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ABSTRACT: Recent technological advances in mass spectrome-
try have enabled us to screen biological samples for a very broad
spectrum of chemical compounds allowing us to more
comprehensively characterize the human exposome in critical
periods of development. The goal of this study was three-fold: (1)
to analyze 590 matched maternal and cord blood samples (total
295 pairs) using non-targeted analysis (NTA); (2) to examine the
differences in chemical abundance between maternal and cord
blood samples; and (3) to examine the associations between
exogenous chemicals and endogenous metabolites. We analyzed all
samples with high-resolution mass spectrometry using liquid
chromatography-quadrupole time-of-flight mass spectrometry
(LC-QTOF/MS) in both positive and negative electrospray
ionization modes (ESI+ and ESI−) and in soft ionization (MS) and fragmentation (MS/MS) modes for prioritized features. We
confirmed 19 unique compounds with analytical standards, we tentatively identified 73 compounds with MS/MS spectra matching,
and we annotated 98 compounds using an annotation algorithm. We observed 103 significant associations in maternal and 128 in
cord samples between compounds annotated as endogenous and compounds annotated as exogenous. An example of these
relationships was an association between three poly and perfluoroalkyl substances (PFASs) and endogenous fatty acids in both the
maternal and cord samples indicating potential interactions between PFASs and fatty acid regulating proteins.
KEYWORDS: exposome, non-targeted analysis, high-resolution mass spectrometry, pregnancy, per- and polyfluoroalkyl substances,
blood samples, molecular interaction networks

1. INTRODUCTION

The exposome describes the sum of all our exposures, both
external and internal, throughout our lives from conception
and onward.1,2 Humans are exposed to multiple and variable
environmental contaminants in both the indoor and outdoor
environments through inhalation, ingestion, and dermal
absorption. Environmental exposures have been shown to
play an important role in the development of human disease
along with exposures to endogenous chemicals and genetic
predisposition.1,2

Exposures to environmental contaminants during pregnancy
are of critical importance due to the increased risk for adverse
health outcomes that occur during periods of critical and
unique susceptibility to biological perturbations, which can
increase the risk of both maternal and child adverse health
outcomes.3−6 Prenatal exposures to industrial chemicals have
been shown to increase the risk of complications during
pregnancy, such as preterm birth, pregnancy-related hyper-
tension, adverse birth outcomes, developmental and neuro-
developmental problems during infancy, and disease during
adulthood.3−6

Approximately 40,000 chemicals are registered on the
inventory of the Toxic Substances Control Act (TSCA) as
actively used chemicals in the United States.7,8 This number
does not include chemicals that are regulated by other U.S.
statutes, such as pesticides, foods and food additives, drugs,
cosmetics, tobacco and tobacco products, and nuclear
materials and munitions.7,8 The actual number of all chemicals
used in the United States remains unclear but exceeds 40,000.
Conventional biomonitoring and human exposure research

rely on targeted analytical chemistry techniques, in which one
measures chemicals selected prior to the analysis. Until now,
with targeted techniques, only about 350 chemicals are
biomonitored regularly via U.S. NHANES, constituting less
than 1% of the chemicals used in the United States. This
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limited number of measured targeted chemicals hinders our
understanding of human exposure to chemicals and how they
may impact human health. Considering the large number of
chemicals that are not covered by these approaches, there is a
need to develop more high-throughput approaches that cover a
broader spectrum of human exposure to environmental
contaminants.9

Recent advances in high-resolution mass spectrometry
(HRMS) have brought non-targeted analysis (NTA) and
suspect screening to the forefront of analytical chemistry. NTA
techniques offer the possibility to screen biological and
environmental samples for a very broad spectrum of chemicals
that would previously remain undetected with conventional
targeted analytical techniques. Such high-throughput analytical
techniques enable a more holistic characterization of the
exposome incorporating both internal (endogenous) and
external (exogenous) exposures. Previous non-targeted and
suspect screening studies10−15 have demonstrated the value of
NTA as an important screening tool for compound discovery
in environmental applications. The compounds discovered
through NTA can then inform more traditional targeted
analytical approaches to further evaluate chemicals of interest
with more stringent quality assurances that include further
examination with analytical standards and quantification.
Our work builds upon previous NTA and suspect screening

studies11−13,16−18 of other scientific groups that have laid the
groundwork for further analysis and have inspired further
exploration. In our study, we developed an enhanced NTA
workflow to screen human biological samples for a broad
spectrum of chemicals that can be identified or tentatively
identified and then applied this approach to study exogenous
and endogenous chemical exposures in a large racially and
socioeconomically diverse population of pregnant women. The
novelty of our work lies primarily in the analysis of a large
cohort of maternal and cord blood samples and in the selection
and combination of computational tools for the analysis and
interpretation of NTA data. Our study aims to explore the
computational, analytical, and environmental chemistry aspects
of NTA and explore the human exposome during pregnancy
through the lens of chemistry.
The goal of this study was three-fold: (1) to analyze 590

matched maternal and cord blood samples (total 295 matched
pairs) using NTA to characterize the maternal/fetal exposome;
(2) to examine the differences in chemical feature enrichment
between maternal and cord blood samples; and (3) to examine
the associations between exogenous chemicals and endogenous
metabolites in an attempt to understand the interplay between
the exposome and the metabolome.

2. MATERIALS AND METHODS

2.1. Study Population. The study population consisted of
295 pregnant women recruited during the Chemicals in Our
Bodies (CIOB) study (Table 1) at the University of California,
San Francisco (UCSF). The CIOB study consists of about 700
(as of the time of this publication) English or Spanish-speaking
pregnant women, aged 18−40 years old and with singleton
pregnancies, recruited between March 1, 2014 and June 30,
2017 from the Mission Bay and San Francisco General
Hospital (SFGH) hospitals at UCSF that serve a racially and
socioeconomically diverse population. Our study population
consists of 31.5% non-Hispanic White women, 20.7%
Hispanic/Latinx women, and 33.6% earns less than

$100,000/year. Additional demographic data and data from
medical records are shown in Tables S1 and S2.

2.2. NTA Workflow. Our NTA workflow consisted of four
main steps: (i) chemical analysis, (ii) database searching and
annotations, (iii) data clean-up and processing, and (iv) data
analysis (Figure 1). Briefly, we analyzed serum samples with
HRMS and deduced chemical formulas from the detected
molecular masses. We conducted MS/MS fragmentation for
selected chemicals and tentatively confirmed the presence of a
chemical by matching the experimental spectrum to database
spectra, including experimental and in silico predicted spectra.
We then used analytical standards for a select number of
chemicals to confirm with the highest level of confidence. For
our annotations, we employed the annotation scheme
proposed by Schymanski et al.,19 where level 1 annotations
are confirmed chemicals with analytical standards, level 2
annotations are tentative identifications with MS/MS spectra,
level 3 annotations have some diagnostic evidence based on
literature and data sources, and level 4 annotations are just
molecular formulas without proposed structures. We examined
the presence of the chemicals in chemical databases to search
for potential matches to industrial uses. The details of the
analytical method are described in the sections below.
In an attempt to navigate the complexity and high

dimensionality of NTA datasets, we selected and applied
various software tools that helped us analyze our data and
interpret our findings. The selection of the software packages
was done based on the specific aims we tried to address in
every step in our workflow (Figure 1). When selecting software
packages, we had to consider the capabilities of the software to
address the aims of our study. For our purposes, we used (i)
commercial software (e.g., Agilent software packages) when
available and suitable, (ii) open-source tools if their application
made an important contribution or offered a different approach
compared to the commercial software (e.g., MS-Dial and
different MS/MS databases), and (iii) in-house built

Table 1. Demographics of the CIOB Cohort (N = 295) from
San Francisco, CAa

baseline demographic, n (%) population 295 (100)

maternal age, y (std) 33.2 (5.1)
gravidity, n (std) 2.4 (1.6)
ethnicity group 1 (%)
African American or Black 3.7
American Indian or Alaskan Native 1.4
Asian or Asian American 11.2
White 31.5
other 15.6
missing 36.6
ethnicity group 2 (%)
Hispanic/Latino 20.7
non-Hispanic 50.5
missing 28.8
income (%)
<$40,000 21.4
$40,000−$99,999 12.2
>$100,000 65.1
missing 1.3

aWhen a variable is shown as “missing”, it indicates that the
participant did not answer that question in the questionnaire. The
numbers in the parentheses show the percentages (%) and standard
deviations (std) as indicated in the table.
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algorithms if we were not able to find an existing tool that
could help us tackle a certain challenge in our study (e.g., level
3 annotations19 for man-made/industrial chemicals). In the
sections below, we provide an explanation for the selection of
each package.
2.3. Sample Preparation. We analyzed 295 maternal and

295 matched cord blood samples (n total = 590). The blood
samples were stored in the freezer at −80 °C at the University
of California, San Francisco (UCSF). Prior to analysis, the
samples were centrifuged (3000 rpm) to separate the serum
from the red platelets. The serum samples were transported on
dry ice to the Environmental Chemistry Laboratory (ECL) of
the Department of Toxic Substances Control (DTSC) of
California, Berkeley, CA. The method is described in detail
below and in our previous study.14 Briefly, aliquots of 250 μL
of serum were extracted by protein precipitation with methanol
and the samples were mixed and stored at 4 °C until they were
analyzed with ultra-high pressure liquid chromatography-
quadrupole time-of-flight/mass spectrometry (UPLC-QTOF/
MS). At the time of analysis, 10 μL of extract was injected into
the UPLC-QTOF/MS system.

2.4. Instrumental Analysis. The extracts were analyzed
with an Agilent UPLC coupled to an Agilent 6550 QTOF
(Agilent Technologies, Santa Clara, CA) operated in both
positive and negative electrospray ionization modes (ESI+ and
ESI−). Full scan accurate mass spectra (MS) were acquired in
the range of 100−1000 Da with a resolving power of 40,000
and a mass accuracy of <5 ppm. The MS/MS fragmentation
ion spectra (MS/MS) were collected at 10, 20, and 40 eV
collision energies and a mass accuracy of 10 ppm. The QTOF
was calibrated before each batch and the mass accuracy was
regularly corrected with reference standards of reference
masses 112.985587 and 1033.988109. UPLC was operated
with an Agilent Zorbax Extend-C18 column (2.1 × 50 mm, 1.8
μm) and a gradient solvent program of 0.3 mL/min with 5
mM ammonium acetate in 90% methanol/water increasing the
organic phase from 10 to 100% over 15 min, following a 4 min
equilibration at 100%.
The collected data from the total ion chromatograms were

processed with an Agilent MassHunter Profinder for feature
extraction. The features were then aligned using Mass Profiler
Professional (MPP) across all batches and the features found
in blanks were subtracted from the samples. The features were

Figure 1. Flowchart describing the individual steps of analyzing the maternal and cord samples and processing the collected data from our LC/
QTOF non-targeted analysis.
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matched to formulas via screening with an in-house database of
2420 unique formulas. The database was originally compiled to
contain 3535 structures of exogenous chemicals of interest
based on a literature search and expert curation. Briefly, the
database was compiled with the purpose of gathering
manmade chemicals of high production volumes and chemicals
of concern for environmental health scientists due to their
potential for adverse health effects. The original database and
the steps for its compilation are presented in our previous
study.14 However, in this study, we expanded our database by
including all isomers corresponding to the 2420 formulas and
could be found on EPA’s Dashboard.20 After collecting all
structural isomers, the updated version of the database
contained 65,535 compounds (Supporting Spreadsheet 0-
database). The updated version of the database contains both
endogenous and exogenous compounds; however, the vast
majority of the features are exogenous. Matched features were
evaluated based on mass accuracy and isotopic pattern.
Features of interests were prioritized for validation of
identification with data-dependent acquisition and with
targeted MS/MS. The MS/MS spectra of the prioritized
features were reviewed by empirical check of possible
fragmentation peaks and were compared with spectra in
online experimental MS/MS databases: MassBank of Europe
and North America,21−23 Human Metabolome Database
(HMDB),24,25 and mzCloud26 and with support from in silico
fragmentation tools: CFM-ID27,28 (Competitive Fragmenta-
tion Modeling for Metabolite Identification).
The acquired spectra were then used to search both

experimental and in silico databases for potential matches
with at least one fragment peak, aside from the molecular ion,
and within a mass error of 10 ppm. We limited our search to
chemical features for which we could observe a clear
chromatographic peak for the molecular ion and for which
the isotopic pattern match gave a score of 70 or higher. We
then used the top candidate structure proposed by the software
to annotate the chemical features for which we found potential
matches.
In addition to MassHunter Profinder, we also utilized MS-

Dial,29 which is an open source software for HRMS data
processing and it was developed at the University of California,
Davis, and the RIKEN Center for Sustainable Resource
Science (Japan).29 Adding MS-Dial to our search enabled us
to expand our search with additional databases. For MS-Dial,
we used the same software parameters as for MassHunter
Profiler (Supporting Spreadsheet 1). The databases we used
were “All public MS/MS databases for positive MS/MS”
(13,303 unique compounds) and “All public MS/MS data-
bases for negative MS/MS” (12,879 unique compounds).
Finally, matched chemical features were further compared

with the purchased reference standards for confirmation. The
confirmation with chemical standards was done by comparing
the retention times (RTs) and the MS/MS spectra of the
chemical feature in the sample to the analytical standard. The
selection of features for confirmation with analytical standards
is described in detail in our earlier study.14

2.5. Quality Assurance/Quality Control. Extraction
blanks, spike blanks, and quality control (QC) samples were
included with each set of 20 extracted samples. Every batch
analyzed with LC-QTOF/MS was accompanied by a water
blank, a matrix blank, and a matrix spike analyzed in the same
sequence. The QC samples were used to monitor the
instrument’s performance by inspecting RT shifts, changes in

mass accuracy, and changes in peak intensity. In ESI+, we used
triphenyl phosphate D15 and DL-cotinine (methyl D3) as
internal standards, while in ESI−, we used perfluoro-n-[1,2−
13C2] octanoic acid (isotopically labeled M2PFOA). We used
blank samples to correct the abundances of the chemical
features and to remove features for which the abundances in
the samples were not higher than 2 times that found in the
blanks. The blanks consisted of LCMS-grade ultraclean water
(Water, Burdick & Jackson for HPLC, LC365-1) and were
processed in the same way as the samples. The QC samples
consisted of commercially available human AB serum (Corning
Human AB Serum, 35060CI) spiked with seven poly and
perfluoroalkyl substances (PFASs) and six organophosphate
flame retardants (Supporting Spreadsheet 1: QC samples) at
10 ng/ml. The QC samples were treated in the same way as
the real samples and followed the same process (Supporting
Spreadsheet 1).

2.6. Database Searching for Feature Annotation. We
used a suspect screening approach for annotation. First, we
searched the HUMANBLOOD database in EPA’s Chemistry
Dashboard,20 which contains chemicals that are endogenous
and have been previously detected in human blood. The
database is an aggregate from public resources, including the
Human Metabolome Database (HMDB),24 WikiPathways,30

Wikipedia,31 and literature articles.20 The database excludes
metals, metal ions, gases, drugs, and drug metabolites.
Screening this database allowed us to distinguish between
features that are more likely to be endogenous and features
that are more likely to be exogenous. To do that, we searched
every formula in the database and marked the ones that had a
hit in the database. Then, we labeled all features corresponding
to these formulas as endogenous and the remaining as
exogenous. The rationale behind this approach is that since
we know we are analyzing blood samples and HUMAN-
BLOOD is an extensive database about all endogenous
compounds that have been previously detected in blood, if a
detected feature in our samples has a formula that is present in
the HUMANBLOOD database, then that feature is most likely
an endogenous compound. We then searched the HUMAN-
BLOOD database for all isomers corresponding to our
endogenous formulas and the remaining databases in EPA’s
Chemistry Dashboard for all isomers corresponding to our
exogenous formulas. We then applied an algorithm developed
by the first author, Dr. Abrahamsson, to rank the isomers of
each formula based on (i) the total number of available
isomers on the Dashboard, (ii) the number of data sources in
the Chemistry Dashboard, (iii) the number of PubChem data
sources, and (iv) the number of PubMed publications. We
then used the top ranked isomer to annotate the chemical
features that were not confirmed with MS/MS spectra
matching or with analytical standards. For example, searching
C10HF19O2 gives us two isomers: perfluorodecanoic acid
(PFDA) and perfluoro-3,7-dimethyloctanoic acid. If we were
to randomly select one of the isomers, our probability of
picking the right isomer would be 0.5. Then, making the
assumption that more prevalent isomers have a higher number
of literature and data sources, we can adjust that probability by
taking into account that information after normalizing all
numbers for (ii), (iii), and (iv) from 0 to 1. Therefore, while
the probability of randomly picking the right isomer for
C10HF19O2 is 0.5, PFDA has a higher probability (0.73) of
being the right isomer because it has more literature and data
sources than perfluoro-3,7-dimethyloctanoic acid (0.27). It is
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important to acknowledge that these estimates are amenable to
change as EPA’s Chemistry Dashboard is a dynamic project
and keeps being updated with additional chemicals. Fur-
thermore, these annotations may be susceptible to the
Matthew effect,32 where researchers prioritize chemicals to
study mainly because other researchers have prioritized the
same chemicals. However, since these are just annotations and
serve only in providing diagnostic evidence for the
identification of chemical compounds, we deemed them as
sufficient for that purpose. The code for the algorithm is
a v a i l a b l e o n G i t H u b ( h t t p s : / / g i t h u b . c om /
dimitriabrahamsson/nontarget-maternalcord.git).
In order to evaluate the effectiveness of the algorithm, we

compared the level 3 annotations of the algorithm to the level
1 and 2 annotations and observed how many times the
predictions of the algorithm agreed with the level 1 and 2
annotations (Supporting Spreadsheet 1: algorithm validation).
Although the level 3 annotations are just annotations and not
confirmations, in some cases, they can be very informative and
help compose a diagnostic picture for the underlying structure
of a detected chemical feature. This is particularly helpful for
certain chemicals that are more targetable than others. For
instance, the presence of fluorine in a formula would indicate
that this compound is an exogenous compound and it most
likely belongs to the category of poly and PFAS. Another
example is when a chemical formula has only a limited number
of potential isomers (e.g., 5−10 isomers) and all potential
isomers are endogenous compounds with very similar function
and properties (e.g., chenodeoxycholic acid).20

2.7. Data Clean-Up and Data Processing. 2.7.1. Im-
putation of Values below Detection Limit. To impute below
detection limit values, we used a computational approach
which assigned missing values based on the distribution of the
data points. We log-transformed the data from the MS analysis
for each chemical across samples and calculated the median,
minimum, and standard deviation of the distribution. We then
fit a normal distribution to the data points based on the
median and the standard deviation that we calculated from the
experimental data. The model then generated random values
between the minimum measured experimental value (∼5000)
and the absolute minimum (0). The minimum measured value
is dependent on the cut-off point set in the software during the
first processing steps of the chromatograms. Since in NTA
studies the true method detection limit in unknown, this cut-
off point is set so that it represents a safe margin from the
baseline of the chromatogram. Therefore, for example, if the
abundance for the baseline is 1000, then the cut-off point is set
as 5 × 1000. The code for the imputation is available as
Supporting Information on GitHub (https://github.com/
dimitriabrahamsson/nontarget-maternalcord.git).
2.7.2. Batch Correction. We analyzed 590 samples in total

consisting of 295 maternal and 295 cord blood samples. The
samples were analyzed in two shipments of approximately 300
samples (150 maternal samples and 150 cord samples) in each
shipment. Within a shipment, the 300 samples were analyzed
in 15 batches yielding 20 samples per batch (15 batches × 20 =
300). Each batch of 20 consisted of 10 maternal and 10 cord
blood samples. Before the analysis, the samples were
randomized; however, in every batch, the maternal samples
were analyzed with their corresponding cord samples in order
to avoid introducing additional batch effects between maternal
and cord samples. To clarify even further, the maternal and
cord samples within each batch were randomized and were not

analyzed in pairs of maternal and cord. To correct the
abundances of the chemicals measured in the samples for batch
effect, we employed the ComBat package for python.33

ComBat uses a parametric and non-parametric Bayes frame-
work to adjust the values for batch effects. The method
requires that the batch parameter is known and that the data
are log-transformed (the method is described in detail in
Johnson et al.34). For our dataset, we first applied the ComBat
package to each shipment separately to correct for batch effect
within shipment. Then, we applied the package again to correct
for batch effect across shipments.

2.7.3. Combining Shipments. As our samples were analyzed
in two separate shipments of approximately 150 samples each,
one of the challenges was to combine the two datasets of the
two shipments, given the potential shifts in RT and differences
in peak alignment. This step was done after batch correction
for within shipment variability. In order to address this issue,
we grouped all chemical features by their formulas and sorted
them by ascending RTs. We then created an index for each
group of formulas (1, 2, 3, etc.), which we then used to create
an identifier based on the formula and the position of each
isomer in the index. For example, if the formula C5H13NO had
three isomers, the first isomer was named C5H13NO_1, the
second isomer as C5H13NO_2, and the third isomer as
C5H13NO_3. We then merged the two datasets on the
identifier and removed features that were present in only one
of the datasets. We examined the difference in the RT and
molecular mass and removed those features for which RT
differed by more than 0.5 min or where the mass difference
was more than 15 ppm. A limitation associated with this
approach is that there could be cases where we are removing
valid features if the molecular formula assigned in one
shipment does not match the molecular formula assigned in
the other shipment. This would then lead to false negatives and
can result in underestimating the number of truly detected
compounds. This would be more likely to happen in instances
where multiple formulas can be assigned to a given chemical
feature. This challenge warrants further exploration to ensure
that we can leverage the full potential of NTA datasets.

2.7.4. Removing Adducts. Electrospray ionization adducts
are chemicals that are formed inside the instrument during
analysis of the samples as the salts ions from the electrolytes
used to enhance ionization bind to the ions of the organic
molecules formed during electrospray ionization. We filtered
out these chemicals by identifying the features that strongly
correlate (r > 0.5) with each other and have distinct mass
differences corresponding to salt ions, such as sodium (Na+),
potassium (K+), formate (HCOO−), and ammonium (NH4

+).
Na+ and K+ adducts are particularly important in serum
analysis as these elements occur naturally in the human body
and can form adducts with analytes during ionization. For
filtering out adducts, we used a mass accuracy filter of 15 ppm.

2.8. Data Analysis. 2.8.1. Abundance and Frequency
Calculations. We examined the relationship between chemical
features in maternal samples and cord samples in terms of
abundances and detection frequencies. For the abundances, we
used the mean log-transformed abundance of each chemical in
maternal samples and compared it with the corresponding
feature in the cord samples using a linear regression model. For
the detection frequencies, we used a universal abundance cut-
off of 5000, which is comparable to the minimum measured
value in the chemical features (∼5000). We compared the
detection frequencies of the chemical features between
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maternal and cord samples both in terms of kernel density
estimates and in terms of absolute numbers. We also examined
the differences in detection frequencies of endogenous and
exogenous chemical features.
2.8.2. Unsupervised Clustering. We conducted a principal

component analysis (PCA) to examine the differences in the
PCs between maternal and cord samples. We then conducted a
correlation analysis, where we examined the relationship of the
first three PC components with technical features and clinical
covariates, that is, batch, shipment, sample type (maternal/
cord), and gestational age group (preterm/full term). We
identified the features that were differentially enriched in
maternal and in cord blood samples by comparing the
abundances of the chemical features in maternal samples to
those of cord samples and marking the features that showed a
significant trend to be higher in maternal and lower in cord and
vice versa (p < 0.05) after correcting for multiple hypothesis
testing using the approach of Benjamini−Hochberg with a false
discovery rate of 5%. We checked the cluster stability by
comparing the PC1 values of the maternal samples to the PC1
values of the cord samples using a two-sided Mann−Whitney−
Wilcoxon test with Bonferroni correction.
2.8.3. Network Analysis for Maternal and Cord Samples.

The purpose of the network analysis was to assess whether
maternal samples are more similar in terms of chemical
abundances to their corresponding cord samples than to other
maternal samples. For this analysis, we considered two
network-based approaches.
For the first approach, we conducted a matrix correlation of

all samples using a linear regression model and calculated the
correlation coefficients and p-values. We then adjusted the p-
values by applying a multiple hypothesis correction using the
Benjamini−Hochberg correction with a false discovery rate of
5% and we marked the maternal and cord sample pairs that
remained significant after the multiple hypothesis correction.
We then plotted the correlations as a correlation network using
the NetworkX35 package for Python. We then divided the
network into four subnetworks: (i) correlations between
matched maternal−cord pairs only, (ii) correlations between
unmatched maternal-cord pairs and between maternal only
and cord only, (iii) correlations between maternal samples
only, and (iv) correlations between cord samples only. We
then calculated the number of connections in each subnetwork
and the average correlation coefficient for each subnetwork and
compared the subnetworks to each other.
For the second approach, we carried out permutation

analysis randomly picking a matched pair of a maternal and
cord samples (M1 and C1) and a random maternal sample
(M2) 100 times. For each iteration, we then calculated the
abundance ratios of all chemical features for every sample pair
(M1−C1, M1−M2, and M2−C1). Chemical features with
ratios in the range of 0.75−1.25 were considered “similar”
chemical features between two samples. We calculated the
number of chemicals for each pair and compared them to each
other. We calculated the average number of similar chemicals
for every pair and compared the pairs to each other. The code
i s a v a i l a b l e on G i tHub (h t t p s : //g i t hub . com/
dimitriabrahamsson/nontarget-maternalcord.git).
2.8.4. Partitioning of Chemical Features between

Maternal and Cord. As part of our analysis, we wanted to
understand why different chemicals exhibit different partition-
ing behaviors between maternal and cord blood. We examined
the partitioning behavior of the detected chemical features

between maternal and cord by calculating the cord/maternal
abundance ratio (RCM) as

=R
A
ACM

c

m

where Ac is the abundance of a chemical feature in cord blood
and Am is the abundance of a chemical in maternal blood. RCM
has been previously described in environmental chemistry
studies36−38 as

=R
C
CCM

C

M

where CC is the concentration of a given chemical in cord
blood and CM is the concentration in maternal blood. Since
concentrations are not available for all chemical features, we
replaced concentration with abundance as follows
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where RRF is the relative response factor used to calculate
concentrations assuming a linear calibration curve.
It is important to note that RCM does not describe an

equilibrium partition ratio, such as the octanol−water
equilibrium partition ratio (KOW), but rather a concentration
ratio representing the current state of a dynamic system.
Considering that the placenta is a dynamic system, where
chemicals are transported through passive diffusion and active
transport to and from the system, it is unlikely that any
chemicals will be at thermodynamic equilibrium. The
partitioning of chemicals between cord and maternal blood
has also been described as a concentration ratio in previous
studies.36−38

Previous studies have shown that the partitioning behavior
of chemicals between maternal and cord blood is related to the
chemicals’ physicochemical properties39,40 and to certain
physiological parameters that can affect the placenta, such as
placental aging41 and gestational diabetes.42 In an attempt to
understand the parameters determining RCM, we used a linear
regression model to assess its relationship to physicochemical
properties and physiological parameters. The physicochemical
properties we used are known as the Abraham descriptors43−45

and commonly used in quantitative structure−activity relation-
ships. These descriptors were (i) E, which describes a
chemical’s ability to engage in London dispersion forces and
dipole-induced dipole interaction; (ii) S, which describes a
chemical’s ability to engage in dipole-induced dipole and
dipole−dipole interactions; (iii) A, which describes hydrogen
bond acidity; (iv) B, which describes hydrogen bond basicity;
(v) V, which is the McGowan molecular volume; and (vi) L,
which is the hexadecane/air partition ratio. The Abraham
descriptors were obtained from the UFZ-LSER database of the
Helmholtz Centre for Environmental Research-UFZ46 (Zen-
trum für Umweltforschung). In addition to the Abraham
descriptors, we also collected the KOW of the chemicals in the
dataset and examined its relationship to RCM. These
calculations were only applied to chemical features whose
structures that were annotated with level 1−3 annotations.
The physiological parameters we used were the body mass

index, maternal age at delivery, gestational age, birth weight,
and gestational diabetes (Table S2). Since RCM is a chemical-
specific parameter and not a participant-specific parameter, in
order to access its relationship to physiological parameters, we
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calculated RCM for every chemical and every maternal−cord
pair and then we calculated the average value per participant,
as a hypothetical RCM representing the average RCM of all
chemicals in each participant.
2.8.5. Associations between Endogenous and Exogenous

Compounds. After calculating the number of exogenous and
endogenous chemicals, as described previously in the section
for database searching, we examined the associations between
endogenous and exogenous compounds using the approach of
molecular interaction networks. It is important to note that
although these types of networks are commonly known as
“molecular interaction networks”,47−50 the term “interaction”
can be interpreted as in that the chemical compounds are
having an effect on one another or in the epidemiological sense
that two parameters are having an effect on an outcome.
However, in this context, “interaction” refers to the
associations between chemical features. In NTA applications,
the precise relationships are still speculative, and the
“interactions” shown by these networks are proposed
associations that need to be further explored and validated
with experimentation. One important advantage of these
networks is that they allow for visualization of multiple
endogenous and exogenous features at once together with their
inter- and intra-associations.
As a first step for our exercise, we applied a matrix

correlation and calculated the correlation coefficients and p-

values between all endogenous and all exogenous chemical
features after adjusting the p-values for multiple hypothesis
testing using the Benjamini−Hochberg approach and a false
discovery rate of 5%. We applied the approach of molecular
interaction networks to visualize the associations and examine
the relationships between endogenous and exogenous
compounds for the significant correlations between endoge-
nous and exogenous chemical features separately for maternal
and cord samples. To build the network, we used Cytoscape51

with Metscape52 as a plug-in. Cytoscape51 is an established
tool in the field of bioinformatics and -omics research for the
visualization of networks and assisting in the discovery of
underlying biological mechanisms. Due to the large number of
relationships and the complexity of the network, we focused
our comparison on the chemical features that had an
annotation score >0.3, or confirmed with MS/MS or analytical
standards, and had a Pearson |r| > 0.4.

2.9. Statistical Analyses. For all the correlations
mentioned in the sections above, we used Pearson r and we
adjusted the calculated p-values for multiple hypothesis testing
using the Benjamini−Hochberg approach with a false
discovery rate of 5%. When comparing two groups for
statistically significant differences, such as in unsupervised
clustering, we used a two-sided Mann−Whitney−Wilcoxon
test with Bonferroni correction.

Figure 2. Results of the data analysis after batch correction with ComBat for the two shipments and the batches within each shipment. The samples
were first corrected for the batches within shipment and then for the two shipments. (A): PCA features and the variance explained (%); (B) PC1
and PC2 as a scatterplot; (C) approximation of the optimal number of clusters in the dataset; (D) PC1 and PC2 color-coded by shipment; (E)
PC1 and PC2 color-coded by sample typematernal vs cord blood; (F) agnostically derived clusters using a k-means algorithm; (G) boxplot for
PC1 by shipment (the error bars show the 10th and 90th percentiles, the boxes show the 25th and 75th percentiles, and the middle line shows the
median); and (H) Pearson r values and p-values (I) for matrix correlation for PC1-3, batch, shipment, sample-type maternal vs cord, and full-term
vs preterm birth.
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3. RESULTS

3.1. Chemical Analysis with LC-QTOF/MS. The
recursive feature extraction and formula matching for the
295 pairs of maternal and cord blood samples (n total = 590
samples) resulted in 824 features in ESI− and 731 features in
ESI+ for shipment 1 and 707 features in ESI− and 576 features
in ESI+ for shipment 2. After combining the datasets for the
two shipments, the resulting dataset for ESI− summed up to
412 features and the dataset for ESI+ to 298 features (n total =
710 features) after filtering out the features that showed an RT
difference of >0.5 min or a mass difference of >15 ppm.
Combining the data from ESI− and ESI+ resulted in 712
features. This number is higher by two features compared to
the total number of ESI− and ESI+ because one isomer from
ESI− had more than one possible matches from ESI+ based on
the criteria that we set for merging the two datasets (RT
difference of 0.5 min and mass accuracy of 15 ppm). Ten
features were identified as duplicates between ESI− and ESI+
and were removed from the dataset. Seventeen features were
identified as adducts and were also removed from the dataset.
The complete datasets before (n = 712) and after clean-up (n
= 685) are presented in Supporting Spreadsheet 1 (sheets:
dataset 1.0 and dataset 2.0). We confirmed 19 unique
compounds with analytical standards, and we tentatively
identified 73 compounds with MS/MS spectra and annotated
98 compounds using our annotation algorithm (Supporting
Spreadsheets 1: level 1−2 and level 3−4).
3.2. Database Searching for Feature Annotation. We

annotated 142 features as endogenous compounds and the
remaining 543 features as exogenous compounds. Among the
chemical compounds with the highest annotation scores, we
found five PFASs, perfluorohexanesulfonic acid (PFHxS),
perfluorooctanesulfonic acid (PFOS), PFDA, perfluorounde-
canoic acid (PFUnA), and perfluorononanoic acid (PFNA),
and two cyclic volatile methylsiloxanes, octamethylcyclote-
trasiloxane (D4) and decamethylcyclopentasiloxane (D5)
(annotations with the individual scores in Supporting Spread-
sheet 1: level 3−4). PFDA, PFNA, PFHxS, and PFOS were
also confirmed with analytical standards (Supporting Spread-

sheet 1: level 1−2). When we evaluated the performance of the
algorithm used for the level 3 annotations, we observed that for
compounds with annotation scores from 1 to 0.3, the
algorithm predicted correctly 16 out of the 22 formulas that
were common between level 3 and level 1 and 2 annotations,
corresponding to an accuracy of 73% (Supporting Spreadsheet
1: algorithm validation). For compounds with an annotation
score of 0.3−0.1, the accuracy of the algorithm was 50%, and
for compounds with annotation score <0.1, the accuracy
dropped to 8%. As anticipated, higher annotation scores were
more likely to give a correct prediction. We, therefore,
considered as level 3 annotations only the compounds that
had an annotation score >0.3.

3.3. MS Data Clean-Up and Data Processing. In the
original dataset before batch correction, we observed two
distinct clusters that corresponded to the two shipments
(Figure S2A−F). Following a matrix correlation, we observed
strong correlations between the first three PCs and the
parameters corresponding to batch number, shipment, and
sample type (maternal vs cord) (Figure S2I). In addition, we
observed significant differences in the PC between shipment 1
and shipment 2 (Figure S2G) and significant differences in the
PCs between maternal and cord samples (Figure S2H). Batch
correction with ComBat removed the largest part of the effects
related to batch and shipment (Figure 2D), while maintaining
the differences between maternal and cord (Figure 2E). The
updated plots after batch correction (Figure 2) also showed
that there were two main clusters of samples (Figure 2C,F)
that corresponded to the maternal and cord sample groups
(Figure 2E).

3.4. MS Data Analysis. 3.4.1. Differences between
Maternal and Cord. The maternal and cord samples showed
similar profiles of detection frequency with the largest cluster
of chemical features appearing at 80−100% frequency (Figure
3B,C). We observed an overall good agreement (r = 0.93)
between the mean log abundances of the chemical features in
the maternal samples and the chemical features in the cord
samples with some chemical features deviating from the
regression line (Figure 3A). In addition, in both maternal and

Figure 3. Correlation between maternal and cord abundances (A) (in log scale) and detection frequency calculations with kernel density curves for
chemicals in maternal (B) and cord (C) blood samples (N = 295 cord-maternal). The figure also displays the detection frequency for maternal (D)
and cord (E) color-coded as endogenous and exogenous compounds.
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cord samples, the number of exogenous compounds was about
3 times higher than that of endogenous compounds (Figure
3D,E). This is expected considering that the vast majority of
the chemicals in our database are exogenous.
We observed significant differences in PC1 between

maternal and cord samples both before (Figures 2E and
S2H) and after batch correction (Figure 2E,H). Removing the
batch effect accentuated the differences between maternal and
cord samples (Figure 2E,H).
Out of 685 chemical features detected in MS analysis after

filtering (as described in the methods above), 450 showed a
significant difference between maternal and cord samples
(Figure 4). We observed clear clustering between maternal and
cord blood samples indicating a sufficient difference in the
chemical composition between maternal and cord samples for
them to be classified as two distinct clusters (p-value for PC1
between maternal and cord ≤0.0001; Figure 4B).
Our similarity network analysis using a correlation network

showed that paired maternal and cord samples had a higher
number of significant correlations (N = 170; Figure S3A)
compared to unpaired maternal and cord samples (N = 84;
Figure S3B) and compared to maternal only (N = 41; Figure
3C) and cord only (N = 41; Figure S3D). No significant

differences were observed in the average |r | values between the
four groups. Our similarity network analysis using a
permutation approach showed a very similar trend (Figure
S4). The average of 100 iterations showed that paired maternal
and cord samples (M1−C1) shared more similar chemical
features compared to maternal−maternal pairs (M1−M2) and
unmatched maternal−cord samples (M2−C1) (Figure S4).
We observed that the majority of RCM values are

concentrated around 1, indicating an even partitioning
between maternal and cord blood (Figure S5A,B). RCM

showed a weak but significant positive correlation with RT
(Figure S5D). No significant correlation was found for RCM

and molecular mass (Figure S5C). We also observed a
significant positive association between RCM and E (Figure
S6A), a significant negative association between RCM and KOW

(Figure S6G), and a significant positive association between
KOW and RT (Figure S6H). We observed a borderline
significant association between RCM and gestational age (p-
value = 0.07) (Figure S7), and the median of the overall RCM

values were slightly higher in preterm birth samples compared
to full-term and late-term samples. A slightly elevated median
value was also observed for the gestational diabetes samples,

Figure 4. Clustering heatmap for maternal and cord blood samples and the chemical features that showed a significant trend to be higher in
maternal or cord after multiple hypothesis correction (Benjamini−Hochberg test, 5% false discovery rate). Out of 685 chemical features in total,
450 showed a significant difference. The samples are color-coded by sample type (maternal vs cord). The features are color-coded by chemical type
(endogenous vs exogenous). The error bars in the boxplot show the 10th and 90th percentiles, the boxes show the 25th and 75th percentiles, and
the middle line shows the median.
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although there was no statistically significant difference
between cases and controls (Figure S7).

3.4.2. Correlations between Endogenous and Exogenous
Compounds. We observed 21,522 significant relationships

Figure 5. Molecular interaction networks for endogenous (red) and exogenous (gray) chemical features in the maternal blood samples (N = 295).
The network shows the features which had an annotation score of >0.3 or were identified with MS/MS or with analytical standards. The network
shows the correlations with an absolute r > 0.4. The red lines indicate positive correlations and the blue lines indicate negative correlations. The
thickness of each line indicates the strength of the correlation (|r| = 0.4−1). The different colors in the names of the chemicals correspond to the
annotation levels of Schymanski et al.,19 showing confidence in annotation. Level 1 are compounds that have been confirmed with analytical
standards, level 2 are compounds that have been tentatively identified with MS/MS spectra matching, and level 3 are compounds for which we have
a definitive formula and some diagnostic evidence based on our annotation algorithm described in materials and methods.

Figure 6. Molecular interaction networks for endogenous (red) and exogenous (gray) chemical features in the cord blood samples (N = 295). The
network shows the features which had an annotation score of >0.3 or were identified with MS/MS or with analytical standards. The network shows
the correlations with an absolute r > 0.4. The red lines indicate positive correlations and the blue lines indicate negative correlations. The thickness
of each line indicates the strength of the correlation (|r| = 0.4 − 1). The different colors in the names of the chemicals correspond to the annotation
levels of Schymanski et al.,19 showing confidence in annotation. Level 1 are compounds that have been confirmed with analytical standards, level 2
are compounds that have been tentatively identified with MS/MS spectra matching, and level 3 are compounds for which we have a definitive
formula and some diagnostic evidence based on our annotation algorithm described in materials and methods.

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.1c01010
Environ. Sci. Technol. 2021, 55, 10542−10557

10551

https://pubs.acs.org/doi/suppl/10.1021/acs.est.1c01010/suppl_file/es1c01010_si_005.pdf
https://pubs.acs.org/doi/10.1021/acs.est.1c01010?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.1c01010?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.1c01010?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.1c01010?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.1c01010?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.1c01010?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.1c01010?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.1c01010?fig=fig6&ref=pdf
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.1c01010?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


between features that were annotated as endogenous and
features that were annotated as exogenous in maternal samples
and 19,846 in cord samples after multiple hypothesis
correction (n total relationships = 77,106 in maternal and n
= 77,106 in cord samples, Figure S8). From the significant
relationships, 103 relationships in maternal and 128 relation-
ships in cord samples had an absolute Pearson r > 0.5, 5
relationships in maternal and 4 relationships in cord samples
had an absolute Pearson r > 0.7, and 1 relationship in maternal
and 1 relationship in cord samples had an absolute Pearson r >
0.8 (dataset with the calculated r and p-values in Supporting
Spreadsheet 2).
The maternal and cord networks (Figures S9 and S10)

showed a great overlap with most chemical compounds
appearing in both networks and exhibiting similar relation-
ships. Due to the complexity of the generated networks
(Figures S9 and S10), we extracted some example subnetworks
(Figures 5 and 6) that illustrated correlations between
endogenous and exogenous compounds. The strongest
association we observed between an endogenous and an
exogenous compound in both the maternal and cord networks
was between ubiquinone and Asarone (r = 0.82 in maternal
network and r = 0.80 in cord network). We also observed two
cyclic volatile methylsiloxanes (cVMS) (octamethylcyclote-
trasiloxane; D4 and decamethylcyclotetrasiloxane; D5) that
correlated strongly with each other (r = 0.77 in maternal
network and r = 0.81 in cord network). In addition, in the
maternal samples, D5 correlated with benzaldehyde (r = 0.41),
while in the cord samples, D4 and D5 correlated with silane
trimethyl(octadecyloxy)- (r = 0.41 and 0.41), which in turn
correlated with progesterone (r = 0.55) and ubiquinone (r =
0.45). Finally, three perfluoroalkyl acids (PFAAs: PFNA,
PFDA, and PFUnA) correlated strongly with each other (r
values in maternal: 0.66−0.74, r values in cord: 0.64−0.72),
while two perfluorinated sulfonic acids (PFSA: PFHxS and
PFOS) formed their own group. Both groups of chemicals are
poly/PFAS, a group of chemicals that has recently come under
scrutiny due to their persistence, bioaccumulation potential,
and toxicity. The group of PFAA, in both networks, showed to
correlate with certain fatty acids, such as stearic acid and 4-
oxopentanoic acid (r = 0.4−0.5) (Figures 5 and 6).

4. DISCUSSION

Our chemical analysis of the maternal and blood samples with
HRMS and a non-target analysis workflow provided important
insights into the prenatal exposome, exposures to environ-
mental pollutants, and their potential role in the development
of human disease. To our knowledge, this is the largest dataset
of the exposome of maternal and fetal exposures. We
confirmed 19 compounds with analytical standards (level 1),
tentatively identified 73 compounds with MS/MS spectra
matching (level 2), and annotated 98 features with our
annotation algorithm (level 3) described in the Materials and
Methods section (Supporting Spreadsheet 1: level 1−2 and
level 3−4).
Our data analysis showed that when analyzing large sample

sets with NTA, batch effects are substantial and they need to
be adequately addressed before drawing any conclusions on
the chemical, biological, and epidemiological importance of
that collected data. ComBat33,34 was able to remove batch
effects for HRMS data for exposomics and metabolomics
analyses.

Maternal and cord samples showed similarities in chemical
feature enrichment (Figure 3) but also important differences
(Figure 4) that allowed for these two groups to be classified as
two distinct clusters (Figure 4). Our similarity network
analyses also showed that matched maternal and cord samples
are more similar in terms of chemical feature enrichment
compared to other maternal samples. These observations have
important implications when studying the partitioning of
chemical compounds between maternal and cord samples and
when studying which chemicals show stronger potential to
cross the placenta and accumulate in the fetus. Previous studies
have reported on the partitioning between maternal and cord
blood;53−56 however, the mechanism by which certain
chemicals cross the placenta more readily than others requires
further investigation. One interesting example of chemicals
from our dataset that showed preferential partitioning for the
maternal side were the five PFASs we detected. The log RCM of
the five PFASs ranged from −0.037 to −0.22 (Supporting
Spreadsheet 1 and Figure 5B; left tail of the distribution),
indicating that the transfer of these chemicals to the fetus is to
some degree inhibited by the placenta. This finding is in good
agreement with previous biomonitoring studies where they
examined the transplacental transfer of PFAS.57,58 Due to their
strong affinity for proteins, PFASs bind to the proteins in the
placenta and they are to some extent inhibited from reaching
the fetus.57,58

We observed a significant positive association between RCM
and E and a significant negative association between RCM and
KOW, indicating that RCM is influenced by these two
physicochemical properties. As E represents the ability of a
chemical to engage in London dispersion forces and dipole-
induced dipole interactions, its positive association with RCM
suggests that organic chemicals where large parts of the
molecule are composed of C and H without highly
electronegative atoms (e.g., Cl) are more likely to partition
preferably to cord blood. The negative association of RCM and
KOW suggests that hydrophobic molecules are likely to
partition to maternal blood. This observation is in agreement
with previous studies showing a negative correlation between
RCM and KOW.

36 We observed a borderline significant
relationship between RCM for gestational age (0.07) (Figure
S6C). Furthermore, when we grouped the RCM values by
gestational age group, we observed a slightly higher median
RCM for preterm birth samples compared to full term and late
term (Figure S6E), indicating a higher overall transfer to the
fetus in preterm birth. However, this also appears to depend on
the chemicals and their physicochemical properties. In an
earlier study on the transplacental transfer of PFAS, Li et al.41

noted the reverse trend, namely, that transfer of PFAS was
higher in full-term samples compared to preterm birth samples.
We observed a slightly elevated median for overall RCM values
in samples from patients with gestational diabetes. This
finding, although, statistically not significant, is in agreement
with the study of Eryasa et al.42 that observed higher
transplacental transfer in mothers with gestational diabetes.
These observations are in agreement with the thermodynamic
understanding in environmental chemistry that the behavior of
chemicals is influenced by the chemicals’ physicochemical
properties and by the properties of their environment.59

We observed a weak but significant negative association
between RCM and RT (Figure S5D). As RT is a function of the
chemicals’ hydrophobicity (KOW), with more hydrophobic
chemicals exhibiting longer RTs (Figure S6H), its relationship
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with RCM indicates that more hydrophobic chemicals would
show a preference to partition more to the maternal blood
compared to cord blood. This finding suggests that RT could
be used as a criterion for prioritizing chemical features for
identification in maternal/cord blood studies and could
potentially also be used in prioritization of chemicals for
toxicity testing. Finally, considering that KOW can vary
significantly between structural isomers/isobaric features, the
strong association we observed between log KOW and RT (r =
0.79, p = 6.9 × 10−33) gives an extra degree of confidence for
our annotations of the level 1, 2, and 3 chemicals. If these
annotations contained substantial errors, one would expect to
see greater variability in the data points for log KOW and RT.
Our analysis of the associations between exogenous and

endogenous exposures has provided a means to uncover
chemicals potentially important to biological pathways. Such
findings are particularly useful because they can be used to
inform toxicological laboratory experiments to study the
underlying molecular mechanisms. We observed thousands of
significant relationships between exogenous and endogenous
chemical features, hundreds of which showed an absolute r >
0.5. Many of these associations can be challenging to interpret
in terms of molecular mechanisms. Thus, we focused our
discussion on associations that were both strong in terms of
correlation coefficient and relatively easily interpretable.
The strongest association we observed between an

endogenous and an exogenous compound in both the maternal
and the cord networks was that of ubiquinone and Asarone.
Ubiquinone occurs naturally in the human body in an oxidized
(ubiquinone) and a reduced form (ubiquinol).60 Ubiquinone
acts as an electron and proton carrier in mitochondrial electron
transport connected to ATP synthesis. Ubiquinol acts as an
antioxidant inhibiting lipid peroxidation, protecting mitochon-
drial inner membrane proteins and protecting DNA damage
due to oxidation.60 Asarone is a chemical compound that
occurs naturally in some plants, such as Acorus calamus, and it
is used as a pesticide and as an essential oil in perfumes and in
alcoholic beverages.61 Asarone is a carcinogenic compound
whose epoxide metabolite is suspected of causing DNA
damage.62 Based on the strong association we observed for
these two compounds, we hypothesize that exposure to
Asarone may trigger the upregulation of ubiquinone and
ubiquinol. Despite its industrial applications, Asarone appeared
to not be registered as a high production volume chemical and
it was not included in the Chemical Data Reporting database
(CDR) under the Toxic Substances Control Act (TSCA).63

This raises some concerns about the regulation of Asarone and
similar toxic compounds that may have natural sources but are
used in industrial applications.
Another group of exogenous chemicals that showed an

interesting pattern were three PFASs (PFNA, PFDA, and
PFUnA) that positively correlated strongly (r = 0.4−0.5) with
endogenous fatty acids (Figures 5 and 6), indicating a potential
interference with fatty acid metabolism. PFASs have been
shown to interfere with fatty acid metabolism in in vitro
toxicological studies by binding to fatty acid binding
proteins.64,65 Binding of PFAS to fatty acid binding proteins
could reduce the available binding sites for endogenous fatty
acids resulting in higher concentrations of fatty acids. This
could explain the observed positive correlations between the
three PFAS and endogenous fatty acids in our study. Similar
associations between PFAS and fatty acids have been reported
in previous metabolome/exposome studies,66,67 however, not

for the exact same panel of PFAS and fatty acid compounds
and not through an NTA workflow. Currently, there are about
10,000 PFASs registered on EPA’s Chemistry Dashboard,
many of which do not have data on their toxicity potential in
humans. Toxicological and epidemiological studies have shown
that exposure to certain PFASs is associated with altered liver
function,68,69 increased risk for preterm birth, low birth
weight,70 and lower bone mineral density.71 Our study
corroborates the need for further experimental and modeling
studies to assess the potential of the ever-increasing chemical
library of PFAS and study how they interfere with human
metabolism. High-throughput protein binding studies would
help to elucidate some of these effects and help prioritize
PFASs for biomonitoring and policy action.
Another group of chemicals that showed an interesting

pattern were two cyclic volatile methylsiloxanes (cVMS),
octamethylcyclotetrasiloxane (D4) and decamethylcyclopenta-
siloxane (D5). cVMS are organosilicon chemicals that are
primarily used as carriers in personal care products, such as
deodorants, and as intermediates in the production of silicone
polymers. Their strong positive correlation indicates a
common source of exposure, most likely due to use of
personal care products. Their ubiquitous presence in personal
care products makes it very likely that these chemicals are from
such applications. However, also because of their ubiquitous
presence in silicone polymers, there is a chance that these
chemicals could be a result of contamination from inside the
analytical instrument. There is also a possibility that these
chemicals could also be coming from personal care products by
people working in the lab; however, the physicochemical
properties of D4 and D5, specifically their equilibrium partition
ratio between octanol and air (KOA), indicate that partitioning
from the air to an organic solvent is very unlikely. D4 has a log
KOA of 4.97 and D5 has a log KOA of 3.94,20 which indicate a
strong preference for the molecules to exist in the gas phase
compared to other chemicals, such as polychlorobiphenyl 180
(PCB 180) which has a log KOA of 9.94 and a much stronger
preference to partition to octanol. Finally, all the abundances
in our dataset were blank corrected, which should minimize
the potential of contamination. In the maternal samples, D5
correlated with benzaldehyde, which is a compound that
occurs naturally in plants and in the human body, and it is used
as an additive in foods and personal care products.72 The
correlation with D5 indicates a common source of exposure
through personal care products. In the cord samples, D4 and
D5 correlated with silane trimethyl(octadecyloxy)-, which in
turn correlated with progesterone and ubiquinone. Silane
trimethyl(octadecyloxy)- is an organosilicon compound used
in personal care products73 and its correlation with D4 and D5
makes good sense, given the applications of these chemicals.
The correlation of silane trimethyl(octadecyloxy)- with
progesterone and ubiquinone is somewhat concerning
considering the wide use of that chemical in personal care
products.

5. LIMITATIONS AND FUTURE CONSIDERATIONS
Our study illustrates the importance of broad screening using
NTA in order to characterize the exposome and the
mechanisms under which environmental exposures contribute
to the development of human disease. While NTA is a
powerful tool in compound discovery, it also has its limitations
as it is still early in its development. One critical challenge with
NTA is the small number of confirmed chemicals with
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analytical standards, which is usually in the 10s, compared to
the total number of detected features, which is usually in the
1000s.11,12,14,74 This obstacle restricts the ability of NTA to
assist in prioritizing chemicals for biomonitoring and human
exposure studies. Developing new computational tools for
structure elucidation and expanding in silico screening of
databases for structures that correspond to detected formulas
and prioritization of hazardous chemicals can potentially help
enhance our ability to utilize the potential of NTA.
A limitation of our study is that it uses only one analytical

instrument, LC-QTOF/MS, which specializes in the analysis
and identification of polar and involatile compounds. As a
result, the chemical features that we detected are primarily
from that physicochemical space. Complementing LC-QTOF/
MS with gas chromatography/mass spectrometry, especially
HRMS and multidimensional techniques, could help expand
the spectrum of possible chemical features by including non-
polar and volatile/semivolatile chemicals.
Finally, our study focuses on the differences between

maternal and cord blood as a surrogate for understanding
fetal exposure and adverse fetal health outcomes. However,
adverse fetal health outcomes depend not only on the amount
of the chemical the fetus is exposed to but also on the toxicity
of the chemical. There is thus a need to develop high-
throughput toxicity screening models to screen for chemicals
found in fetal blood. Using NTA data to inform toxicity testing
can provide unique insights into toxicology and environmental
health and assist in preventing exposure to toxic chemicals.
In our future studies, we plan to conduct epidemiological

analyses by further examining the correlations of exogenous
compounds with endogenous metabolites and examine the
influence of covariates on these associations. Furthermore, we
plan to analyze additional samples from patients with adverse
health outcomes to enrich our dataset and investigate the role
of endogenous and exogenous exposures to the development
of adverse health outcomes, such as gestational diabetes,
preterm birth, birth weight, and preeclampsia, among others.
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