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On the relation between optimal transport and

Schrödinger bridges: A stochastic control

viewpoint

Yongxin Chen, Tryphon Georgiou and Michele Pavon

Abstract

We take a new look at the relation between the optimal transport problem and the Schrödinger bridge problem

from the stochastic control perspective. We show that the connections are richer and deeper than described in

existing literature. In particular: a) We give an elementary derivation of the Benamou-Brenier fluid dynamics

version of the optimal transport problem; b) We provide a new fluid dynamics version of the Schrödinger bridge

problem; c) We observe that the latter provides an important connection with optimal transport without zero

noise limits; d) We propose and solve a fluid dynamic version of optimal transport with prior; e) We can then

view optimal transport with prior as the zero noise limit of Schrödinger bridges when the prior is any Markovian

evolution. In particular, we work out the Gaussian case. A numerical example of the latter convergence involving

Brownian particles is also provided.

Index Terms

Optimal transport problem, Schrödinger bridge, stochastic control, zero noise limit.

I. INTRODUCTION

We discuss two problems of very different beginning. Optimal mass transport (OMT) originates in the

work of Gaspar Monge in 1781 [34] and seeks a transport plan that corresponds in an optimal way two

distributions of equal total mass. The cost penalizes the distance that mass is transported to ensure exact
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correspondence. Likewise, data for Erwin Schrödinger’s 1931/32 bridge problem [44], [45] are again

two distributions of equal total mass, in fact, probability distributions. Here however, these represent

densities of diffusive particles at two points in time and the problem seeks the most likely path that

establishes a correspondence between the two. A rich relationship between the two problems emerges

in the case where the transport cost is quadratic in the distance, and in fact, the problem of OMT

emerges as the limit of Schrödinger bridges as the diffusivity tends to zero. The parallel treatment of

both problems highlights the time-symmetry of both problems and points of contact between stochastic

optimal control and information theoretic concepts.

Historically, the modern formulation of optimal mass transport is due to Leonid Kantorovich [27]

and the subject has been the focus of renewed and increased interest because of its relevance in a

wide range of fields including economics, physics, engineering, and probability [43], [47], [48]. In fact,

Kantorovich’s contributions and their impact to resource allocation was recognized with the Nobel Prize

in Economics in 1975 while in the past twenty years contributions by Ambrosio, Benamou, Brenier,

McCann, Cullen, Gangbo, Kinderlehrer, Lott, Otto, Rachev, Rüschendorf, Tannenbaum, Villani, and

many others have launched a new fast developing phase, see e.g., [19], [38], [3], [1], [47], [48], [37]. On

the other hand, the Schrödinger bridge problem [44], [45], has been the subject of strong but intermittent

interest by mostly probabilists, physicists, and quantum theorists. Early important contributions were

due to Fortet, Beurling, Jamison and Föllmer [18], [4], [24], [16], see [49] for a survey. Renewed interest

was sparked in the past twenty years after a close relationship to stochastic control was recognized

[10], [11], [42] and a similarly fast developing phase is underway, see the semi-expository paper [29]

and [33], [41], [30], [20] for other recent contributions.

Besides the intrinsic importance of optimal mass transport to the geometry of spaces and the multitude

of applications, a significant impetus for some recent work has been the need for effective computation

[3], [2] which is often challenging. Likewise, excepting special cases [13], [14], the computation of

the optimal stochastic control for the Schrödinger bridge problem is challenging, as it amounts to two

partial differential equations nonlinearly coupled through their boundary values [49]. Only very recently

implementable forms have become available for corresponding linear stochastic systems [5], [6], [8] and

for versions of the problem involving Markov chains and Kraus maps of statistical quantum mechanics

[20]; see also [9] which deals with the Schrödinger bridge problem with finite or infinite horizon for

a system of nonlinear stochastic oscillators.
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The aim of the present paper is to elucidate some of the connections between optimal mass transport

and Schrödinger bridges thereby extending both theories. We follow in the footsteps of Léonard [30],

[29], who investigated their relation, and of Mikami and Thieullen [31], [32], [33] who employed

stochastic control and Schrödinger bridges to solve the optimal transport problem. This paper may then

be seen to complement the results in these papers by providing a unifying view of the relationship

between these two problems via optimal control. In particular, we give an elementary derivation of the

Benamou-Brenier fluid dynamics version of the Monge-Kantorovich problem. We also provide a time-

symmetric fluid dynamic version of the Schrödinger bridge problem different from [29, Section 4]; it

underscores that an important connection with optimal transport exists even without zero noise limits.

We then formulate and solve a fluid dynamic version of the optimal transport problem with prior.

This allows us to study zero noise limits of Schrödinger bridges when the prior is any Markovian

evolution. In particular, employing our results of [6], we study the case when the prior evolution is a

Gauss-Markov process.

The outline of the paper is as follows: In Section II, we derive the Benamou-Brenier version of the

OMT problem. In Section III, we provide some background on the classical Schrödinger bridge problem.

Section IV is devoted to characterizing the optimal forward and backward drift in the bridge problem.

In Section V, we give a control time-symmetric formulation of the Schrödinger bridge problem. This

leads, in the following Section VI, to a new fluid dynamic formulation of the bridge problem. Section

VII is dedicated to the optimal mass transfer problem with prior. In Section VIII, we investigate the

zero noise limit when the prior is Gaussian. The paper concludes with two examples. In Section IX,

we discuss the zero noise limit when the prior is Wiener measure and the goal is shifting the mean

of a normal distribution. Finally, in Section X, we provide a numerical two-dimensional example of

overdamped Brownian particles. In the zero noise limit, we obtain the solution of the corresponding

OMT problem with prior.

II. OPTIMAL MASS TRANSPORT AS A STOCHASTIC CONTROL PROBLEM

A. The Monge-Kantorovich problem

Given two distributions µ, ν on Rn having equal total mass, the original formulation due to G. Monge

sought to identify a transport (measurable) map T from Rn → Rn so that the push-forward T]µ is

equal to ν, in the sense that ν(·) = µ(T−1(·)), while the cost of transportation
∫
c(x, T (x))µ(dx) is
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minimal. Here, c(x, y) represents the transference cost from point x to point y and for the purposes of

the present it will be c(x, y) = 1
2
‖x− y‖2.

The dependence of the cost of transportation on T is highly nonlinear which complicated early

analyses of the problem. Thus, it was not until Kantorovich’s relaxed formulation in 1942 that the

Monge’s problem received a definitive solution. In this, instead of the transport map one seeks a joint

distribution Π(µ, ν) on the product space Rn × Rn, refered to as a “coupling” between µ and ν, so

that the marginals along the two coordinate directions coincide with µ and ν respectively. Thence, one

seeks to determine

inf
π∈Π(µ,ν)

∫
Rn
×Rn

1

2
‖x− y‖2dπ(x, y) (1)

In case an optimal transport map exists, the optimal coupling has support on the graph of this map, see

[47]. Herein, we consider this relaxed Kantorovich formulation. We wish first to give next an elementary

derivation of the fact that Problem 1 can be turned into a stochastic control problem as stated in [33,

formula (1.6)] and then, to derive an alternative “fluid-dynamic” formulation due to Benamou-Brenier.

We strive for clarity rather than generality. In particular, we (tacitly) assume throughout the paper that

µ does not give mass to sets of dimension ≤ n − 1. Then, by Brenier’s theorem [47], there exists

a unique optimal transport plan (Kantorovich) induced by a map (Monge) which is the gradient of a

convex function.

B. A stochastic control formulation

As customary, let us start by observing that

1

2
‖x− y‖2 = inf

x∈Xxy

∫ 1

0

1

2
‖ẋ‖2dt (2)

where Xxy is the family of C1([0, 1];Rn) paths with x(0) = x and x(1) = y. Let

x∗(t) = (1− t)x+ ty

be the solution of (2), namely the straight line joining x and y. Since x∗(t) is a Euclidean geodesic,

any probabilistic average of the lengths of C1 trajectories starting at x at time 0 and ending in y at

time 1 gives necessarily a higher value. Thus, the probability measure on C1([0, 1];Rn) concentrated

on the path {x∗(t); 0 ≤ t ≤ 1} solves the following problem

inf
Pxy∈D1

(δx,δy)

EPxy
{∫ 1

0

1

2
‖ẋ‖2dt

}
, (3)



DECEMBER 14, 2014 5

where D1(δx, δy) are the probability measures on C1([0, 1];Rn) whose initial and final one-time marginals

are Dirac’s deltas concentrated at x and y, respectively. Since (3) provides us with yet another repre-

sentation for 1
2
‖x− y‖2, in view of (1), we also get that

inf
π∈Π(µ,ν)

∫
Rn
×Rn

1

2
‖x− y‖2dπ(x, y) = (4)

inf
π∈Π(µ,ν)

∫
Rn
×Rn

inf
Pxy∈D1

(δx,δy)

EPxy
{∫ 1

0

1

2
‖ẋ‖2dt

}
dπ(x, y)

Now observe that if Pxy ∈ D1(δx, δy) and π ∈ Π(µ, ν) then

P =

∫
Rn
×Rn

Pxydπ(x, y)

is a probability measure in D1(µ, ν), namely a measure on C1([0, 1];Rn) whose one-time marginal

at t0 and t1 are specified to be µ and ν, respectively. Conversely, the disintegration of any measure

P ∈ D1(µ, ν) with respect to the initial and final positions yields Pxy ∈ D1(δx, δy) and π ∈ Π(µ, ν).

Thus we get that the original optimal transport problem is equivalent to

inf
P∈D1

(µ,ν)

EP
{∫ 1

0

1

2
‖ẋ‖2dt

}
. (5)

So far, we have followed [29, pp. 2-3]. Instead of the “particle” picture, we can also consider the

hydrodynamic version of (2), namely the optimal control problem

1

2
‖x− y‖2 = inf

v∈Vy

∫ 1

0

1

2
‖v(xv(t), t)‖2dt (6)

ẋv(t) = v(xv(t), t), x(0) = x,

where the admissible feedback control laws v(·, ·) in Vy are continuous and such that xv(1) = y.

Following the same steps as before, we get that the optimal transport problem is equivalent to the

following stochastic control problem with atypical boundary constraints

inf
v∈V

E
{∫ 1

0

1

2
‖v(xv(t), t)‖2dt

}
(7a)

ẋv(t) = v(xv(t), t), a.s., x(0) ∼ µ, x(1) ∼ ν. (7b)

Finally suppose dµ(x) = ρ0(x)dx, dν(y) = ρ1(y)dy and xv(t) ∼ ρ(t, x)dx. Then, necessarily, ρ satisfies

(weakly) the continuity equation
∂ρ

∂t
+∇ · (vρ) = 0 (8)
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expressing the conservation of probability mass. Moreover,

E
{∫ 1

0

1

2
‖v(xv(t), t)‖2dt

}
=

∫
Rn

∫ 1

0

1

2
‖v(x, t)‖2ρ(t, x)dtdx.

Hence (7) turns into the celebrated “fluid-dynamic” version of the optimal transport problem due to

Benamou and Brenier [3]:

inf
(ρ,v)

∫
Rn

∫ 1

0

1

2
‖v(x, t)‖2ρ(t, x)dtdx, (9a)

∂ρ

∂t
+∇ · (vρ) = 0, (9b)

ρ(0, x) = ρ0(x), ρ(1, y) = ρ1(y). (9c)

The variational analysis for (7) or, equivalently, for (9) can be carried out in many different ways. For

instance, let Pρ0ρ1 be the family of flows of probability densities ρ = {ρ(·, t); 0 ≤ t ≤ 1} satisfying

(9c) and let V be the family of continuous feedback control laws v(·, ·). Consider the unconstrained

minimization of the Lagrangian over Pρ0ρ1 × V

L(ρ, v) =

∫
Rn

∫ 1

0

[
1

2
‖v(x, t)‖2ρ(t, x) + λ(x, t)

(
∂ρ

∂t
+∇ · (vρ)

)]
dtdx, (10)

where λ is a C1 Lagrange multiplier. Integrating by parts, assuming that limits for x → ∞ are zero,

we get∫
Rn

∫ 1

0

[
1

2
‖v(x, t)‖2 +

(
−∂λ
∂t
−∇λ · v)

)]
ρ(x, t)dtdx+

∫
Rn

[λ(x, 1)ρ1(x)− λ(x, 0)ρ0(x)] dx. (11)

The last integral is constant over Pρ0ρ1 and can therefore be discarded. We are left to minimize∫
Rn

∫ 1

0

[
1

2
‖v(x, t)‖2 +

(
−∂λ
∂t
−∇λ · v)

)]
ρ(x, t)dtdx (12)

over Pρ0ρ1 ×V . We consider doing this in two stages, starting from minimization with respect to v for

a fixed flow of probability densities ρ = {ρ(·, t); 0 ≤ t ≤ 1} in Pρ0ρ1 . Pointwise minimization of the

integrand at each time t ∈ [0, 1] gives that

v∗ρ(x, t) = ∇λ(x, t) (13)

which is continuous. Plugging this form of the optimal control into (12), we get

J(ρ) = −
∫
Rn

∫ 1

0

[
∂λ

∂t
+

1

2
‖∇λ‖2

]
ρ(x, t)dtdx. (14)
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In view of this, if λ satisfies the Hamilton-Jacobi equation

∂λ

∂t
+

1

2
‖∇λ‖2 = 0, (15)

then J(ρ) is identically zero over Pρ0ρ1 and any ρ ∈ Pρ0ρ1 minimizes the Lagrangian (10) together with

the feedback control (13). We have therefore established the following [3]:

Proposition 2.1: Let ρ∗(x, t) with t ∈ [0, 1] and x ∈ Rn, satisfy

∂ρ∗

∂t
+∇ · (∇ψρ∗) = 0, ρ∗(x, 0) = ρ0(x), (16)

where ψ is a solution of the Hamilton-Jacobi equation

∂ψ

∂t
+

1

2
‖∇ψ‖2 = 0 (17)

for some boundary condition ψ(x, 1) = ψ1(x). If ρ∗(x, 1) = ρ1(x), then the pair (ρ∗, v∗) with v∗(x, t) =

∇ψ(x, t) is a solution of (9).

The stochastic nature of the Benamou-Brenier formulation (9) stems from the fact that initial and final

densities are specified. Accordingly, the above requires solving a two-point boundary value problem and

the resulting control dictates the local velocity field. In general, one cannot expect to have a classical

solution of (17) and has to be content with a viscosity solution [17]. See [46] for a recent contribution

in the case when only samples of ρ0 and ρ1 are known.

III. BACKROUND ON SCHRÖDINGER BRIDGES

A. Finite energy diffusions

We follow [24], [16], [49]. Let Ω := C([0, 1],Rn) denote the family of n-dimensional continuous

functions, let Wx denote Wiener measure on Ω starting at x at t = 0, and let

W :=

∫
Wx dx

be stationary Wiener measure. Let D be the family of distributions on Ω that are equivalent to W . By

Girsanov’s theorem, under Q ∈ D, the coordinate process x(t, ω) = ω(t) admits the representations

dx(t) = βQ+dt+ dw+(t), βQ+ is F+
t − adapted, (18)

dx(t) = βQ−dt+ dw−(t), βQ− is F−t − adapted, (19)
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where F+
t and F−t are σ- algebras of events observable up to time t and from time t on, respectively,

and w−, w+ are standard n-dimensional Wiener processes, [15]. Moreover,

Q

[∫ 1

0

‖βQ+‖2dt <∞
]

= Q

[∫ 1

0

‖βQ−‖2dt <∞
]

= 1.

For Q,P ∈ D, we define the relative entropy H(Q,P ) of Q with respect to P as

H(Q,P ) = EQ

[
ln
dQ

dP

]
.

It then follows from Girsanov’s theorem that

H(Q,P ) = H(q0, p0) + EQ

[∫ 1

0

1

2
‖βQ+ − βP+‖2dt

]
(20a)

= H(q1, p1) + EQ

[∫ 1

0

1

2
‖βQ− − βP−‖2dt

]
. (20b)

Here q0, q1 are the marginal densities of Q at 0 and 1, respectively. Similarly, p0, p1 are the marginal

densities of P . Then, βQ+ and βQ− are the forward and the backward drifts of Q, respectively, and

similarly for P . The sketch of the proof goes as follows:

dQ

dW
= q0(x(0)) exp

[∫ 1

0

βQ+dx−
∫ 1

0

1

2
‖βQ+‖2dt

]
, Q a.s.,

dW

dP
=

1

p0(x(0))
exp

[
−
∫ 1

0

βP+dx+

∫ 1

0

1

2
‖βP+‖2dt

]
, P a.s.⇒ Q a.s..

(21)

Hence,

ln
dQ

dP
= ln

q0(x(0))

p0(x(0))
+

∫ 1

0

(
βQ+ − βP+

)
dx+

∫ 1

0

1

2

(
‖βP+‖2 − ‖βQ+‖2

)
dt, Q a.s.,

= ln
q0(x(0))

p0(x(0))
+

∫ 1

0

(
βQ+ − βP+

)
dW+

t +

∫ 1

0

1

2
‖βP+ − β

Q
+‖2dt, Q a.s..

(22)

Taking EQ on both sides, one gets (20a) provided the stochastic integral has zero expectation. In general,∫ 1

0

(
βQ+ − βP+

)
dw+(t)

is only a local, F+
t - martingale. In order to claim that it has zero expectation one needs to “localize”

[28, p.36]. Similarly, one can show (20b).
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B. The Schrödinger bridge problem

Now let ρ0 and ρ1 be two everywhere positive probability densities. Let D(ρ0, ρ1) denote the set of

distributions in D having the prescribed marginal densities at 0 and 1. Given P ∈ D, we consider the

following problem:

Minimize H(Q,P ) over D(ρ0, ρ1). (23)

If there is at least one Q in D(ρ0, ρ1) such that H(Q,P ) <∞, there exists a unique minimizer Q∗ in

D(ρ0, ρ1) called the Schrödinger bridge from ρ0 to ρ1 over P . Indeed, let

P y
x = P [ · | x(0) = x, x(1) = y] , Qy

x = Q [ · | x(0) = x, x(1) = y]

be the disintegrations of P and Q with respect to the initial and final positions. Let also

µP = P [(x(0), x(1)) ∈ (·)] , µQ = Q [(x(0), x(1)) ∈ (·)]

be the joint initial-final time distributions under P and Q, respectively. Then, we have

P =

∫
P y
x (·)µP (dx, dy), Q =

∫
Qy
x(·)µQ(dx, dy).

By the multiplication formula,

dQ

dP
=
dµQ

dµP
(x(0), x(1))

dQ
x(1)
x(0)

dP
x(1)
x(0)

, Q a.s.,

we get

H(Q,P ) = EQ

[
ln
dQ

dP

]
= EQ

[
ln
dµQ

dµP
(x(0), x(1))

]
+ EQ

[
ln
dQ

x(1)
x(0)

dP
x(1)
x(0)

(x)

]
=∫ (

ln
dµQ

dµP

)
dµQ +

∫ ∫ (
ln
dQy

x

dP y
x

)
dQy

xµ
Q(dx, dy).

(24)

This is the sum of two nonnegative quantities. The second becomes zero if and only if

Qy
x = P y

x , µQ a.s..

Thus, as already observed by Schrödinger, the problem reduces to minimizing∫ (
ln
dµQ

dµP

)
dµQ (25)
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subject to the (linear) constraints

µQ(dx× Rn) = ρ0(x)dx, µQ(Rn × dy) = ρ1(y)dy. (26)

By the results of Beurlin-Jamison-Föllmer, this problem has a unique solution µ∗ and

Q∗ =

∫
P y
x (·)µ∗(dx, dy)

solves (23).

IV. A STOCHASTIC CONTROL FORMULATION

Consider now the case where (the coordinate process under) P is a Markovian diffusion with forward

drift field bP+(x, t) and transition density p(σ, x, τ, y). The one-time density ρ(x, t) of P is a weak

solution of the Fokker-Planck equation

∂ρ

∂t
+∇ ·

(
bP+ρ
)
− 1

2
∆ρ = 0. (27)

Moreover, forward and backward drifts are related through Nelson’s relation [36]

bP−(x, t) = bP+(x, t)−∇ln ρ(x, t). (28)

Then Q∗ is also Markovian with forward drift field

bQ
∗

+ (x, t) = bP+(x, t) +∇ln ϕ(x, t), (29)

where the (everywhere positive) function ϕ solves together with another function ϕ̂ the system

ϕ(t, x) =

∫
p(t, x, 1, y)ϕ(1, y)dy, (30)

ϕ̂(t, x) =

∫
p(0, y, t, x)ϕ̂(0, y)dy. (31)

with boundary conditions

ϕ(x, 0)ϕ̂(x, 0) = ρ0(x), ϕ(x, 1)ϕ̂(x, 1) = ρ1(x).

Moreover, the one-time density ρ̃ of Q∗ satisfies the factorization

ρ̃(x, t) = ϕ(x, t)ϕ̂(x, t), ∀t ∈ [0, 1]. (32)
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Let us give an elementary derivation of (29). Let ϕ(x, t) be any positive, space-time harmonic function,

namely ϕ satisfies on Rn × [0, 1]

∂ϕ

∂t
+ bP+ · ∇ϕ+

1

2
∆ϕ = 0. (33)

It follows that ln ϕ satisfies

∂ln ϕ

∂t
+ bP+ · ∇ln ϕ+

1

2
∆ln ϕ = −1

2
‖∇ln ϕ‖2. (34)

Observe now that, in view of (20a), problem (23) is equivalent to minimizing over D(ρ0, ρ1) the

functional

I(Q) = EQ

[∫ 1

0

1

2
‖βQ+ − bP+(x(t), t)‖2dt− ln ϕ(x(1), 1) + ln ϕ(x(0), 0)

]
. (35)

This follows from the fact that H(Q,P ) and (35) differ by a quantity which is constant over D(ρ0, ρ1).

Observe now that, under Q, by Ito’s rule,

dln ϕ(x(t), t) =

[
∂ln ϕ

∂t
(x(t), t) + βQ+ · ∇ln ϕ(x(t), t) +

1

2
∆ln ϕ(x(t), t)

]
dt+∇ln ϕ(x(t), t)dw+(t).

(36)

Using this and (34) in (35), we now get

I(Q) = EQ

[∫ 1

0

1

2
‖βQ+ − bP+(x(t), t)‖2dt− ln ϕ(x(1), 1) + ln ϕ(x(0), 0)

]
= EQ

[∫ 1

0

(
1

2
‖βQ+ − bP+(x(t), t)‖2 −

[
∂ln ϕ

∂t
+ βQ+ · ∇ln ϕ+

1

2
∆ln ϕ

]
(x(t), t)

)
dt

−
∫ 1

0

∇ln ϕ(x(t), t)dw+(t)

]
= EQ

[∫ 1

0

(
1

2
‖βQ+ − bP+(x(t), t)‖2 −

(
βQ+ − bP+(x(t), t)

)
· ∇ln ϕ(x(t), t) +

1

2
‖∇ln ϕ(x(t), t)‖2

)
dt

]
= EQ

[∫ 1

0

1

2
‖βQ+ − bP+(x(t), t)−∇ln ϕ(x(t), t)‖2dt

]
, (37)

where again we assumed that the stochastic integral has zero expectation. Then the form (29) of the

forward drift of Q∗ follows. Define now

ϕ̂(x, t) =
ρ̃(x, t)

ϕ(x, t)
.

Then a direct calculation using (33), and the Fokker-Planck equation satisfied by ρ̃

∂ρ̃

∂t
+∇ ·

(
(bP+ +∇ln ϕ)ρ̃

)
− 1

2
∆ρ̃ = 0, (38)
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yields
∂ϕ̂

∂t
+∇ ·

(
bP+ϕ̂

)
− 1

2
∆ϕ̂ = 0. (39)

Thus, ϕ̂ is co-harmonic, namely it satisfies the original Fokker-Planck equation (27) just like ρ(x, t),

the one-time density of the “prior” P .

Suppose we start instead with ψ(x, t), a positive, reverse-time space-time harmonic function, namely

ψ satisfies on Rn × [0, 1]
∂ψ

∂t
+ bP− · ∇ψ −

1

2
∆ψ = 0, (40)

where bP−(x) = bP+(x)−∇ln ρ(x, t) is the backward drift of P . Then ln ψ satisfies

∂ln ψ

∂t
+ bP− · ∇ln ψ − 1

2
∆ln ψ =

1

2
‖∇ln ψ‖2. (41)

Consider now the functional

Ī(Q) = EQ

[∫ 1

0

1

2
‖βQ− − bP−(x(t), t)‖2dt+ ln ψ(x(1), 1)− ln ψ(x(0), 0)

]
. (42)

Again, minimizing Ī(Q) over D(ρ0, ρ1) is equivalent to (23). By Ito’s rule, under Q, we have

dln ψ(x(t), t) =

[
∂ln ψ

∂t
+ βQ− · ∇ln ψ +

1

2
∆ln ψ

]
(x(t), t)dt+∇ln ψ(x(t), t)dw−(t). (43)

Using this differential in (42), we now get

Ī(Q) = EQ

[∫ 1

0

1

2
‖βQ− − bP−(x(t), t)‖2dt+ ln ψ(x(1), 1)− ln ψ(x(0), 0)

]
= EQ

[∫ 1

0

(
1

2
‖βQ− − bP−(x(t), t)‖2 +

[
∂ln ψ

∂t
+ βQ− · ∇ln ψ − 1

2
∆ln ψ

]
(x(t), t)

)
dt

+

∫ 1

0

∇ln ψ(x(t), t)dw−(t)

]
= EQ

[∫ 1

0

(
1

2
‖βQ− − bP−(x(t), t)‖2 +

(
βQ− − bP−(x(t), t)

)
· ∇ln ψ(x(t), t) +

1

2
‖∇ln ψ(x(t), t)‖2

)
dt

]
= EQ

[∫ 1

0

1

2
‖βQ− − bP−(x(t), t) +∇ln ψ(x(t), t)‖2dt

]
.

We then get

bQ
∗

− (x, t) = bP−(x, t)−∇ln ψ(x, t). (44)
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Thus, the solution Q∗ is, in the language of Doob, an h-path process both in the forward and in the

backward direction of time. We now identify ψ. By (32), we have

ρ̃(x, t) = ϕ(x, t)ϕ̂(x, t) = ϕ(x, t)
ϕ̂(x, t)

ρ(x, t)
ρ(x, t)

= ϕ(x, t)ψ(x, t)ρ(x, t), ψ(x, t) =
ϕ̂(x, t)

ρ(x, t)
, ∀t ∈ [0, 1]. (45)

Indeed, ψ, being the ratio of two solutions of the original Fokker-Planck (39), is reverse-time space-time

harmonic, it namely satisfies (40) [39]. This agrees with the following calculation using (44), (28), (45)

and (29)

bQ
∗

− (x, t) = bP−(x, t)−∇ln ψ(x, t)

= bP+(x, t)−∇ln ρ(x, t)−∇ln ψ(x, t)

= bP+(x, t)−∇ln ϕ̂(x, t) = bP+(x, t)±∇ln ϕ(x, t)−∇ln ϕ̂(x, t)

= bQ
∗

+ (x, t)−∇ln ρ̃(x, t),

(46)

which is simply Nelson’s duality relation for the drifts of Q∗. Formula (45) should be compared to [29,

Theorem 3.4].

Finally, there are also conditional versions of these variational problems which are closer to standard

stochastic control problems. Consider, for instance, minimizing the functional

J(u) = Etx

[∫ 1

t

1

2
‖u(t)‖2dt− ln ϕ1(x(1))

]
, (47)

dx(t) =
[
bP+(x(t), t) + u(x(t), t)

]
dt+ dw+(t), x(t) = x a.s..

over feedback controls u such that the differential equation has a weak solution. If ϕ(x, t) solves (33)

with terminal condition ϕ1(x), then, the same argument as before shows that u∗(x, t) = ∇ln ϕ(x, t)

is optimal and that S(x, t) = −ln ϕ(x, t) = infuJ(u) is the value function of the control problem. By

(34), the Hamilton-Jacobi-Bellman equation has the form

∂S

∂t
+ infu

[(
bP+ + u

)
· ∇S +

1

2
‖u‖2

]
+

1

2
∆S = 0, S(x, 1) = −ln ϕ1(x).

V. A TIME-SYMMETRIC FORMULATION

Inspired by a paper by Nagasawa [35], we proceed to derive a control time-symmetric formulation

of the bridge problem. For any Q ∈ D, define the current and osmotic drifts

vQ =
βQ+ + βQ−

2
, uQ =

βQ+ − β
Q
−

2
.
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Then

βQ+ = vQ + uQ, βQ− = vQ − uQ.

Observe that

H(Q,P ) =
1

2
H(q(0), p(0)) +

1

2
H(q(1), p(1))

+EQ

[∫ 1

0

1

4
‖βQ+ − βP+‖2 +

1

4
‖βQ− − βP−‖2dt

]
=

1

2
H(q(0), p(0)) +

1

2
H(q(1), p(1))

+EQ

[∫ 1

0

1

2
‖vQ − vP‖2 +

1

2
‖uQ − uP‖2dt

]
. (48)

Since H(q0, p0) and H(q1, p1) are constant over D(ρ0, ρ1), it follows that the Schrödinger bridge Q∗

minimizes the sum of the two incremental kinetic energies. Finally, we consider minimizing over

D(ρ0, ρ1) the functional

Is(Q) =
1

2

[
I(Q) + Ī(Q)

]
.

By the previous calculation, this is equivalent to minimizing over D(ρ0, ρ1) the functional

EQ

[∫ 1

0

(
1

2
‖vQ − vP‖2 +

1

2
‖uQ − uP‖2

)
dt− 1

2
ln

ϕ

ψ
(x(1), 1) +

1

2
ln

ϕ

ψ
(x(0), 0)

]
. (49)

The following current and osmotic drifts make the functional equal to zero and are therefore optimal

vQ
∗
(x, t) = vP (x, t) +

1

2
∇ln

ϕ

ψ
(x, t), (50)

uQ
∗
(x, t) = uP (x, t) +

1

2
∇ln (ϕψ)(x, t), (51)

which agree with (29) and (44). A variational analysis with the two controls v and u can be developed

along the lines of [40, Sections III-IV].

VI. A FLUID DYNAMIC FORMULATION OF THE SCHRÖDINGER BRIDGE PROBLEM

Let us go back to the symmetric representation (48). In the case where the prior measure is P = W

stationary Wiener measure, we have vW = uW = 0 1. It basically corresponds to the situation where

1See [29, pp. 7-8] for a justification of employing unbounded path measures in relative entropy problems.
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there is no prior information. Considering that the boundary relative entropies are constant, we get that

the problem is equivalent to minimizing

E
{∫ 1

0

[
1

2
‖v‖2 +

1

2
‖u‖2

]
dt

}
over D(ρ0, ρ1). Let us restrict our search to Markovian processes and recall Nelson’s duality formula

relating the two drifts

u(x, t) =
1

2
∇ln ρ(x, t). (52)

where u is the osmotic drift field, and the current drift field

v(x, t) =
b+(x, t) + b−(x, t)

2
.

Then,
∂ρ

∂t
+∇ · (vρ) = 0. (53)

Thus, we get that the problem is equivalent to minimizing

inf
(ρ,v)

∫
Rn

∫ 1

0

[
1

2
‖v(x, t)‖2 +

1

8
‖∇ln ρ(x, t)‖2

]
ρ(t, x)dtdx, (54)

∂ρ

∂t
+∇ · (vρ) = 0, (55)

ρ(0, x) = ρ0(x), ρ(1, y) = ρ1(y), (56)

which should be compared to (9a)-(9b)-(9c). We notice, in particular, that the two functionals differ by

a term which is a multiple of the integral over time of the Fisher information functional∫
Rn
‖∇ln ρ(x, t)‖2ρ(t, x)dx.

This unveils a relation between the two problems without zero noise limits [31], [30].

Finally, we mention that a fluid dynamic problem concerning swarms of particles diffusing anisotropi-

cally with losses has been proposed and studied in [7]. It may or may not have a probabilistic counterpart

as a Schrödinger bridge problem.
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VII. OPTIMAL TRANSPORT WITH A “PRIOR”

Considering the relation we have seen between the fluid dynamic versions of the optimal transport

problem and the Schrödinger bridge problem, one may wonder whether there exists a formulation of

the former which allows for an “a priori” evolution like in the latter. Relative entropy on path space

does not work for zero-noise random evolutions as they are singular. Indeed, let Pε and Qε be the

measures on C([0, 1],Rn) equivalent to stationary Wiener measure W with forward differentials

dx(t) = βPε+ dt+
√
εdw+(t),

dx(t) = βQε+ dt+
√
εdw+(t). (57)

Then, one can argue along the same lines as in Section III that

H(Qε, Pε) = H(q0, p0) + EQε
[∫ 1

0

1

2ε
‖βQε+ − βPε+ ‖2dt

]
.

For ε↘ 0, the relative entropy becomes infinite unless Qε = Pε
2. We need therefore to take a different

route, namely start with the following fluid dynamic control problem. Suppose we have two probability

densities ρ0 and ρ1 and a flow of probability densities {ρ(x, t); 0 ≤ t ≤ 1} satisfying

∂ρ

∂t
+∇ · (vρ) = 0, (58)

for some continuos vector field v(·, ·). We take (58) as our “prior” evolution and formulate the following

problem. Let

inf
(ρ̃,ṽ)

∫
Rn

∫ 1

0

1

2
‖ṽ(x, t)− v(x, t)‖2ρ̃(t, x)dtdx, (59a)

∂ρ̃

∂t
+∇ · (ṽρ̃) = 0, (59b)

ρ̃(0, x) = ρ0(x), ρ̃(1, y) = ρ1(y). (59c)

Clearly, if the prior flow satisfies ρ(x, 0) = ρ0(x) and ρ(x, 1) = ρ1(x), then it solves the problem and

ṽ∗ = v. Moreover, the standard optimal transport problem is recovered when v ≡ 0, namely the prior

evolution is constant in time.

Let us try to provide further motivation to study problem (59). Consider the situation where a

previous optimal transport problem (9) has been solved with boundary marginals ρ̄0 and ρ̄1 leading to

2 This calculation indicates that there may be a limit as ε ↘ 0 of inf{εH(Qε, Pε)} and, hopefully, in suitable sense, of the

minimizers. This is indeed the case, see [31], [30], [29] for a precise statement of limiting results.
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the optimal velocity field v(x, t). Here say ρ̄0 represent resources being produced to satisfy the demand

ρ̄1. Suppose now new information becomes available showing that the actual resources available are

distributed according to ρ0 and the actual demand is distributed according to ρ1. As we had already

set up a transportation plan according to velocity field v, we seek to solve a new transport problem

where the new evolution is close to the one we would have employing the previous velocity field. This

is represented in problem (59).

Remark 7.1: The particle version of (59) takes the form of a more familiar OMT problem, namely,

in the notation of Section II,

inf
π∈Π(µ,ν)

∫
Rn
×Rn

c(x, y)dπ(x, y), (60)

where

c(x, y) = inf
x∈Xxy

∫ 1

0

L(t, x(t), ẋ(t))dt, L(t, x, ẋ) = ‖ẋ− v(x, t)‖2. (61)

The explicit calculation of the function c(x, y) when v 6≡ 0 is nontrivial. Moreover, the zero noise limit

results of [30, Section 3], based on a Large Deviations Principle [12], although very general in other

ways, seem to cover here only the case where c(x, y) = c(x − y) strictly convex originating from a

Lagrangian L(t, x, ẋ) = c(ẋ). Finally, we feel that our formulation is a most natural one in which to

study zero noise limits of Schroedinger bridges with a general Markovian prior evolution. In the next

section, we discuss this problem in the Gaussian case. The proof of the convergence of the path-space

measures of the minimisers can be done along the lines of [30] where Γ-convergence of the bridge

minimum problems to the OMT problem is established. This, under suitable assumptions, guarantees

convergence of the minimizers.

The variational analysis for (59) can be carried out as in Section II. Let Pρ0ρ1 be again the family

of flows of probability densities ρ = {ρ(·, t); 0 ≤ t ≤ 1} satisfying (59c). Let V be the family of

continuous feedback control laws ṽ(·, ·). Consider the unconstrained minimization of the Lagrangian

over Pρ0ρ1 × V

L(ρ̃, v) =

∫
Rn

∫ 1

0

[
1

2
‖ṽ(x, t)− v(x, t)‖2ρ̃(t, x) + λ(x, t)

(
∂ρ̃

∂t
+∇ · (ṽρ̃)

)]
dtdx, (62)

where again λ is a C1 Lagrange multiplier. After integration by parts, assuming that limits for x→∞

are zero, and observing that the boundary values are constant over Pρ0ρ1 , we get the problem

inf
(ρ̃,ṽ)∈Pρ0ρ1×V

∫
Rn

∫ 1

0

[
1

2
‖ṽ(x, t)− v(x, t)‖2 +

(
−∂λ
∂t
−∇λ · ṽ

)]
ρ̃(x, t)dtdx (63)
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Pointwise minimization with respect to ṽ for each fixed flow of probability densities ρ̃ gives

v∗ρ(x, t) = v(x, t) +∇λ(x, t). (64)

Plugging this form of the optimal control into (63), we get the functional of ρ̃ ∈ Pρ0ρ1

J(ρ̃) = −
∫
Rn

∫ 1

0

[
∂λ

∂t
+ v · ∇λ+

1

2
‖∇λ‖2

]
ρ̃(x, t)dtdx. (65)

We then have the following result:

Proposition 7.2: If ρ̃∗ satisfying

∂ρ̃∗

∂t
+∇ · [(v +∇ψ)ρ̃∗] = 0, ρ̃∗(x, 0) = ρ0(x), (66)

where ψ is a solution of the Hamilton-Jacobi equation

∂ψ

∂t
+ v · ∇ψ +

1

2
‖∇ψ‖2 = 0, (67)

is such that ρ̃∗(x, 1) = ρ1(x), then the pair (ρ̃∗(x, t), v∗(x, t) = v(x, t) +∇ψ(x, t)) is a solution of the

problem (59).

If v(x, t) = α(t)x, and both ρ0 and ρ1 are Gaussian, then the optimal evolution is given by a linear

equation and is therefore given by a Gaussian process as we will study next.

VIII. GAUSSIAN CASE

In this section, we consider the correspondence between Schrödinger bridges and optimal mass

transport for the special case where the underlying dynamics are linear and the marginals are normal

distributions. To this end, consider the reference evolution

dx(t) = A(t)x(t)dt+
√
εdw(t) (68)

and the two marginals

ρ0(x) = (2π|Σ0|)−n/2 exp

[
−1

2
(x−m0)′Σ−1

0 (x−m0)

]
, (69a)

ρ1(x) = (2π|Σ1|)−n/2 exp

[
−1

2
(x−m1)′Σ−1

1 (x−m1)

]
, (69b)

where prime denotes transposition. In our previous work [6], we derived a “closed form” expression

for the corresponding Schrödinger bridge for the case when m0 = m1 = 0, namely,

dx(t) = (A(t)− Πε(t))x(t)dt+
√
εdw(t) (70)
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with Πε(t) satisfying the matrix Riccati equation

Π̇ε(t) + A(t)′Πε(t) + Πε(t)A(t)− Πε(t)
2 = 0 (71)

and the boundary condition

Πε(0) = Σ
−1/2
0 [

ε

2
I + Σ

1/2
0 Φ′10M

−1
10 Φ10Σ

1/2
0 − (

ε2

4
I + Σ

1/2
0 Φ′10M

−1
10 Σ1M

−1
10 Φ10Σ

1/2
0 )1/2]Σ

−1/2
0 .

Here Φ10 := Φ(1, 0) is the state transition matrix from 0 to 1 and

M10 := M(1, 0) =

∫ 1

0

Φ(1, t)Φ(1, t)′dt

is the controllability gramian. This can be easily adjusted for the case when m0 6= 0 or m1 6= 0 by

adding an extra deterministic drift term to account for the change in the mean as follows:

dx(t) = (A(t)− Πε(t))x(t)dt+m(t)dt+
√
εdw(t) (72)

where

m(t) = Φ̂(1, t)′M̂(1, 0)−1(m1 − Φ̂(1, 0)m0) (73)

with Φ̂(t, s), M̂(t, s) satisfying

∂Φ̂(t, s)

∂t
= (A(t)− Πε(t))Φ̂(t, s), Φ̂(t, t) = I

and

M̂(t, s) =

∫ t

s

Φ̂(t, τ)Φ̂(t, τ)′dτ.

We now consider “slowing down” the reference evolution by letting ε go to 0. In the case where

A(t) ≡ 0, the Schrödinger bridge solution process converges to the solution of optimal mass transport

problem [31], [29]. In general, when A(t) 6≡ 0, by taking ε = 0 we obtain

Π0(0) = Σ
−1/2
0 [Σ

1/2
0 Φ′10M

−1
10 Φ10Σ

1/2
0 − (Σ

1/2
0 Φ′10M

−1
10 Σ1M

−1
10 Φ10Σ

1/2
0 )1/2]Σ

−1/2
0 , (74)

and a limiting process

dx(t) = (A(t)− Π0(t))x(t)dt+m(t)dt, x(0) ∼ (m0,Σ0) (75)

with Π0(t),m(t) satisfying (71), (73) and (74). In fact Π0(t) has explicit expression

Π0(t) = −M(t, 0)−1 −M(t, 0)−1Φ(t, 0)
[
Φ′10M

−1
10 Φ10

−Σ
−1/2
0 (Σ

1/2
0 Φ′10M

−1
10 Σ1M

−1
10 Φ10Σ

1/2
0 )1/2Σ

−1/2
0 − Σ

−1/2
0

]−1

Φ(t, 0)′M(t, 0)−1 (76)
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It turns out that process (75) yields an optimal solution to the transport problem (59) as stated next.

Theorem 8.1: Let ρ̃(·, t) be the probability density of x(t) in (75), and ṽ(x, t) = (A(t)−Π0(t))x+

m(t). Then the pair (ρ̃, ṽ) is a solution of the problem (59) with prior velocity field v(x, t) = A(t)x.

Proof: To show that the pair (ρ̃, ṽ) is a solution, we need to prove i) ρ̃ satisfies the boundary

condition ρ̃(x, 1) = ρ1(x) and ii) ṽ(x, t) − v(x, t) = ∇ψ(x, t) for some ψ with ψ satisfying the

Hamilton-Jacobi equation (67). Here v(x, t) = A(t)x is the drift of the prior process.

We first show that ρ̃ satisfies the boundary condition ρ̃(x, 1) = ρ1(x). Since the process (75) is a

linear diffusion with gaussian initial condition, x(t) is a gaussian random vector for all t ∈ [0, 1]. Let

ρ̃(x, t) = (2π|Σ(t)|)−n/2 exp

[
−1

2
(x− n(t))′Σ(t)−1(x− n(t))

]
.

Then obviously the mean value n(t) is

n(t) = Φ̂(t, 0)m0 +

∫ t

0

Φ̂(t, τ)m(τ)dτ.

We claim that the covariance Σ(t) has the explicit expression

Σ(t) = M(t, 0)Φ(0, t)′Σ
−1/2
0

[
−Σ

1/2
0 Φ′10M

−1
10 Φ10Σ

1/2
0 + (Σ

1/2
0 Φ′10M

−1
10 Σ1M

−1
10 Φ10Σ

1/2
0 )1/2

+Σ
1/2
0 Φ(t, 0)′M(t, 0)−1Φ(t, 0)Σ

1/2
0

]2

Σ
−1/2
0 Φ(0, t)M(t, 0), (77)

for t ∈ (0, 1]. This expression is consistent with the initial condition Σ0 since

lim
t↘0

Σ(t) = Σ0.

To see that Σ(t) is the covariance matrix of x(t), we only need to show that Σ(t) satisfies the differential

equation

Σ̇(t) = (A(t)− Π0(t))Σ(t) + Σ(t)(A(t)− Π0(t))′.

This can be verified directly from the expression (77) and (76) after some straightforward but lengthy

computations. Now observing that

n(1) = Φ̂(1, 0)m0 +

∫ 1

0

Φ̂(1, τ)m(τ)dτ

= Φ̂(1, 0)m0 +

∫ 1

0

Φ̂(1, τ)Φ̂(1, τ)′dτM̂(1, 0)−1(m1 − Φ̂(1, 0)m0) = m1

and

Σ(1) = M(1, 0)Φ(0, 1)′Σ
−1/2
0

[
(Σ

1/2
0 Φ′10M

−1
10 Σ1M

−1
10 Φ10Σ

1/2
0 )1/2

]2

Σ
−1/2
0 Φ(0, 1)M(1, 0) = Σ1,
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we conclude that ρ̃ satisfies the boundary condition ρ̃(x, 1) = ρ1(x).

We next show ii). Let

ψ(x, t) = −1

2
x′Π0(t)x+m(t)′x+ c(t)

with

c(t) = −1

2

∫ t

0

m(τ)′m(τ)dτ,

then

∂ψ

∂t
+ v · ∇ψ +

1

2
‖∇ψ‖2 = −1

2
x′Π̇0(t)x+ ṁ(t)′x+ ċ(t) + x′A(t)′(m(t)− Π0(t)x) +

1

2
‖m(t)′ − x′Π0(t)‖2

=
1

2
x′(A(t)′Π0 + Π0A(t)− Π0(t)2)x−m(t)′(A(t)− Π0(t))x+ ċ(t)

+x′A(t)′(m(t)− Π0(t)x) +
1

2
(m(t)′ − x′Π0(t))(m(t)− Π0(t)x)

= ċ(t) +
1

2
m(t)′m(t) = 0.

This completes the proof.

IX. EXAMPLE: SHIFTING THE MEAN OF NORMAL DISTRIBUTIONS

For illustration purposes, we consider the Schrödinger bridge problem on the time interval [0, 1] and

x ∈ R when the “prior” is σWt and the two marginals are

ρ0(x) = (2π)−1/2 exp

[
−x

2

2

]
, ρ1(x) = (2π)−1/2 exp

[
−(x− 1)2

2

]
. (78)

By the general theory, we know that the bridge has forward differential

dx(t) =
∂

∂x
ln ϕ(x(t), t)dt+ σdw(t)

where ϕ solves together with ϕ̂ the Schrödinger system ∂ϕ
∂t

+ σ2

2
∆ϕ = 0, ϕ(x, 0)ϕ̂(x, 0) = ρ0(x)

∂ϕ̂
∂t
− σ2

2
∆ϕ̂ = 0, ϕ(x, 1)ϕ̂(x, 1) = ρ1(x).

, (79)

It can be seen that

dx(t) =

[
σ2

σ2t+ c
x(t) +

c

σ2t+ c

]
dt+ σdw(t),

with

c = − σ2

σ2/2 + 1−
√

1 + σ4/4
.
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It follows that mt = E {x(t)} satisfies

ṁt =
σ2

σ2t+ c
mt +

c

σ2t+ c
, m(0) = 0, m(1) = 1.

We get mt = t. The current drift of the Schrödinger bridge is

ṽ(x, t) =
σ2

σ2t+ c
x+

c

σ2t+ c
− σ2

2
∇ln ρ̃t(x),

where ρ̃t has the form

ρ̃t = (2π)−1/2 exp

[
−(x− t)2

2q(t)

]
.

Hence,

ṽ(x, t) =
σ2

σ2t+ c
x+

c

σ2t+ c
− σ2

2

t− x
q(t)

.

As σ2 ↘ 0, c→ −2, q(t)→ 1 and ṽ(x, t)→ 1, ∀x, ∀t (while ũ(x, t) = σ2

2
∇ln ρ̃(x, t)→ 0), which is

just the optimal control of the corresponding optimal transport problem. This is in agreement with the

general theory [31], [29].

X. NUMERICAL EXAMPLE

We consider highly overdamped Brownian motion in a force field. Then, in a very strong sense [36,

Theorem 10.1], the Smoluchowski model in configuration variables is a good approximation of the

full Ornstein-Uhlenbeck model in phase space. We are interested in planar Brownian motion in the

quadratic potential

V (x) =
1

2
x′3I2x =

1

2
[x1, x2]

3 0

0 3

x1

x2

 .
Taking the mass of the particle to be equal to one, the planar evolution of the Brownian particle is

given by the Smoluchowski equation

dx(t) = −∇V (x(t))dt+
√
εdw(t), −∇V (x) = Ax, A =

−3 0

0 −3

 , (80)

where w is a standard, two-dimensional Wiener process. The observed distributions of the particle at

the two end-points in time are normal with mean and variance

m0 =

−5

−5

 , and Σ0 =

1 0

0 1
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Fig. 1. Interpolation based on Schrödinger bridge with ε = 9

at t = 0, and

m1 =

5

5

 , and Σ1 =

1 0

0 1


at t = 1, respectively. We then seek to interpolate the density of the particle at intermediate points

by solving the corresponding Schrödinger bridge problem where (80) plays the role of an a priori

evolution.

Figure 1 depicts the flow between the two one-time marginals for the Schrödinger bridge when ε = 9.

The transparent tube represent the “3σ region”

(x′ −m′t)Σ−1
t (x−mt) ≤ 9.

Typical sample paths are shown in the figure. Similarly, Figures 2 and 3 depict the corresponding flows

for ε = 4 and ε = 0.01, respectively. Figure 4 is the limit that represents optimal mass transport with

prior velocity field v(x, t) = Ax; the sample paths are smooth curves that follow optimal transportation

paths. As ε↘ 0, the paths of the bridge process resemble those of the corresponding optimal transport

process for ε = 0. For comparison, we also provide in Figure 5 the interpolation corresponding to

optimal transport without a prior, which is given by a constant speed translation.
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Fig. 2. Interpolation based on Schrödinger bridge with ε = 4

Fig. 3. Interpolation based on Schrödinger bridge with ε = 0.01
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Fig. 4. Interpolation based on optimal transport with prior

Fig. 5. Interpolation based on optimal transport without prior
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