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ABSTRACT OF THE DISSERTATION
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by
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Professor Harry Guoqing Xu, Co-Chair

Professor Ravi Arun Netravali, Co-Chair

While using machine learning to analyze video data is seeing explosive growth, modern vision

models are difficult and expensive to deploy in practice. This is because while models are

getting more accurate and robust, they are also getting more complicated and thus more

resource-intensive. At the same time, the environments in which they are used, such as

self-driving cars, demand extremely fast and accurate results.

Traditionally, all video data was sent to cloud servers, where models were run over the

frames on GPU machines. Recently though, the use of edge computing has shown promise

in addressing this tension between performance and resource usage. Resources available at

the edge are highly heterogeneous in terms of computational power and memory, and while

most prior work assumes a well-equipped edge, we find that the devices used in practice are

often inexpensive commodity hardware. This limits the amount of computation that can

practically happen at the edge.

In this thesis, we aim to make the most of these resource-constrained edge devices. We

present two systems that improve the tradeoff between performance and resource usage in

live video analysis. Our first system, Reducto, uses the limited amount of compute available

on smart cameras to run cheap computer vision techniques and filter out frames that are

similar enough to the previous frame that we can reuse the previously computed result

ii



as an approximation. This lowers GPU usage by over 50% and doubles processing speed.

Our next system, GEMEL, addresses the memory bottleneck of running many models on

an edge server by finding and merging common layers across a diverse set of models. This

lowers the memory footprint by up to 60% and improves accuracy by up to 39%.
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CHAPTER 1

Introduction

The use of machine learning to analyze live video is seeing explosive growth, fueled by

increasing amounts of video data being generated as well as the consistent improvement of

machine learning models [37, 82, 86, 91, 130]. For example, in augmented reality applications,

machine learning models track and understand the 3D world, allowing the experience to be

interactive. In responding to Amber Alerts, models are run over all video footage within a

certain area to look for a specific car and license plate number. In self-driving cars, models

identify all objects and their locations relative to the car, allowing the car to make driving

decisions. What all these applications have in common is the need for the machine learning

model to produce results quickly and accurately. While in augmented reality applications,

using a slow or faulty model might cause frustration to the user and lost revenue, in self-

driving cars it could be fatal.

The need for fast and accurate results is complicated by the fact that these machine learn-

ing models, as they are getting more accurate and robust, are also getting larger and more

complicated. They are now typically deep neural networks (DNNs) that require more compu-

tations, take longer to run, and use more memory. Figure 1.1 shows the trend in the number

of parameters, which corresponds to the number of computations required, over the last 20

years. This tension between increased model complexity and the demanding environments

in which models are run is the subject of this thesis. We first describe typical video analytics

pipelines and then present methods to improve the trade-off space between performance and

resource usage.
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Figure 1.1: Parameter counts in popular vision DNNs over time. Data drawn from [121].

1.1 Background & Motivation

Video Analytics Pipelines. Video analytics pipelines [63, 74, 145, 158] typically consist

of cameras that stream their video content over a network to a cloud server, where frames

are pre-processed and then fed into a DNN, such as YOLO [116]. The results are used to

respond to queries such as “return the location of all cars” or “return the number of buses”,

where responses are given per-frame.

The first major goal of such a pipeline is to respond with high accuracy. Typically, queries

are given with an accuracy constraint, or the amount of error the query can tolerate, relative

to running the most expensive DNN (which typically translates to the largest DNN available)

over every frame in the video. The second goal is to respond with low latency. This often

means running at 30 frames per second, which is the frame rate of real-time video. In other

cases, the query will provide a service level agreement (SLA), specifying that the frame must

be processed within a certain amount of time (e.g., 100 ms) after it is recorded by the camera;

otherwise the result is no longer useful.

Achieving these two goals is challenging because this pipeline is extremely resource intensive,

both in terms of network bandwidth and compute cost. Sending a single video at 1080p at

30 fps requires 2 Mbps, and if we consider that usually deployments consist of several (tens

of) cameras sending video over the same network, the bandwidth consumes adds up quickly

and causes delays in frames getting to the cloud server. In terms of compute cost, while

models are getting more accurate, they are also getting larger and more computationally
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intensive [19, 71, 72, 142]. For example, Faster RCNN, a state-of-the-art object detector,

takes 6 seconds to process 1 second of video on a Tesla P100, a $6000 GPU machine.

One solution is to simply set up multiple networks and use several GPU machines per video

stream. However, this is prohibitively costly to most organizations i.e., cities and enterprises

will not spend hundreds of thousands of dollars to analyze their video streams. We thus aim

to approach this problem with a focus on affordability: how can lower resource usage enough

to make running these video analytics pipelines affordable, while still meeting accuracy

constraints?

Edge Computing for Video Analytics. A key insight that this work leverages is that in

video analytics pipelines, moving some computation to the edge enables several performance

benefits [30, 101, 141]. For example, if we could use the compute at the edge to filter out

unnecessary or redundant frames before they reach the cloud server, we could lower the

bandwidth of sending all those frames, thus reducing network delays. This would also lower

the compute requirements because only some frames would need to be run through the

DNN [38, 40, 63, 76]. Moving computation to the edge could also be necessary to meet SLAs

in cases where the result is needed at the edge itself, such as self-driving cars, as the round-

trip time to the cloud would be prohibitive [58, 90, 159]. Further, in case of disconnection to

the cloud, an edge component adds resilience to the pipeline [5, 103]; for example, we could

use the edge to continue running high priority jobs, i.e., we could miss getting traffic flow

patterns for a short time but still run Amber Alerts. Finally, moving computation to the

edge can address privacy concerns around streaming video to the cloud [99, 110].

Resource-Constrained Edge Devices. The devices that can be used at the edge are

highly varied, ranging from laptops to edge boxes to even cameras [1, 2, 43, 51, 102, 137].

While most prior work has assumed a fairly well-equipped edge in terms of computational

power and memory, we find that in practice, deployments use resource-constrained inexpen-

sive hardware. These contain less processing power than the cloud (i.e., CPU only and/or

3



Chapter 1. Introduction

lower clockspeed) as well as significantly less memory. This work studies these edge devices

that are used in practice and explores how to make the most of their limited resources.

1.2 Thesis Approach

The key goal of this work is to improve the performance of video analytics pipelines using

inexpensive resource-constrained edge devices. We present two strategies for approaching this

goal that are each tailored to an edge device that is currently deployed. The first considers

smart cameras with a weak CPU and uses the camera to efficiently decide when previously

computed query results can be safely reused (i.e., when skipping a frame can still meet

accuracy targets). The second strategy considers edge boxes whose GPUs contain limited

memory compared the cloud. Here, we look within machine learning models for redundancies

in layers and we merge redundant layers to lower the models’ memory footprint.

1.3 Reusing Query Results When Possible

To cope with the high resource (network and compute) demands of real-time video analyt-

ics pipelines, recent systems have relied on frame filtering. However, filtering has typically

been done with neural networks running on edge/backend servers that are expensive to op-

erate. This paper investigates on-camera filtering, which moves filtering to the beginning

of the pipeline. We studied existing deployments and found that in practice, cameras have

limited compute resources that are not powerful enough to run neural networks. Our solu-

tion, Reducto (§2), presents a method to determine a cheap predicate that even the most

resource-constrained cameras can run to determine which frames to send. This predicate is

based on low-level differences between frames, such as pixel comparison or edge detection.

Used incorrectly, such techniques can lead to unacceptable drops in query accuracy. To

overcome this, Reducto dynamically adapts filtering decisions according to the time-varying

correlation between feature type, filtering threshold, query accuracy, and video content. Ex-

periments with a variety of videos and queries show that with Reducto, we can use the small

CPU available in most existing deployments to filter out up to half the frames and lower the

end-to-end latency of the pipeline by up to 26% while consistently meeting accuracy targets.
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1.4 Exploiting Redundancy Between Models

While in Reducto, we treated the DNN as a black box (i.e., we changed the inputs and

assessed the accuracy of the outputs), our second strategy involves diving into the DNNs

themselves. Here, we consider a common pipeline where edge boxes are deployed close to

the cameras and are aimed at running several DNNs per video stream while processing

several video streams. We find that edge-box GPUs lack the memory needed to concur-

rently house the growing number of (increasingly complex) models for real-time inference.

Unfortunately, existing solutions that rely on time/space sharing of GPU resources are insuf-

ficient as the required swapping delays result in unacceptable frame drops and accuracy loss.

We present model merging, a new memory management technique that exploits architec-

tural similarities between edge vision models by judiciously sharing their layers (including

weights) to reduce workload memory costs and swapping delays. Our system, GEMEL

(§3), efficiently integrates merging into existing pipelines by (1) leveraging several guiding

observations about per-model memory usage and inter-layer dependencies to quickly iden-

tify fruitful and accuracy-preserving merging configurations, and (2) altering edge inference

schedules to maximize merging benefits. Experiments across diverse workloads reveal that

GEMEL reduces memory usage by up to 60%, and improves overall accuracy by up to 39%

relative to time or space sharing alone.
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CHAPTER 2

Reducto: On-Camera Filtering for Resource-Efficient

Video Analytics

2.1 Overview

Significant work has been expended to improve the efficiency of video analytics pipelines [38,

40, 63, 74, 97, 158]. Across these systems, a prevailing (and natural) strategy is to improve

efficiency by filtering out frames that do not contain relevant information for the query

at hand [38, 40, 63, 76]. Conceptually, filtering out a frame requires understanding how

that frame would affect a query result. To make such decisions without needing the actual

query results (which would negate filtering benefits), existing systems employ various lev-

els of approximations based on either (1) compressed object detection models (e.g., Tiny

YOLO [116]) that compute lower-confidence results [63], (2) specialized binary classification

models that eliminate frames that do not contain an object of interest [38, 76], or (3) simple

frame differencing to eliminate frames whose low-level features (e.g., pixel values) have not

changed substantially (based on a static threshold) and are expected to produce the same

results [40].

On-camera filtering. In this work, unlike prior filtering approaches that typically run

on edge [98] or backend servers, we seek to filter frames at the beginning of the analytics

pipeline – directly on cameras. Like edge server approaches, on-camera filtering has the

potential to alleviate not only backend computation overheads (by reducing the number of

frames that must be processed by the backend object detector), but also end-to-end network

bottlenecks between cameras and backend servers, particularly for wireless cameras [38, 58,
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160]. Furthermore, an on-camera approach can also sidestep the management and cost

overheads of operating edge servers [96, 117]. We note that in targeting on-camera filtering,

our aim is to eliminate the reliance on edge servers for filtering by making use of currently

unused resources. Our on-camera filtering techniques could also run on edge servers (if

present), outperforming existing strategies while consuming fewer resources (§2.5).

Despite the potential benefits, our study of commodity cameras and surveillance deployments

paints a bleak resource picture (§2.2.1). In contrast to edge servers, smartphones, or recent

smart cameras that possess GPUs and AI hardware accelerators, deployed cameras often have

low-speed CPUs (1 GHz) and modest amounts of RAM (256 MB). These resources preclude

even compressed NNs for filtering (e.g., Tiny YOLO runs at < 1 fps), and instead can only

tolerate specialized binary classification NNs or frame differencing strategies. Unfortunately,

we find that these approaches are far more limited for filtering (§2.2.2). Binary classification

strategies forego between 17-74% of potential frame filtering opportunities by filtering based

on object presence rather than changes in query result, e.g., a parking lot can contain parked

cars, but the overall count or locations of the cars may not change. In contrast, existing

frame differencing strategies consistently violate query accuracy requirements by filtering

out necessary frames (reasons described below).

Goal and insight. In this work, we ask: can we integrate on-camera filtering into video

analytics pipelines in a way that achieves most of the potential filtering benefits without

violating accuracy goals? Due to the aforementioned filtering limitations inherent to binary

classification, we turn to frame differencing with low-level features.

Our key insight is that the lack of accuracy preservation with existing frame differencing

strategies is not a problem inherent to low-level features, but rather a problem of these

features not being used appropriately. For example, Glimpse [40] filters by comparing pixel-

level frame differences against a static threshold, and is unable to adapt to the heterogeneous

queries (e.g., detection, counting) and dynamic video content that analytics pipelines are

faced with [74, 94]. This is because the same difference values may carry different meanings

(in terms of changes in query results) for different video content and query types, e.g., a
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traffic light may warrant a lower threshold than a busy highway. We assert that if we can (1)

establish a correlation between feature types, their filtering thresholds, and query accuracy,

and (2) dynamically adjust this correlation in response to changes in queries and video

content, these cheap features can be surprisingly effective (more than NN-based techniques!)

in indicating if filtering a frame will cause accuracy violations.

Reducto. Based on this insight, we developed Reducto, a simple and yet inexpensive solu-

tion to the real-time video analytics efficiency problem, that tackles three main challenges.

(C1) What low-level video features to use? The computer vision (CV) community [35,

40, 80, 83, 113, 114, 134, 139, 162, 163] has discovered a slew of low-level video features that

extract frame differences [36], such as Edge and Pixel. To find the most appropriate features

for on-camera filtering, we carefully studied a representative set of them (§2.3). An important

observation we make is that the “best” feature (i.e., the one that most closely tracks changes

in query results) to use varies across query classes more so than across different videos (see

§2.4.2). This is because each feature uniquely captures a certain low-level video property;

different query classes are interested in different video properties, and hence fit the best with

different features. Based on this observation, the Reducto server performs offline profiling of

historical video data to determine the best feature for each query class. The server notifies

the camera of the feature it should use for each new query. Note that this is in contrast to

existing strategies that always use the Pixel feature [40].

(C2) How to select filtering thresholds? Filtering frames using a differencing feature

inherently requires cameras to select a parameter (i.e., a differencing threshold). Selecting

the appropriate threshold is paramount as this value directly impacts the accuracy and

filtering benefits of Reducto: too low of a threshold will sacrifice filtering benefits, while

too high of a threshold may sacrifice accuracy. However, selecting this threshold value is

difficult as the optimal threshold varies rapidly, on the order of seconds, due to the inherent

dynamism in video content (§2.4.3). This rapid variance precludes the static thresholds used
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by prior systems [40], and also prohibits servers from making threshold decisions. Instead,

threshold selection must be adaptive and be done by cameras, online.

To overcome these challenges, we use lightweight machine learning techniques to predict,

at a fine granularity on the camera (e.g., every few frames), which threshold to use for the

selected feature. To do this, we train a cluster-based model for each query and server-specified

feature, based on the observation that there is a strong correlation between the thresholds of

the feature and the query accuracy (see §2.4.3). Clustering is done over all pairs of observed

difference values (in the training set) and their highest feature values that hit the accuracy

target. For each observed difference value, the camera selects the cluster in which the value

falls and performs filtering using the average filtering threshold of that cluster. Note that

such models are cheap regression models that can run in real time even under the camera’s

tight resource constraints.

(C3) What if the model is incomplete? The model used to predict thresholds for

the selected feature may lack sufficient coverage, particularly when video characteristics

drastically change (e.g., rush hour starts). Unfortunately, how and where to detect such

scenarios is challenging because detection relies on analyzing the accuracy of recent frames;

for example, a change may have occurred if we see a significant accuracy drop for recent

frames. However, the question is how to see the accuracy drop – the camera is unaware of

the true accuracy as it does not run DNN object detectors, while the server only receives a

subset of frames that the camera deems as relevant.

To address this issue, the Reducto camera constantly checks if the feature value for the

current frame falls into an existing cluster in the model. If not, this indicates a potentially

significant (and previously unseen) change in video characteristics, so the camera halts fil-

tering and notifies the server to retrain the model. Note that our linear model is not only

efficient to run but also efficient to train, enabling the server to train a new model online

upon a request from the camera. Once trained, the new model is streamed back to the

camera, which uses it until a subsequent update is required.
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Source code and experimental data for Reducto are available at https://github.com/

reducto-sigcomm-2020/reducto.

2.2 Motivation

This section explores two questions: (1) what compute/memory resources do commodity

and state-of-the-art smart cameras possess (§2.2.1)?, and (2) how well do existing filtering

techniques perform in such settings (§2.2.2)?

2.2.1 Smart Camera Resource Overview

To better understand the available resources for filtering on cameras, we analyzed publicly

available information about multiple surveillance deployments, and conducted a small-scale

study of local city and campus-wide camera installations. We found that there is a large

resource divide between state-of-the-art cameras and commodity cameras which are widely

deployed. Given that large-scale camera deployments are financially expensive to install and

maintain, we do not anticipate an immediate overhaul that replaces commodity cameras

with state-of-the-art ones. Instead, we expect a more gradual shift, and thus believe that

camera-based filtering must consider the resource availability on both classes of devices.

Note that we only focused on smart cameras, or those with some non-zero amount of general

purpose compute resources; cameras without such resources are unable to handle any on-

device filtering.

State-of-the-art smart cameras. Recent smart cameras commonly include AI hardware

accelerators built into their processors, which speed up tasks such as DNN execution and

video encoding [8, 29, 95, 135]. For example, Ambarella [29]’s CV22 System on Chip includes

a quad-core processor (1 GHz) along with the CVflow vector processor designed explicitly for

vision-based CNN/DNN tasks (e.g., object tracking on 4k videos at 60 fps). Some cameras

also ship with small on-board GPUs as an alternate way to accelerate similar workloads [16,

28]. For instance, DNNCam [16] ships with an NVIDIA TX2 GPU and 32 GB of flash

storage and has a unit price of $2,418. These resources support real-time object recognition
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RAM Tiny YOLO: Object Detection NoScope: Binary Classification
0.5GHz 1.0GHz 1.5GHz 0.5GHz 1.0GHz 1.5GHz

128MB N/A N/A N/A N/A N/A N/A
256MB N/A N/A N/A N/A N/A N/A
512MB 0.19 0.39 0.64 28.39 56.25 85.9
1024MB 0.20 0.42 0.66 26.9 58.36 84.1

Table 2.1: Inference speed (in fps) of compressed object detection and binary classifica-
tion models in resource-constrained (camera-like) environments. NA means the model
lacked sufficient resources to run. Pixel-based frame differencing (omitted for space) al-
ways ran at over 300 fps.

(i.e., 30 fps or higher) and thus can be used to run NN-based filtering techniques directly on

cameras.

Commodity and deployed cameras. In contrast to the promising filtering resources

on state-of-the-art cameras, deployed surveillance cameras paint a much bleaker resource

picture [31, 146, 149]. These cameras are considerably cheaper (generally $20–100), and ship

with far more modest compute resources typically involving a single CPU core, CPU speeds

of 1-1.4 GHz, and 64-256 MB of RAM. We verified the widespread deployment of such low-

resource cameras by speaking with security teams for UCLA and Los Angeles—none of their

deployed cameras included AI hardware accelerators, GPUs, or colocated edge servers, but

they all possessed cheap CPU resources.

2.2.2 Limitations of Existing Filtering Techniques

We now explore how existing filtering techniques would fare on deployed smart cameras in

terms of speed and filtering benefits. From §2.1, there are three main classes of existing

filtering techniques:

• The first approach runs a compressed object detection model (e.g., Focus [63]) to obtain

approximate query results. This approach determines whether or not to send each frame

for full model execution (rather than just sending the computed result) based on the

confidence in the result that the compressed model produces.

• The second approach runs a cheaper and less general (e.g., trained for a specific query and

video content) binary classification model, which detects whether an object of interest (for
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Figure 2.1: Binary classification yields limited filtering benefits: (a) the potential fraction
of filtered frames, for standard people and car counting queries, as compared to an offline
optimal (which filters based on query results), (b/c) representative video clips highlight-
ing missed filtering opportunities with binary classification (i.e. non-zero but stable object
counts).

the current query) is present in a frame or not. Only frames with the object of interest

are sent to the server for processing (e.g., FilterForward [38], NoScope [76]).

• The third approach is to compute pixel-level frame differences and filter out frames which,

according to a static/pre-defined differencing threshold, are largely unchanged from their

predecessor and expected to yield the same query result (e.g., Glimpse [40]).

Speed. We started by evaluating the feasibility of running these three techniques on cameras

for real-time filtering. We considered the canonical query of counting the number of cars in

each frame. To evaluate frame differencing, we directly ran Glimpse’s trigger frame selection

algorithm using an arbitrary static threshold (more on this below) [40]. For compressed

object detection, we used Darknet [115] to train a Tiny YOLO model [116] (8 convolu-

tional layers) that only recognizes cars based on data labeled with YOLOv3. For binary

classification, we trained a model that mimics the lightest classification model developed in

NoScope [76]; this model has 2 convolutional layers (32 filters each) and a softmax hidden

layer.1 In both cases, training was done for each camera in our video dataset (§2.5.1) using

9 10-minute video clips from that camera.

We ran each technique on a new 10 minute clip from each camera under a sweep of resource

configurations: a single core, 0.5-1.5 GHz CPU speed, and 128-1024 MB of RAM. Exper-

1We consider NoScope rather than FilterForward here because FilterForward’s reliance on a DNN for
feature extraction precludes its use on a camera; we empirically compare Reducto’s filtering with that of
FilterForward in §2.5.
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iments were performed on a Macbook Pro laptop with a virtual machine that restricted

resources to the specified parameters. Table 2.1 lists the filtering speeds in each setting. As

shown, both NN models require at least 512 MB of RAM to operate, which precludes them

from being used on many deployed cameras. Tiny YOLO is unable to achieve even 1 fps

in any setting; note that even with the 11× speedup reported when also using background

subtraction [63], Tiny YOLO is still far below real-time speeds. In contrast, when it has suf-

ficient memory to run, the binary classification model consistently achieves real-time speeds,

e.g., 28 fps and 86 fps with 0.5 GHz and 1.5 GHz processors, respectively. Further, pixel-

based frame differencing is able to hit real-time speeds across all camera settings. Thus, the

rest of the section focuses on frame differencing and binary classification (which is at least

tenable in some camera settings).

Filtering efficacy. Now that we have identified potential filtering candidates for our

resource-constrained environment, we ask, how effective are they at filtering out frames?

We discuss the two candidates, binary classification and frame differencing, in turn.

To evaluate the potential filtering benefits with binary classification, we analyzed object

detection results (captured by YOLO [116]) for all videos in our dataset and computed the

fraction of frames that do not contain any object of interest. Note that this represents

an upper bound on the benefits that systems such as NoScope [76] and FilterForward [38]

can achieve. As a reference, we also considered an offline optimal strategy, where each

frame is filtered if its query result is identical to that of its predecessor. As shown in

Figure 2.1, binary classification is very limited in its filtering abilities: compared to the

offline optimal, binary classification filters out 73.5% and 16.7% fewer frames for the car

and person queries, respectively. The reason is that there exist many scenarios where query

results remain unchanged across consecutive frames but have non-zero objects of interest.

For example, a car count will be consistently greater than 1 if the camera is facing parked

cars — although one frame would be sufficient to accurately count the number of cars, binary

classifiers would send all such frames since they all contain objects of interest. Figures 2.1(b)

and 2.1(c) illustrate this property for several representative video clips.
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Figure 2.2: Glimpse [40] is unable to meet query accuracy requirements due to its use of
a static threshold. The x-axis lists the fraction of each video used to select the best static
threshold (i.e., max filtering while meeting the accuracy goal of 90%); the remainder of
each video is used for evaluating the threshold.

Quantifying the potential filtering benefits with frame differencing techniques is challenging

as they vary based on the tunable filtering threshold. Instead, the key limitation with respect

to filtering efficacy is that existing frame differencing systems employ static and pre-defined

filtering thresholds, which complicate accuracy preservation. To illustrate the limitations of

static thresholds, we evaluated Glimpse [40] on 4 random videos in our dataset. For each

video, to pick the static threshold to use, we varied the amount of video (from the start) to

use for selecting the best possible static threshold, i.e., the threshold that filtered the most

frames while achieving the target accuracy. We then evaluated the query accuracy on the

rest of the video that was not used for threshold selection. As shown in Figure 2.2, even with

the best possible static threshold, Glimpse is almost never able to meet the target accuracy.

Note that this is true even when we used 90% of each video for threshold selection, and

despite the fact that this evaluation was done on adjacent video from the same camera. The

reason, which we will elaborate on in §2.4.2, is that the best filtering threshold depends

heavily on video content, which can be highly dynamic.

Key takeaway. These results collectively paint a challenging picture for on-camera filtering.

Due to resource restrictions, to use existing techniques in real time, cameras must resort to

either binary classification models or frame differencing. However, binary classification is

14



Chapter 2. Reducto: On-Camera Filtering for Resource-Efficient Video Analytics

Feature
On-camera

tracking speed
Server

tracking speed

SURF 1.27 26.55
SIFT 1.83 10.71
HOG 2.86 5.90

Corner 27.93 144.86
Edge 65.72 799.14
Area 71.80 1105.11
Pixel 308.60 2714.26

Table 2.2: Tracking speed (fps) for our candidate raw video features for frame differenc-
ing. High- and low-level features are shown on the top and bottom, respectively. Camera
resources were 1 core, 1.0 GHz, and 512 MB RAM, while servers had 4 cores, 4 GHz, and
32 GB of RAM.

largely suboptimal as it hides many filtering opportunities (i.e., where objects are present

but query results do not change across frames). Existing frame differencing strategies, on

the other hand, use static thresholds and are unable to reliably meet accuracy targets.

To make effective use of frame differencing, the key question is whether it is possible to

correlate frame differences with pipeline accuracy so that we can make a more informed

decision as to whether a frame can be filtered out. We answer this question affirmatively

in the next sections, where we describe how lightweight differencing features across video

frames can serve as cheap monitoring signals that are highly correlated with changes in

query results. If applied judiciously (and dynamically), these strong correlations enable

large filtering benefits that are even comparable to those with the ideal baseline described

earlier in this section.

2.3 Filtering using Cheap Vision Features

Given the limitations of existing filtering strategies for on-camera filtering (§2.2.2), we seek

a clean-slate approach to filtering based on frame differencing. In this section, we focus on

identifying candidate features, and in §2.4, we present Reducto, which determines when and

how to use those features for effective on-camera filtering.

Our goal is to identify a set of raw video features (1) that are cheap enough to be tracked

on cameras in real-time, and (2) whose values are highly correlated with changes in query
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results for broad ranges of queries and videos (unlike prior systems that purely focus on

detection [40]). We began with a representative list of differencing features used by the

CV community [36], and grouped them in terms of the amount of computation required

for extraction. Low-level features such as pixel or edge differences can be observed directly

from raw images, but contain moderate amounts of noise. The main concern of using these

features is whether or not this noise outweighs the true differencing values in certain cases.

In contrast, high-level features, such as scale-invariant feature transform (SIFT) and speeded

up robust features (SURF), aim to extract highly distinctive qualities of an image that are

invariant to light, pose, etc., by analyzing properties such as local pixel intensities and shapes;

these features have more semantic information, and many applications use such information

to relate specific contents across frames. These features require multiple steps of computation

on raw video values for extraction, but contain less noise as the noise is often smoothed out

by the computation. The main concern of using high-level features is, clearly, their high

extraction overheads.

Table 2.2 shows a representative list [64] of (high- and low-level) features we considered,

and summarizes their computation overheads (in terms of fps) in both on-camera and server

settings. Their detailed descriptions can be found in Table 5.1 (§5.3) with more information

in these survey papers [34, 64, 164]. Further, we note that other features may meet the

aforementioned goals and can be easily plugged into Reducto.

Tracking speed. As shown in Table 2.2, tracking high-level features is far too slow to

operate in real-time on cameras; many of these features cannot be extracted fast enough

even on servers! For instance, SURF and SIFT are restricted to frame rates under 2 fps. In

contrast, low-level features can be extracted on cameras at 28-309 fps. Overall, these results

eliminate high-level features from consideration for on-camera filtering and direct us to focus

on identifying the appropriate low-level features that can satisfy our correlation requirements.

We also exclude the low-level Corner feature that falls just short of our real-time (30 fps)

tracking goal.
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Figure 2.3: Correlations between differencing values and changes in query results for a 10
seconds clip in Auburn [4]. Top shows a car counting query where each line includes tick
marks for min, max, and average feature value, with ribbons summarizing the distribution;
bottom shows a car bounding box detection query. Results are for a random video. The
legend lists the Pearson correlation coefficient per feature.

Correlation with changes in query results. Recall that our goal is to use differencing

features to “predict” whether a change in query results may occur. Thus, the features we use

need not capture the precise change in magnitude between query results for two frames, but

instead must have strong correlation with whether a change occurs. Figure 2.3 summarizes

the correlation between the values for each feature that can operate in real-time and changes

in query results. The two figures highlight the fact that the three low-level features Pixel

(i.e., directly compares pixels), Edge (i.e., captures differences in contours of objects), and

Area (i.e., captures differences in areas) are indeed highly correlated (to varying degree–see

§2.4) with changes in query results despite being potentially noisy on short time intervals.

For example, on counting queries, a change of just 1 in object count leads to average changes

of 0.42, 0.38, and 0.44 for the differencing values w.r.t. the Pixel, Area, and Edge features,
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respectively. As a reference, changes in these feature values are only 0.01, 0.11, and 0.09

when the count results are unchanged. For the bounding box query, even though the precise

bounding box coordinates for an object change progressively across frames, the correlation

remains strong, with easily visible differences in feature values for even minor adjustments

in bounding box coordinates. Note that these trends hold for the other videos in our dataset

as well (Figures 5.1-5.3 in §5.1).

2.4 Reducto Design and Implementation

2.4.1 Overview

Figure 2.4 depicts the high-level query execution workflow with Reducto. Currently, Reducto

supports the three primary classes of queries used in prior video analytics systems [75, 94]:

tagging, counting, and bounding box detection. Descriptions of these queries are presented

in §2.5.1.

Offline server profiling ➊ (§2.4.2). The Reducto server first runs an offline profiler ➊

over several minutes of video that characterize the typical scenes for that camera. The profiler

➊ then runs traditional pipelines ➌ on that video and stores the results for subsequent feature

selection. As this characterization data is collected, the profiler processes each frame in the

video to extract the three low-level differencing features presented in §2.3. Our observation

(Figure 2.5) is that there often exists a single feature that works the best for a query class

across different videos, cameras, and accuracy targets. Hence, during profiling, the server

finds the best feature for each query class that it wishes to support. At the end of this phase,

the best feature for each query class is identified and stored at the server.2

Per-frame diff extraction ➍ (§2.4.4). The camera does not stream any frames until

it receives a query. Upon the arrival of a user-specified query and target accuracy, the

server informs the camera of the best feature for that query. To filter, the diff extractor

➍ continuously tracks the differences in the specified feature between consecutive frames.

2Best features for common query types (e.g., detection) can be pre-programmed or shared across
servers, thereby avoiding profiling.
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Figure 2.4: Overview of Reducto.

The key question at this point is how to know, for each pair of consecutive frames, if the

difference between them is sufficiently insignificant so that if the camera sends only the first

one to the server (which reuses its query result for the second), the accuracy would not drop

below the target. In other words, what is the right filtering threshold to use?

Per-query model training ➋ (§2.4.3). To answer this question, the server uses a model

trainer ➋ that quickly trains, for each query, a simple (regression) model characterizing the

relationships between differencing values, filtering thresholds, and query result accuracy. The

model is trained by performing K-means-based clustering over the original frames sent by the

camera during a short period after the query arrives. Training typically takes several seconds

to finish due to the simple models used. The generated model is encoded as a hash table,

where each entry represents a cluster of differencing values whose corresponding thresholds

are within the same neighborhood — each key is the average differencing value and each
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value is the threshold for that cluster which delivers the required accuracy. Together with

the selected feature, this hash table is also sent to the camera for each query.

Per-frame threshold tuning ➏ and filtering ➎ (§2.4.4). When the camera receives

the feature and the hash table for the query, it starts filtering frames. To do so, the filter ➎

queries the threshold tuner ➏ for the threshold to use. The tuner looks up the hash table

using the differencing value produced by the diff extractor ➍, finds the matching key-value

entry, and applies the listed threshold (i.e., the value of the entry).

Occasional model retraining ➋ (§2.4.5). In some cases, the differencing value may not

map to any table entry (e.g., the distances between the value and the existing keys are too

large). This indicates a potential change in video dynamics and implies that the new scene

cannot be effectively captured by the existing clusters. As an example, the burst of cars

at the start of rush hour can lead to a differencing value significantly different from those

seen during training. In these cases, the threshold tuner ➏ sends these unmatched values

(together with their original frames) to the model trainer ➋, which adds these new data

points into its dataset (along with the generated query results), re-trains the model, and

sends the tuner ➏ an updated hash table to ensure that the model stays applicable despite

changes in the video.

The user can decide whether the camera deletes the frames that are not sent to the server.

If the user wishes to save the frames for later retrieval or retrospective queries [63, 151], the

camera archives all frames onto cheap local storage.

Tracking granularity. Since Reducto’s goal is to ensure that the specified accuracy is

continuously met, Reducto analyzes differencing features at the granularity of video segments

rather than individual frames. Video segments represent small windows (e.g., N seconds)

of consecutive frames. Analyzing features over segments enables Reducto to smooth out

intermittent noise in feature values (§2.3). Thus, the Reducto camera buffers frames for each

segment and selects the filtering threshold for the feature (using the hash table) when all
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frames of the segment arrive. The camera then applies the filter with the selected threshold

to each buffered frame to decide whether it needs to be sent.

Selecting the right segment size is important: a small segment size is susceptible to inaccuracy

due to noisy feature values, while a large segment size better handles noise but requires

more frames to be buffered prior to making filtering decisions (delaying query results). We

empirically observe that N = 1 second sufficiently balances these properties, and we present

results analyzing how sensitive Reducto’s results are to segment size in §2.5.

Discussion. We note that the presented design for Reducto (and our current implemen-

tation) focuses on single queries for a given camera’s video feed. However, the described

filtering approach can be extended to handling multiple queries in a straightforward man-

ner: filtering decisions can initially be made independently per query (as described), and

then aggregated by taking the union of frames deemed important for any query. Addi-

tionally, we note that Reducto currently targets detection-based queries that do not carry

over information across frames. For instance, in its current form, Reducto does not support

activity detection queries. We leave support for these more complex queries to future work.

2.4.2 Feature Selection via Server-side (Offline) Profiling

During the offline profiling phase, the profiler ➊ uses several minutes of representative video

frames to compute, for each frame, (1) the object detection results using traditional pipelines

➌, and (2) the low-level differencing values for each candidate feature. Using these results,

the server determines which feature the camera should use.

The best feature to use is the one that maximizes the filtering benefits (i.e., filters out

the most frames) while meeting the accuracy requirement specified by the user. In order to

identify the best feature, the server analyzes the profiling results on a per-segment basis. For

each segment and for each feature, the server considers a large range of possible thresholds

for the feature. For each candidate feature, the server then aggregates the largest filtering

benefits (obtained from using the best performed threshold on each segment) across all
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Figure 2.5: Filtering efficacy of the 3 low-level features across 3 videos and 2 queries.
Y-axis reports the percentages of frames filtered (the higher the better). Across these
videos, Area is best for counting, but Edge is best for bounding box detection. Results
used YOLO and a target accuracy of 90%.

segments. These aggregated benefits are used to pick the best feature for each query class

supported by Reducto.

Observation 1: Interestingly, we observe that the best feature tends to vary across query

classes, but remains stable across cameras, videos, and target accuracies for each class.

For example, consider Figure 2.5, which shows that the Area feature provides the largest

filtering benefits for counting queries across 3 representative videos. In contrast, the Edge

feature provides the most filtering benefits for bounding box queries. For reference, Area

outperforms Pixel and Edge on counting queries by 11–70%; and Area trails the two other

features by 5–41% on bounding box queries.
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(a) Area: 0.145, Edge: 0.886

(b) Area: 0.830, Edge: 0.908
Figure 2.6: Car detection results for two sets of adjacent frames from the Southampton
video; subcaptions list the corresponding differencing feature values. For bounding box de-
tection queries, slight variations can change the query result; Edge picks up on these subtle
changes (top) but Area does not. In contrast, counting queries are better served by Area,
which reports significant differences when counts change (bottom), but not when counts
stay fixed (top).

The reason is that different features and queries operate at different granularities, and their

values change at varied levels with respect to changes across frames. In other words, minor

frame differences may affect certain queries and feature values more than others. For exam-

ple, consider the definitions of the Area and Edge features (Table 5.1 in §5.3). Area compares

the size of the areas of motion across frames, but does not consider the distance that those

areas move. In contrast, Edge is finer-grained and observes changes in the locations of the

edges of objects.

Figure 2.6 illustrates how these divergences affect the suitability of each feature with respect

to filtering for two query types: bounding box detection and counting queries. As shown in

Figure 2.6(a), any motion for an object of interest can alter the corresponding bounding box

coordinates. Whereas the Area feature is largely insensitive to such minor changes (making

it ill-suited for filtering, as it suggests that the query result should not change), the Edge

feature will detect (even minor) movements to the object’s edges and yield a high differencing

value. In contrast, Figure 2.6(b) shows that the coarse-grained nature of the Area feature is
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Figure 2.7: Best filtering thresholds vary across (even adjacent) video contents. This
experiment used the Southampton video, and two features over two queries (Area over
counting and Edge over bounding box detection, both for cars); the target accuracy is
90%. Trends hold for other queries, videos, and accuracy targets (§5.2).

well-suited for counting queries: when a new object enters a scene, it represents a new area

of motion and results in a high differencing value. Thereafter, until the object count changes,

the Area value remains low. The Edge feature, on the other hand, reports significant frame

differences even when the overall object count stays unchanged (e.g., Figure 2.6(a)), making

it too conservative for filtering for counting queries.

We verified that this stability in best feature holds across other query classes (e.g., tagging),

objects of interest (e.g., people), target accuracies (e.g., 80%), and detection models (e.g.,

Faster R-CNN) as well; results are shown in §5.2 (Figures 5.4- 5.5) due to space restrictions.

This observation implies that the server need not select features dynamically, and instead

can make one-time feature decisions for all the query classes it wishes to support.

2.4.3 Model Training for Threshold Tuning

Knowing which feature to use is not enough; the camera also needs to know how to tune the

filtering threshold for the feature so that filtering does not create unacceptable degradation

in query accuracy.

Observation 2: While for each query class the best feature remains stable over time,

the best threshold (i.e., highest one which meets the accuracy target) to use for a given

feature does not. Figure 2.7 illustrates this point for two different query classes and their

corresponding best features. As shown, the best threshold for each feature varies rapidly,

24



Chapter 2. Reducto: On-Camera Filtering for Resource-Efficient Video Analytics

Figure 2.8: Simplified clustering results for two car queries: detection (left) and counting
(right) over the Jackson Hole video.

on the order of segments. Thus, the camera needs a way to dynamically tune the threshold

of the feature to prevent any unacceptable accuracy drops. However, making this decision

requires understanding how different thresholds relate to the accuracy of query results. If the

server can establish a mapping between differencing values, thresholds, and result accuracy,

the camera can use such information to quickly find the best thresholds to use.

To generate this mapping, the server requires the camera to send unfiltered frames over a

short window right after the query is registered. These frames are used as an initial training

set — the server runs the full pipeline on them, producing complete results about each

segment of frames — including query accuracy, fraction of frames filtered, and extracted

feature values — for a broad range of candidate thresholds. For each segment, we compose

a 29-dimension vector for the segment. This vector contains the average differencing feature

value across the pairs of adjacent frames in the segment, i.e., a 1-second segment contains

30 frames (30 fps), resulting in 29 differencing values. We then add a data point to our

training set for each candidate threshold; each data point is keyed at the corresponding

29-dimension differencing vector, and labeled with the tested threshold and the resulting

query accuracy. Lastly, we remove any data points whose accuracy falls below the target

accuracy for the query. The server then clusters these data points using the standard K-

means algorithm based on their differencing vectors. Selecting the number of clusters entails

balancing the overhead of the clustering algorithm and robustness of the resulting clusters
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to noisy inputs; we empirically observe that setting a target of 5 clusters strikes the best

balance between these factors, and we leave an exploration of more adaptive tuning strategies

to future work [50, 57].

Figures 2.8 illustrates the clustering results for a random 10-minute clip. As shown, the data

is highly amenable to such clustering, and the results follow a fairly intuitive pattern: to

meet a given accuracy target, the filtering threshold decreases as the differencing feature value

increases. This is because high feature values imply that frames are changing significantly

(e.g., due to motion) — these changes give Reducto a reason to believe that the query result

may change and thus the camera needs to send more frames.

Once clustering is done, the results are encoded into a hash table where each entry en-

codes information about a cluster — keys represent aggregated differencing values in the

cluster augmented with the size measurement of the cluster (discussed shortly), while val-

ues represent the aggregated labels (i.e., thresholds). In particular, each key is of the form

⟨center , variance⟩, where center is a 29-dimension vector computed by performing element-

wise averaging across the vectors in the cluster and variance is another 29-dimension vector

where the ith element represents the longest distance between the ith elements in any possible

pairs of data points in the cluster. In other words, center encodes the central point of the

cluster while variance measures the size of the cluster (i.e., how far apart data points can

be). Each value is the averaged filtering threshold of all data points in the corresponding

cluster.

2.4.4 On-Camera Filtering

To filter out frames in real time, the camera continuously tracks differencing values for the

selected feature. At the end of each segment, the camera decides which frames in the segment

should be sent to the server. To do this, the camera simply looks up the hash table provided

by the server. Specifically, the camera composes a similar 29-dimension vector a for the

segment (by averaging the vectors for the constituent frames) and queries the hash table.

The lookup algorithm finds the key-value pair ⟨⟨c, v⟩, l⟩ such that (1) the euclidean distance

between a and c is ≤ to that between a and any other key in the hash table, and (2) the
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Figure 2.9: Offline training would be limited: comparisons of hash table entries (i.e., clus-
ters) between (a) detection of different objects (i.e., people and car) and (b) different video
contents (i.e., sunny and rainy) show that the clusters differ significantly under these cir-
cumstances; results were obtained from analyzing the entire Auburn video.

distance between the ith elements in a and c is ≤ the ith element in v, which represents the

longest distance for the ith dimension in the cluster. This indicates that the new data point

falls well into the cluster (i.e., video contents changed in a similar way as in the past). Once

such a table entry is found, the camera uses the threshold (i.e., the entry’s value) to filter

out frames in the segment. The remaining frames are compressed using H.264 at the original

video’s bitrate, and sent to the server.

2.4.5 Online Model Retraining

In scenarios where no matching key-value pair can be found (i.e., a does not belong to any

cluster listed in the hash table), Reducto speculates that the current video properties are

different from those used by the server to compute the table. In order to prevent degradations

to below the accuracy target, the camera halts filtering and sends all frames in the segment

to the server. The server computes query results over these original frames so no accuracy

loss can occur. The server also adds these unfiltered frames to its dataset and re-clusters.

The updated hash table is streamed back to the camera once it is computed, and upon

reception, the camera resumes filtering.
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Camera location FPS Resolution

Jackson Hole, WY [7] 15 1920× 1080
Auburn, AL [4] 15 1920× 1080
Banff, Canada [3] 15 1280× 720

Southampton, NY [14] 30 1920× 1080
Lagrange, KY [9] 30 1920× 1080

Casa Grande, AZ [6] 30 640× 360
Newark, NJ [10] 10 640× 360

Table 2.3: Summary of our video dataset.

Online vs. offline training. In our implementation, model training (i.e., hash table gener-

ation) and retraining (i.e., hash table updates) are handled in the same way. Upon receiving

a query, the server sends the selected feature and an empty hash table to the camera. The

threshold tuner ➏ would not find any matching entry in the table and thus would have to

stop filtering and send all frames for model training. Similarly, retraining is also triggered by

misses in table lookups. A question the careful reader may ask is: is it necessary to perform

model training/retraining online? In other words, does an offline-learned linear model suf-

fice? To answer this question, we compared the hash table entries (i.e., clusters) generated

under different queries and video contents. The results are illustrated in Figure 2.9. As

shown, the clusters (and threshold values) differ significantly under these different circum-

stances, indicating that an offline training approach would be limited for unseen queries and

video contents. Thus, even though Reducto’s initial hash table can benefit from historical

video data, in order to cope with the fact that it is impractical to foresee all possible queries

and video properties, Reducto also supports online training/retraining.

2.5 Evaluation

2.5.1 Methodology

Table 2.3 summarizes the video dataset on which we evaluated Reducto. Our dataset com-

prises public video streams from 7 live surveillance video cameras deployed around North

America. From each data source, we collected 25 10-minute video clips that cover a 24-hour

period. As a result, video content for a given camera varied over time with respect to illu-

mination, weather characteristics, and density of people and cars. Video content also varied

across cameras w.r.t. quality, orientation (e.g., certain cameras were mounted on traffic
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Figure 2.10: Screenshots from several of the videos in our dataset. Left is Jackson Hole,
WY, and right is Newark, NJ.

lights, while others were recording streets from a side angle), and speed/density of objects

(e.g., rural vs. metropolitan). Figure 2.10 provides some example screenshots.

In our evaluation, we considered three main classes of queries, each with a unique definition

of accuracy:

• Tagging queries return a binary decision regarding whether or not an object of a given

type appears in a frame. Accuracy is defined as the percentage of frames which are tagged

with the correct binary value.

• Counting queries return a count for the number of objects of a given type that appear

in a frame. Accuracy for a frame is defined as the absolute value of the percent difference

between the correct and returned values.

• Bounding box detection queries return bounding box coordinates around each in-

stance of a given object that is detected in a frame. Accuracy is measured using the

standard mAP metric [47] that evaluates, for each returned bounding box, whether the

enclosed object is of the correct type and whether the bounding box has sufficiently large

overlap (intersection over union) with the correct box.

We ran each query class across our entire video dataset for two types of objects: people

and cars. Unless otherwise noted, ground truth for all video frames and queries was com-

puted using YOLO [116]. Reported accuracy numbers for each of Reducto’s segments were
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computed by averaging the accuracy values for each of the segments’ constituent frames;

Reducto used segments of 1 second unless further specified.

Server components ran on an Ubuntu Amazon EC2 p3.2xlarge instance with 8 CPU cores

and 1 NVIDIA Tesla V100 GPU. The camera was either a Raspberry Pi or a VM whose

resources were provisioned based on the RAM and CPU speeds observed in our study of

deployed cameras (§2.2); the recorded video was fed into the camera sequentially and in real

time. For brevity, in the VM scenario, we present results for the resource configuration of

256 MB of RAM and a 1 GHz CPU (single core). However, we note that the reported trends

persist in the other settings in Table 2.1. The camera and server were connected over a

variety of live (LTE and WiFi) and emulated networks via Mahimahi [100].

2.5.2 Overall Performance

To understand Reducto’s filtering efficacy, we first compared it to a baseline video analytics

pipeline in which cameras do not perform any filtering, and servers compute query results for

all frames. To contextualize our results, we compared both systems with the offline optimal

(§2.2) that uses actual query results to perfectly filter out each frame whose result sufficiently

matches that of its predecessor. Note that the offline optimal represents an upper bound of

what Reducto can hope to achieve without direct knowledge of query results.

Figure 2.11 shows that, across our entire video dataset, a target accuracy of 90%, and a

variety of query types, Reducto is able to filter out a median of 51-97% of frames, which is

within 2.8-36.7% of the offline optimal. As expected, filtering benefits vary based on query

type, object of interest, and video. For instance, across the dataset, Reducto filtered out

a median of 97% and 51% for tagging and detecting cars, respectively. This follows from

the fact that the bounding box position for a moving car changes very quickly (e.g., across

consecutive frames), while the presence of any car (i.e., what a tagging query searches for)

often remains stable for long durations. Indeed, almost all frames could be filtered for tagging

queries because query results changed very infrequently.
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Figure 2.11: Comparing Reducto and the offline optimal filtering strategy for three query
types and two objects of interest across our entire dataset. Results are for the distribution
across all Reducto segments. Each bar reports the median with the error bar showing the
25th and 75th percentiles. The target query accuracy is 90%.

Despite this aggressive filtering, Figure 2.11 illustrates that Reducto is able to always deliver

per-segment accuracy values above the target (90%). Reducto consistently delivers higher

accuracy than the offline optimal, which nearly perfectly matches the target (due to knowing

the ground truth). This is a result of Reducto’s cautious selection of filtering thresholds

(§2.4.4). In other words, whereas Reducto conservatively selects the filtering threshold to

overshoot the accuracy target (filtering out fewer frames than possible), the offline optimal

perfectly hovers over the target, thereby optimizing the fraction of frames that can be filtered

within the accuracy constraint.
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Figure 2.12: Analyzing Reducto’s results for different accuracy targets. Results are for
bounding box detection queries of cars and people across our entire video dataset.

Varying accuracy targets. We also evaluated how Reducto’s filtering benefits vary with

different accuracy targets. In this experiment, we primarily focused on bounding box detec-

tion queries which show the largest variation across accuracy targets due to their fine-grained

nature. As expected, Reducto’s filtering benefits increase as the accuracy target decreases

(Figure 2.12). For instance, when the object of interest is people, filtering benefits rise from

36% to 79% as accuracy drops from 90% to 70%. The reason is that Reducto can be more ag-

gressive with filtering and tolerate more substantial inter-frame differences in feature values,

without violating a lower accuracy target. Importantly, Reducto always met the specified

accuracy target.
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Figure 2.13: Distribution of per-frame query response times on different camera-server net-
works. Each bar reports the median, with error bars showing 25th and 75th percentiles.
Results are for detecting cars on our entire video dataset, and the target accuracy is 90%.

System Accuracy (%)
Fraction

Filtered (%)
Bandwidth
Saving (%)

Backend
Processing (fps)

Baseline 100.00 0.00 0.00 41.13
Reducto 90.49 53.42 22.30 86.21
Optimal 90.16 72.80 39.33 140.04

Table 2.4: Breaking down the impact of Reducto’s filtering on network and backend com-
putation overheads. Results are for detecting cars and are averaged across our entire
dataset. The target accuracy is 90%.

Query response times. The promise of frame filtering is ultimately to reduce resource

overheads and deliver (highly accurate) query results with low latency. Figure 2.13 illustrates

that, across several network conditions, Reducto is able to reduce median per-frame response

times by 22-26% (0.26-0.28s) compared to the baseline pipeline; Reducto’s response times are

within 12–13% the offline optimal. Table 2.4 further breaks down these query response time

speedups into network and backend improvements. As shown, Reducto’s filtering results in

an average bandwidth saving of 22% compared to the baseline pipeline; backend processing

speeds, on the other hand, more than doubled due to the decrease in frames to be processed.

On-camera evaluation. Our experiments thus far have considered a resource-constrained

VM as the camera component of the video analytics pipeline. In order to evaluate the

feasibility of running Reducto directly on a camera, we replaced the aforementioned VM in

our pipeline with a Raspberry Pi Zero [13] that embeds a 1.0 GHz single-core CPU and 512
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MB of RAM; this resource profile falls into the range of on-camera resources that we observed

in our study of commodity cameras and surveillance deployments (Table 2.1 and §2.2.1).

We note that Raspberry Pi computing boards are intended to run alongside sensor devices

(e.g., cameras) to provide minimal and affordable computation resources. We implemented

Reducto on the Raspberry Pi using OpenCV [17] for feature extraction and frame differencing

calculations, and a hash table lookup to make threshold selections and filtering decisions.

Unfiltered frames were encoded using Raspberry Pi’s hardware-accelerated video encoder for

the H.264 standard. As we did with the VM, we fed in each recorded video in Table 2.3

sequentially and in real-time to the Raspberry Pi.

Overall, we observed that Reducto’s filtering results for each video identically matched those

from our VM-based implementation (i.e., results in Figure 2.12). More importantly, Reducto

was able to operate at 47.8 fps on the Raspberry Pi, highlighting the ability to perform real-

time filtering. Digging deeper, we found that the bulk of the processing overheads were

due to per-frame feature extraction with OpenCV; this task could operate at 99.7 fps, as

compared to frame differencing calculations and hash table lookups that ran at 129.5 and

318.6 fps, respectively.

Sensitivity to segment size. We varied the segment size that Reducto used for on-camera

filtering between 0.5-10 seconds. Figure 2.14 illustrates three trends. First, as segment

size decreases, Reducto’s median filtering benefits are largely unchanged. We note that

the distribution of filtering benefits widens largely because there are fewer opportunities to

experience different video conditions within a small segment. For instance, a segment of

4 frames may be mostly unchanged and require only 1 frame to be sent; such a filtering

fraction is less likely as segment sizes grow. Second, as segment size increases, bandwidth

savings increase. This is because larger segments enable more aggressive bandwidth savings

from standard video encodings: more frames can avoid redundant transmission due to fewer

key frames. Third, per-frame query response times grow as segment sizes increase. Recall

that Reducto cameras only filter out and ship frames to servers after a segment is captured.
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Figure 2.14: Impact of Reducto’s on-camera segment length on filtering benefits for object
detection of cars on two randomly selected videos in our dataset; the target accuracy was
90%. Results are distributions across segments, with bars representing medians and error
bars spanning 25th to 75th percentile.

System Accuracy (%)
Fraction

Filtered (%)
Bandwidth
Saving (%)

Backend
Processing (fps)

Reducto 90.49 53.42 22.30 86.21
Tiny YOLO 90.22 24.46 13.68 53.66
FilterForward 90.10 27.70 14.49 56.32

Table 2.5: Comparing Reducto with existing real-time filtering systems. Results are for
detecting cars in our entire dataset, and the target accuracy is 90%.

Thus, frames that are early in a given segment must experience query response times that

are at least as long as the segment size.

Sensitivity to different object detection models: We verified (Figure 2.15) that Re-

ducto’s overall filtering benefits and accuracy preservation persist across other models, i.e.,

SSD ResNet, Faster R-CNN with Inception ResNet.

2.5.3 Comparison with Other Filtering Strategies

We also compared Reducto with two existing filtering approaches that are both able to

consistently meet a desired accuracy target; recall from §2.2.2 that Glimpse [40] was unable

to do so due to its static threshold approach.

Tiny YOLO. We considered a filtering system that computes approximate query results

using a compressed detection model (Tiny YOLO). Frames whose result confidence is suf-

ficiently high (80% in this experiment; tuned to the target accuracy) can benefit from (1)
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Figure 2.15: Comparing Reducto with different detection models for three query types and
two objects of interest across our entire dataset.

filtering, if the frame does not contain an object of interest, or (2) result reuse which avoids

running the backend detector. This approach is loosely inspired by Focus’s ingest-time pro-

cessing [63] which targets retrospective queries; we omit Focus’ clustering strategy, which

is primarily useful for the tagging queries that Focus targets. We trained a Tiny YOLO

model on 90 minutes of video from each feed in our dataset to detect cars; we then tested

on separate 30-minute clips from the same feed.

FilterForward. We also ran FilterForward [38], a binary classification-based filtering sys-

tem designed for edge servers. With FilterForward, micro-classifers ingest feature maps

computed by different layers of a full-fledged object detector, and determine whether an

object of interest is present or not in each frame; if not, the frame is filtered at the edge
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System Accuracy (%)
Fraction

Filtered (%)
Bandwidth
Saving (%)

Backend
Processing (fps)

Reducto 90.49 53.42 22.30 86.21
Cloudseg 2x 85.78 0.00 56.82 32.33
Cloudseg 4x 60.86 0.00 82.46 31.13

Reducto 99.10 97.11 80.23 1360.71
Cloudseg 2x 99.67 0.00 56.82 32.19
Cloudseg 4x 99.55 0.00 82.46 31.57

Table 2.6: Comparing Reducto with CloudSeg [144]. Results are for detecting cars (top)
and tagging cars (bottom), both with an accuracy target of 90%.

server. FilterForward reports comparable performance to NoScope [76], which is intended

for retrospective queries. In our experiments, we directly ran FilterForward’s open-source

code and trained a micro-classifer in the same way as Tiny YOLO above.

Results. Table 2.5 shows that Reducto achieves significantly larger filtering benefits com-

pared to both systems. Average frame savings with Reducto are 53.42%, while Tiny YOLO

and FilterForward filter only 24.46% and 27.7%, respectively. This translates to improve-

ments of 54-63% and 53-61% in network bandwidth expenditure and backend process-

ing costs, respectively. Key to this performance discrepancy is the limitation in binary

classification-based filtering (§2.2.2). We note that, unlike Reducto, neither FilterForward

nor Tiny YOLO can run in real time on a camera; the filtering benefits described here,

however, are unaffected by resource constraints.

2.5.4 Comparison with Complementary Video Analytics Systems

We also compared Reducto with two systems that improve the efficiency of real-time video

analytics pipelines, CloudSeg [144] and Chameleon [74]. Each system aims to improve a dif-

ferent aspect of the analytics pipeline, and both approaches are conceptually complementary

to Reducto.

CloudSeg. CloudSeg uses super resolution techniques to significantly compress live video

prior to shipping it to servers for analytics tasks; super resolution models at the server

are used to (mostly) recover the original high resolution image, which is then fed into the

analytics pipeline. To implement CloudSeg, we used bilinear interpolation in OpenCV [17]
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System Accuracy (%)
Bandwidth
Saving (%)

Backend
Processing (fps)

Baseline 100.00 0.00 13.04
Reducto 90.08 32.16 103.40

Chameleon 92.00 0.00 93.75

Table 2.7: Comparing Reducto with Chameleon [74] on a car counting query. The target
accuracy was 90%.

to compress all frames by 2-4× on our camera VM. We then used the same super resolution

model as CloudSeg, CARN [87], to recover the original video on the server.

As shown in Table 2.6, we initially tried a compression factor of 4× for CloudSeg. Despite

heavy tuning, we were unable to hit our accuracy target for detection. Thus, we focused our

discussion on the 2× compression which narrowly misses the 90% accuracy goal. As expected,

for detection, CloudSeg achieves superior bandwidth savings compared to Reducto (57%

compared to 22%). However, CloudSeg does not filter out frames, and instead opts purely

for compression, i.e., all frames must go through costly backend processing. As a result,

Reducto’s filtering results in 2.7× improvements in backend processing overheads. Results

for tagging follow a similar pattern, but we note that Reducto achieves superior bandwidth

savings because most frames can be filtered out; for the same reason, the discrepancy in

backend processing overheads is more pronounced. These approaches are complementary

in that Reducto can also apply super resolution encoding on cameras (in real time) after

filtering.

Chameleon. Systems such as Chameleon [74] and VideoStorm [158] reduce backend com-

putation costs by profiling different configurations of pipeline knobs (e.g., video resolution,

frame sampling rate, etc.) and selecting those that are predicted to minimize resource

utilization while meeting the user-specified accuracy requirement. Chameleon improves

upon VideoStorm in that it profiles periodically rather than once, upfront. To implement

Chameleon, we considered configurations based on the following knobs: 5 levels of image

resolution (1080p, 960p, 720p, 600p, 480p), 2 pre-trained object detection models (Faster

R-CNN and YOLOv3), and 5 levels of frame rate (30fps, 10fps, 5fps, 2fps, 1fps). For each

video in our dataset, we selected the best configuration for each 4-second segment (which is
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Chameleon’s profiling rate); we used the same segment size for Reducto. For ease of imple-

mentation, profiling for each segment was done offline. For fair comparison, Reducto used

the more expensive Faster R-CNN model, which Chameleon treats as ground truth.

As shown in Table 2.7, both systems significantly outperform the baseline pipeline, but

Reducto achieves 37% better backend processing speeds. Further, by filtering directly at

the video source, Reducto is also able to achieve network bandwidth improvements that

Chameleon cannot. While both systems reap filtering benefits (e.g., decreased sample rates

with Chameleon), they are largely complementary in that Chameleon considers knobs which

Reducto does not, i.e., detection model, image resolution.

2.6 Related Work

Edge-cloud split. One class of edge-based approaches, exemplified by FilterForward [38],

sends frames to the server based on the objects present, approximated by a light-weight

neural network running at the edge. Wang et. al. [140] use MobileNet [62] on drones.

Similarly, Vigil [159] uses an edge node that can run object detection and sends frames

with a higher object count. Gammeter et al. [49] send a frame only when object tracking

on the mobile device has consistently low confidence. Alternatively, a server could receive

partial information from the edge and decide whether it needs more based on inference

results [107]. While this model can save significant bandwidth, round trips between server

and edge impedes the system’s ability to respond to queries in real time. Chinchali et al. [41]

also use a server-driven approach, but the edge device can adapt (for DNN input) both the

information it sends and the encoding method based on feedback from the server. Finally,

Emmons et al. [46] propose a DNN split inference, where the edge runs as many layers as

possible before sending the intermediate values to the cloud. In contrast to all of these

solutions, Reducto, is aimed at cameras with resources that do not even support small NNs.

Resource scheduling. VideoStorm [158] and Chameleon [74] profile pipeline knobs to iden-

tify cheap and accuracy-preserving configurations (§3.6), while VideoEdge [68] also considers

placement plans over a hierarchy of clusters. DeepDecision [112] and MCDNN [59] treat re-
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source scheduling as an optimization problem and maximize key metrics such as accuracy or

latency, while LAVEA [152] allocates computation among multiple edge nodes, optimizing

for latency. These systems are largely complementary to Reducto, as the resource-accuracy

tradeoff could be further tuned on the set of Reducto-chosen frames. Another complementary

class of systems focuses on efficient GPU task scheduling [124].

Querying video. NoScope [76], BlazeIt [75], and Focus [63] lower resource consumption

for efficient retrospective video querying. In contrast, Reducto uses the relationship between

video features and query result, rather than presence of objects, for an early determination

of relevant frames.

Computer vision. The idea of filtering frames based on their features is widely seen in

the CV community [33, 48, 80, 114, 143, 147, 148]. Many of these methods are used for the

task of retrospectively classifying or recognizing events in videos [42, 105, 148]. AdaFrame,

for example, trains a Long Short-Term Memory network to adaptively select frames with

important information. Others are used for key frame extraction [114, 155]. The are two

main barriers to directly using these methods to filter frames in a setting like Reducto. One

is that the task of choosing which frames a DNN should process is different from choosing

frames for video classification or key frame extraction, because the importance of a frame in

Reducto is determined solely by whether the DNN output changes. Second, these methods

rely on neural networks that are too expensive to run on a camera.

2.7 Reducto Summary

Recall that our key goal in this thesis is to improve the performance of video analytics

pipelines by using inexpensive hardware at the edge. This chapter presents Reducto, a

system that supports efficient real-time querying by leveraging the inexpensive, previously

unused hardware on cameras to perform frame filtering. Given the limited resources available

on cameras, Reducto uses cheap frame differencing techniques to determine when previously

computed results can be used while still meeting accuracy targets. Our evaluation found

that careful use of such techniques yields up to a 50% decrease in the number of frames that
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need to be sent to the server and run through the DNN. This lowers the end-to-end latency

by up to 26%.

Reducto’s approach to optimizing the pipeline exploited the temporal redundancy in video

content, or the inputs to the machine learning models. However, it treated the model

itself as a black box; we never changed the inner workings of the model. Next, we look at a

similar video analytics pipeline, but we instead delve into methods for optimizing the models

themselves.
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CHAPTER 3

GEMEL: Model Merging for Memory-Efficient,

Real-Time Video Analytics at the Edge

3.1 Overview

While many video analytics pipelines use both an edge component and a cloud component

to run inference (e.g., Reducto), other deployments incorporate on-premise edge servers

(e.g., Microsoft Azure Stack Edge [2], Amazon Outposts [1]) that run in hyper-proximity to

cameras and possess on-board GPUs to run DNNs at the edge itself. These edge boxes are

typically used to replace [24] distant cloud servers by locally performing as many inference

tasks on live video streams as possible [38, 68, 159]. Recall that generating responses directly

on edge boxes reduces transfer delays for shipping data-dense video over wireless links [58,

90, 161] while also bringing resilience to outbound edge-network link failures [5, 103] and

compliance with regional data privacy restrictions [99, 110].

To reap the above benefits, video analytics deployments must operate under the limited

computation resources offered by edge boxes. On the one hand, due to cost, power, and space

constraints, edge boxes typically possess weaker GPUs than their cloud counterparts [2, 24,

125]. On the other hand, analytics deployments face rapidly increasing workloads due to the

following trends: (1) more camera feeds to analyze [24, 68, 70], (2) more models to run due

to increased popularity and shifts to bring-your-own-model platforms [20, 27, 52, 69], and (3)

increased model complexity, primarily through growing numbers of layers and parameters

(Figure 1.1) [19, 71, 72, 142]. Taken together, the result is an ever-worsening resource picture

for edge video analytics.
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Problems. Although GPU computation resources are holistically constrained on edge boxes,

this work focuses on GPU memory restrictions, which have become a primary bottleneck in

edge video analytics for three main reasons. First, GPU memory is costly due to its high-

bandwidth nature [108, 111, 122], and is thus unlikely to keep pace with the ever-growing

memory needs of DNNs (Figure 1.1). Second, we empirically find that existing memory

management techniques that time/space-share GPU resources [32, 53, 65, 71, 123, 150] are

insufficient for edge video analytics, resulting in skipped processing on 19-84% of frames,

and corresponding accuracy drops up to 43% (§3.3). The underlying reason is that the

costs of loading vision DNNs into GPU memory (i.e., swapping) are prohibitive and often

exceed the corresponding inference times, leading to sub-frame-rate (< 30 fps) processing

and dropped frames due to SLA violations [123, 156]. Such accuracy drops are unacceptable

for important vision tasks, especially given that each generation of vision DNNs brings only

2-10% of accuracy boosts – that after painstaking tuning [25, 67, 79, 128]. Third, compared

to computation bottlenecks [38, 53, 54, 74, 89], GPU memory restrictions during inference

have been far less explored in video analytics.

Contributions. We tackle this memory challenge by making two main contributions de-

scribed below. The design and evaluation of our solution are based on a wide range of

popular vision DNNs, tasks, videos, and resource settings that reflect workloads observed in

both our own multi-city pilot video analytics deployment and in prior studies (§3.2).

Our first contribution is model merging , a fundamentally new approach to tackling GPU

memory bottlenecks in edge video analytics that is complementary to time/space-sharing

strategies (§3.4). With merging, we aim to share architecturally identical layers across the

models in a workload such that only one copy of each shared layer (i.e. one set of weights)

must be loaded into GPU memory for all models that include it. In doing so, merging

reduces both the number of swaps required to run a workload (by reducing the overall

memory footprint) and the cost of each swap (by lowering the amount of new data to load

into GPU memory).
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Our merging approach is motivated by our (surprising) finding that vision DNNs share sub-

stantial numbers of layers that are architecturally (i.e. excluding weights) identical (§3.4.1).

Such commonalities arise not only between identical models (100% sharing), but also across

model variants in the same (up to 84.6%) and in different (up to 96.3%) families. The reason

is that, despite their (potentially) different goals, vision DNNs ultimately employ traditional

CV operations (e.g. convolutions) [25, 79], operate on unified input formats (e.g. raw frames),

and perform object-centric tasks (e.g. detection, classification) that rely on common features

such as edges, corners, and motion [35, 40, 80, 83, 114, 139, 162, 163].

Our analysis reveals that exploiting these architectural commonalities via merging has the

potential to substantially lower memory usage (17.9-86.4%) and boost accuracy (by up

to 50%) in practice. However, achieving those benefits is complicated by the fact that

edge vision models typically use different weights for common layers due to training non-

linearities [77, 78] and variance in target tasks, objects, and videos; and yet, merging requires

using unified weights for each shared layer. Digging deeper, we observe that there exists an

inverse relationship between the number of shared layers and achieved accuracy during re-

training. Intuitively, this is because for shared layers to use unified weights, other layers must

adjust their weights accordingly during retraining; the more layers shared, the harder it is

for (the fewer) other layers to find weights to accommodate such constraints and successfully

learn the target functions [26, 88]. Worse, determining the right layers to merge is further

complicated by the fact that (1) it is difficult to predict precisely how many layers will be

shareable before accuracy violations occur, and (2) each instance of retraining is costly.

Our second contribution is GEMEL, an end-to-end system that practically incorporates model

merging into edge video analytics by automatically finding and exploiting merging opportu-

nities across user-registered vision DNNs (§3.5). tackles the above challenges by leveraging

two key observations: (1) vision DNNs routinely exhibit power-law distributions whereby

a small percentage of layers, often towards the end of a model, account for most of the

model’s memory usage, and (2) merging decisions are agnostic to inter-layer dependencies,

and accordingly, a layer’s mergeability does not improve if other layers are also shared.
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Building on these observations, GEMEL follows an incremental merging process whereby

it attempts to share one additional layer during each iteration, and selects new layers in a

memory-forward manner, i.e. prioritizing the (few) memory-heavy layers. In essence, this

approach aims to reap most of the potential memory savings as quickly, and with as few

shared layers, as possible. GEMEL further accelerates the merging process by taking an

adaptive approach to retraining that detects and leverages signs of early successes and fail-

ures. At the end of each successful iteration, GEMEL ships the resulting merged models

to the appropriate edge servers, and carefully alters the time/space-sharing scheduler – a

merging-aware variant of Nexus [123] in our implementation – to maximize merging bene-

fits, i.e. by organizing merged models to reduce the number of swaps, and the delay for each

one. Importantly, GEMEL verifies that merging configurations meet accuracy targets prior

to deployment at the edge, and also periodically tracks data drift.

We plan to open-source GEMEL and our datasets.

3.2 Methodology & Pilot Study

We begin by describing the workloads used in this paper. They were largely derived from

our experience in deploying a pilot video analytics system in collaboration with two major

US cities (one per coast), for road traffic monitoring.

Models and tasks. In line with other video analytics frameworks [20, 27, 52, 69], users

in our deployment provided pre-trained models when registering queries to run on different

video feeds. Due to the complexity of model development, we observe that users opt to

leverage existing (popular) architectures geared for their target task (e.g., YOLOv3 for object

detection), and train those models for specific object(s) of interest and datasets (e.g. detecting

vehicles at Main St.) to generate a unique set of weights. Despite being allowed, custom

architectures were never provided in our deployment.

Accordingly, we selected the 7 most popular families of models across our pilot deployment

and recent literature [24, 32, 63, 65, 68, 73, 74, 76, 89, 144]: YOLO, Faster RCNN, ResNet,

VGG, SSD, Inception, and Mobilenet. From each family, we selected up to 4 model variants
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(if available) that exhibit different degrees of complexity and compression. For instance,

from YOLO, we consider {YOLOv3, Tiny YOLOv3}; similarly, we consider ResNet{18, 50,

101, 152}. The selected models focus on two tasks – object classification and detection – and

for each, we train different versions for all combinations of the following objects: people and

vehicles (e.g., cars, trucks, motorbikes). Classification and detection accuracy are measured

using F1 and mAP [47].

Videos. Our dataset consists of video streams from 12 cameras in our pilot deployment

that span two metropolitan areas. From each region, we consider cameras at adjacent inter-

sections, and those spaced farther apart within the same metropolitan area; this enables us

to consider different edge box placements, i.e., at a traffic intersection vs. further upstream

to service a slightly larger geographic location. From each stream, we scraped 120 minutes

of video that cover 24-hour periods from four times of the year.

Edge boxes. Our review of on-premise edge boxes focused on 5 commercial offerings:

Microsoft Azure Stack Edge [2], Amazon Outposts [1], Sony REA [127], NVIDIA Jetson [11],

and Hailo Edge-AI-box [56]. These servers each possess on-board GPUs and offer 2-16 GB of

total GPU memory. Since edge inferences do not typically span multiple GPUs, we focus on

model merging and inference scheduling per GPU. This does not restrict GEMEL to single-

GPU settings; rather, it means that our merging and scheduling techniques are applied

separately to the DNNs in each GPU, with the assumption that each merged model runs on

only one GPU.

Workload construction. Recent works highlight that 10s of videos are usually routed to

each edge box [15, 68], which runs upwards of 10 queries (or DNNs) on each feed [20, 24].

Our experience was similar: it was typical to direct the max possible number of feeds to

an edge box, with the goal of minimizing the number of edge boxes required to process the

workload. To cover this space, and since we focus on per-GPU inference optimization, we

generated an exhaustive list of all possible workloads sized between 2-50 DNNs using the

models above. We then sorted the list in terms of the potential (percentage) memory savings
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(using the methodology from §3.4), and selected 15 workloads: 3 random workloads from the

lower quartile (i.e., Low Potential (LP1-3)), 6 from the middle 50% (i.e., Medium Potential

(MP1-6)), and 6 from the upper quartile (i.e., High Potential (HP1-6)). We chose this ratio

to match that from our deployment. MP and HP workloads each constituted 30-50% of

the total workloads since (1) users tended to employ the same few model variants from a

limited set of popular families, and (2) each user typically used the same architecture (but

not weights) for different feeds in a region. LP workloads were less common (<20%), and

arose from different users opting for different model families.

Each workload was randomly assigned to one of the cities, with the constituent models being

randomly paired with the available videos. §5.4 details the workloads, each of which exhibits

heterogeneity in terms of the families, tasks, videos, and (combinations of) target objects of

the included models. In summary, the workloads contain 3-42 queries (avg: 15) across 3-7

video feeds (avg: 5), featuring 2-10 unique models (avg: 6) and 2-5 different objects (avg:

4). We consider additional workloads, models, objects, and videos in §3.6.3.

Result presentation. End-to-end accuracy depends on the available GPU memory. How-

ever, each workload requires a different minimum amount of memory to run, i.e. the GPU

should be able to load/run the most memory-intensive model in isolation for a batch size of

1. Further, the memory needed to avoid swapping (i.e. to load all models and run one at

a time) also varies per workload; we call this no swap. To ensure comparability across all

presented accuracy results and to focus on memory-bottlenecked scenarios, we assign each

workload three memory settings to be evaluated on (listed in §5.6): (1) the minimum value

(min), (2) 50% of the no swap value (50% ), and (3) 75% of the no swap value (75% ).

3.3 Motivation

3.3.1 Memory Pressure in Edge Video Analytics

To run inference with a given model, that model’s layers and parameters must be loaded

into the GPU’s memory, with sufficient space reserved to house intermediate data generated

while running, e.g. activations. The amount of data generated (and thus, memory consumed)
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Figure 3.1: Per-workload memory requirements for two popular batch sizes used in video
analytics [123]. Dashed lines represent the available GPU memory on several commercial
edge boxes.

Model Load Memory
Run Memory (Time)

(Time) BS=1 BS=2 BS=4

YOLOv3 0.24 (49.5) 0.52 (17.0) 0.73 (24.0) 1.22 (39.9)
ResNet152 0.24 (73.3) 0.65 (24.8) 0.98 (26.3) 1.71 (26.7)
ResNet50 0.12 (27.1) 0.35 (8.4) 0.50 (8.5) 0.84 (8.5)
VGG16 0.54 (72.2) 0.74 (2.1) 0.89 (2.4) 1.18 (2.4)
Tiny YOLOv3 0.04 (6.7) 0.15 (3.0) 0.18 (5.2) 0.24 (5.2)
Faster RCNN 0.73 (117.3) 3.70 (115.4) 6.96 (210.1) 12.47 (379.4)
Inceptionv3 0.12 (11.8) 0.19 (9.1) 0.23 (9.1) 0.34 (9.1)
SSD-VGG 0.11 (16.1) 0.23 (16.5) 0.33 (25.7) 0.51 (44.6)

Table 3.1: Memory (GB) and time (ms) requirements for loading/running inference with
3 different batch sizes (in frames). Run memory values include load values, but exclude
memory needs of serving frameworks. Results use a Tesla P100 GPU.

during inference depends on both the model architecture and the batch size used; a higher

batch size typically requires more memory.

Figure 3.1 shows the total amount of memory (i.e., for both loading and running) required

for each of our workloads and two batch sizes; the listed numbers exclude the fixed memory

that ML frameworks reserve for operation, e.g., 0.8 GB for PyTorch [22]. As shown, many

workloads do not directly fit into edge box GPUs, and the number of edge boxes necessary

to support a given workload can quickly escalate. For instance, even with a batch size of 1

frame, 73% of our workloads need more than one edge box possessing 2 GB of GPU memory;

with a batch size of 4, 60% and 27% require more than one edge box with 8 GB and 16 GB

of memory.

Table 3.1 breaks this memory pressure down further by listing the amount of loading and

running memory required for representative models in our workloads. When analyzed in

48



Chapter 3. GEMEL: Model Merging for Memory-Efficient, Real-Time Video Analytics at
the Edge

the context of the scale of edge video analytics workloads, the picture is bleak, even with

a batch size of 1. For example, a 2 GB edge box can support only 1, 2, or 3 VGG16,

YOLOv3, or ResNet50 models, respectively, after accounting for the memory needs of the

serving framework. Moving up to 8 and 16 GB edge boxes (of course) helps, but not enough,

e.g. an 8 GB box can support 13 YOLOv3 or 2 Faster RCNN models, both of which are a

drastic drop from the 10s of models that workloads already involve (§3.2).

3.3.2 Limitations of Existing GPU Memory Management

Space and time sharing. Existing learning frameworks recommend model allocation at the

granularity of an entire GPU [71]. Space-sharing techniques [18, 21] eschew this exclusivity

and partition GPU memory per model. Although space-sharing approaches are effective

when a workload’s models can fit together in GPU memory, they are insufficient when that

does not hold, which is common at the edge (§3.3.1)

There are two natural solutions when a workload’s models cannot fit together in the target

GPU’s memory. The first is to place models on different GPUs [53, 123], which resource-

constrained edge settings cannot afford. The second is to time share the models’ execution in

the GPU by swapping them in and out of GPU memory (from CPU, via a PCIe interface) [32,

53, 65, 123, 150]. However, as we will show next, time-sharing techniques are bottlenecked by

frequent model swapping, which severely limits their utility. More recently, SwapAdvisor [65]

and Antman [150] proposed swapping at finer granularities, e.g., individual or a few layers.

However, even these approaches are limited in our case because a handful of layers in vision

DNNs typically account for most memory usage (§3.5.2); edge boxes often lack the GPU

memory to concurrently house even these expensive singular layers.

We evaluated time-sharing strategies in our setting by considering a hybrid version that

packs models into GPU memory, and executes as many models as possible while ensuring

that swapping costs for the next model to run are hidden. Concretely, we extend Nexus [123]

to incorporate such pipelining. Our variant first organizes models in round-robin order (as

Nexus does), and profiles the workload offline to determine the best global list of per-model

batch sizes that maximizes the minimum achieved per-model throughput while adhering to an
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Figure 3.2: Achieved accuracy with time/space-sharing alone (i.e. using our Nexus variant)
for different memory availability (following the definitions in §3.2). Bars list results for the
median workload in each class, with error bars spanning min to max.

SLA (i.e., a per-frame processing deadline). Using those batch sizes, the scheduler traverses

the round robin order with the goal of minimizing GPU idle time: when loading the next

model, if there does not exist sufficient memory to load both parameters and intermediates,

the most recently run model (i.e., the one whose next use is in the most distant future) is

evicted to make space.

Figure 3.2 shows the accuracy of the Nexus variant on our workloads with an SLA of 100

ms; we saw similar trends for other common SLAs in video analytics [123]. As shown,

accuracy drops are substantial, growing up to 43% relative to a setting when there exists

sufficient memory to house all models at once. The root cause is the disproportionately high

loading times of vision DNNs that must be incurred when swapping. As shown in Table 3.1,

per-model loading delays are 0.98-34.4× larger than the corresponding inference times (for

batch size 1). When facing the strict SLAs of video analytics, these loading costs result

in the inability to keep pace with incoming frame rates, and thus, dropped (unprocessed)

frames; the Nexus variant skipped 19-84% of frames.

Predicting workload characteristics. Another approach is to selectively preload models

based on predictions of the target workload [157], e.g. deprioritizing inference on streams at

night due to lack of activity. However, in edge video analytics, spatial correlation between

streams results in model demands being highly correlated [70, 74, 89, 93].

Compression and quantization. These techniques generate lighter model variants that

impose lower memory (and compute) footprints and deliver lower inference times. Some
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families offer off-the-shelf compressed variants (e.g. Tiny YOLOv3), and techniques such as

neural architecture search can be used to develop cheaper variants that are amenable to

deployment constraints [54]. Regardless, in reducing model complexity, these cheaper model

variants typically sacrifice accuracy and are more susceptible to drift, relative to their more

heavy-weight counterparts [24, 131]; consequently, determining the feasibility of using such

models in a given setting requires careful tuning and analysis by domain experts.

We consider compression and quantization as orthogonal to merging for two reasons. First,

in common workloads that involve a mix of models and tasks (§3.2), it may not be pos-

sible to compress all of the models while delivering sufficient accuracy. However, even a

handful of non-compressed models can exhaust the available GPU memory (§3.3.1). Sec-

ond, compressed models exhibit sharing opportunities: our workloads include compressed

and non-compressed models (§3.2), and our results show that GEMEL is effective for both

(§3.6).

3.4 Our Approach: Model Merging

To address the high model loading costs that plague existing memory management strategies

when workloads cannot fit together in a GPU’s memory (§3.3.2), we propose model merging.

Merging is complementary to time/space sharing of GPU memory, and its goal is straight-

forward: share layers across models such that only one copy of each shared layer (i.e., layer

definition and weights) must be loaded into GPU memory and can be used during inference

for all of the models that include it. The benefits are two-fold: (1) reduce the overall memory

footprint of a workload, thereby enabling edge boxes to house more models in parallel and

perform fewer swaps (or equivalently, lower the number of edge boxes needed to run the

workload), and (2) accelerate any remaining swaps by reducing the amount of extra memory

that the next model to load requires. Note that merging does not involve sharing intermedi-

ates (i.e. layer outputs) for a common layer because models may run on different videos (and

thus, inputs). We next highlight the promise for merging in edge video analytics (§3.4.1),

and then lay out the challenges associated with realizing merging in practice (§3.4.2).
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3.4.1 Opportunities

Commonality of layers. A layer is characterized by both its architecture and its weights.

In ML frameworks (e.g. PyTorch, TensorFlow), the architecture is defined by first specifying

a layer type (e.g. convolutional, linear, batch normalization), which in turn indicates how the

layer transforms inputs, and dictates the set of defining parameters that must be specified

(e.g. convolutional: kernel, stride, etc., linear: # of input features, bias, etc.). A layer’s

weights are a matrix of numbers whose dimensions match the layer structure. To successfully

share a layer across a set of models, that layer must be architecturally identical in each model,

but its weights need not be the same across appearances.

Architectural equivalence is determined directly from the model definition in the ML frame-

work (i.e., no inference required): the layers must be of the same type, with identical values

for type-specific properties. Using this approach, we studied pairs of 24 different models

to identify and analyze layers with identical architectures. §5.7 and Figures 5.6-5.8 present

our comprehensive results and break down sharing opportunities by layer type. Below, we

summarize our findings; Figure 3.3 lists results for representative model pairs.

Model pairs fall into one of three categories: (1) instances of the same model, (2) differ-

ent models in the same family (e.g. ResNet variants), and (3) different models in different

families. Multiple instances of the same model unsurprisingly match on every layer; this

favorable scenario is not uncommon in edge video analytics, as several model architectures

tend to dominate the landscape [23] and a given model can be employed on different video

feeds or in search of different objects (§3.2). More interestingly, we also observe sharing op-

portunities across different models from the same (up to 84.6%) and divergent (up to 96.3%)

families.

Models within the same family exhibit significant sharing opportunities as larger variants are

typically extended versions of the original base model. For instance, ResNet models share

ResNet blocks (groups of 2-3 convolutional layers) that are repeated at different frequencies,

as well as the first convolutional layer and final fully-connected layer. As a result, all 41
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Figure 3.3: Percentage of architecturally identical layers across different model pairs.

layers of ResNet18 are shared with ResNet34 (Figure 5.8). Similarly, in the VGG family,

models share the exact same base architecture and add different numbers of convolutional

layers, e.g., VGG19 shares all 16 of VGG16’s layers (13 convolutional and 3 fully-connected;

Figure 5.6).

Sharing for models in different families comes in two main forms: (a) ‘similar backbones’

and (b) ‘derivatives of.’ Scenario (a) includes pairs of detectors that use the same (or

similar) backbone networks for feature extraction, e.g., SSDs that use any VGG backbone,

or FasterRCNNs that use any ResNet backbone. (a) also includes pairs of classifiers and

detectors where the classifier (or a close variant) is used as the detector’s backbone. For

instance, every layer in the ResNet50 backbone of FasterRCNN (which constitutes 51% of

the detector’s layers) appears in the ResNet101 classifier. Similar examples include SSD-

VGG with any VGG variant, and SSD-MobileNet with MobileNet. Scenario (b) involves

cases where one model family was derived directly from another. For example, VGG was

developed by replacing AlexNet’s large kernels with multiple smaller ones [126]; VGG16 and

AlexNet share 3 out of 16 layers, including 2 fully-connected layers at the end (Figure 5.7).

Other examples include InceptionNetV3 [133] with GoogLeNet [132].

In summary, 43% of all pairs of different models present sharing opportunities. Of those

with substantial (≥ 10%) common layers, 51% have models in the same family, while 49%
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involve models from different families; for the latter, 76% are ‘similar backbones’ and 24%

are ‘derivatives of.’

These layer similarities generally follow from the fact that the considered models are all

vision processing DNNs. That is, they all ingest pixel representations of raw images, and

employ a series of traditional CV operations [25, 79], e.g. a convolutional layer is applying

a learned filter to raw pixel values in preparation for downstream processing. Moreover, the

target tasks are rooted in identifying and characterizing objects in the scene using low-level

CV features such as detected edges and corners [35, 63, 80, 83, 89, 162, 163].

Prior work has capitalized on such similarities for efficient multi-task learning [39, 73, 154]

and architecture search [92, 109]. Those efforts aim to reduce computation overheads by

sharing “stems” of models, i.e. contiguous layers (and their generated intermediates) start-

ing from the beginning of the models. In contrast, we aim to exploit architectural similarities

to reduce memory overheads via merging. As a result, merging only requires layer defini-

tions and weights to be shared, but not generated intermediate values. This distinction is

paramount because, as we will discuss in §3.5.2, memory-heavy layers typically reside towards

the end of vision DNNs. Consequently, stem sharing would require almost all model layers to

be shared to reap substantial memory savings, which in turn brings unacceptable accuracy

drops (§3.4.2 and §3.6). Merging, on the other hand, can share only those memory-heavy

layers to simultaneously deliver substantial memory savings and preserve result accuracy.

Potential memory savings and accuracy improvements. Figure 3.4 shows the memory

savings from sharing all of the common layers across the models in each of our workloads; this

represents an upper bound on merging benefits as it disregards the challenge of identifying

an acceptable set of weights per shared layer (§3.4.2). As shown, the memory savings are

substantial: per-workload memory usage dropped by 17.9-86.4% relative to no merging,

translating to raw savings of 0.2-9.9 GB. Importantly, these savings result in 2 and 4 new

workloads fitting entirely (no swapping) on edge boxes with 2 GB and 8 GB of GPU memory

(with batch size 1). Similarly, the number of 2 GB edge boxes needed to support each

workload drops from 1-9 to 1-4. We further evaluated the resulting impact on end-to-
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Figure 3.4: Potential memory savings when all architecturally identical layers are shared
across the models in each workload.
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Figure 3.5: Potential accuracy improvements when sharing all architecturally identical lay-
ers. Memory availability is defined in §3.2, bars list medians, and error bars span min to
max.

end accuracy by comparing the performance of the Nexus variant from §3.3.2 when run on

workloads with and without (maximal) merging. Models in both cases were ordered in the

same way, to maximize the benefits of merging (§3.5.4). As shown in Figure 3.5, merging

can boost accuracy by up to 50% across our workloads. These benefits are a direct result of

lower swapping costs, and the resulting ability to run on 29-61% more frames.

3.4.2 Challenges

Merging layers for memory reductions requires using shared weights across the models in

which those layers appear. However, those shared weights must not result in accuracy vio-

lations for any of the models, despite their potentially different architectures/tasks, target

objects/videos, etc.; such accuracy drops would forego merging benefits from faster swap-
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ping. Concretely, there are two core challenges in practically exploiting the architectural

commonalities from §3.4.1.

Challenge 1: sharing vs. accuracy tension. To maximize memory savings, merging

seeks to share as many architecturally identical layers as possible across a workload’s models.

However, we observe that accuracy degradations steadily grow as the number of shared layers

increases. Figure 3.6 illustrates this trend by sharing different numbers of identical layers

across representative pairs of models that vary on the aforementioned properties, e.g. target

task. These results were obtained when we increase the number of shared layers by moving

from start to end in the considered models, but similar trends are observed for other selection

strategies (e.g. random) and models.

The reason for this behavior is intuitive: the retraining performed to assess the feasibility

of a sharing configuration is end-to-end across the considered models. During this process,

weights are being tuned for all of the layers in all of the models, with the constraint being that

the shared layers each use a unified set of weights. Sharing more layers has three effects:

(1) more constraints are being placed on the training, (2) it is harder to find weights for

(the shrinking number of) unshared layers that simultaneously accommodate the growing

constraints, and (3) learning each model’s desired function becomes more difficult as there

exist fewer overall parameters to tune [26, 88]. It is for these reasons that isolated merging

strategies such as averaging weights across copies of each shared layer (while keeping other

layers unchanged) do not suffice; we find that sharing even single layers in this way almost

always results in unacceptable accuracy dips.

Digging deeper, the issue stems from non-convex optimization of DNNs, which leads to

several equally good global minima [77, 78]. Thus, training even two identical models on the

same dataset, and for the same task/object, often results in divergent weights across each

layer, despite the resultant models exhibiting similar overall functionality.

Challenge 2: retraining costs. The retraining involved in determining whether a set of

layers to share can meet an accuracy target, and if so, the weights to use, can be prohibitively
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Figure 3.6: Accuracy after 5 hours of retraining when sharing additional architecturally-
identical layers for different model pairs (starting from their origins). Tasks cover detection
(Faster RCNN) and classification (ResNet50), and two objects: people, vehicles. Results
list the lower per-model accuracies per pair.

expensive. For instance, each epoch when jointly retraining two Faster RCNN models that

detect cars at nearby intersections (i.e. a simple scenario) took ≈35 mins, and different

combinations of layer sharing required between 1-10 epochs to converge. These delays grow

as more models are considered since training data must reflect the behavior of all of the

unmerged models that are involved, e.g. by using the original training datasets for each of

those models. Worse, it is difficult to know, a priori, which sharing configurations can meet

accuracy targets (and which will not) in a reasonable time frame. For example, the model

pairs in Figure 3.6 have largely different ‘breaking points.’ The result also fails to support

the use of intuitive trends to predict the success of sharing configurations: models targeting

the same task or object do not exhibit any discernible advantage.

3.5 GEMEL Design

GEMEL is an end-to-end system that practically integrates model merging into edge video

analytics pipelines by addressing the challenges in §3.4.2. We first provide an overview of

GEMEL’s operation, and then describe the core observations (and resulting optimizations)

that it leverages to enable timely merging without violating accuracy requirements.
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Figure 3.7: GEMEL architecture.

3.5.1 Overview

Figure 3.7 shows GEMEL’s cloud merging and edge inference workflows. As in existing

pipelines [20, 74, 89], users register inference tasks (or “queries”) at GEMEL’s cloud com-

ponent by providing a DNN, and specifying the input video feed(s) to run on as well as

the required accuracy for the results. Upon receiving new queries, GEMEL bootstraps edge

inference by sending unaltered versions of the registered models to the appropriate edge

box(es) ➊. When GPU memory is insufficient to house all of those models, edge boxes run

the Nexus variant from §3.3.2 that pipelines inference and model loading to maximize the

min per-model throughput.

After initiating edge inference, GEMEL’s cloud component begins the merging process, dur-

ing which it incrementally searches through the space of potential merging configurations

across the registered models, and evaluates the efficacy of each configuration in terms of

both its potential memory savings and its ability to meet accuracy requirements ➋. The

evaluation of each configuration involves joint retraining and validation of the models par-

ticipating in merging. Since GEMEL’s goal is to ensure that the retrained models deliver

sufficient accuracy (relative to the originals) on the target feeds, data for these tasks can

be obtained in one of two ways: users can supply the data used to train the original mod-

els, or GEMEL can automatically generate a dataset by running the supplied model (or a

high-fidelity one [74, 158]) on sampled frames from the target feed.

At the end of each merging iteration, if the considered configuration was successfully re-

trained to meet the accuracy targets for all constituent models, GEMEL shares the updated
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merged models with the appropriate edge boxes ➌. New merging results may result in al-

tered edge inference schedules to maximize merging benefits for reducing swapping costs and

boosting inference throughput. The iterative merging process for the current workload then

continues until (1) the cloud resources dedicated to merging have been expended, (2) no

configurations that can deliver superior memory savings are left to explore, or (3) models

with sharing opportunities are either newly registered or deleted by users.

GEMEL periodically assesses data drift for its merged models. As in prior systems [89, 131],

edge servers periodically send sampled frames (and their inference results, if collected) to

GEMEL’s cloud component ➍. These sampled frames are used to augment the datasets

considered for retraining merged models, and to track the accuracy of recent results generated

at the edge by deployed merged models. For the latter, GEMEL runs the original user

models on the sampled videos and compares the results to those from the merged models.

If accuracy is below the target for any query, GEMEL reverts edge inference to use the

corresponding original (unmerged) models, and resumes merging and retraining, starting

with the previously deployed weights ➎.

Implementation. GEMEL’s main components are training models at the cloud server and

running the scheduler at the edge. GEMEL uses PyTorch [22] to manage cloud merging and

edge inference. During training, a single optimizer manages the weights across all considered

models; the optimizer holds a single copy of weights for each layer that is shared across the

models. Aside from this, GEMEL’s training process mirrors classic multi-task training[39]:

it forms a collective pool of an equal number of data samples from all models and randomly

selects batches from this pool. Samples are run through their respective models, each model

calculates its loss individually, and losses are summed over all models. In this way, layers

that are shared are updated by the concurrent training of multiple models within a single

batch.

The Nexus-variant scheduler chooses when to load and evict models as described in §3.5.4.

To load a model into GPU memory, the scheduler simply calls “.cuda()” on that model’s Py-

Torch object. PyTorch automatically only loads layer weights not already in GPU memory.
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However, when evicting a model, PyTorch, by default, removes all of the layers’ weights from

GPU memory. This poses a problem if some of those weights are needed by models still in

GPU memory (i.e. they are shared). To avoid this, the scheduler: (1) maintains a running

list of shared layers that are needed by models currently in GPU memory or next in line

to be loaded, and (2) when a model needs to be evicted, only evicts weights corresponding

to layers not in the list. Overall, GEMEL is implemented in ≈3500 LOC: 500 for finding

shared layers and sharing them according to the heuristic, 2500 for dataset management and

retraining, and 500 for scheduling models at the edge.

3.5.2 Guiding Observations

Two key empirical observations guide GEMEL’s approach to tackling the challenges in §3.4.2.

We describe them in turn.

Observation 1: power-law memory distributions. We find that vision DNNs com-

monly exhibit power-law distributions in terms of memory usage, whereby a few “heavy-

hitter” layers account for most of the overall model’s memory consumption. Figure 3.8

illustrates this, showing that for 80% of considered models, 15% of the layers account for 60-

91% of memory usage. For example, a single layer in VGG16 is responsible for 392 MB (the

entire model is 536 MB) and corresponds to the steep slope around the x=80% mark. Simi-

larly, Tiny YOLOv3 has three layers (around the 38%, 45%, and 65% marks) that together

use 35 MB of its total 42 MB.

Heavy-hitter layers come in one of two forms. The first are the convolutional layers at the

end of the feature extractor that condense the numerous low-level features extracted by prior

layers (e.g., shapes, colors) into higher-level, more abstract features (e.g., eyes, nose). The

second are the subsequent fully-connected layer(s) that learn more robust patterns from all

possible combinations of those high-level features, e.g., eyes, nose, and fur might each suggest

a dog, but the combination is a stronger indicator. Note that models generally include one

such fully-connected layer per sub-task, e.g., detectors have one for finding bounding boxes

and one for classifying objects. Memory-heavy fully-connected layers are spatially close to
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Figure 3.8: Cumulative memory consumed by each model’s layers moving from start to
end of the model. §5.7 has full legend.

one another (within a few layers), and are usually followed by 1-2 cheap fully-connected

layers that extract predictions from the final feature vector.

The main exception is ResNet, whose models use residual layers to address accuracy sat-

uration limitations of prior deep models [60]. ResNet models have memory-heavy ResNet

blocks (set of convolutional layers) that repeat at varying frequencies, thereby distributing

memory more evenly across the models, e.g., ResNet101 and ResNet152 repeat the same

ResNet block 23 and 36×, leading to gradual slopes in Figure 3.8. DenseNet has the same

pattern [66].

Figure 3.8 also shows that heavy-hitter layers most often appear in the latter half of a model’s

architecture (since both forms involve condensing features from earlier layers), complicating

the use of stem sharing for memory savings (§3.4.2). For example, Faster RCNN’s expensive

fully-connected layers fall at layers 101 and 104 out of 106, and together account for 76%

of total memory. The few cases with heavy-hitters in the middle of a model (between

the 20-60% marks) are “single-shot” detectors (SSD-VGG, SSD-Mobilenet, Tiny YOLOv3,

YOLOv3) that find bounding boxes and classify objects at once, rather than as disparate

subtasks. These models replace the few memory-heavy fully-connected layers (for those

subtasks) with many cheaper convolutional layers; doing so extends model lengths and shifts

the large jump from memory-heavy feature extractor layers to earlier.
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These observations have two implications on merging. First, strategies can reap most poten-

tial memory benefits by targeting the few heavy-hitter layers in models. Thus, the tension

between memory savings and accuracy is far more favorable than that between the number

of shared layers and accuracy (Figure 3.6). Second, strategies should be agnostic to the

position of heavy hitters in models, and must support the common case where heavy hitters

appear towards the end.

Observation 2: independence of per-layer merging decisions. In DNNs, layers are

configured based on input formats, target task, execution time, etc. Hence, a natural as-

sumption is that the ability to share any one layer is dependent on sharing decisions for

other layers, e.g. a layer may be shareable if and only if other layers are shared. Prior

work has highlighted that inter-layer dependencies primarily arise between neighboring lay-

ers, e.g. with transfer learning, performance drops are largest when splitting neighboring

layers [154]. Thus, to determine the existence of layer-wise dependencies as it pertains to

merging, we focus our analysis on (potential) dependencies between neighboring layers; we

also consider other layers via random selection. Using the 25% most memory-heavy layers

for each model in our workloads, we test whether accuracy targets are met under different

sharing configurations (described in Table 3.2).

As shown, we never observe a case where a layer is unable to meet an accuracy target on

its own, but it is able to meet the accuracy target when some other layers are also shared

(shaded row in Table 3.2). This is consistent with our finding that sharing more layers leads

to larger accuracy degradations (Figure 3.6) since additional constraints are placed on the

weights for those layers, and fewer (unconstrained) non-shared layers exist to help satisfy the

constraints. The implication is that layers can be considered independently during merging

without harming their potential merging success.

Takeaway. Collectively, these observations motivate an incremental merging process (de-

tailed in §3.5.3) that attempts to share one new layer at a time, and prioritizes heavy-hitter

layers that consume the most memory (and are thus the most fruitful to share). In this
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Only
Alone

Only
Alternate

Both Neither

1 Each
Side

1.1% 0.0% 97.6% 1.3%

2 Each
Side

3.7% 0.0% 95.0% 1.3%

Random 8.5% 0.0% 90.2% 1.3%

Table 3.2: Sharing a layer alone vs. alternate approaches (sharing a layer with one or two
neighbors on each side, or with 3 random sets of 1-10 layers). Results are % of runs that
meet accuracy targets (aggregated across 80, 90, 95%), and list cases where the layer alone
met but an alternate did not, an alternate met but the layer alone did not, both met, and
neither met.

manner, memory-heavy layers are considered in the most favorable settings (i.e. with the

fewest other shared layers), and each increment only modestly adds to the likelihood of not

meeting accuracy targets.

Note. Despite arising across our diverse workloads, these observations are not guarantees.

Importantly, violation of these observations only results in merging delays (inefficiencies),

but not accuracy breaches; accuracy is explicitly vetted prior to shipping merged models to

the edge for inference.

3.5.3 Merging Heuristic

GEMEL begins by enumerating the layers that appear in a workload, and annotating each

with a listing of which models the layer appears in (and where) and the total memory

it consumes across the workload; we refer to all appearances of a given layer as a ‘group.’

GEMEL then sorts this list in descending order of memory consumption, e.g. a 100 MB layer

that appears in 4 models would be earlier than a 120 MB layer that appears 3 times. Thus,

memory-heavy groups, or those that would yield the largest memory savings if successfully

merged, are towards the start of the list.

GEMEL then maintains a running merging configuration, and simultaneously merges and

trains layers across models in an incremental fashion. To begin, GEMEL selects the first

group from the sorted list (i.e. the one that consumes the most memory in the workload)

and attempts to share it across all of the models in which it appears; this group is added to

the running configuration. While a subset of models could be considered instead, GEMEL
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aggressively opts to first try sharing across all models in the group, and then to selectively

remove appearances of the layer when the resulting accuracy is insufficient. The reason is

that we did not observe any model clustering strategies (e.g. based on task) that identified

models consistently unable to share layers.

To retrain and merge the current running configuration, GEMEL selects initial weights for the

newly added group from a random model that includes that layer. We tried selecting weights

from each model (including the one with the highest accuracy) but found no difference in the

# of epochs needed to meet accuracy. We also tried default initialization techniques (e.g.,

Kaiming[61]), which led to lower accuracy. Retraining continues until the merged models

each meet their accuracy targets, or a preset time budget elapses (10 epochs by default).

If retraining is successful, GEMEL adds the next group in the sorted list to the running

configuration, and resumes retraining from the weights at the end of the previous iteration.

The generated merged models are sent to the edge box and incorporated into edge inference

(§3.5.4).

If retraining is not successful at the end of an iteration, GEMEL must decide whether to

prune layers from the current group and try again, or to discard the group altogether and

move on to the next one in the sorted list. To do this, GEMEL follows a strategy that aims

to balance fast memory savings and avoidance of unsuccessful training rounds, with priority

on the latter since failures can consume 3-10 epochs (each up to 30 min) and provide no new

memory savings. Specifically, recall that each time a new group is considered, the number

of shared layers in the merging configuration grows by the size of the group. To counter

this ‘additive increase,’ upon unsuccessful retraining, GEMEL halves the current group,

eliminating half of the layer appearances. If the resulting layer appearances consume more

memory than the next group, GEMEL considers those layers; else, GEMEL removes the

current group from the running policy, and moves to the next one. In either case, retraining

resumes from the weights at the end of the last successful iteration. We compare against

alternate merging heuristics in §3.6.2.
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Accelerating retraining. Each iteration requires GEMEL to run retraining over many

epochs, and validate the results accuracy-wise. To accelerate training and validation, GEMEL

takes an adaptive approach. During validation, as per-model accuracy values approach their

targets, it is often unnecessary to train further on full epochs of data. Instead, GEMEL

reduces the training data once the accuracy is within a pre-defined threshold of the target.

Specifically, GEMEL reduces the amount of data so it is inversely proportional to the gap

in accuracy normalized by the lift since the previous training. Reducing data on such early

success directly translates to lower training times. Similarly, GEMEL detects early failures

by looking at the validation results and removing models that are not improving at the same

pace as the others after some time (3 epochs by default). We empirically observe that early

success and early failure detection drastically (28% on average) reduces retraining times.

3.5.4 Edge Inference

Upon receiving a new set of merged models from GEMEL’s cloud component, an edge

server quickly incorporates those models into its inference schedule. However, to ensure that

merging benefits are maximized, the schedule is altered to reduce the amount of data that

must be loaded across the anticipated swaps. During the offline profiling Nexus uses to select

per-model batch sizes, GEMEL estimates per-workload-iteration swapping delays based on

per-model computation costs and swapping delays (both influenced by merging). The idea

is that, when merging is used, in addition to ordering models to reduce the number of swaps,

models that share the most layers should be placed next to one another in the load order.

This lowers the cost of each swap by enabling finer-grained swapping, where only those layers

in the next model that are not already in GPU memory must be loaded.

More generally, all schedulers will reap merging benefits in the event that GEMEL enables

a workload to entirely fit on an edge box (without swapping). Additional benefits depend

on the specific scheduler. For schedulers that employ a statically-configured load order [104,

123], GEMEL can directly modify the schedule as described above to maximize benefits.

Other schedulers [53] dynamically select the load order to optimize for a certain metric. Such

schedulers typically incorporate model loading times when estimating the efficacy of different
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orders, and thus would naturally factor in the effects of merging per swap. Note that merging

benefits would be considered in the context of meeting the optimization metric(s) rather than

minimizing global loading delays (as in GEMEL’s Nexus variant). Lastly, schedulers that

ignore load times in favor of policies such as FIFO [138] or priority scheduling [153] will only

see merging-induced reductions in loading costs if merged models are (by chance) neighbors

in the order. Note that finer-grained [65, 150] and space-sharing [12, 18, 21, 24] schedulers

follow the same principles: shared layers should be adjacent in the load orders for the former,

while models with the most shared layers should be placed in the same GPU partition for

the latter.

3.6 Evaluation

We primarily evaluated GEMEL across the diverse workloads and settings from §3.2. Our

key findings are:

• GEMEL improves per-workload accuracies by 8-39% compared to time/space-sharing

strategies alone; these improvements result from GEMEL processing 13-44% more frames

(while adhering to SLAs).

• GEMEL lowers memory needs by 17.5-60.7% (0.2-5.1 GB); savings are 5.9-52.3% more

than Mainstream [73] (stem sharing), and within 9.3-29.0% of an optimal that ignores

weights (and accuracy drops) when sharing layers.

• More than 70% of GEMEL’s memory savings are achieved within the first 24-210 minutes

of merging+retraining due to its incremental merging heuristic.

3.6.1 Overall Performance

End-to-end Accuracy Improvements. We first compare GEMEL with time/space-

sharing solutions alone, i.e. the Nexus variant running with only unmerged (original) models.

Our experiments consider all workloads and resource settings from §3.2, a per-frame process-

ing SLA of 100 ms, and an accuracy target of 95%; trends hold for other accuracy targets

and SLAs, which we consider in §3.6.2.
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Figure 3.9: Accuracy improvements with GEMEL compared to time/space-sharing alone
for different GPU memories (defined in §3.2). Bars list median workloads, with error bars
as min-max.

Figure 3.9 presents our results, showing that GEMEL improves accuracy by 8.0%, 13.5%,

and 39.1% for the median LP, MP, and HP workloads, respectively, when the edge box

GPU’s memory is just enough to load and run the largest model in each workload, i.e. the

min setting. The origin of these benefits is GEMEL’s ability to reduce the time blocked

on swapping delays by 17.9-84.0%, which enables processing on 13-44% more frames than

without merging.

Our results highlight two other points. First, GEMEL’s benefits are highest for workloads

that are most significantly bottlenecked by memory restrictions (and thus loading costs).

For instance, workloads HP1 and LP1 exhibit largely different memory vs. computation

profiles: loading costs are 66% of computation costs in the former, but only 15% in the

latter. Accordingly, GEMEL’s accuracy wins across the available memory settings are 11-

60% and 5-16% for workloads HP1 and LP1. Second, Figure 3.9 shows that, as expected,

GEMEL’s benefits per workload decrease as the available GPU memory grows, e.g. accuracy

improvements drop to 17.5% and 10.2% for the median MP workload when GPU memory

grows to 50% and 75% of the total workload memory needs. The reason is straightforward:

larger GPU memory yields fewer required swaps without merging.

Memory Reductions. Figure 3.10 lists the memory reductions that GEMEL delivers for

each considered workload by sharing model layers and the associated weights, i.e. parameter

reductions. We note that reported values here are based on GEMEL’s final merging results

and an accuracy target of 95%; we analyze the incremental nature of GEMEL’s merging
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Figure 3.10: GEMEL’s per-workload memory savings. Lines above bars show the theoreti-
cal optimal savings from Figure 3.4.

heuristic in §3.6.2. As shown, parameter reductions are 17.5-33.9% for LP workloads, 28.6-

46.9% for MP workloads, and 40.9-60.7% for HP workloads; the corresponding raw memory

savings are 0.2-0.3 GB, 0.2-0.8 GB, and 0.7-5.1 GB, respectively. When analyzed in terms

of overall memory usage during inference (i.e. including the parameters, inference frame-

work, and intermediate data generated during model execution), reductions are 4.5-48.1%

across the workloads. Wins are generally higher for workloads with larger parameter reduc-

tions, with the exception of Workloads LP1 and LP3 (reductions of 6.3% and 4.5%) whose

intermediates are particularly large relative to the parameters.

To better contextualize the above memory savings, we compare GEMEL with two alter-

natives. First, we consider a theoretical optimal (Optimal) that shares all layers that are

architecturally identical across a workload’s models, without considering accuracy (and the

need to find shared weights for those layers). Thus, Optimal represents an upper bound on

GEMEL’s potential memory savings. Second, we compare with Mainstream [73], a recent

stem-sharing approach. To run Mainstream, we trained each model in our workloads several

times, each time starting with pre-trained weights (based on ImageNet [119]) and freezing

up to different points, e.g. freeze up to layer 10, freeze up to layer 15, etc. We selected the

configuration for each model that kept the most layers frozen while meeting the accuracy
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Figure 3.11: Memory savings with GEMEL, an optimal that ignores accuracy, and Main-
stream [73]. Bars list the median workload per class, with error bars spanning min to max.

target (95% relative to no freezing). Then, within each workload, we merged all layers that

were shared across the frozen layer set of the constituent models (note that these layers have

identical weights) and recorded the resultant memory savings.

Figure 3.11 shows our results, from which we draw two conclusions. First, GEMEL’s memory

savings are within 9.3%, 15.0%, and 29.0% of Optimal for the median LP, MP, and HP

workloads. Second, GEMEL’s memory reductions are 5.9-52.3% larger than Mainstream’s

across all workloads. This is a direct consequence of GEMEL’s prioritization of memory-

heavy layers that routinely appear towards the end of models (§3.5.2). By requiring shared

stems from the start of the models, Mainstream would have to share all layers up to the

memory-heavy ones; we find that sharing nearly-entire models is rarely possible while meeting

accuracy targets (Figure 3.6). The high variance in Mainstream’s results are due to the

fact that different models drop in accuracy at different rates when more layers are frozen.

Classifiers drop relatively slowly (savings up to 70.1%), while detectors are a harder task

with faster accuracy drops (Mainstream was unable to share many layers, with savings as

low as 1.0%).

3.6.2 Analyzing GEMEL

Incremental memory savings. Key to GEMEL’s practicality are its efficient merging

heuristic and retraining optimizations that aim to reap memory savings early in the process;

indeed, this is important not only to reap accuracy-friendly memory wins quickly, but also

to quickly respond to workload changes. As shown in Figure 3.12 (left), 73% of GEMEL’s

achieved memory savings for the median HP workload are realized within the first 24 minutes
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Figure 3.12: GEMEL’s memory savings (left) and cloud-to-edge bandwidth usage (right)
over time during incremental merging. Results show the median workload per class.

of merging. Similarly, 86% and 64% of the total memory savings are achieved in the first 42

and 210 minutes of merging for median MP and LP workloads, respectively.

Network bandwidth usage. After each successful merging iteration, GEMEL ships

weights to edge servers for all updated models. As shown in Figure 3.12 (right), cumu-

lative bandwidth usage during merging is 6.0-19.4 GB for the three workloads. Importantly,

bandwidth consumption largely grows after substantial memory savings are already reaped.

For example, for the median MP workload, 86% of memory savings are achieved in 42 min-

utes, while only 2.1 GB (of the total 6.0 GB) of bandwidth is used during that time. The

reason is that later merging iterations explore the larger number of lower-memory layers.

Thus, GEMEL can often deliver large memory savings even in constrained settings with

bandwidth caps. Note that shipping weights uses cloud-to-edge (not precious edge-to-cloud)

bandwidth.

Micro-benchmarks. We break down time spent in each component of GEMEL’s end-to-

end system for our main evaluation workloads.

• Merging. The total time spent on merging is configurable, with Figure 3.12 illustrating

the memory savings that GEMEL reaps over time for different workloads. Regardless,

training dominates the time spent in the overall merging process. Other tasks include (1)

finding shared layers, which is done once per workload and takes 0.7-1.4s, or <0.01% of
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merging time (we consider a merging time of 6 hours as across workloads, most merging

happens by this time), and (2) serializing and saving (to disk) weights after each successful

round of training, which takes 9.1-19.5s each time (total of 0.8%-1.44% of merging time).

• Edge inference. When using the Nexus variant without any merged models, the time

spent blocked while waiting for models to load is 32.8%, 48.3%, and 52.0% at the median

of LP, MP, and HP workloads. This time steadily reduces as incremental merging results

arrive from GEMEL’s cloud merging component, and culminates at 22.1%, 34.6%, and

27.9% when the final merging results arrive. When new merging results arrive, depending

on the model size, it takes between 0.03 and 0.58s to load each set of weights into their

respective model. However, this time is not blocking, as GEMEL creates a new version

of each affected model in CPU with the up-to-date sharing and weights, and substitutes

it into the schedule at the next time the corresponding old model is evicted. Therefore,

swapping the new model for the old one does not incur any delay.

Varying accuracy, FPS, and SLA. To evaluate the impact of each parameter, we con-

ducted experiments using one randomly selected workload from each class. In each exper-

iment, we only vary one parameter, while keeping the other two at the fixed values from

above (95%, 30 FPS, 100 ms).

Figure 3.13 presents our results, which exhibit three trends. First, GEMEL’s accuracy wins

over time/space-sharing alone grow (by 1.1-7.8% for the three workloads) as accuracy targets

drop (from 95% to 80%). This is because certain layers failed to meet 95% during retraining,

but did meet a lower accuracy target. Second, GEMEL’s accuracy wins drop as input video

frame rates (FPS) drop, e.g. from 6.2-42% across the workloads when FPS drops from 30

fps to 5 fps. The reason is that lower FPS values reduce the amount of inference in any time

window (assuming a fixed SLA), which in turn adds tolerance to high loading delays. Third,

GEMEL’s benefits grow as SLAs become stricter: accuracy wins for the three workloads rise

by 0.4-2.3% when SLA drops from 400 to 100 ms. This is because tighter SLAs imply more

skipped frames for a given swapping delay.
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Figure 3.13: GEMEL’s accuracy wins (compared to time/space-sharing alone) with varied
accuracy targets, FPS, and SLAs.

Comparison to other merging heuristics. We consider variants that differ from GEMEL

in one of two ways: they choose layers to merge in a different order or they merge a different

number of layers at a time. We describe the variants of each type below, along with the

corresponding results. Our experiments use all workloads from §3.2, and we report memory

saved over time. Figure 3.14 shows results for two representative workloads (HP3, MP2);

the remaining workload results are in §5.7. In summary, no variant consistently outperforms

GEMEL, and the degradations (in saved memory or merging delays) that each brings to

certain workloads (from being overly aggressive or cautious) are substantial.

Rather than merging layers in descending order of memory usage (irrespective of position) as

GEMEL does, the variants we consider start by merging the models’ earliest layers (Earliest),

latest layers (Latest), and three random layer orderings (Random). Across all workloads,

these heuristics all resulted in significantly lower memory savings. Among the three, Latest

performed the best (median of 13.5% of GEMEL’s savings), as memory-heavy layers often

appear later in a model (but not necessarily the end). For the same reason, Earliest per-

formed the worst (0.2% of GEMEL’s savings). Random’s performance varied dramatically

(0.2% - 72.9%, median of 5.7% of GEMEL’s savings) based on whether a memory-heavy

layer was selected.

We consider two variants to GEMEL’s approach of adding one layer group at a time across

all models that layer appears in. First, TwoGroup more aggressively adds two groups at a

time. This can result in faster memory savings than GEMEL (3/15 workloads, including
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Figure 3.14: Comparing variants of GEMEL’s merging heuristic on two representative
workloads.

Figure 3.14 (left)), but most often (8/15 workloads) misses accuracy targets and results in

substantial slowdowns (78 min longer to max savings for the median workload). The reason

is that, on failure, TwoGroup restarts training with 1 group, adding long delay without

memory savings, e.g., x=75-220 min in Figure 3.14 (right). Second, OneModelAtATime

less aggressively shares the selected group’s layer iteratively across the models it appears

in. This reaches within 5% of GEMEL’s memory savings in 8/15 workloads, but is often

unnecessarily slow, e.g., in Figure 3.14 (left), GEMEL successfully considers 5 models at

once, while OneModelAtATime individually adds models (some of which fail) leading to the

flat stretch from 0-91 min.

3.6.3 Generalization Study

We evaluate GEMEL on over 850 more workloads that extend our main ones by adding: (1)

new scene types and the objects they bring (e.g., bags, hats, and people at a beach, boats

in a canal), and (2) new models, including more variants in the same families (e.g. ResNet,

VGG), and entirely new architectures (e.g. GoogLeNet [132], DenseNet [66]). In total, our

analysis involves 17 videos (8 scene types), 13 objects, and 16 models; §5.5 lists the values.

Constructing workloads. Each query in a workload is parameterized by a set of knobs:

camera feed (and corresponding scene type), model, and object of interest. To study the

impact of varying each knob (or combination of knobs) on GEMEL’s merging, we construct

workloads as follows. For each set of target knobs to vary, we start with a random query
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Figure 3.15: Memory savings across 872 workloads, organized by workload size (color) and
knobs varied (x-axis). We plot the median of each distribution (error bars spanning 25-
75P). Knobs are labeled as follows: C:Camera, O:Object, M:Model, S:Scene.

and incrementally add new queries that only vary values for the target knobs to generate

workloads with 2-5 queries each. We did this up to 30 times each for all target knob sets (as

their values permit), excluding only (1) target knob sets that vary the scene but not camera

knob, (2) queries for an object that never appears in a given camera feed, and (3) workloads

with no possible memory sharing opportunities.

Findings. As shown in Figure 3.15, GEMEL’s memory savings are high for 2-query work-

loads (89-98% of optimal at medians), but steadily degrade as workloads grow. This is

expected as increasing workload size is (by design, and unrealistically) increasing hetero-

geneity in this experiment. The nature of degradation depends on the knob(s) being varied.

For all combinations of {camera, object, scene}, degradations are mild moving from 2- to

5-query workloads (0-8%), showing GEMEL’s robustness to variations on those properties.

Since model is constant in these cases, degradations are because the same set of shareable

layers must support more diverse scenarios (making it harder to find shared weights).

The Model knob (alone or with other knobs) presents a different picture, with larger drops

in median memory savings (2-33%) and broader distributions. We can decompose this into

two aspects as workload sizes increase:

• Previously-shared layers appear in the new model: the effect on memory savings heavily

depends on where the shared layer appears in the new model; recall that layers can appear

in different positions (and thus, serve different roles) across models (Figure 5.8). Cases
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where the new model introduces drastically different positions for shared layers (e.g.,

ResNet variants) account for the low-end of the resultant distributions, while memory

savings largely persist when positions of shared layer(s) are similar in the new model (e.g.,

merging across VGG variants).

• New layers are shareable with the new model: the extra sharing opportunities increase

potential savings, but are more challenging to realize as they reduce the number of non-

shared layers whose weights help compensate for the constraints from sharing (§3.4.2).

3.7 Related Work

Model Sharing. Sharing parts of models has been explored in the ML literature [120],

and more recently in video analytics through Mainstream [73], which aims to share outputs

from common stems of early layers across models. However, unlike GEMEL which addresses

memory bottlenecks, the main goal of these works is to reduce computation. This leads to

two limitations for our problem. First, these approaches only apply to models that operate

on the same underlying data, limiting their applicability to realistic workloads with many

videos. Second, and more importantly, because memory-heavy layers are often towards the

end of vision DNNs (§3.5.2), stem-sharing approaches would have to share almost all model

layers to reap large memory savings – doing so almost always comes with accuracy violations

(§3.4.2 and §3.6.1). In contrast, by only sharing weights (not intermediates), GEMEL is able

to quickly share only late-stage layers that enable memory savings and accuracy preservation.

PRETZEL [85] focuses on reusing operators in non-deep ML models, such as featurizers. The

key observation PRETZEL makes is that both the operator and the parameters are shared

across models, and hence storing them in a shared object store for reuse leads to better

memory utilization; the vast majority of savings arise from sharing parameters. However,

in edge video analytics, the assumption that shared layers across models have the same

parameters (weights) is often violated, as it is common for vision DNNs to be specialized

to diverse tasks, objects, and videos (§3.4.2). Indeed, the core challenges that GEMEL

tackles are in (quickly) determining which architecturally identical layers consume substantial

memory and can be retrained to use unified weights without violating accuracy requirements.
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Multi-task learning is a well-known technique in machine learning that can learn multiple

related tasks simultaneously [39]. Some works also study how to share layers in multi-

task learning[129, 136]. However, the problem is usually studied in the context of transfer

learning, where one model does not have enough data to train on, and instead is trained

together with another model; this is in contrast to our setting which considers two sets of

pretrained weights that must be shared. Additionally, the related tasks are usually variations

of the same model (e.g. spam classification) and thus the data for each individual task can

be pooled together. In contrast, objectives vary across edge video analytics DNNs, e.g.

detection vs. classification, different objects.

Optimized Video Analytics Pipelines. Many systems aim to lower the resource usage

(e.g. computation and bandwidth) of video analytics pipelines. Chameleon [74] profiles

pipeline knobs to identify computationally cheaper configurations that preserve accuracy.

VideoStorm [158] proposes scheduling techniques that leverage lag tolerance to optimize

analytics results. NoScope [76] and Focus [63] build support for low-latency queries on

large scale video streams. These systems are complementary to GEMEL, which focuses

on alleviating memory (not compute) bottlenecks in edge video analytics. Other systems

partially process frames at the edge to reduce both computation and bandwidth costs in

video analytics pipelines [38, 45, 70, 112, 144, 161]. Unlike these systems, GEMEL runs

inference entirely at the edge.

Previous work has also explored optimizing model serving systems to reduce computation

over large and heterogeneous workloads. MCDNN [59] and INFaaS [118] generate model

variants with a range of resource profiles and when running inference, dynamically choose

which variant to run. While MCDNN generates these variants by compressing models (i.e.,

retraining), InFaaS uses methods such as pruning and quantization. These methods optimize

each model individually; GEMEL supports such variants and provides additional benefits by

optimizing across models.
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Result Reuse. Other systems reduce required model inference by reusing previously com-

puted results, within a query [40, 84, 89] and across queries [44, 55]. Within a query, these

systems filter frames that are similar enough to a previously computed frame and reuse re-

sults from the previous computation [40, 89]. Across queries, they reuse results when the

models and inputs are both the same [44] or the models are the same and the inputs are

similar [55]. Less inference leads to a higher tolerance for loading delays, so these systems can

alleviate memory pressure, as described in §3.6.2. However, these methods highly depend on

how much inference can be avoided, and with spatially correlated inputs (like GEMEL’s), all

queries typically require high inference loads at the same time (e.g., dynamic, busier scenes).

Therefore, reusing results is insufficient to address the memory bottleneck. These approaches

could be combined with GEMEL, allowing for lower loading costs and when possible, higher

tolerance for those loading costs.

Finally, there exist training optimizations that trade off memory usage for computation over-

heads [108, 111, 122]. We eschew such techniques given the holistic constraint on compute

resources that edge boxes face (§3.1).

3.8 GEMEL Summary

In this chapter, we studied the memory bottleneck of running several DNNs on a single

edge box. Due to the limited memory available on edge boxes, fitting multiple DNNs on

such boxes quickly exhausts GPU memory, and the existing solution of swapping models in

and out of GPU memory results in an unacceptable accuracy drop. We showed that model

merging, a new memory management technique, can exploit architectural similarities across

vision DNNs by sharing their common layers (including parameters but not intermediates).

We then presented GEMEL, a system that efficiently carries out model merging by quickly

finding and retraining accuracy-preserving layer sharing configurations, and scheduling edge

inference to maximize merging benefits, resulting in an accuracy improvement of 8-39%.

77



CHAPTER 4

Conclusion & Future Directions

While machine learning models are consistently improving in their accuracy and robustness,

their increasing size and complexity cause them to be extremely resource intensive, posing

a challenge for practical deployment. A large body of recent work tackles this problem from

a systems perspective, treating the machine learning model as one component of a larger

system and studying and alleviating system bottlenecks. This thesis focuses on running

such machine learning models over live video. Video analytics pipelines to process live video

have seen a push towards using edge computing. Among other benefits (e.g., privacy, fault

tolerance), this opens up opportunities to improve end-to-end pipeline efficiency.

Most systems assume a fairly well-equipped edge as far as computation and memory. How-

ever, in this work, we find a discrepancy between the assumed resources at the edge and

the commodity hardware used in practice. Since we do not anticipate cities and enterprises

spending considerably more to upgrade all hardware in the near future, we ask how we can

make the most of inexpensive hardware at the edge.

We first studied cameras that are used in existing deployments and found that they usually

contain a modest CPU and limited memory. Based on these findings, we built Reducto (§2),

a system that uses the cheap CPU to compare low-level properties of frames, such as edges,

to decide which frames can be filtered out while still meeting accuracy targets.

We then considered an existing camera deployment that used an edge box. This box was

equipped with a GPU but lacked sufficient memory to house all models it was intended

to service. To tackle this, we looked inside the models for redundancies and found that
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redundant layers can be merged to lower the memory footprint of a set of models. We built

GEMEL, which integrates merging into video analytics pipelines by identifying which layers

can be merged while preserving accuracy.

Going forward, as machine learning models get larger, solutions must optimize each part of

the video analytics pipeline to keep up with (increasing) demand for processing live video.

While Reducto focused on redundancy in the inputs, or the video data itself, and GEMEL

(§3) exploited redundancy in the models, we discuss one potential future direction that looks

elsewhere in the pipeline.

Constructing Pipelines from Complex Queries. As tasks get more complicated (e.g.

identifying abandoned luggage at an airport), queries move from running a single model to

running multiple components. For example, the abandoned luggage detector must detect

objects that are in the foreground, have been static for a certain amount of time, are not

people, and are not within a certain distance of any person. This requires multiple compo-

nents, such as a foreground detector, an object detector, and concepts such as “within” and

“for x sec”.

We propose using the semantics of such queries to find and eliminate redundant or unneces-

sary computation. The first challenge is in building a query language that can incorporate

spatio-temporal aspects of video data. This language must be simple enough that someone

without a machine learning background can use it, yet robust enough to express concepts

such as distance and time. The second challenge is in constructing the pipeline, specifically

the order in which to run each component and where each should run (e.g., edge device or

cloud). The order of such components is important because each component has a different

resource profile and eliminates a certain amount of computation downstream in the pipeline.

For example, foreground detection is relatively cheap and if there is nothing in the fore-

ground, the abandoned luggage detector need not do anything else; therefore, it makes sense

to go near the beginning of the pipeline. The location of each component is also important

as it determines how much information, if any, must be sent to the cloud, which affects the

bandwidth needed for the end-to-end pipeline.
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The existence of such a query language with automatic pipeline construction could expand

the video analytics community by allowing those without an in-depth knowledge of machine

learning models to easily write queries. With a better idea of the queries people want to

run, we can improve our understanding of the bottlenecks and the optimizations to video

analytics pipelines.

Ethical Considerations. The ability to process live video is applicable to many domains,

including traffic safety, self-driving cars, security, and surveillance. When this line of work is

fully usable and pipelines can process video in real-time, I believe there should be conversa-

tions around the ethical use of such technology and the privacy implications. A recent body

of work aims to answer queries while preserving the privacy of the individuals in videos. I

hope that such measures are considered in policy decisions around this line of work.
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Appendix

5.1 Reducto: Correlations
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Figure 5.1: Correlations between differencing values and changes in query results
(above: counting, below: detection) for a 10 seconds clip in Jacksonhole[7](left) and
Southampton[14] (right).
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Figure 5.2: Correlations between differencing values and changes in query results (above:
counting, below: detection) for a 10 seconds clip in Lagrange[9](left) and Newark[10]
(right).
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Figure 5.3: Correlations between differencing values and changes in query results (above:
counting, below: detection) for a 10 seconds clip in Banff[3](left) and Casa Grande[6]
(right).
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5.2 Reducto: Filtering Efficacy
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(a) Query: People bounding box detection
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(b) Query: People counting

Figure 5.4: Filtering efficacy of the 3 low-level features across 3 videos and 2 queries. This
figure shows that the best feature holds across other objects of interest.
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(a) Car bounding box detection with 80% accu-
racy target
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(b) Car bounding box detection with 70% accu-
racy target

Figure 5.5: Filtering efficacy of the 3 low-level features across 3 videos and 2 queries. This
figure shows that the best feature holds across other accuracy targets.
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5.3 Reducto: Feature Descriptions

Feature Description

Area Calculates the areas of motion in the frame and sends frame if the
largest area (as a fraction of total pixels) is above the given thresh-
old.

Pixel Finds pixels that changed value from the last frame, rounds very
small changes to 0, and sends frame if the resulting fraction of
changed pixels is above the given threshold.

Edge Separates the pixels that belong to edges and sends frame if the
pixel differences among edge pixels is above the given threshold.

Corner Detects the pixels that belong to corners and sends frame if the
pixel differences among corner pixels is above the given threshold.

SIFT Detects key points based on contrast, assigns them orientations
based on the “neighborhood” of surrounding pixels, and matches
them between frames.

SURF Detects key points using a blob detector, assigns them orientations
such that the key points remain if the object is either scaled or ro-
tated, and matches key points between frames.

HOG Divides frame into small cells, collects a distribution of gradient
directions across cells, and compares the distribution across frames.

Table 5.1: Description of differencing features considered in our survey (§2.3).
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5.4 GEMEL: Workload Details

Model Video

Feed

Object

frcnn-

r101

A1 people

r101 A1 person, car, bus, truck

r50 A2 person, car, bus, truck

r152 A3 person, vehicle

mnet A4 person, car, truck

yolo A5 people

tiny-

yolo

A1 people

ssd-vgg A6 cars

ssd-vgg A1 cars

ssd-

mnet

A5 cars

ssd-

mnet

A4 cars

ssd-

mnet

A6 cars

inception A3 person, vehicle

Table 5.2: Workload LP1

Model Video

Feed

Object

r152 B1 person, vehicle

r101 B2 person, car, bus, truck

ssd-vgg B3 people

Table 5.3: Workload LP2

Model Video

Feed

Object

ssd-

mnet

B4 cars

frcnn-

r101

B3 people

r152 B1 person, vehicle

r18 B3 person, car, bus, truck,

motorbike

inception B1 person, vehicle

Table 5.4: Workload LP3
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Model Video

Feed

Object

frcnn-

r50

B1 cars

frcnn-

r50

B1 people

r50 B2 person, car, bus, truck

r50 B1 person, vehicle

r152 B3 person, car, bus, truck,

motorbike

r152 B4 person, car, bus, truck

r18 B5 person, car, bus, truck

r18 B4 person, car, bus, truck

tiny-

yolo

B3 cars

tiny-

yolo

B2 cars

yolo B5 cars

yolo B1 cars

ssd-vgg B4 cars

ssd-vgg B3 people

inception B3 person, car, bus, truck,

motorbike

Table 5.5: Workload MP1

Model Video

Feed

Object

r50 B3 person, car, bus, truck,

motorbike

r50 B1 person, vehicle

r152 B3 person, car, bus, truck,

motorbike

r18 B5 person, car, bus, truck

ssd-

mnet

B1 cars

ssd-

mnet

B2 cars

Table 5.6: Workload MP2

Model Video

Feed

Object

yolo B4 cars

yolo B3 people

tiny-

yolo

B1 people

tiny-

yolo

B3 cars

ssd-vgg B1 cars

ssd-

mnet

B5 cars

Table 5.7: Workload MP3

Model Video

Feed

Object

yolo A4 people

yolo A6 cars

r50 A2 person, car, bus, truck

Table 5.8: Workload MP4
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Model Video

Feed

Object

yolo A5 people

yolo A4 people

r152 A1 person, car, bus, truck

r152 A4 person, car, truck

mnet A4 person, car, truck

Table 5.9: Workload MP5

Model Video

Feed

Object

frcnn-

r50

B5 cars

frcnn-

r50

B4 cars

r50 B2 person, car, bus, truck

mnet B3 person, car, bus, truck,

motorbike

tiny-

yolo

B3 people

Table 5.10: Workload MP6

Model Video

Feed

Object

vgg B4 person, car, bus, truck

vgg B1 person, vehicle

vgg B3 person, car, bus, truck,

motorbike

vgg B5 person, car, bus, truck

ssd-vgg B5 cars

ssd-

mnet

B5 cars

mnet B4 person, car, bus, truck

tiny-

yolo

B3 cars

tiny-

yolo

B1 people

frcnn-

r50

B4 cars

frcnn-

r50

B5 cars

Table 5.11: Workload HP1
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Model Video

Feed

Object

frcnn-

r101

B4 cars

frcnn-

r101

B5 cars

frcnn-

r101

B1 cars

frcnn-

r101

B2 cars

frcnn-

r50

B1 people

r50 B3 person, car, bus, truck,

motorbike

r18 B3 person, car, bus, truck,

motorbike

ssd-

mnet

B3 people

ssd-

mnet

B1 people

mnet B4 person, car, bus, truck

yolo B3 people

tiny-

yolo

B5 cars

tiny-

yolo

B1 people

vgg B4 person, car, bus, truck

inception B2 person, car, bus, truck

inception B3 person, car, bus, truck,

motorbike

Table 5.12: Workload HP2

Model Video

Feed

Object

frcnn-

r50

A3 cars

frcnn-

r50

A3 people

frcnn-

r50

A1 cars

frcnn-

r50

A1 people

frcnn-

r50

A5 cars

frcnn-

r50

A5 people

frcnn-

r50

A2 cars

frcnn-

r50

A4 cars

frcnn-

r50

A2 trucks

frcnn-

r101

A3 people

yolo A3 cars

yolo A3 people

yolo A1 people

yolo A7 buses

yolo A7 cars

yolo A7 people

yolo A7 trucks

yolo A5 trucks

yolo A5 people

yolo A6 cars

Table 5.13: Workload HP3

88



Chapter 5. Appendix

Model Video

Feed

Object

r152 A3 person, vehicle

r152 A1 person, car, bus, truck

r152 A7 person, car, bus, truck

r152 A6 car, bus, truck

r152 A2 person, car, bus, truck

r152 A4 person, car, truck

r50 A3 person, vehicle

r50 A7 person, car, bus, truck

r50 A6 car, bus, truck

r50 A2 person, car, bus, truck

r50 A6 car, bus, truck

ssd-vgg A3 people

ssd-vgg A1 cars

ssd-vgg A5 people

ssd-vgg A6 cars

ssd-vgg A4 cars

vgg A2 person, car, bus, truck

r18 A2 person, car, bus, truck

Table 5.14: Workload HP3 (continued)

Model Video

Feed

Object

yolo B1 cars

yolo B5 cars

tiny-

yolo

B2 cars

tiny-

yolo

B1 cars

tiny-

yolo

B3 people

ssd-vgg B5 cars

ssd-vgg B3 people

ssd-

mnet

B5 cars

ssd-

mnet

B3 people

ssd-

mnet

B2 cars

ssd-

mnet

B1 people

mnet B3 person, car, bus, truck,

motorbike

mnet B5 person, car, bus, truck

r152 B4 person, car, bus, truck

r152 B3 person, car, bus, truck,

motorbike

r152 B1 person, vehicle

Table 5.15: Workload HP4
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Model Video

Feed

Object

frcnn-

r50

A3 cars

frcnn-

r50

A3 people

frcnn-

r50

A1 cars

frcnn-

r50

A1 people

frcnn-

r50

A5 cars

frcnn-

r50

A5 people

frcnn-

r50

A2 cars

frcnn-

r50

A4 cars

frcnn-

r50

A2 trucks

frcnn-

r101

A3 people

yolo A3 cars

yolo A3 people

yolo A1 people

yolo A7 buses

yolo A7 cars

yolo A7 people

yolo A7 trucks

yolo A5 trucks

yolo A5 people

yolo A6 cars

Table 5.16: Workload HP5

Model Video

Feed

Object

r152 A3 person, vehicle

r152 A1 person, car, bus, truck

r152 A7 person, car, bus, truck

r152 A6 car, bus, truck

r152 A2 person, car, bus, truck

r152 A4 person, car, truck

r50 A3 person, vehicle

r50 A7 person, car, bus, truck

r50 A6 car, bus, truck

r50 A2 person, car, bus, truck

r50 A6 car, bus, truck

ssd-vgg A3 people

inception A3 person, vehicle

inception A1 person, car, bus, truck

inception A7 person, car, bus, truck

inception A6 car, bus, truck

inception A4 person, car, truck

vgg A2 person, car, bus, truck

r18 A2 person, car, bus, truck

r18 A2 person, car, bus, truck

r18 A2 person, car, bus, truck

Table 5.17: Workload HP5 (continued)
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Model Video

Feed

Object

frcnn-

r50

A3 cars

frcnn-

r50

A3 people

frcnn-

r50

A1 cars

frcnn-

r50

A1 people

frcnn-

r50

A5 cars

frcnn-

r50

A5 people

frcnn-

r50

A2 cars

frcnn-

r50

A4 cars

frcnn-

r50

A2 trucks

frcnn-

r101

A3 people

yolo A3 cars

yolo A3 people

yolo A1 people

yolo A7 buses

yolo A7 cars

yolo A7 people

r101 A1 person, car, bus, truck

r101 A7 person, car, bus, truck

r101 A6 car, bus, truck

Table 5.18: Workload HP6

Model Video

Feed

Object

r101 A1 person, car, bus, truck

r152 A3 person, vehicle

r152 A1 person, car, bus, truck

r152 A7 person, car, bus, truck

r152 A6 car, bus, truck

r152 A2 person, car, bus, truck

r152 A4 person, car, truck

r50 A3 person, vehicle

r50 A7 person, car, bus, truck

r50 A6 car, bus, truck

r50 A2 person, car, bus, truck

r50 A6 car, bus, truck

tiny-

yolo

A1 people

tiny-

yolo

A5 people

inception A3 person, vehicle

inception A1 person, car, bus, truck

inception A7 person, car, bus, truck

inception A6 car, bus, truck

inception A4 person, car, truck

vgg A2 person, car, bus, truck

r18 A2 person, car, bus, truck

r18 A2 person, car, bus, truck

r18 A2 person, car, bus, truck

Table 5.19: Workload HP6 (continued)
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5.5 GEMEL: Generalization Workload Query Knobs

Knob Values

Object Truck, Person, Bus, Boat, Shoe, Skateboard, Car, Hat, Backpack, Wine

Glass, Traffic Light, Parking Meter, Surfboard

Camera A0, A1, A2, A3, B0, B1, B2, B3, B4, B5, B6, Restaurant, Mall, Beach,

Canal, Parking Lot, Street

Model SSD-VGG, AlexNet, YOLOv3, Tiny-YOLOv3, DenseNet, SqueezeNet,

GoogLeNet, ResNet-18, ResNet-34, ResNet-50, ResNet-101, ResNet-152,

VGG-11, VGG-13, VGG-16, VGG-19

Scene CityA Traffic, CityB Traffic, Restaurant, Beach, Mall, Canal, Parking Lot,

Street

Table 5.20: Knob values considered in generalization study.

5.6 GEMEL: Workload Memory Settings

Workload L1 L2 L3 M1 M2 M3 M4 M5 M6

Min 4.50 1.45 4.50 3.35 1.45 1.32 1.32 1.45 3.35

50% 5.12 1.59 4.72 4.56 1.62 1.55 1.45 1.83 3.77

75% 5.43 1.66 4.83 5.16 1.70 1.65 1.52 2.02 3.99

Table 5.21: Edge box memory settings for LP and MP workloads (in GB).

Workload H1 H2 H3 H4 H5 H6

Min 3.35 4.50 4.50 1.45 4.50 4.50

50% 4.87 6.60 10.25 2.17 10.41 10.26

75% 5.63 7.66 13.13 2.53 13.36 13.14

Table 5.22: Edge box memory settings for HP workloads (in GB).
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5.7 GEMEL: Additional Figures
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Figure 5.6: VGG16 and VGG19 are variants within the VGG model family [126]. They
share 16/19 layers (13 convolutional and 3 fully-connected). Note that ‘batch normaliza-
tion’ layers are not present in these models.
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Figure 5.7: VGG [126] was developed by replacing AlexNet’s [81] large kernels with mul-
tiple smaller ones. VGG16 and AlexNet share 3/16 layers (1 convolutional and 2 fully-
connected). Note that ‘batch normalization’ layers are not present in these models.
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Figure 5.8: ResNet18 and ResNet34 are variants within the ResNet model family [60].
They share 41/73 layers (20 convolutional, 1 fully-connected and 20 batch normalization).
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Figure 5.9: Extended version of Figure 3.3. For each unique pair of models, we show the
percentage of architecturally identical layers and of those layers, the percent breakdown
across layer types (%Convolutional / %Linear / %BatchNorm).
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Figure 5.10: Extended version of Figure 3.8. Cumulative memory consumed by each
model’s layer groups moving from start to end of the model.
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Figure 5.11: Complete version of Figure 3.14. Comparison of GEMEL with other merging
heuristics.
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