar 1.46 0.73 Intermittent ... ... ...

1 R. Comstock and B. Bills, “A solar system survey of forced librations in longitude,” J. Geophys. Res. : Planets 108, 1–13,
doi: 10.1029/2003JE002100 (2003).

2 J. Margot, S. Peale, R. Jurgens, M. Slade, and I. Holin, “Large longitude libration of Mercury reveals a molten core,” Science
316, 710–714 (2007).

3 J. Anderson, W. Sjogren, and G. Schubert, “Galileo gravity results and the internal structure of Io,” Science 272, 709–712
(1996).

4 G. Schubert, J. Anderson, T. Spohn, and W. Mckinnon, “Interior composition, structure, and dynamics of the Galilean
satellites,” in Jupiter: The Planet, Satellites, and Magnetosphere (Cambridge University, 2004).

5 J. Anderson, G. Schubert, R. Jacobson, E. Lau, W. Moore, and W. Sjogren, “Europa’s differentiated internal structure:
Inference from four Galileo encounters,” Science 281, 2019–2022 (1998).

6 J. Anderson, R. Jacobson, T. McElrath, W. Moore, G. Schubert, and P. Thomas, “Shape, mean radius, gravity field, and
interior structure of Callisto,” Icarus 153, 157–161 (2001).

7 J. Noir, F. Hemmerlin, J. Wicht, S. Baca, and J. M. Aurnou, “An experimental and numerical study of librationally driven
flow in planetary cores and subsurface oceans,” Phys. Earth Planet. Inter. 173, 141–152 (2009).

8 M. Calkins, J. Noir, J. Eldredge, and J. Aurnou, “Axisymmetric simulations of libration-driven fluid dynamics in a spherical
shell geometry,” Phys. Fluids 22, 1–12 (2010).

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  199.115.243.184 On: Tue, 16 Dec 2014 18:29:42

http://dx.doi.org/10.1029/2003JE002100
http://dx.doi.org/10.1126/science.1140514
http://dx.doi.org/10.1126/science.272.5262.709
http://dx.doi.org/10.1126/science.281.5385.2019
http://dx.doi.org/10.1006/icar.2001.6664
http://dx.doi.org/10.1016/j.pepi.2008.11.012
http://dx.doi.org/10.1063/1.3475817


126601-18 Grannan et al. Phys. Fluids 26, 126601 (2014)

9 A. Sauret, D. Cébron, C. Morize, and M. Le Bars, “Experimental and numerical study of mean zonal flows generated by
librations of a rotating spherical cavity,” J. Fluid Mech. 662, 260–268 (2010).

10 J. Noir, D. Cébron, M. Le Bars, A. Sauret, and J. M. Aurnou, “Experimental study of libration-driven flows in non-
axisymmetric containers,” Phys. Earth Planet. Inter. 204-205, 1–10 (2012).

11 M. Calkins, J. Noir, J. Eldredge, and J. M. Aurnou, “The effects of boundary topography on convection in Earth’s core,”
Geophys. J. Inter. 189, 799–814 (2012).

12 B. Deleplace and P. Cardin, “Viscomagnetic torque at the core mantle boundary,” Geophys. J. Inter. 167, 557–566 (2006).
13 B. Buffett and U. Christensen, “Magnetic and viscous coupling at the core-mantle boundary: Inferences from observations

of Earth’s rotation,” Geophys. J. Inter. 171, 145–152 (2007).
14 P. Roberts and J. M. Aurnou, “On the theory of core-mantle coupling,” Geophys. Astrophys. Fluid Dyn. 106, 157–230

(2012).
15 A. Kagayama and T. Sato, “Computer simulation of a magnetohydrodynamic dynamo II,” Phys. Plasmas 2, 1421–1431

(1995).
16 G. Glatzmeier and P. Roberts, “Rotation and magnetism of Earth’s inner core,” Science 274, 1887–1891 (1996).
17 G. Schubert and K. Soderlund, “Planetary magnetic fields: Observations and models,” Phys. Earth Planet. Inter. 187, 92–108

(2011).
18 A. Tilgner, “Precession driven dynamos,” Phys. Fluids 17, 034104 (2005).
19 C. Wu and P. Roberts, “On a dynamo driven by topographic precession,” Geophys. Astrophys. Fluid Dyn. 13, 467–501

(2009).
20 C. Wu and P. Roberts, “On a dynamo driven topographically by longitudinal libration,” Geophys. Astrophys. Fluid Dyn.

107, 20–44 (2013).
21 D. Cébron and R. Hollerbach, “Tidally driven dynamos in a rotating sphere,” Astrophys. J., Lett. 789, L25 (2014).
22 K. Aldridge, “An experimental study of axisymmetric inertial oscillations of a rotating sphreical container,” Ph.D. thesis

(Massachusetts Institute of Technology, 1967).
23 K. Aldridge and A. Toomre, “Axisymmetric inertial oscillation of a fluide in a rotating spherical container,” J. Fluid Mech.

37, 307–323 (1969).
24 K. Zhang, K. Chan, X. Liao, and J. M. Aurnou, “The non-resonant response of fluid in a rapidly rotating sphere undergoing

longitudinal libration,” J. Fluid Mech. 720, 212–235 (2013).
25 C.-Y. Wang, “Cylindrical tank of fluid oscillating about a state of steady rotation,” J. Fluid Mech. 41, 581–592 (1970).
26 A. Sauret and S. Le Dizes, “Libration-induced mean flow in a spherical shell,” J. Fluid Mech. 718, 181–209 (2013).
27 K. Chan, X. Liao, and K. Zhang, “Simulations of fluid motions in ellipsoidal planetary cores driven by longitudinal libration,”

Phys. Earth Planet. Inter. 187, 139–403 (2011).
28 K. Zhang, K. Chan, and X. Liao, “On fluid motion in librating ellipsoids with moderate equatorial eccentricity,” J. Fluid

Mech. 673, 468–479 (2011).
29 R. Kerswell and W. Malkus, “Tidal instability as the source for Io’s magnetic signature,” Geophys. Res. Lett. 25, 603–606,

doi: 10.1029/98GL00237 (1998).
30 D. Cébron, M. Le Bars, C. Moutou, and P. Le Gal, “Elliptical instability in terrestrial planets and moons,” Astron. Astrophys.

539, A78 (2012).
31 W. V. R. Malkus, “An experimental study of global instabilities due to tidal(elliptical) distortion of a rotating eloastic cyl-

inder,” Geophys. Astrophys. Fluid Dyn. 48, 123–134 (1989).
32 D. Cébron, M. Le Bars, J. Noir, and J.M. Aurnou, “Libration driven elliptical instability,” Phys. Fluids 24, 061703 (2012).
33 M. Le Bars, D. Cébron, and P. Le Gal, “Flows driven by libration, precession, and tides,” Annu. Rev. Fluid Mech. 47,

163–194 (2015).
34 F. Busse, “Mean zonal flows generated by librations of a rotating spherical cavity,” J. Fluid Mech. 650, 505–512 (2010).
35 F. Busse, “Zonal flow induced by longitudinal librations of a rotating cylindrical cavity,” Phys. D 240, 208–211 (2011).
36 J. Noir, M. Calkins, M. Lasbleis, J. Cantwell, and J. M. Aurnou, “Experimental study of libration-driven zonal flows in a

straight cylinder,” Phys. Earth Planet. Inter. 182, 98–1106 (2010).
37 A. Sauret, D. Cébron, M. Le Bars, and S. Le Dizes, “Fluid flows in a librating cylinder,” Phys. Fluids 24, 1–23 (2012).
38 A. Sauret, “Forçage harmonique d’Écoulements en rotation: Vents zonaux, ondes inertielles et instabilités,” Ph.D. thesis

(Universite Aix-Marseille, 2012).
39 H. Greenspan, The Theory of Rotating Fluids (Cambridge University Press, 1969).
40 A. Tilgner, “8.07 - rotational dynamics of the core,” in Treatise on Geophysics, edited by G. Schubert (Elsevier, 2007),

pp. 207–243.
41 R. Kerswell, “Elliptical instabilities of stratified, hydromagnetic waves,” Geophys. Astrophys. Fluid Dyn. 72, 107–144

(1993).
42 W. Herreman, “Instabilité ellitpiquesous champ magnétique et dynamo d’ondes inertielles,” Ph.D. thesis (Aix-Marseille

Université, 2009).
43 K. Zhang, X. Liao, and P. Earnshaw, “On inertial and oscillations in a rapidly rotating spheroid,” J. Fluid Mech. 504, 1–40

(2004).
44 S. Vantieghem, “Inertial modes in a rotating triaxial ellipsoid,” Proc. R. Soc. A 470, 20140093 (2014).
45 M. Rieutord and L. Valdettaro, “Inertial waves in a rotating spherical shell,” J. Fluid Mech. 341, 77–99 (1997).
46 M. Rieutord, B. Georgeot, and L. Valdettaro, “Inertial waves in a rotating spherical shell: Attractors and asymptotic spec-

trum,” J. Fluid Mech. 435, 103–144 (2001).
47 D. Cébron, S. Vantieghem, and W. Herreman, “Libration driven multipolar instabilities,” J. Fluid Mech. 739, 502–543

(2014).
48 E. Gledzer and V. Ponomarev, “Instability of bounded flows with elliptical streamlines,” J. Fluid Mech. 240, 1–30 (1992).
49 S. Le Dizes, “Three-dimensional instability of a multipolar vortex in a rotating flow,” Phys. Fluids 12, 2762–2774 (2000).
50 J. K. Kevorkian and J. D. Cole, Multiple Scale and Singular Perturbation Methods, Applied mathematical sciences (Springer

New York, 1996), Vol. 114.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  199.115.243.184 On: Tue, 16 Dec 2014 18:29:42

http://dx.doi.org/10.1017/S0022112010004052
http://dx.doi.org/10.1016/j.pepi.2012.05.005
http://dx.doi.org/10.1111/j.1365-246X.2012.05415.x
http://dx.doi.org/10.1111/j.1365-246X.2006.03180.x
http://dx.doi.org/10.1029/2003JE002100
http://dx.doi.org/10.1080/03091929.2011.589028
http://dx.doi.org/10.1063/1.871485
http://dx.doi.org/10.1126/science.274.5294.1887
http://dx.doi.org/10.1016/j.pepi.2011.05.013
http://dx.doi.org/10.1063/1.1852576
http://dx.doi.org/10.1080/03091920903311788
http://dx.doi.org/10.1080/03091929.2012.682990
http://dx.doi.org/10.1088/2041-8205/789/1/L25
http://dx.doi.org/10.1017/S0022112069000565
http://dx.doi.org/10.1017/jfm.2013.39
http://dx.doi.org/10.1017/S0022112070000769
http://dx.doi.org/10.1017/jfm.2012.604
http://dx.doi.org/10.1016/j.pepi.2011.08.006
http://dx.doi.org/10.1017/S0022112011000735
http://dx.doi.org/10.1017/S0022112011000735
http://dx.doi.org/10.1029/98GL00237
http://dx.doi.org/10.1051/0004-6361/201117741
http://dx.doi.org/10.1080/03091928908219529
http://dx.doi.org/10.1063/1.4729296
http://dx.doi.org/10.1146/annurev-fluid-010814-014556
http://dx.doi.org/10.1017/S0022112010000753
http://dx.doi.org/10.1016/j.physd.2010.09.010
http://dx.doi.org/10.1016/j.pepi.2010.06.012
http://dx.doi.org/10.1063/1.3680874
http://dx.doi.org/10.1080/03091929308203609
http://dx.doi.org/10.1017/S0022112003007456
http://dx.doi.org/10.1098/rspa.2014.0093
http://dx.doi.org/10.1017/S0022112097005491
http://dx.doi.org/10.1017/S0022112001003718
http://dx.doi.org/10.1017/jfm.2013.623
http://dx.doi.org/10.1017/S0022112092000016
http://dx.doi.org/10.1063/1.1289774


126601-19 Grannan et al. Phys. Fluids 26, 126601 (2014)

51 P. Meunier and T. Lewecke, “Analysis and treatment of errors due to high velocity gradients in particle image velocimetry,”
Exp. Fluids 35, 408–421 (2003).

52 C. Morize, M. Le Bars, P. Le Gal, and A. Tilgner, “Experimental determination of zonal winds driven by tides,” Phys. Rev.
Lett. 104, 214501 (2010).

53 H. Bondi and R. Lyttleton, “On the dynamical theory of the rotation of the Earth. II. The effect of precession on the motion
of the liquid core,” Proc. Cambridge Philos. Soc. 49, 498–515 (1953).

54 A. Sauret, M. Le Bars, and P. Le Gal, “Tide-driven shear instability in planetary liquid cores,” Geophys. Res. Lett. 41,
6078–6083 (2014).

55 M. Le Bars, L. Lacaze, S. Le Dizes, P. Le Gal, and M. Rieutord, “Tidal instability in stellar and planetary binary systems,”
Phys. Earth Planet. Inter. 178, 48–55 (2010).

56 R. Kerswell, “Tidal excitation of hydromagnetic waves and their damping in the Earth,” J. Fluid Mech. 274, 219–241 (1994).
57 L. Lacaze, P. Le Gal, and S. Le Dizes, “Elliptical instability in a rotating spheroid,” J. Fluid Mech. 505, 1–22 (2004).
58 M. Rieutord, “Evolution of rotation in binaries: Physical processes,” in Stellar Rotation, Proceeding IAU Symposium, 215

394–403 (2003).
59 J. Verhoogen, “Thermal regime of the Earth’s core,” Phys. Earth Planet. Inter. 7, 47–58 (1973).
60 M. Pozzo, C. Davies, D. Gubbins, and D. Alfé, “Thermal and electrical conductivity of iron at Earth’s core conditions,”

Nature 485, 355–358 (2012).
61 F. Nimmo, “Energetics of asteroid dynamos and the role of compositional convection,” Geophys. Res. Lett. 36, L10201,

doi: 10.1029/98GL00237 (2009).
62 M. Le Bars, M. A. Wieczorek, O. Karatekin, D. Cébron, and M. Laneuville, “An impact-driven dynamo for the early Moon,”

Nature 479, 215–218 (2011).
63 R. Fu, B. Weiss, D. Shuster, J. Gattacceca, T. Grove, C. Suavet, E. Lima, L. Li, and A. Kuan, “An ancient core dynamo in

asteroid Vesta,” Science 338, 238–241 (2012).
64 J. A. Tarduno, R. Cottrell, F. Nimmo, J. Hopkins, J. Voronov, A. Erickson, E. Blackman, E. Scott, and R. Mckinney, “Evi-

dence for a dynamo in the main group pallasite parent body,” Science 338, 93–95 (2012).

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  199.115.243.184 On: Tue, 16 Dec 2014 18:29:42

http://dx.doi.org/10.1007/s00348-003-0673-2
http://dx.doi.org/10.1103/PhysRevLett.104.214501
http://dx.doi.org/10.1103/PhysRevLett.104.214501
http://dx.doi.org/10.1017/S030500410002867X
http://dx.doi.org/10.1002/2014GL061434
http://dx.doi.org/10.1016/j.pepi.2009.07.005
http://dx.doi.org/10.1017/S0022112094002107
http://dx.doi.org/10.1017/S0022112004008328
http://dx.doi.org/10.1016/0031-9201(73)90039-3
http://dx.doi.org/10.1038/nature11031
http://dx.doi.org/10.1029/98GL00237
http://dx.doi.org/10.1038/nature10565
http://dx.doi.org/10.1126/science.1225648
http://dx.doi.org/10.1126/science.1223932

