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Abstract: Reconstruction problems have been studied in a number of contexts including
biology, information theory and statistical physics. We consider the reconstruction prob-
lem for random k-colourings on the ∆-ary tree for large k. Bhatnagar et al. [2] showed
non-reconstruction when ∆ ≤ 1

2k log k−o(k log k). We tighten this result and show non-
reconstruction when ∆ ≤ k[log k+log log k+1−log 2−o(1)], which is very close to the
best known bound establishing reconstruction which is ∆ ≥ k[log k+log log k+1+o(1)].

1. Introduction

Determining the reconstruction threshold of a Markov random field has been of interest
in a number of areas including biology, information theory and statistical physics. Recon-
struction thresholds on trees are believed to determine the dynamical phase transitions
in many constraint satisfaction problems including random K-SAT and random colour-
ings on random graphs. It is thought that at this point the space of solutions splits into
exponentially many clusters. The properties of the space of solutions of these problems
are of interest to physicists, probabilists and theoretical computer scientists.

It is known [18,20,21] that reconstruction holds when the number of colours sat-
isfies k[log k + log log k + 1 + o(1)] ≤ ∆. This bound is given by the analysis of a
naive reconstruction algorithm which reconstructs the root only when it is known with
absolute certainty given the leaves. The problem of finding good bounds when non-
reconstruction holds is more difficult, it requires showing that the spins on the root
and the leaves are asymptotically independent. The best previous rigorous result was
that ∆ ≤ 1

2k log k − o(k log k) implies non-reconstruction [2]. We improve this to
∆ ≤ k[log k + log log k + 1 − log 2 − o(1)]. Even at a heuristic level no non-reconstruc-
tion bound as good as ours was known.

� Supported by NSF grants DMS-0528488 and DMS-0548249.
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1.1. Definitions. We begin by giving a general description of broadcast models on trees
and the reconstruction problem. The broadcast model on a tree T is a model in which
information is sent from the root ρ across the edges, which act as noisy channels, to the
leaves of T . For some given finite set of characters C a configuration on T is an element
of CT , that is an assignment of a character C to each vertex. The broadcast model is a
probability distribution on configurations defined as follows. Some |C|× |C| probability
transition matrix M is chosen as the noisy channel on each edge. The spin σρ is chosen
from C according to some initial distribution and is then propagated along the edges of
the tree according to the transition matrix M . That is if vertex u is the parent of v in the
tree then the spin at v is defined according to the probabilities

P(σv = j|σu = i) = Mi,j .

We will focus on the colouring model with |C| = k which is given by the transition
matrix Mi,j = 1i�=j

k−1 .
Broadcast models and in particular colourings can also be considered as Gibbs mea-

sures on trees. Given a finite set of colours k and a graph T = (V, E), a k-colouring is
an assignment of a colour to each vertex so that adjacent vertices have different colours.
The random k-colouring model is then the uniform probability distribution on valid k-
colourings of the graph. It is a Gibbs measure or Markov random field on the space of
configurations σ ∈ {1, . . . , k}V given by

P(σ ) = 1

Z

∏

(u,v)∈E

1σu �=σv ,

where Z is a normalizing constant given by the number of colourings of T . On an
infinite tree more than one Gibbs measure may existi; the broadcast colouring model
corresponds to the free Gibbs measure.

We will restrict our attention to ∆-ary trees, that is the infinite rooted tree where every
vertex has ∆ offspring. Let L(n) denote the spins at distance n from the root.

Definition 1. We say that a model is reconstructible on a tree T if,

lim sup
n

∑

i,L

∣∣P(σρ = i, L(n) = L) − P(σρ = i)P(L(n) = L)
∣∣ > 0,

where the sum is over all i ∈ C and all configurations L on the vertices at distance n
from the root. When the limsup is 0 we will say the model has non-reconstruction on T .

Non-reconstruction is equivalent to the mutual information between σρ = L(0) and
L(n) going to 0 as n goes to infinity and also to {L(n)}∞n=1 having a non-trivial tail
sigma-field. More equivalent formulations are given in [17] Prop. 2.1. As increasing ∆

only increases the information on the root, we can define ∆∗(k) to be the reconstruction
threshold, that is the smallest ∆ such that reconstruction holds on the ∆-ary tree.

In contrast to reconstruction consider the uniqueness property of a model.

Definition 2. We say that a model has uniqueness on a tree T if

lim sup
n

sup
L ,L ′

∑

i∈C

∣∣(P(σρ = i|L(n) = L) − P(σρ = i|L(n) = L ′))
∣∣ > 0,

where the supremum is over all configurations L , L ′ on the vertices at distance n from
the root.
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Reconstruction implies non-uniqueness and is a strictly stronger condition. Essen-
tially uniqueness says that there is some configuration on the leaves which provides
information on the root while reconstruction says that a typical configuration on the
leaves provides information on the root.

1.2. Background. For some parameterized collection of models the key question in
studying reconstruction is finding which models have reconstruction, which typically
involves finding a threshold. This problem naturally arises in biology, information theory
and statistical physics and involves the trade off between increasing numbers of leaves
with increasingly noisy information as the distance from the root to the leaves increases.
The simplest collection of model is the binary symmetric channel which is defined on
two characters with

M =
(

1 − ε ε

ε 1 − ε

)

for 0 < ε < 1
2 , which corresponds to the ferromagnetic Ising model on the tree with no

external field. It was shown in [3 and 7] that this channel has reconstruction if and only
if ∆(1 − 2ε)2 > 1.

The broadcast model is a natural model for the evolution of characters of DNA. In
phylogenetic reconstruction the goal is to reconstruct the ancestral tree of a collection of
species given their genetic data. Daskalakis, Mossel and Roch [5,16] proved the conjec-
ture of Mike Steel that the number of samples required for phylogenetic reconstruction
undergoes a phase transition at the reconstruction threshold for the binary symmetric
channel.

Exact reconstruction thresholds have only been calculated in the binary symmetric
model and binary asymmetric models with sufficiently small asymmetry [4]. In both
these cases the threshold corresponds to the Kesten-Stigum bound [10]. The Kesten-
Stigum bound shows that reconstruction holds whenever ∆λ2(M)2 > 1, where λ2(M)

denotes the second largest eigenvalue of M . In fact when ∆λ2(M)2 > 1, it is possi-
ble to asymptotically reconstruct the root from just knowing the number of times each
character appears on the leaves (census reconstruction) without using the information
on their positions on the leaves. Mossel [15,17] showed that the Kesten-Stigum bound is
not the bound for reconstruction in the binary-asymmetric model with sufficiently large
asymmetry or in the Potts model with sufficiently many characters.

It was shown in [9] that k-colourings have uniqueness on ∆-ary trees if and only if
k ≥ ∆ + 2 which therefore also establishes non-reconstruction in this regime. Exactly
finding the threshold for reconstruction is difficult so most attention has been focused on
finding its asymptotics as the number of colours and the degree goes to infinity. Recently
[2] greatly improved this bound showing that ∆∗(k) ≥ ( 1

2 + o(1))k log k. On the other
hand [18] showed that when ∆ ≥ (1 + o(1))k log k then with high probability in k the
spin of the root is exactly determined by the leaves and so reconstruction is possible.
With a more detailed analysis this argument can be improved to show reconstruction
when k[log k + log log k + 1 + o(1)] ≤ ∆, as was shown in [20,21].

This is a large improvement on the Kesten-Stigum bound which implies reconstruc-
tion when ∆ > (k−1)2. In related work Mezard and Montanari [14] found a variational
principle which establishes bounds on reconstruction for colourings but which is asymp-
totically weaker than Lemma 7. Our results establish extremely tight bounds on ∆∗(k)

with the upper and lower bounds differing by just (log 2 + o(1))k rather than 1
2k log k

previously.
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Theorem 1. The k-colouring model has reconstruction threshold ∆∗(k) satisfying,

∆∗(k) ≤ k[log k + log log k + 1 + o(1)]
and

∆∗(k) ≥ k[log k + log log k + 1 − log(2) − o(1)].

1.3. Applications to Statistical Physics. The reconstruction threshold on trees is believed
to play a critical role in the dynamical phase transitions in certain glassy systems given
by random constraint satisfaction problems. Important examples include random K-SAT
and random colourings on random graphs. We will briefly describe what is conjectured
by physicists about such systems [11,21], generally without rigorous proof, and why
understanding the reconstruction threshold for colourings plays an important role in such
systems.

The Erdős-Rényi random graph G(n, p) is a random graph on n vertices where every
pair of vertices is connected with probability p. To maintain constant average degree ∆

we let p = ∆/n. The k-colouring model on G(n,∆/n) or random ∆-regular graphs
undergoes several phase transitions as ∆ grows. If we consider the space of solutions
to the random colouring model where two colourings are adjacent if they differ at at
most o(n) vertices, then for the smallest values of ∆ the space of solutions forms a large
connected component. Above the clustering transition ∆d the space of solutions breaks
into exponentially many disconnected clusters and has no giant component with a con-
stant fraction of the probability. This replica symmetry breaking transition is believed
[11,12] to occur at ∆d = k[log k + log log k + α + o(1)]. In a recent remarkable result
[1] rigorously proved that when (1 + o(1))k log k ≤ ∆ ≤ (2 − o(1))k log k, then the
space of solutions indeed breaks into exponentially many small clusters. A second tran-
sition occurs when most clusters have frozen spins, that is vertices which have the same
colour in every colouring in the cluster. This phase transition is believed to occur at
∆r = k[log k + log log k + 1 + o(1)] [20,21] and is the best upper bound known for
∆d . Two more transitions are believed to occur: condensation where the size of the
clusters is given by a Poisson-Dirichlet process, and the colouring threshold beyond
which no more colourings are possible. These transitions are conjectured to occur at
∆c = 2k log k− log k−2 log 2+o(1) and ∆s = 2k log k− log k−1+o(1) respectively
[21]. Similar results are also expected to hold for K-SAT and other random constraint
satisfiability problems [11].

Both random regular and Erdős-Rényi random graphs are locally tree-like. Asymp-
totically in a random regular graph the neigbourhood of a random vertex is a regular tree
and for Erdős-Rényi random graphs it is a Galton-Watson branching process tree with
Poisson offspring distribution. It is conjectured [11] that the reconstruction threshold on
the corresponding tree is exactly the clustering threshold ∆d on the random graph. As
such, rigorous estimates of the reconstruction problem can be seen as part of a larger
program of understanding glassy phases in constraint satisfaction problems.

The clustering threshold is also believed to play an important role in the efficiency
of MCMC algorithms for finding and sampling from colourings of the graphs. MCMC
algorithms are believed to be efficient up to the clustering threshold but experience an
exponential slowdown beyond it [11]. This is to be expected since a local MCMC algo-
rithm cannot move between clusters each of which has exponentially small probability.
Rigorous proofs of rapid mixing of MCMC algorithms, such as the Glauber dynamics,
fall a long way behind. For random regular graphs, results of [6] imply rapid mixing when
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k ≥ 1.49∆, well below the reconstruction threshold and even the uniqueness threshold.
Even less is known for Erdős-Rényi random graphs as almost all MCMC results are
given in terms of the maximum degree which in this case grows with n. Polynomial time
mixing of the Glauber dynamics has been shown [19] for a constant number of colours
in terms of ∆.

1.4. Open Problem. If the probability that the leaves uniquely determine the spin at the
root does not go to 0 as n goes to infinity then the model has reconstruction. It is natural
to ask is this a necessary condition for reconstruction. When k = 5 and ∆ = 14 it was
shown in [14] using a variational principle that reconstruction holds but the probabil-
ity that the leaves fix the root goes to 0. However, this is the only case in which the
variational principle gives an upper bound on the number of colours required for recon-
struction which is better than the bound of the leaves fixing the root. It remains open to
determine if for large numbers of colours/high degree if this is exactly the reconstruction
threshold. Numerical results of [21] suggest this is in fact not the case and there are two
separate thresholds. Answering this question would be of significant interest.

2. Proofs

We introduce the notation we use in the proofs. We denote the colours by C = {1, . . . , k}
and let T be the ∆-ary tree rooted at ρ. Let u1, . . . ,u∆ be the children of ρ and let Tj

denote the subtree of descendants of uj . Let P(σ ) denote the free measure on colourings
on the ∆-ary tree. Let L(n) denote the spins at distance n from ρ and let Lj(n) denote
the spins on level n in the subtree Tj . We let E i and P i denote the expectation and
probability with respect to the measure conditioned to have i at the root. For a random
variable U , a function of σ , we will let L(U ) denote the law of U and Li(U ) denote its
conditional law with respect to the measure conditioned to have i at the root.

For a configuration L on the spins at distance n from ρ define the deterministic
function fn as

fn(i, L) = P(σρ = i|L(n) = L).

By the recursive nature of the tree we also have that

fn(i, L) = P(σuj = i|Lj(n) = L).

Now define Xi(n) = Xi by

Xi(n) = fn(i, L(n)).

These random variables are a deterministic function of the random configuration L(n)

of the leaves which gives the marginal probability that the root is in state i. By symmetry
the Xi are exchangable. Now we define two distributions

X+ = X+(n) = L1 fn(1, L(n)),

and

X− = X−(n) = L2 fn(1, L(n)).
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We will establish non-reconstruction by showing that the distributions X+ and X− both
converge to 1

k as n goes to infinity. By symmetry we have

Li1 ( fn(i2, L(n)))
d=

{
X+ i1 = i2,

X− otherwise,

and the set { fn(i, L(n)) : 2 ≤ i ≤ k} is conditionally exchangeable when conditioned
on the event σρ = 1. Moreover, they are conditionally exchangeable given σρ = 1 and
the value of fn(1, L(n)). Now define

Yij = Yij(n) = fn(i, Lj(n)).

This is equal to the probability that σuj = i, given the random configuration Lj(n) on
the spins on level n in the subtree Tj . The following proposition follows immediately
from the symmetries of the model.

Proposition 1. The Yij satisfy the following properties:

– The random vectors Yj = (
Y1j, . . . , Yqj

)
are conditionally independent given σρ for

j = 1, . . . , d.

– Conditional on σuj the random variable Yσuj j is equal in distribution to X+(n) while

for i �= σuj the random variables Yij are equal in distribution to X−(n).
– Further, for fixed j, given σuj and Yσuj j the random variables {Yij}i�=σuj

are condi-
tionally exchangeable over i �= σuj .

We make use of these symmetries to simplify the anaylsis. Given the standard Gibbs
measure recursions on trees we have that

fn+1(1, L(n + 1)) =
∏∆

j=1(1 − fn(1, Lj(n)))
∑k

i=1
∏∆

j=1(1 − fn(i, Lj(n)))

and so

X1(n + 1) = Z1∑k
i=1 Zi

,

where

Zi =
∆∏

j=1

(1 − Yij).

We let xn and zn denote E1 X1(n) = E X+(n) and E1(X1(n)− 1
k )2 = E(X+(n)− 1

k )2

respectively. These quantities, in particular xn, play a major role in our analysis. The
following lemma, which can be viewed as the analogue of Lemma 1 of [4], allows us to
relate the first and second moments of X+.

Lemma 1. We have that

xn = E X+ = E1
k∑

i=1

Xi(n)2 = E
k∑

i=1

(Xi(n))2,
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and

xn − 1

k
= E X+ − 1

k
= E

k∑

i=1

(
Xi(n) − 1

k

)2

≥ E

(
X+ − 1

k

)2

= zn.

Proof. From the definition of conditional probabilities and of fn and the fact that
P(σρ = 1) = 1

k we have that

E1 fn(1, L(n)) =
∑

L

fn(1, L)P(L(n) = L|σρ = 1)

=
∑

L

P(L(n) = L , σρ = 1)

P(σρ = 1)
fn(1, L)

= k
∑

L

P(L(n) = L) fn(1, L)2

= kE(X1(n))2

= E
k∑

i=1

(Xi(n))2.

By symmetry for any i1, i2 ∈ C,

E i1

k∑

i=1

(Xi(n))2 = E i2

k∑

i=1

(Xi(n))2,

and so

E
k∑

i=1

(Xi(n))2 = 1

k

k∑

i′=1

E i′
k∑

i=1

(Xi(n))2 = E1
k∑

i=1

(Xi(n))2.

Finally we have that

E
k∑

i=1

(Xi(n) − 1

k
)2 = E

k∑

i=1

(Xi(n))2 − 2

k
E

k∑

i=1

Xi(n) + k
1

k2 = E X+ − 1

k
,

which completes the proof.

Corollary 1. We have that xn ≥ 1
k and that

lim
n

xn = 1

k

implies non-reconstruction.

Proof. We have that xn ≥ zn + 1
k ≥ 1

k . If xn converges to 1
k then

k∑

i=1

E

(
Xi(n) − 1

k

)2

→ 0

which implies non-reconstruction.
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2.1. Non-reconstruction. Our analysis is split into two phases, the first when xn is close
to 1 and the second when xn is close to 1

k .

Lemma 2. Suppose that β < 1 − log 2. Then for sufficiently large k if ∆ < k[log k +
log log k + β] then

lim sup
n

xn ≤ 2

k
.

Proof. We fix the colour of the root to be 1 and let F denote the sigma-algebra generated
by {σuj : 1 ≤ j ≤ ∆}, the colours of the neighbours of the root. For 1 ≤ i ≤ k let
bi = #{j : σuj = i}, the number of times each colour appears amongst the neighbours
of the root. Of course b1 = 0 since the neighbours of the root cannot be 1. For 1 ≤ i ≤ k
define

Ui =
∏

1≤j≤∆:σuj =i

(1 − Yij).

Note that with this definition U1 = 1. We will use the symmetries and exchangeability
of the model to reduce the problem to considering a random variable only involving the
Ui. Conditional on F , the Ui are independent and are distributed as the product of bi

independent copies of (1 − X+(n)) and 0 ≤ Ui ≤ 1 for all i. Fix an 	 with 2 ≤ 	 ≤ k.
Let W1 and W	 be defined by

W1 =
∏

1≤j≤∆:σuj �=	

(1 − Y1j), W	 =
∏

1≤j≤∆:σuj �=	

(1 − Y	j)

so Z	 = W	U	. Note that for j ∈ {1 ≤ j ≤ ∆ : σuj �= 	} we have that σuj �∈ {1, 	},
since of none of the σuj are 1. So by Proposition 1, conditional on F and σuj �∈ {1, 	},
we have that Y1j and Y	j are conditionally exchangeable and so W1 and W	 are condi-
tionally exchangeable. We will analyse the effect of swapping W1 with W	. Recall that
Zi = ∏∆

j=1(1 − Yij) so define

Z̃	 = W1U	 = W1

∏

1≤j≤∆:σuj =	

(1 − Y	j),

and

Z̃1 = W	

∏

1≤j≤∆:σuj =	

(1 − Y1j),

and for i �∈ {1, 	},
Z̃i = Zi.

Proposition 1 noted that Yj = {Y1j, . . . , Ykj} are conditionally independent given F
and for each j given σuj and Yσuj j the random variables {Yij : i �= σuj } are conditionally
exchangeable. It follows that

(W1, W	, Z1, . . . , Zk, U1 . . . , Uk, σ1, . . . , σ∆)

d= (
W	, W1, Z̃1, . . . , Z̃k, U1 . . . , Uk, σ1, . . . , σ∆

)
, (1)
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where we denote equality as in distributions of random vectors since this just swaps Y1j’s
with Y	j’s which are conditionally exchangeable given all the other random variables.
Since 0 ≤ U	 ≤ 1, and

∑k
i=2 Zi − ∑k

i=2 Z̃i = Z	 − Z̃	 = U	(W	 − W1) it follows that
(W1 − W	) has the same sign as

(
W1 +

k∑

i=2

Zi

)
−

(
W	 +

k∑

i=2

Z̃i

)
= (W1 − W	)(1 − U	)

and so

1

W1 +
∑k

i=2 Zi

− 1

W	 +
∑k

i=2 Z̃i

has the opposite sign as W1 − W	. Applying the equality in distribution of Eq. (1) we
have that

E1

[
W	 − W1

W1 +
∑k

i=2 Zi

∣∣∣∣∣F , {Ui}
]

= 1

2
E1

[
W	 − W1

W1 +
∑k

i=2 Zi

+
W1 − W	

W	 +
∑k

i=2 Z̃i

∣∣∣∣∣ F , {Ui}
]

= 1

2
E1

[
(W	 − W1)

(
1

W1 +
∑k

i=2 Zi

− 1

W	 +
∑k

i=2 Z̃i

)∣∣∣∣∣F , {Ui}
]

≥ 0,

where the first equality follows using equality in distributions of the random vectors and
the inequality follows from the two terms of the product having the same sign. Since
0 ≤ Z1 ≤ W1 ≤ 1 we have that,

E1

[
Z1

Z1 +
∑k

i=2 Zi

∣∣∣∣∣F , {Ui}
]

≤ E1

[
W1

W1 +
∑k

i=2 Zi

∣∣∣∣∣F , {Ui}
]

≤ E1

[
W	

W1 +
∑k

i=2 Zi

∣∣∣∣∣F , {Ui}
]

≤ E1

[
W	

Z1 +
∑k

i=2 Zi

∣∣∣∣∣F , {Ui}
]

,

and so since Z	 = U	W	 and we are conditioning on U	,

E1

[
Z1U	

Z1 +
∑k

i=2 Zi

∣∣∣∣∣ F , {Ui}
]

≤ E1

[
Z	

Z1 +
∑k

i=2 Zi

∣∣∣∣∣F , {Ui}
]

.

Recall that 	 ≥ 2 is arbitrary so the previous equation holds for all 2 ≤ 	 ≤ k simulta-
neously. Summing over all values of 	 we get that,

E1

⎡

⎣
Z1

(
1 +

∑k
l=2 Ul

)

∑k
i=1 Zi

∣∣∣∣∣∣
F , {Ui}

⎤

⎦ ≤
k∑

l=1

E1

[
Zl∑k

i=1 Zi

∣∣∣∣∣F , {Ui}
]

= 1,
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and hence since we are conditioning on the Ui,

E1 [ X1(n + 1)| F , {Ui}] = E1

[
Z1∑k
i=1 Zi

∣∣∣∣∣F , {Ui}
]

≤ 1

1 +
∑k

i=2 Ui

.

We now estimate the expected value of the right-hand side of the previous equation.
Using the fact that 1

1+x = ∫ 1
0 sxds we have that

1

1 +
∑k

i=2 Ui

=
∫ 1

0
s
∑k

i=2 Uids.

As su is convex as a function of u we have that su ≤ s0(1 − u) + s1u when 0 ≤ u ≤ 1
and so since 0 ≤ Ui ≤ 1 we have that E1sUi ≤ (1− E1Ui)+s E1Ui = 1− (1−s)E1Ui.
Since it is conditional on F the Ui are independent and are distributed as the product of
bi independent copies of (1 − X+(n)) we have that,

E1 [ X1(n + 1)| F] ≤
∫ 1

0

k∏

i=2

(1 − (1 − s)E1[Ui|F])ds

=
∫ 1

0

k∏

i=2

(1 − (1 − s)(1 − xn)bi)ds.

Now the colours σuj are chosen independently and uniformly from the set {2, . . . , k}
so (b2, . . . , bk) has a multinominal distribution. Let β < β∗ < 1 − log 2 and let b̃i be
iid random variables distributed as Poisson(D), where D = log k + log log k + β∗. By
Lemma 4 we can couple the b’s and b̃’s so that (b2, . . . , bk) ≤ (̃b2, . . . , b̃k) whenever∑k

j=2 b̃j ≥ ∆. It follows that

xn+1 = E1 X1(n + 1)

≤ E11{∑k
j=2 b̃j<∆} +

∫ 1

0
E1

k∏

i=2

(1 − (1 − s)(1 − xn)b̃i)ds

≤ p +
∫ 1

0
(1 − (1 − s) exp(−xn D))k−1 ds

≤ p +
∫ 1

0
exp (−(1 − s)(k − 1) exp(−xn D)) ds

= p +
1 − exp (−(k − 1) exp(−xn D))

(k − 1) exp(−xn D)
,

where p = P(Poisson((k − 1)D) < ∆). Now p = exp
(
−Ω

(
k√
∆

))
= o(k−1) and

the function

g(y) = p +
1 − exp (−(k − 1) exp(−yD))

(k − 1) exp(−yD)

is increasing in y so the result follows by Lemma 3.
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Lemma 3. Let y0, y1, . . . be a sequence of positive real numbers such that y0 = 1 and
yn+1 = g(yn), where g(yn) = p + 1−exp(−(k−1) exp(−yn D))

(k−1) exp(−yn D)
, D = log k + log log k + β∗,

β∗ < 1 − log 2 and p = o(k−1). Then for large enough k,

lim sup
n

yn <
2

k
.

Proof. Since d
dx

1−e−x

x

∣∣∣
x=0

= − 1
2 we can find ε, δ > 0 such that when 0 < x < δ, then

1 − e−x

x
< 1 −

(
1

2
− ε

)
x.

Assuming our choice of ε is sufficiently small we can also choose r ′ > r > 0 such that

( 1
2 − ε)e−β∗

> e−1(1 + r ′). Now for large enough k, (k − 1) exp(−D) = (k−1)e−β∗
k log k < δ

and so using the fact that r < r ′ and p = o(k−1),

y1 = g(1) ≤ p + 1 −
(

1

2
− ε

)
(k − 1)e−β∗

k log k
≤ 1 + p − (1 + r)e−1

log k
≤ 1 − e−1

log k
,

provided k is sufficiently large. Now since g is a continuous increasing function and y1 <

y0 it follows that the sequence yi is decreasing. Suppose that (k − 1) exp(−yi D) < δ.
Then

yi+1 ≤ p + 1 −
(

1

2
− ε

)
(k − 1) exp(−yiD),

and so for k sufficiently large

1 − yi+1 ≥
(

1

2
− ε

)
(k − 1) exp(−yiD) − p

≥
(

1

2
− ε

)
(k − 1)e−β∗

k log k
exp((1 − yi) log k) − p

≥ (1 + r ′)e−1

log k
exp((1 − yi) log k) − p

≥ (1 + r ′)(1 − yi) − p

≥ (1 + r)(1 − yi),

where the second to last inequality uses the fact that ex ≥ ex and the final inequality
uses the fact that 1 − yi ≥ e−1

log k , while p = o(k−1). It follows that yi decreases until for

some i, (k − 1) exp(−yiD) ≥ δ. Now let 1−e−δ

δ
= α′ < α′′ < α < 1 for some α. When

k is large enough then

yi+1 ≤ p +
1 − e−δ

δ
≤ α′′.

Then for k large enough, exp(−yi+1 D) ≥ exp(−α′′ D) ≥ exp(−α log k) = k−α . It
follows that

yi+2 ≤ p +
1

(k − 1) exp(−yi+1 D)
≤ 2kα−1.
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Finally we have exp(−yi+2 D) ≥ exp(−2kα−1 D) ≥ 2
3 and so

yi+3 ≤ p +
1

(k − 1) exp(−yi+2 D)
< 2k−1

when k is large enough, which completes the proof.

In the preceding lemma we note that the requirement that β∗ < 1− log 2 comes from
the fact that x < 1

2 ex−β∗
for all x when β∗ < 1 − log 2.

Lemma 4. Suppose that (b1, . . . , bk)has the multinominal distribution M
(
n,

( 1
k , 1

k , . . .
1
k

))
. Let b̃j be iid random variables distributed as Poisson(D). We can couple the b’s

and b̃’s so that (b1, . . . , bk) ≤ (̃b1, . . . , b̃k) (respectively ≥) whenever
∑k

j=1 b̃j ≥ n
(respectively ≤).

Proof. Since the b̃j are independent and Poisson, conditional on the sum N = ∑k
j=1 b̃j ,

the distribution of (̃b1, . . . , b̃k) is multinominal M
(
N ,

( 1
k , 1

k , . . . 1
k

))
(see [13]

Prop. 6.2.1). Now if n ≤ m then two multinomial distributions A and B distributed
as M

(
n,

( 1
k , 1

k , . . . 1
k

))
and M

(
m,

( 1
k , 1

k , . . . 1
k

))
respectively can be trivially coupled

so that A ≤ B, which completes the proof.

Janson and Mossel [8] studied “robust reconstruction”, the question of when recon-
struction is possible from a very noisy copy of the leaves. They found that the threshold
for robust reconstruction is exactly the Kesten-Stigum bound. Lemma 2 establishes that
the leaves provide very little information about the spin at a vertex a long distance from
the leaves. So as information over long distances is very noisy the results of [8] suggest
that reconstruction would only be possible after the Kesten-Stigum bound whereas, in
our context, ∆ is much less than λ2(M)−2. As such, only crude bounds are needed to
establish the following lemma.

Lemma 5. For sufficiently large k if ∆ ≤ 2k log k and if xn ≤ 2
k then

xn+1 − 1

k
≤ 1

2

(
xn − 1

k

)
.

Proof. Using the identity

1

s + r
= 1

s
− r

s2 +
r2

s2

1

s + r

and taking s = E1 ∑k
i=1 Zi and r = ∑k

i=1(Zi − E1 Zi) we have that

xn+1 − 1

k
= E1 Z1 − 1

k

∑k
i=1 Zi

∑k
i=1 Zi

= E1 Z1 − 1
k

∑k
i=1 Zi

E1
∑k

i=1 Zi

− E1

(
Z1 − 1

k

∑k
i=1 Zi

) (∑k
i=1(Zi − E1 Zi)

)

(
E1

∑k
i=1 Zi

)2

+E1 Z1 − 1
k

∑k
i=1 Zi

∑k
i=1 Zi

(∑k
i=1(Zi − E1 Zi)

)2

(
E1

∑k
i=1 Zi

)2 .
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Now by Lemma 6,

E1
(

Z1 − 1
k

∑k
i=1 Zi

)

E1
∑k

i=1 Zi

≤
k−1
k

(
1 + 2∆

k

(
xn − 1

k

)) − k−1
k

(
1 − 2∆

k2

(
xn − 1

k

))

1 + (k − 1)
(

1 − 2∆
k2

(
xn − 1

k

))

≤ 3∆

k2

(
xn − 1

k

)
. (2)

Using the inequality 1
2 (a2 + b2) ≥ ab we have that

−
(

Z1 − 1

k

k∑

i=1

Zi

) (
k∑

i=1

Zi − E1 Zi

)

= −
((

Z1 − E1 Z1

)
+

(
E1 Z1 − 1

k

k∑

i=1

E1 Zi

)
− 1

k

(
k∑

i=1

(Zi − E1 Zi)

))

·
(

k∑

i=1

(Zi − E1 Zi)

)

≤ 1

2

∣∣∣Z1 − E1 Z1

∣∣∣
2

+

(
1

2
+

1

k

) ∣∣∣∣∣

k∑

i=1

(Zi − E1 Zi)

∣∣∣∣∣

2

−
(

E1 Z1 − E1 1

k

k∑

i=1

Zi

) (
k∑

i=1

(Zi − E1 Zi)

)

so by Lemma 6 we have that,

E1

[
−

(
Z1 − 1

k

k∑

i=1

Zi

) (
k∑

i=1

(Zi − E1 Zi)

)]

≤
(

k − 1

k

)2∆ (
xn − 1

k

) [
4∆

k
+ 4∆

]

and

E1

⎡

⎢⎣−
(

Z1 − 1
k

∑k
i=1 Zi

) (∑k
i=1(Zi − E1 Zi)

)

(
E1

∑k
i=1 Zi

)2

⎤

⎥⎦

≤
(
xn − 1

k

) [ 4∆
k + 4∆

]
(

1 + (k − 1)
(

1 − 2∆
k2

(
xn − 1

k

)))2

≤ 5∆

k2

(
xn − 1

k

)
. (3)
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Finally since 0 ≤ Z1∑k
i=1 Zi

≤ 1 we have that

∣∣∣∣
Z1− 1

k

∑k
i=1 Zi∑k

i=1 Zi

∣∣∣∣ ≤ 1, and so

E1 Z1 − 1
k

∑k
i=1 Zi

∑k
i=1 Zi

(∑k
i=1(Zi − E1 Zi)

)2

(
E1

∑k
i=1 Zi

)2 ≤ E1

(∑k
i=1(Zi − E1 Zi)

)2

(
E1

∑k
i=1 Zi

)2

≤ 5∆

k2

(
xn − 1

k

)
. (4)

Combining Eqs. (2), (3) and (4) we have that

xn+1 − 1

k
≤ 13∆

k2

(
xn − 1

k

)
≤ 1

2

(
xn − 1

k

)
(5)

for large enough k, which completes the result.

Lemma 6. For sufficiently large k if ∆ ≤ 2k log k and if xn ≤ 2
k then the following all

hold:
(

k − 1

k

)∆

≤ E1 Z1 ≤
(

k − 1

k

)∆ (
1 +

2∆

k

(
xn − 1

k

))
, (6)

and for i �= 1,
(

k − 1

k

)∆ (
1 − 2∆

k2

(
xn − 1

k

))
≤ E1 Zi ≤

(
k − 1

k

)∆

, (7)

Var1 Z1 ≤
(

k − 1

k

)2∆ 4∆

k

(
xn − 1

k

)
, (8)

Var1

(
k∑

i=1

Zi

)
≤

(
k − 1

k

)2∆

4∆

(
xn − 1

k

)
. (9)

Proof. From Eq. (15) of Lemma 9 we have that

E1 Z1 =
(

k − 1

k
+

1

k − 1

(
xn − 1

k

))∆

,

and since by Corollary 1, xn ≥ 1
k we have that

E1 Z1 ≥
(

k − 1

k

)∆

.

Then since exp(x) = 1 + x + O(x2) and k∆
(k−1)2

(
xn − 1

k

)
is small for large k,

E1 Z1 ≤
(

k − 1

k

)∆

exp

(
k∆

(k − 1)2

(
xn − 1

k

))

≤
(

k − 1

k

)∆ (
1 +

2∆

k

(
xn − 1

k

))
,

which establishes Eq. (6). Equations (7), (8) and (9) are established similarly using
identities from Lemma 9.
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2.2. Reconstruction. An upper bound on the reconstruction threshold ∆∗(k) is found
by estimating the probability that the colour of the root is uniquely determined by the
colours at the leaves. This method was described in [18] and used to a higher level of
precision in [21,20]. We restate the result and give a full proof for completeness.

Lemma 7. Suppose thatβ > 1. Then for sufficiently largek if∆ > k[log k+log log k+β]
then the colour of the root is uniquely determined by the colours at the leaves with prob-
ability at least 1 − 1

log k , that is

inf
n

P(X+(n) = 1) > 1 − 1

log k
.

Proof. Let pn be the probability that the leaves at distance n determine the spin at the
root, that is pn = P1(X1(n) = 1). We will show that when k is large then lim infn pn

is close to 1.
Suppose we fix the colour of the root to be 1 and let F denote the sigma-algebra gen-

erated by {σuj : 1 ≤ j ≤ ∆}, the colours of the neighbours of the root. For 2 ≤ i ≤ k let
bi = #{j : σuj = i}, the number of times each colour appears in the neighbours of the
root. Now each colour σuj is chosen uniformly from the set {2, . . . , k} so (b2, . . . , bk)

has a multinominal distribution. Let β > β∗ > 1 and let b̃i be iid random variables dis-
tributed as Poisson(D), where D = log k + log log k + β∗. By Lemma 4 we can couple
the b’s and b̃’s so that (b2, . . . , bk) ≥ (̃b2, . . . , b̃k) whenever

∑k
i=2 b̃j ≤ ∑k

i=2 bj = ∆.
If for each colour 2 ≤ i ≤ k there is some vertex uj such that the states of the leaves,
Lj(n) fix the colour of uj to be i, then the leaves L(n + 1) fix the colour of ρ to be 1.
Conditional on F the probability that there is such a vertex uj for a given colour i is at
least 1 − (1 − pn)bi . Moreover these are conditionally independent of F so it follows
that

pn+1 ≥
k∏

i=2

E1
[
1 − (1 − pn)bi |F

]

≥
k∏

i=2

E1
[
1 − (1 − pn)b̃i

]
− s

= (1 − exp(−pn D))k−1 − s,

where s = P(Poisson((k − 1)D) > ∆) = o(k−1). Now

f (x) = (1 − exp(−xD))k−1 − s

is an increasing function in x and hence when k is large enough

f

(
1 − 1

log k

)
=

(
1 − exp

(
−(1 − 1

log k
)(log k + log log k + β∗)

))k−1

− s

> 1 − 1

log k
,

and since p0 = 1,

inf
n

pn ≥ 1 − 1

log k
,

which completes the proof.
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2.3. Main Theorem.

Proof (Theorem 1). Combining Lemmas 2 and 5 establishes non-reconstruction when
∆ ≤ k[log k + log log k + 1− log(2)−o(1)]. Lemma 7 shows that the root can be recon-
structed correctly with probability at least 1 − 1

log k , which establishes reconstruction
when ∆ ≥ k[log k + log log k + 1 + o(1)].

Remarks. For large k the Poisson(∆) distribution is concentrated around ∆ with stan-
dard deviation O(

√
∆) which is significantly smaller than the error bounds in Theorem 1.

With some minor modifications the bounds for ∆-ary trees can be extended to Galton-
Watson branching processes with offspring distribution Poisson(∆). The reconstruction
of Galton-Watson branching processes with offspring distribution Poisson(∆) is of inter-
est because, as noted before, it is believed to be related to the clustering phase transition
for colourings on Erdős-Rényi random graphs.

To be more specific, for the proof of non-reconstruction we can again bound xn =
E1 X1(n), where the expected value is taken over all possible trees. In Lemma 2 we
repeat the same bounds on xn, the only difference being ∆ is now random, which does
not affect the results for large k. Then similar estimates can be made in Lemma 5 pro-
vided ∆

k

(
xn − 1

k

)
is very small. As ∆ is concentrated around its expected value the

probability of this not holding is very small and this can be used to complete the proof
of non-reconstruction.

When β > β∗ > 1, with probability going to 1 as k goes to infinity, the Galton-
Watson branching process contains a subgraph which is a (k[log k + log log k + β∗])-ary
tree rooted at ρ. Reconstruction then follows from Lemma 7.
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A. Appendix

In this appendix we calculate identities which are used in the proof of Lemma 6. Observe
that since E X+(n) + (k − 1)E X− = 1 we have that E X+ − 1

k = −(k − 1)(E X− − 1
k ).

We will show that the means and variances of the Yij and Zi can all be calculated in
terms of xn and zn.

Lemma 8. We have the identities

E1Y1j = 1

k
− 1

k − 1

(
xn − 1

k

)
, (10)

E1Y 2
1j = 1

k2 +
k − 2

k(k − 1)

(
xn − 1

k

)
− 1

k − 1
zn. (11)

For 2 ≤ i ≤ k,

E1Yij = 1

k
+

1

(k − 1)2

(
xn − 1

k

)
(12)
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and

E1Y 2
ij = 1

k2 +
k2 − 2k + 2

k(k − 1)2

(
xn − 1

k

)
+

1

(k − 1)2 zn. (13)

For any 1 ≤ i1 < i2 ≤ k,

Cov1(Yi1j, Yi2j) ≤ 0. (14)

Proof. When the root is conditioned to be 1, σuj �= 1 and so Y1j is distributed as X−
and we have that

E1Y1j = E X− = 1

k
− 1

k − 1

[
E X+ − 1

k

]
= 1

k
− 1

k − 1

(
xn − 1

k

)
,

and

E1Y 2
1j = E(X−)2

= 1

k − 1

[
E

k∑

i=1

(Xi)
2 − E(X+)2

]

= 1

k − 1
[E X+ − E(X+)2]

= 1

k − 1

[
k − 2

k
E

(
X+ − 1

k

)
− E

(
X+ − 1

k

)2

+
k − 1

k2

]

= 1

k2 +
k − 2

k(k − 1)

(
xn − 1

k

)
− 1

k − 1
zn,

where the third equality follows from Lemma 1. For 2 ≤ i ≤ k we have that

E1Yij = 1

k − 1
[1 − E1Y1j] = 1

k − 1

[
1 − 1

k
+

1

k − 1

[
xn − 1

k

]]

= 1

k
+

1

(k − 1)2

(
xn − 1

k

)
,

and again using Lemma 1,

E1Y 2
ij = 1

k − 1

[
E1

k∑

i=1

(Xi)
2 − E1Y 2

1j

]

= 1

k2 +
k2 − 2k + 2

k(k − 1)2

(
xn − 1

k

)
+

1

(k − 1)2 zn.

Also for 2 ≤ i ≤ k,

E1Y1jYij = 1

k − 1

k∑

i′=2

E1Y1jYi′j

= 1

k − 1
E1Y1j(1 − Y1j)

≤ 1

k − 1
E1Y1j E(1 − Y1j)

= E1Y1j E1Yij,
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so Cov1(Y1j, Yij) ≤ 0. Finally for 2 ≤ i1 < i2 ≤ k,

Var1(1 − Y1j) =
k∑

i=2

Var1(Yij) + (k − 1)(k − 2)Cov1(Yi1j, Yi2j),

and so

Cov1(Yi1j, Yi2j) = Var1(1 − Y1j) −
k∑

i=2

Var1(Yij)

= Var(X−) − ((k − 2)Var(X−) + Var(X+))

≤ 0,

so Cov1(Yi1j, Yi2j) ≤ 0.

Using Lemma 8 we can calculate the means and covariances of the Zj .

Lemma 9. We have the following results:

E1 Z1 =
(

k − 1

k
+

1

k − 1

(
xn − 1

k

))∆

, (15)

E1 Z2
1 =

((
k − 1

k

)2

+
3k − 2

k(k − 1)

(
xn − 1

k

)
− 1

k − 1
zn

)∆

. (16)

For each 2 ≤ i ≤ k then

E1 Zi =
(

k − 1

k
− 1

(k − 1)2

(
xn − 1

k

))∆

(17)

and

E1 Z2
i =

((
k − 1

k

)2

+
k2 − 4k + 2

k(k − 1)2

(
xn − 1

k

)
+

1

(k − 1)2 zn

)∆

. (18)

For any 1 ≤ i1 < i2 ≤ k,

Cov1(Zi1j, Zi2j) ≤ 0. (19)

Proof. By Eq. (10) we have that

E1 Z1 = E
∆∏

j=1

(1 − Y1j)

=
(

1 −
(

1

k
− 1

k − 1

(
xn − 1

k

)))∆

=
(

k − 1

k
+

1

k − 1

(
xn − 1

k

))∆

,
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which establishes Eq. (15). Equations (16), (17) and (18) follow similarly. Using
Eq. (14) we have that for 1 ≤ i1 < i2 ≤ k,

E1 Zi1 Zi2 = E1
∆∏

j=1

(1 − Yi1j)(1 − Yi2j)

≤
∆∏

j=1

E1(1 − Yi1j)E(1 − Yi2j)

= E1 Zi1 E1 Zi2 ,

which establishes Eq. (19).
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